JP2010199524A - Method of manufacturing semiconductor - Google Patents

Method of manufacturing semiconductor Download PDF

Info

Publication number
JP2010199524A
JP2010199524A JP2009063516A JP2009063516A JP2010199524A JP 2010199524 A JP2010199524 A JP 2010199524A JP 2009063516 A JP2009063516 A JP 2009063516A JP 2009063516 A JP2009063516 A JP 2009063516A JP 2010199524 A JP2010199524 A JP 2010199524A
Authority
JP
Japan
Prior art keywords
layer
thin film
excited
semiconductor
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009063516A
Other languages
Japanese (ja)
Inventor
Akito Hara
明人 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009063516A priority Critical patent/JP2010199524A/en
Publication of JP2010199524A publication Critical patent/JP2010199524A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor achieving a highly efficient thin-film polycrystalline silicon (Si) solar cell on a glass substrate. <P>SOLUTION: The method of manufacturing a semiconductor for a solar cell includes: the steps for forming on the glass a large grain size polycrystalline silicon (Si) thin film subjected to orientation control to (110) and (111) by using a solid continuous wave laser excited by semiconductor (excited by diode), and directly growing the polycrystalline silicon Si layer while using the above Si film as a seed crystal. After that, this thin film is irradiated with an energy beam in condition that the Si layer is not molten and Si is grown in solid phase. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体製造方法に関し、特にガラス上に形成された高効率薄膜シリコン(Si)系太陽電池を実現するための半導体製造方法に関する。  The present invention relates to a semiconductor manufacturing method, and more particularly to a semiconductor manufacturing method for realizing a high-efficiency thin-film silicon (Si) solar cell formed on glass.

近時では、ガラス上の高効率Si系薄膜太陽電池が注目されている。現在のガラス上の薄膜Si系太陽電池は、非晶質あるいは微結晶からなる薄膜Si系材料が主流となっている。  Recently, high-efficiency Si-based thin-film solar cells on glass have attracted attention. Current thin-film Si-based solar cells on glass are mainly thin-film Si-based materials made of amorphous or microcrystals.

しかし、非晶質あるいは微結晶からなる薄膜Si系太陽電池は変換効率が低いという問題点があった。  However, a thin film Si solar cell made of amorphous or microcrystal has a problem that conversion efficiency is low.

ガラス上の薄膜Si系太陽電池、特に非晶質あるいは微結晶からなる薄膜Si系太陽電池は、バルク単結晶Si太陽電池あるいはバルク多結晶Si太陽電池に比較して変換効率が悪い。これは、非晶質Siあるいは微結晶Siの結晶品質が単結晶Siやバルク多結晶Siに比較して劣っていることに起因する。  Thin-film Si-based solar cells on glass, particularly thin-film Si-based solar cells made of amorphous or microcrystals, have a lower conversion efficiency than bulk single-crystal Si solar cells or bulk polycrystalline Si solar cells. This is because the crystal quality of amorphous Si or microcrystalline Si is inferior to that of single crystal Si or bulk polycrystalline Si.

従って、ガラス上に高品質の多結晶Siを形成することができれば、ガラス上の薄膜Si系太陽電池の変換効率に大きなブレークスルーをもたらすと期待される。  Therefore, if high-quality polycrystalline Si can be formed on glass, it is expected to bring about a great breakthrough in the conversion efficiency of thin-film Si-based solar cells on glass.

本発明は、前記課題に鑑みてなされたものであり、ガラス基板上に高効率薄膜Si系太陽電池を形成するために、薄膜Siでありながら、大粒径を有する多結晶Si薄膜を形成するための半導体製造方法を提供することを目的とする。  The present invention has been made in view of the above problems, and in order to form a high-efficiency thin-film Si-based solar cell on a glass substrate, a polycrystalline Si thin film having a large particle diameter is formed while being a thin film Si. An object of the present invention is to provide a semiconductor manufacturing method.

本発明者は、鋭意検討の結果、以下に示す発明の諸態様に想到した。  As a result of intensive studies, the present inventor has conceived the following aspects of the invention.

半導体励起(ダイオード励起)された固体連続波レーザーを利用して(110)と(111)に配向制御した大粒径多結晶Si薄膜を形成し、このSi膜を種(シード)結晶として多結晶Si層を直接成長する。最後に、本薄膜に対して、Si層が溶融しない条件でエネルギービームを再度照射して、Siの固相成長を行う。  A large-grain polycrystalline Si thin film whose orientation is controlled to (110) and (111) is formed by using a semiconductor-excited (diode-excited) solid-state continuous wave laser, and this Si film is used as a seed crystal. The Si layer is grown directly. Finally, this thin film is irradiated with an energy beam again under the condition that the Si layer does not melt, and solid phase growth of Si is performed.

本発明によれば、ガラス上に大粒径の多結晶Siを形成することが可能になり、現在実用化されている非晶質Siや微結晶Siからなる薄膜Si系太陽電池よりも高効率の薄膜Si系太陽電池をガラス上に安価に実現することが可能になる。  According to the present invention, it is possible to form polycrystalline Si having a large particle size on glass, and it is more efficient than a thin-film Si-based solar cell made of amorphous Si or microcrystalline Si that is currently in practical use. This thin film Si-based solar cell can be realized on glass at low cost.

本発明により、ガラス基板上に高い変換効率を有する薄膜Si系太陽電池を安価に実現するための半導体製造方法が提案される。  The present invention proposes a semiconductor manufacturing method for realizing a thin film Si solar cell having high conversion efficiency on a glass substrate at a low cost.

以下、本発明の具体的な実施形態について詳述する。本実施例では、半導体励起(ダイオード励起)された固体連続波レーザーとして、Nd:YVOの第2高調波である波長532nmを利用して(110)と(111)に配向制御した大粒径多結晶Si薄膜を形成し、本Si膜の表面を水素終端して表面を安定化させたのち、該Si薄膜を種(シード)結晶として、プラズマCVDにて多結晶Si層を直接成長する。さらに、本多結晶Si薄膜に対して、上記と同一の半導体励起(ダイオード励起)固体連続波レーザーを利用してレーザー固相成長を実現した。Hereinafter, specific embodiments of the present invention will be described in detail. In this example, a large particle size whose orientation is controlled to (110) and (111) using a wavelength of 532 nm, which is the second harmonic of Nd: YVO 4 , as a solid-state continuous wave laser pumped by a semiconductor (diode pump). After forming a polycrystalline Si thin film and stabilizing the surface by terminating the surface of the Si film with hydrogen, a polycrystalline Si layer is directly grown by plasma CVD using the Si thin film as a seed crystal. Furthermore, laser solid phase growth was realized for this polycrystalline Si thin film by using the same semiconductor excitation (diode excitation) solid-state continuous wave laser as described above.

図1は、本実施形態によって形成された薄膜Si系太陽電池の概略構造図である。  FIG. 1 is a schematic structural diagram of a thin film Si-based solar cell formed according to this embodiment.

図2〜図4は、Si薄膜の製造方法を工程順に示す概略模式図である。
先ず、図2(a)に示すように、ガラス基板上1にプラズマCVDにより不純物をドーピングした非晶質Si薄膜2を200nm成長する。該非晶質Si薄膜は、シランガスとドーピングガスを混合させることにより形成される。
2 to 4 are schematic schematic views showing a method for producing a Si thin film in the order of steps.
First, as shown in FIG. 2A, an amorphous Si thin film 2 doped with impurities by plasma CVD is grown on a glass substrate 1 by 200 nm. The amorphous Si thin film is formed by mixing silane gas and doping gas.

続いて、図2(b)に示すように、波長532nmを有する半導体励起固体CWレーザー(Nd:YVO,波長532nm)を利用し、パワー4.0ワットに設定し、レーザースキャン速度40cm/sでスキャンすることにより、(110)あるいは(111)に配向制御された低抵抗の大粒径多結晶Si層3を形成する。この時の結晶粒径は3μmx20μmである。Subsequently, as shown in FIG. 2B, a semiconductor-excited solid CW laser (Nd: YVO 4 , wavelength 532 nm) having a wavelength of 532 nm is used, the power is set to 4.0 watts, and the laser scanning speed is 40 cm / s. The low resistance large grain polycrystalline Si layer 3 whose orientation is controlled to (110) or (111) is formed by scanning with (1). The crystal grain size at this time is 3 μm × 20 μm.

発明者が行った過去の研究によると、Si層の厚さが薄くなると、結晶粒は(110)や(111)方向に配向することが知られている。  According to past studies conducted by the inventors, it is known that when the thickness of the Si layer is reduced, the crystal grains are oriented in the (110) and (111) directions.

引き続いて、(110)あるいは(111)表面をウェット処理により水素終端化したSi層4(図3(a))を形成する。(110)面や(111)面は水素により綺麗に終端化が可能な面であることが知られている。これにより、次に続くシード層を利用したPECVDによるエピ成長を安定化し、再現性よく行うことができる。  Subsequently, the Si layer 4 (FIG. 3A) in which the (110) or (111) surface is hydrogen-terminated by wet processing is formed. It is known that the (110) plane and the (111) plane are surfaces that can be neatly terminated with hydrogen. Thereby, the epitaxial growth by PECVD using the following seed layer can be stabilized and performed with good reproducibility.

引き続いて、PECVDを利用して、水素希釈条件(SiH:H=5:95)で2μmのシリコン層5を350℃にてエピ成長させる(図3(b))。本シリコン薄膜層は不純物をドープせずにイントリック層とした。なお、水素希釈量は本実施例に限定されたものではなく、シランガスと水素ガスの混合ガスであり、水素ガス量がシランガス量よりも多ければ良い。Subsequently, by using PECVD, the 2 μm silicon layer 5 is epitaxially grown at 350 ° C. under hydrogen dilution conditions (SiH 4 : H 2 = 5: 95) (FIG. 3B). This silicon thin film layer was an intric layer without doping impurities. The hydrogen dilution amount is not limited to the present embodiment, but is a mixed gas of silane gas and hydrogen gas as long as the hydrogen gas amount is larger than the silane gas amount.

引き続いて、上記成長したSi薄膜上に真空を破らずに、好ましくはイントリンシックSi層を形成したチャンバーと異なるチャンバーを利用して、不純物がドーピングされたSi層6を200nm成長する(図4)。本工程でドーピングする不純物は、種(シード)結晶層にドーピングされた不純物と異なるタイプの不純物をドーピングする。ここで、異なるタイプの不純物とは、種(シード)結晶がn型でれば本薄膜層はp型、逆に、種(シード)結晶層がp型であれば本薄膜層はn型とする。  Subsequently, without breaking the vacuum on the grown Si thin film, an Si layer 6 doped with impurities is grown to 200 nm preferably using a chamber different from the chamber in which the intrinsic Si layer is formed (FIG. 4). . The impurity doped in this step is doped with a different type of impurity from the impurity doped in the seed (seed) crystal layer. Here, different types of impurities mean that if the seed crystal is n-type, the thin film layer is p-type. Conversely, if the seed crystal layer is p-type, the thin film layer is n-type. To do.

引き続いて、上記成長が終了した薄膜Si層に対して、Si層が溶融しないように設定した低いパワーでレーザー照射を行いSi薄膜(図5)を完成させる。本実施例では、2.0Wのレーザーパワーを利用し、レーザースキャン速度40cm/sでスキャンすることによりSi固相成長を実現した。ここで形成されたSi層55、66層は、レーザー照射による固相成長が行われるため、レーザー照射前のSi層5,6より、良質の結晶が形成される。  Subsequently, the thin film Si layer after the growth is irradiated with laser at a low power set so that the Si layer is not melted to complete the Si thin film (FIG. 5). In this example, Si solid phase growth was realized by using a laser power of 2.0 W and scanning at a laser scanning speed of 40 cm / s. Since the Si layers 55 and 66 formed here are subjected to solid phase growth by laser irradiation, higher quality crystals are formed than the Si layers 5 and 6 before laser irradiation.

最終的な形態を図1に示す。ガラス上に太陽電池用の大粒径の多結晶Siを形成することができる。  The final form is shown in FIG. Polycrystalline Si having a large particle size for solar cells can be formed on glass.

本実施例では、レーザーを利用した固相成長の前に、水素だしの熱処理を450℃60分を行っている。  In this embodiment, hydrogen treatment is performed at 450 ° C. for 60 minutes before solid phase growth using a laser.

また、レーザーを利用した固相成長後に、水素化処理400℃60分を行っている。  Further, after solid phase growth using a laser, hydrogenation treatment is performed at 400 ° C. for 60 minutes.

本発明の実施形態を示す概略図である。It is the schematic which shows embodiment of this invention. 本発明の実施形態による半導体製造方法を工程順に示す概略図である。It is the schematic which shows the semiconductor manufacturing method by embodiment of this invention in process order. 図2に引き続き、本発明の実施形態による半導体製造方法を工程順に示す概略図である。FIG. 3 is a schematic view illustrating the semiconductor manufacturing method according to the embodiment of the present invention in the order of steps subsequent to FIG. 2. 図3に引き続き、本発明の実施形態による半導体製造方法を工程順に示す概略図である。FIG. 4 is a schematic view illustrating the semiconductor manufacturing method according to the embodiment of the present invention in the order of steps subsequent to FIG. 3. 図4に引き続き、本発明の実施形態による半導体製造方法を示す概略図である。FIG. 5 is a schematic diagram illustrating a semiconductor manufacturing method according to an embodiment of the present invention following FIG. 4.

1 ガラス基板
2 不純物をドープされた非晶質Si薄膜
3 レーザー結晶化による(110)あるいは(111)配向の大粒径シリコン多結晶薄膜
4 水素終端化された多結晶Si薄膜
5 シリコン薄膜(イントリンシック層)
6 不純物をドープされた多結晶Si層
55 レーザー照射により固相成長されたイントリンシックSi層
66 レーザー照射により固相成長された不純物をドープされたSi層
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Impurity-doped amorphous Si thin film 3 (110) or (111) oriented large grain silicon polycrystalline thin film 4 by laser crystallization 4 Hydrogen-terminated polycrystalline Si thin film 5 Silicon thin film (in Trinsic layer)
6 Polycrystalline Si layer 55 doped with impurities Intrinsic Si layer 66 solid-phase grown by laser irradiation 66 Si layer doped with impurities solid-phase grown by laser irradiation

Claims (7)

半導体励起(ダイオード励起)された固体連続波レーザーを利用して(110)と(111)に配向制御した大粒径多結晶シリコン(Si)薄膜をガラス上に形成し、このSi膜を種(シード)結晶として多結晶Si層を直接成長する。
その後、本薄膜に対してSi層が溶融しない条件でエネルギービームを照射してSiの固相成長を行うことを特徴とした太陽電池用半導体製造方法。
Using a semiconductor-excited (diode-excited) solid-state continuous wave laser, a large grain polycrystalline silicon (Si) thin film whose orientation is controlled to (110) and (111) is formed on glass, and this Si film is used as a seed ( A polycrystalline Si layer is directly grown as a seed crystal.
Thereafter, Si thin-phase growth is performed by irradiating the thin film with an energy beam under a condition that the Si layer does not melt.
半導体励起(ダイオード励起)された固体連続波レーザーを利用して形成された(110)と(111)に配向制御した大粒径多結晶Si薄膜は、厚さが300nm以下であることを特徴とする請求項1項。A large-grain polycrystalline Si thin film whose orientation is controlled to (110) and (111) formed using a semiconductor-excited (diode-excited) solid-state continuous wave laser has a thickness of 300 nm or less. Claim 1. 波長300から600nmの波長を有する半導体励起(ダイオード励起)固体連続波レーザーを利用することを特徴とした請求項1項。2. A semiconductor-excited (diode-excited) solid-state continuous wave laser having a wavelength of 300 to 600 nm is used. 最終段階で行うSi固相成長用のエネルギービーム照射として、連続波レーザー、パルスレーザー、ランプアニール、加熱ガスビームなどのエネルギービームを利用することを特徴とする請求項1項。2. An energy beam such as continuous wave laser, pulse laser, lamp annealing, and heated gas beam is used as energy beam irradiation for Si solid phase growth performed in the final stage. Si層が溶融しない条件でエネルギービーム固相成長することを特徴とした請求項1項2. The energy beam solid phase growth is performed under the condition that the Si layer does not melt. 大粒径からなる配向制御された種(シード)結晶層に多結晶Siを直接成長するに際し、Si表面を水素終端することを特徴とした請求項1項。2. The Si surface is terminated with hydrogen when directly growing polycrystalline Si on an orientation-controlled seed crystal layer having a large grain size. 必要に応じて接合を形成するために、各層に対してドーピングを行うことを特徴とした請求項1項。2. The method of claim 1, wherein each layer is doped in order to form a junction as necessary.
JP2009063516A 2009-02-20 2009-02-20 Method of manufacturing semiconductor Pending JP2010199524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009063516A JP2010199524A (en) 2009-02-20 2009-02-20 Method of manufacturing semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009063516A JP2010199524A (en) 2009-02-20 2009-02-20 Method of manufacturing semiconductor

Publications (1)

Publication Number Publication Date
JP2010199524A true JP2010199524A (en) 2010-09-09

Family

ID=42823912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009063516A Pending JP2010199524A (en) 2009-02-20 2009-02-20 Method of manufacturing semiconductor

Country Status (1)

Country Link
JP (1) JP2010199524A (en)

Similar Documents

Publication Publication Date Title
TWI528418B (en) Crystallization processing for semiconductor applications
JP2008235877A (en) Solar cell and manufacturing method therefor
KR20100105606A (en) Systems and methods for preparation of epitaxially textured thick films
JP2003298077A (en) Solar cell
JP2009105130A (en) Manufacturing method of photoelectromotive element
JP2005159312A (en) Base material of polycrystalline silicon substrate for solar battery, and the polycrystalline silicon substrate for solar battery
US20080142763A1 (en) Directional crystallization of silicon sheets using rapid thermal processing
TW200947731A (en) Photoelectric conversion device
JP2004273887A (en) Crystalline thin film semiconductor device and solar cell element
US8236603B1 (en) Polycrystalline semiconductor layers and methods for forming the same
JP4764469B2 (en) Photoelectric conversion device and method of manufacturing photoelectric conversion device
JP4594601B2 (en) Method for manufacturing crystalline silicon-based thin film solar cell and solar cell formed using the same
US8003423B2 (en) Method for manufacturing a poly-crystal silicon photovoltaic device using horizontal metal induced crystallization
JP2006093212A (en) Method of forming polycrystal layer, semiconductor device, and its manufacturing method
JP2010199524A (en) Method of manufacturing semiconductor
JP4586585B2 (en) Method for manufacturing thin film semiconductor device
US8969183B2 (en) Method for producing thin layers of crystalline or polycrystalline materials
JP4729953B2 (en) Method for manufacturing thin film semiconductor device
JP4534585B2 (en) Thin film semiconductor substrate and manufacturing method thereof
WO2011161901A1 (en) Method for forming polycrystalline silicon thin film, polycrystalline silicon thin film substrate, silicon thin film solar cell, and silicon thin film transistor device
JP2002217433A (en) Semiconductor device
JP2010267943A (en) Method of manufacturing semiconductor device
JP5518910B2 (en) Method for manufacturing polycrystalline silicon substrate for composite solar cell
JP2001217442A (en) Crystal silicon thin film semiconductor device
JP2005286067A (en) Forming method of polycrystalline silicon film