JP2010267868A - Solid electrolytic capacitor and method of manufacturing the same - Google Patents

Solid electrolytic capacitor and method of manufacturing the same Download PDF

Info

Publication number
JP2010267868A
JP2010267868A JP2009118874A JP2009118874A JP2010267868A JP 2010267868 A JP2010267868 A JP 2010267868A JP 2009118874 A JP2009118874 A JP 2009118874A JP 2009118874 A JP2009118874 A JP 2009118874A JP 2010267868 A JP2010267868 A JP 2010267868A
Authority
JP
Japan
Prior art keywords
conductive polymer
layer
forming
solid electrolytic
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009118874A
Other languages
Japanese (ja)
Other versions
JP5289183B2 (en
Inventor
Kazufumi Inoue
和文 井上
Akinori Watanabe
章範 渡邉
Shinji Matsumoto
伸二 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP2009118874A priority Critical patent/JP5289183B2/en
Publication of JP2010267868A publication Critical patent/JP2010267868A/en
Application granted granted Critical
Publication of JP5289183B2 publication Critical patent/JP5289183B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electropolymerized liquid for forming a conductive polymer which provides a conductive polymer with high conductivity; and to provide a method of manufacturing a solid electrolytic capacitor which obtains excellent ESR by using the electropolymerized liquid. <P>SOLUTION: In the method of manufacturing a solid electrolytic capacitor, when alkyl naphthalene sulfonic acid or its salt is used as a supporting electrolyte of the electropolymerized liquid for forming the conductive polymer, a conductive polymer film with excellent conductivity, and excellent initial characteristics of ESR are obtained by adding polyvinyl alcohol. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、導電性高分子形成用の電解重合液及びそれを使用し形成した固体電解コンデンサの製造方法に関する。   The present invention relates to an electrolytic polymerization solution for forming a conductive polymer and a method for producing a solid electrolytic capacitor formed using the same.

アルミニウムやタンタル等の弁作用金属表面に誘電体酸化皮膜を形成し、該誘電体酸化皮膜上に固体電解質として電気伝導度の高い導電性高分子を形成させてなる固体電解コンデンサは、静電容量(以下、「Cs」と略記する。)が高く、等価直列抵抗(以下、「ESR」と略記する。)が低い優れた電気特性を有することが知られている。   A solid electrolytic capacitor in which a dielectric oxide film is formed on the surface of a valve metal such as aluminum or tantalum, and a conductive polymer having a high electrical conductivity is formed on the dielectric oxide film as a solid electrolyte has a capacitance. (Hereinafter abbreviated as “Cs”) is known to have excellent electrical characteristics with a high equivalent series resistance (hereinafter abbreviated as “ESR”).

上記固体電解コンデンサは一般的に、エッチング処理により表面積を拡大した弁作用金属箔、あるいは弁作用金属の粒子を焼結させることにより表面積を拡大した焼結体を、化成処理により該表面に誘電体酸化皮膜を形成させ、次いで、該誘電体酸化皮膜上に固体電解質層を形成し、カーボン及び銀ペーストからなる導電層を順次形成した後、リードフレームなどの外部端子に接続し、トランスファーモールド等による外装を施して製品化される。   In general, the solid electrolytic capacitor has a valve-acting metal foil whose surface area is enlarged by etching treatment or a sintered body whose surface area is enlarged by sintering particles of valve-acting metal, and a dielectric material on the surface by chemical conversion treatment. An oxide film is formed, then a solid electrolyte layer is formed on the dielectric oxide film, a conductive layer made of carbon and silver paste is sequentially formed, and then connected to an external terminal such as a lead frame, by transfer molding or the like It is commercialized with an exterior.

固体電解コンデンサのESRは、コンデンサを構成する各部材の固有抵抗と、コンデンサを構成する各部材間に発生する接触抵抗からなる、合成抵抗が主要な因子となっており、それらの改善によるESRのより一層の低減が望まれている。   The ESR of a solid electrolytic capacitor is mainly composed of a combined resistance consisting of the specific resistance of each member constituting the capacitor and the contact resistance generated between each member constituting the capacitor. Further reduction is desired.

固体電解コンデンサの劣化は、偶発的に発生する不具合の他は一般的に、コンデンサを構成する各部材の熱劣化と、コンデンサの外装部を介して浸入する水分等の酸素源に起因する各部材の酸化劣化が主要な因子となっており、これらの劣化要因に対し、コンデンサを形成する各部材、特に固体電解質層の熱耐久性能の向上と、外装部材を中心としたガスバリア性の向上等の対策が行われている。   Deterioration of solid electrolytic capacitors is generally due to thermal deterioration of each member constituting the capacitor and oxygen sources such as moisture entering through the exterior of the capacitor, in addition to accidents that occur accidentally. Oxidative degradation of these materials is a major factor, and against these degradation factors, improvement of the thermal durability performance of each member that forms the capacitor, especially the solid electrolyte layer, and improvement of gas barrier properties centering on exterior members, etc. Measures are being taken.

固体電解コンデンサに用いられる一般的な固体電解質としては、ポリピロールとポリエチレンジオキシチオフェンが挙げられ、さらに詳しくは、電解酸化重合によって形成されるポリピロールと、化学酸化重合によって形成されるポリエチレンジオキシチオフェンに大別される。   Typical solid electrolytes used for solid electrolytic capacitors include polypyrrole and polyethylene dioxythiophene. More specifically, polypyrrole formed by electrolytic oxidation polymerization and polyethylene dioxythiophene formed by chemical oxidation polymerization Broadly divided.

電解酸化重合によって形成される固体電解質は、緻密な膜を形成することができるため、導電性が優れる傾向があり、積層型のコンデンサの製造に用いられている。一方、化学酸化重合は、複雑な形状の素子にも対応できるため、巻回型のコンデンサの製造に多く用いられている。   Since the solid electrolyte formed by electrolytic oxidation polymerization can form a dense film, it tends to have excellent conductivity, and is used in the manufacture of multilayer capacitors. On the other hand, chemical oxidative polymerization can be used even for devices having complicated shapes, and is therefore often used in the manufacture of winding type capacitors.

前記、固体電解コンデンサを構成する固体電解質の固有の性能については、ポリピロールや、ポリエチレンジオキシチオフェン等の高分子の種類のみではなく、固体電解質形成時に使用する支持電解質によっても固体電解質の導電性や熱耐久性等の性能が変化することが知られており、種々のドーパントが検討されている。   Regarding the inherent performance of the solid electrolyte constituting the solid electrolytic capacitor, not only the type of polymer such as polypyrrole and polyethylenedioxythiophene, but also the conductivity of the solid electrolyte depends on the supporting electrolyte used when forming the solid electrolyte. It is known that performance such as thermal durability changes, and various dopants have been studied.

また、導電性高分子の形成に用いられる電解重合液においては、ドーパントを放出する支持電解質以外の添加剤により、性能が変化することが知られている。   In addition, it is known that the performance of an electrolytic polymerization solution used for forming a conductive polymer varies depending on additives other than the supporting electrolyte that releases the dopant.

特許文献1に開示されているように、電解重合液の支持電解質としてアルキルナフタレンスルホン酸ナトリウムを用いた固体電解コンデンサが記載してあるが、ESRが劣る欠点があった。   As disclosed in Patent Document 1, although a solid electrolytic capacitor using sodium alkylnaphthalene sulfonate as a supporting electrolyte of an electrolytic polymerization solution is described, there is a disadvantage that ESR is inferior.

特開平05−021280号公報Japanese Patent Laid-Open No. 05-021280

本発明の目的は、高い電導度の導電性高分子を与える導電性高分子形成用電解重合液を提供すること、また、該電解重合液を用いることで、優れたESRが得られる固体電解コンデンサの製造方法を提供することである。   An object of the present invention is to provide an electropolymerization liquid for forming a conductive polymer that gives a conductive polymer with high conductivity, and a solid electrolytic capacitor in which an excellent ESR can be obtained by using the electropolymerization liquid It is to provide a manufacturing method.

本発明者らは、鋭意検討した結果、電解重合液の支持電解質としてアルキルナフタレンスルホン酸又はその塩を用いた場合、ポリビニルアルコールを加えることで、固体電解コンデンサとしてのESRの初期特性が優れることを見出し、本発明を完成するに至った。   As a result of intensive studies, the inventors have found that when alkyl naphthalene sulfonic acid or a salt thereof is used as a supporting electrolyte of an electrolytic polymerization solution, the initial characteristics of ESR as a solid electrolytic capacitor are excellent by adding polyvinyl alcohol. The headline and the present invention were completed.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

第一の発明は、導電性高分子単量体と支持電解質が、溶媒に溶解されてなる導電性高分子形成用電解重合液において、支持電解質としてアルキルナフタレンスルホン酸又はその塩、かつ、添加剤としてポリビニルアルコールを含有することを特徴とする導電性高分子形成用電解重合液である。   The first invention is an electropolymerization liquid for forming a conductive polymer in which a conductive polymer monomer and a supporting electrolyte are dissolved in a solvent, alkylnaphthalenesulfonic acid or a salt thereof as a supporting electrolyte, and an additive As an electropolymerization liquid for forming a conductive polymer, characterized in that it contains polyvinyl alcohol.

第二の発明は、導電性高分子単量体がピロールであることを特徴とする第一の発明に記載の導電性高分子形成用電解重合液である。   A second invention is the electropolymerization liquid for forming a conductive polymer according to the first invention, wherein the conductive polymer monomer is pyrrole.

第三の発明は、導電性高分子形成用電解重合液の溶媒が水であることを特徴とする第一又は第二の発明に記載の導電性高分子形成用電解重合液である。   A third invention is the electropolymerization liquid for forming a conductive polymer according to the first or second invention, wherein the solvent of the electropolymerization liquid for forming a conductive polymer is water.

第四の発明は、さらに、下記一般式(1)〜(3)で示される少なくとも一つの化合物が添加剤として溶解されてなることを特徴とする第一から第三のいずれかの発明に記載の導電性高分子形成用電解重合液である。   The fourth invention is described in any one of the first to third inventions, wherein at least one compound represented by the following general formulas (1) to (3) is dissolved as an additive. This is an electropolymerization liquid for forming a conductive polymer.

Figure 2010267868
(式(1)〜(3)中、Rはそれぞれ同一でも異なっていてもよい、水素原子、ニトロ基、水酸基、炭素数1〜6の直鎖状又は分岐鎖状アルキル基又はフェニル基を示し、少なくとも一つはニトロ基、かつ、少なくとも一つは水酸基を示す。)
Figure 2010267868
(In the formulas (1) to (3), R represents a hydrogen atom, a nitro group, a hydroxyl group, a linear or branched alkyl group having 1 to 6 carbon atoms or a phenyl group, which may be the same or different. , At least one represents a nitro group, and at least one represents a hydroxyl group.)

第五の発明は、弁作用金属に誘電体酸化被膜が形成され、該誘電体酸化被膜上に固体電解質を有する固体電解コンデンサにおいて、固体電解質に第一から第四の発明のいずれかに記載の導電性高分子形成用電解重合液中で電解重合により導電性高分子を形成する皇帝を有する固体電解コンデンサの製造方法である。   According to a fifth aspect of the present invention, in the solid electrolytic capacitor in which the dielectric oxide film is formed on the valve action metal and the solid oxide is provided on the dielectric oxide film, the solid electrolyte according to any one of the first to fourth aspects of the invention. A method for producing a solid electrolytic capacitor having an emperor that forms a conductive polymer by electrolytic polymerization in an electrolytic polymerization solution for forming a conductive polymer.

第六の発明は、誘電体酸化被膜が形成された弁作用金属上に、予備導電層(A)を形成する工程と、前記予備導電層(A)上に第一から第四の発明のいずれかに記載の導電性高分子形成用電解重合液中で導電性高分子層(B)を電解重合により形成する工程とを有する固体電解コンデンサの製造方法である。   According to a sixth aspect of the present invention, there is provided a step of forming the preliminary conductive layer (A) on the valve action metal on which the dielectric oxide film is formed, and any one of the first to fourth aspects of the invention on the preliminary conductive layer (A). And forming a conductive polymer layer (B) by electrolytic polymerization in the electropolymerization liquid for forming a conductive polymer.

第七の発明は、予備導電層(A)が、二酸化マンガン層を含有することを特徴とする第六の発明に記載の固体電解コンデンサの製造方法である。   7th invention is a manufacturing method of the solid electrolytic capacitor as described in 6th invention, wherein a preliminary conductive layer (A) contains a manganese dioxide layer.

第八の発明は、予備導電層(A)が、溶媒溶解性又は溶媒分散性の導電性高分子を含有した溶液を塗布後乾燥させることにより形成された導電性高分子層を含有することを特徴とする第六の発明に記載の固体電解コンデンサの製造方法である。   According to an eighth aspect of the invention, the preliminary conductive layer (A) contains a conductive polymer layer formed by applying a solution containing a solvent-soluble or solvent-dispersible conductive polymer and then drying the solution. It is the manufacturing method of the solid electrolytic capacitor as described in 6th invention characterized by the above-mentioned.

第九の発明は、予備導電層(A)が、導電性高分子単量体の化学重合により形成された導電性高分子層を含有することを特徴とする第六の発明に記載の固体電解コンデンサの製造方法である。   According to a ninth invention, the preliminary electroconductive layer (A) contains a conductive polymer layer formed by chemical polymerization of a conductive polymer monomer, and the solid electrolysis according to the sixth invention This is a method of manufacturing a capacitor.

第十の発明は、弁作用金属表面の誘電体酸化被膜上に導電性高分子層を有する固体電解コンデンサにおいて、
導電性高分子層が、ポリビニルアルコールと導電性高分子を含有する複合層からなることを特徴とする固体電解コンデンサである。
A tenth aspect of the present invention is a solid electrolytic capacitor having a conductive polymer layer on a dielectric oxide film on a valve action metal surface.
The solid electrolytic capacitor is characterized in that the conductive polymer layer is composed of a composite layer containing polyvinyl alcohol and a conductive polymer.

第十一の発明は、第五から九の発明のいずれかに記載の固体電解コンデンサの製造方法により得られた第十の発明に記載の固体電解コンデンサである。   An eleventh invention is the solid electrolytic capacitor according to the tenth invention obtained by the method for producing a solid electrolytic capacitor according to any of the fifth to ninth inventions.

本発明によれば、従来よりも高い導電性の導電性高分子を与える導電性高分子形成用電解重合液を提供することができ、従来の固体電解コンデンサと比較して著しく優れたESRを示す固体電解コンデンサの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electropolymerization liquid for electroconductive polymer formation which gives the electroconductive polymer of higher electroconductivity than before can be provided, and ESR which is remarkably superior compared with the conventional solid electrolytic capacitor is shown. A method of manufacturing a solid electrolytic capacitor can be provided.

始めに、本発明の導電性高分子形成用電解重合液について説明する。   First, the electropolymerization liquid for forming a conductive polymer of the present invention will be described.

本発明の導電性高分子形成用電解重合液は、ドーパントを放出できる支持電解質であるアルキルナフタレンスルホン酸又はその塩、導電性高分子単量体であるモノマー、ポリビニルアルコールが、溶液中に溶解されたものである。   In the electropolymerization liquid for forming a conductive polymer of the present invention, an alkylnaphthalenesulfonic acid or a salt thereof, which is a supporting electrolyte capable of releasing a dopant, a monomer which is a conductive polymer monomer, and polyvinyl alcohol are dissolved in the solution. It is a thing.

上記ドーパントを放出できる支持電解質は、アルキルナフタレンスルホン酸又はそれらの塩であり、具体的には、メチルナフタレンスルホン酸、エチルナフタレンスルホン酸、プロピルナフタレンスルホン酸、ブチルナフタレンスルホン酸又はそれらのナトリウム塩、カリウム塩、アンモニウム塩等が挙げられる。なお、これらの支持電解質は、2種類以上混合して用いてもよい。   The supporting electrolyte capable of releasing the dopant is alkyl naphthalene sulfonic acid or a salt thereof, specifically, methyl naphthalene sulfonic acid, ethyl naphthalene sulfonic acid, propyl naphthalene sulfonic acid, butyl naphthalene sulfonic acid or a sodium salt thereof, A potassium salt, an ammonium salt, etc. are mentioned. In addition, you may use these support electrolytes in mixture of 2 or more types.

支持電解質の濃度は0.001〜2.0mol/Lが好ましく挙げられ、0.01〜1.0mol/Lがより好ましく挙げられ、0.05〜0.3mol/Lが特に好ましく挙げられる。0.001mol/L未満の場合では、十分な電気特性が得られないことがあり、2.0mol/Lを超えた場合、経済性にも劣る欠点がある。   The concentration of the supporting electrolyte is preferably 0.001 to 2.0 mol / L, more preferably 0.01 to 1.0 mol / L, and particularly preferably 0.05 to 0.3 mol / L. When the amount is less than 0.001 mol / L, sufficient electrical characteristics may not be obtained. When the amount exceeds 2.0 mol / L, there is a disadvantage that the economy is inferior.

上記導電性高分子単量体であるモノマーとしては、ピロール、アニリン、フラン、チオフェン又はこれらの誘導体を用いることができる。該誘導体としては、3−アルキルピロール、3−アルキルチオフェン、3,4−アルキレンジオキシピロール、3,4−アルキレンジオキシチオフェンなどが挙げられる。前記モノマーは1種若しくは2種以上を同時に含有することができる。これらの中でも、得られる導電性高分子の強靱性、導電性及び耐久性の面から、ピロール及び/又はその誘導体が好ましく挙げられ、ピロールが特に好ましく挙げられる。   As the monomer that is the conductive polymer monomer, pyrrole, aniline, furan, thiophene, or derivatives thereof can be used. Examples of the derivatives include 3-alkylpyrrole, 3-alkylthiophene, 3,4-alkylenedioxypyrrole, 3,4-alkylenedioxythiophene. The said monomer can contain 1 type (s) or 2 or more types simultaneously. Among these, pyrrole and / or a derivative thereof are preferable from the viewpoint of toughness, conductivity and durability of the obtained conductive polymer, and pyrrole is particularly preferable.

導電性高分子単量体であるモノマーの濃度は0.001〜3.0mol/Lが好ましく挙げられ、0.01〜1.0mol/Lがより好ましく挙げられ、0.1〜0.5mol/Lが特に好ましく挙げられる。0.001mol/L未満の場合では、十分な電気伝導度、耐熱性が得られないことがあり、3.0mol/Lを超えた場合、完全に溶解せず経済性にも劣る欠点がある。   The concentration of the monomer that is a conductive polymer monomer is preferably 0.001 to 3.0 mol / L, more preferably 0.01 to 1.0 mol / L, and 0.1 to 0.5 mol / L. L is particularly preferable. When the amount is less than 0.001 mol / L, sufficient electric conductivity and heat resistance may not be obtained. When the amount exceeds 3.0 mol / L, there is a disadvantage that the resin is not completely dissolved and is not economical.

上記ポリビニルアルコールは、酢酸ビニルを重合して得られるポリ酢酸ビニルをアルカリや酸などでケン化することで得られる。   The polyvinyl alcohol can be obtained by saponifying polyvinyl acetate obtained by polymerizing vinyl acetate with an alkali or an acid.

ポリビニルアルコールは、ケン化度及び重合度により分類され、また、一部にスルホン酸やカルボン酸等をもつ変性ポリビニルアルコールを用いることができる。   Polyvinyl alcohol is classified according to the degree of saponification and the degree of polymerization, and modified polyvinyl alcohol partially having sulfonic acid or carboxylic acid can be used.

変性ポリビニルアルコールとは、エチレン性不飽和二重結合を有するモノマーと、ビニルエステル単位を有するモノマーを共重合させた後に、ケン化させてカルボニル基含有ポリビニルアルコールを得、洗浄、乾燥を行って得られるものであり、主鎖にカルボキシル基を起点とする不飽和二重結合をランダムに導入させたものである。   The modified polyvinyl alcohol is obtained by copolymerizing a monomer having an ethylenically unsaturated double bond and a monomer having a vinyl ester unit and then saponifying to obtain a carbonyl group-containing polyvinyl alcohol, washing and drying. An unsaturated double bond starting from a carboxyl group is randomly introduced into the main chain.

本発明に用いられるポリビニルアルコールは、ケン化度は80%以上が好ましく挙げられ、ケン化度が大きいほど水に対する溶解度が大きくなる特徴を有する。
重合度は100〜5000が好ましく用いられ、200〜4000がより好ましく挙げられる。100未満の場合では、収縮率に対する高い効果が得られず、5000を超える場合では、粘度が大きくなるため、扱い難い欠点がある。
The polyvinyl alcohol used in the present invention preferably has a saponification degree of 80% or more, and has a feature that the greater the saponification degree, the greater the solubility in water.
The degree of polymerization is preferably 100 to 5000, more preferably 200 to 4000. When the ratio is less than 100, a high effect on the shrinkage rate cannot be obtained. When the ratio exceeds 5000, the viscosity increases, which is difficult to handle.

ポリビニルアルコールの含有量は0.01〜10.0質量%が好ましく挙げられ、0.1〜5.0質量%がより好ましく挙げられ、0.5〜2.0質量%が特に好ましく挙げられる。0.01質量%未満の場合では、十分な電導度及びESRの改善が見られず、10.0質量%を超えた場合では、溶解に時間がかかり、また、粘度が高くなる等の取り扱い難い欠点がある。   The content of polyvinyl alcohol is preferably 0.01 to 10.0% by mass, more preferably 0.1 to 5.0% by mass, and particularly preferably 0.5 to 2.0% by mass. When the content is less than 0.01% by mass, sufficient conductivity and ESR are not improved. When the content exceeds 10.0% by mass, it takes time to dissolve and the handling is difficult because the viscosity is increased. There are drawbacks.

本発明においては、モノマーの電解重合において導電性高分子に吸着する溶媒に代わって、ポリビニルアルコールを吸着せしめることにより、物理的強度を向上させることができ、導電性高分子層がひび割れしにくくなるために、電導度に優れた導電性高分子フィルム及びESRに優れた固体電解コンデンサを得ることができると考えられる。   In the present invention, the physical strength can be improved by adsorbing polyvinyl alcohol instead of the solvent adsorbing to the conductive polymer in the electropolymerization of the monomer, and the conductive polymer layer is hardly cracked. Therefore, it is considered that a conductive polymer film excellent in conductivity and a solid electrolytic capacitor excellent in ESR can be obtained.

本発明に使用する電解重合電解液の溶媒は主溶媒として水を用いたものであり、又はテトラヒドロフラン(THF)やジオキサン、ジエチルエーテル等のエーテル類、或いはアセトン、メチルエチルケトン等のケトン類、ジメチルホルムアミド(DMF)やアセトニトリル、ベンゾニトリル、N−メチルピロリドン(NMP)、ジメチルスルホキシド(DMSO)等の非プロトン性極性溶媒、酢酸エチルや酢酸ブチル等のエステル類、クロロホルムや塩化メチレン等の非芳香族性の塩素系溶媒、ニトロメタンやニトロエタン、ニトロベンゼン等のニトロ化合物、或いはメタノールやエタノール、プロパノール等のアルコール類、またはギ酸や酢酸、プロピオン酸等の有機酸または該有機酸の酸無水物(無水酢酸等)を0〜30%以下の割合で水と混合した混合溶媒を挙げることができる。これらの中でも、環境負荷、安全性の面から、水を単独で使用したものが好ましい。   The solvent of the electropolymerization electrolytic solution used in the present invention is one in which water is used as a main solvent, or ethers such as tetrahydrofuran (THF), dioxane and diethyl ether, ketones such as acetone and methyl ethyl ketone, dimethylformamide ( DMF), acetonitrile, benzonitrile, N-methylpyrrolidone (NMP), aprotic polar solvents such as dimethyl sulfoxide (DMSO), esters such as ethyl acetate and butyl acetate, non-aromatics such as chloroform and methylene chloride Chlorine solvents, nitro compounds such as nitromethane, nitroethane and nitrobenzene, alcohols such as methanol, ethanol and propanol, organic acids such as formic acid, acetic acid and propionic acid, or acid anhydrides of such organic acids (such as acetic anhydride) 0-30% or less Mixed mixed solvent and the like. Among these, those using water alone are preferable from the viewpoint of environmental load and safety.

本発明の導電性高分子形成用電解重合液中には添加剤を含有することができる。本発明にて使用される添加剤は、主に酸化防止剤、界面活性剤のいずれかの特性を有するものが好ましい。そのような添加剤としてより好ましくは下記一般式(1)〜(3)で示される化合物である。   An additive may be contained in the electropolymerization liquid for forming a conductive polymer of the present invention. The additive used in the present invention is preferably one having mainly the characteristics of either an antioxidant or a surfactant. More preferred as such additives are compounds represented by the following general formulas (1) to (3).

Figure 2010267868
Figure 2010267868

上記一般式(1)〜(3)中、Rはそれぞれ同一でも異なっていてもよい、水素原子、ニトロ基、水酸基、炭素数1〜6の直鎖状又は分岐鎖状アルキル基又はフェニル基を示し、少なくとも一つはニトロ基、かつ、少なくとも一つは水酸基を示す。   In the above general formulas (1) to (3), R may be the same or different and each represents a hydrogen atom, a nitro group, a hydroxyl group, a linear or branched alkyl group having 1 to 6 carbon atoms, or a phenyl group. And at least one represents a nitro group and at least one represents a hydroxyl group.

一般式(1)で表される化合物の具体例としては、例えば、4−ニトロフェノール、2−メチル−4−ニトロフェノール、3−メチル−4−ニトロフェノール、2−エチル−4−ニトロフェノール、3−エチル−4−ニトロフェノール、2−ヘキシル−4−ニトロフェノール、3−ヘキシル−4−ニトロフェノール等のニトロフェノール類が挙げられる。
一般式(2)で表される化合物の具体例としては、例えば、4−ニトロ−1−ナフトール等のニトロナフトール類が挙げられる。
一般式(3)で表される化合物の具体例としては、例えば、1−ヒドロキシ−4−ニトロアントラキノン等のニトロアントラキノン類を挙げることができる。
Specific examples of the compound represented by the general formula (1) include, for example, 4-nitrophenol, 2-methyl-4-nitrophenol, 3-methyl-4-nitrophenol, 2-ethyl-4-nitrophenol, Examples thereof include nitrophenols such as 3-ethyl-4-nitrophenol, 2-hexyl-4-nitrophenol, and 3-hexyl-4-nitrophenol.
Specific examples of the compound represented by the general formula (2) include nitronaphthols such as 4-nitro-1-naphthol.
Specific examples of the compound represented by the general formula (3) include nitroanthraquinones such as 1-hydroxy-4-nitroanthraquinone.

一般式(1)〜(3)により表される化合物は、1種若しくは2種以上を使用することができる。一般式(1)〜(3)により表される化合物は、得られる導電性高分子の熱耐久性の面から、4−ニトロフェノール、4−ニトロ−1−ナフトール、1−ヒドロキシ−4−ニトロアントラキノンであることが好ましい。   The compound represented by general formula (1)-(3) can use 1 type (s) or 2 or more types. The compounds represented by the general formulas (1) to (3) are 4-nitrophenol, 4-nitro-1-naphthol, 1-hydroxy-4-nitro from the viewpoint of thermal durability of the obtained conductive polymer. Anthraquinone is preferred.

添加剤を含有させる場合、前記添加剤を0.002〜1.0mol/L、好ましくは0.003〜0.2mol/Lの濃度で含有するものが好ましい。0.003mol/L未満では十分な電気特性の向上が見られず、1.0mol/L超では、完全に溶解できず、経済的にも劣る欠点がある。   When the additive is contained, the additive is preferably contained at a concentration of 0.002 to 1.0 mol / L, preferably 0.003 to 0.2 mol / L. If the amount is less than 0.003 mol / L, sufficient improvement in electric characteristics is not observed, and if it exceeds 1.0 mol / L, it cannot be completely dissolved, and there is a disadvantage that it is economically inferior.

本発明の導電性高分子形成用電解重合液を用いた固体電解コンデンサの製造方法について説明する。   The manufacturing method of the solid electrolytic capacitor using the electropolymerization liquid for conductive polymer formation of this invention is demonstrated.

誘電体酸化被膜が形成された弁作用金属上への導電性高分子層の形成において、導電性高分子形成用電解重合液中で導電性高分子層を電解重合により形成する工程を有する固体電解コンデンサの製造方法である。   Solid electrolysis having a step of forming a conductive polymer layer by electrolytic polymerization in an electropolymerization liquid for forming a conductive polymer in forming a conductive polymer layer on a valve metal having a dielectric oxide film formed thereon This is a method of manufacturing a capacitor.

また、誘電体酸化被膜が形成された弁作用金属上への導電性高分子層の形成において、予備導電層(A)を形成する工程と、前記予備導電層(A)上に請求項1又は2に記載の導電性高分子形成用電解重合液中で導電性高分子層(B)を電解重合により形成する工程とを有する固体電解コンデンサの製造方法である。   Further, in the formation of the conductive polymer layer on the valve action metal on which the dielectric oxide film is formed, the step of forming the preliminary conductive layer (A), and the preliminary conductive layer (A), the claim 1 or And a step of forming the conductive polymer layer (B) by electrolytic polymerization in the electropolymerization liquid for forming a conductive polymer described in 2.

予備導電層(A)は、(1)二酸化マンガン層、(2)溶媒溶解性又は溶媒分散性の導電性高分子を含有した溶液を塗布乾燥させることにより形成された導電性高分子層、(3)導電性高分子単量体を化学重合により形成された導電性高分子層であり、これらの層を少なくとも含有していることを特徴とする。   The preliminary conductive layer (A) includes (1) a manganese dioxide layer, (2) a conductive polymer layer formed by applying and drying a solution containing a solvent-soluble or solvent-dispersible conductive polymer, ( 3) A conductive polymer layer formed by chemical polymerization of a conductive polymer monomer, characterized by containing at least these layers.

(1)における二酸化マンガン層は、硝酸マンガンを含浸させてから熱分解して二酸化マンガン層を形成する方法や過マンガン酸塩水溶液を付着し、過熱し還元させて二酸化マンガン層を形成する方法より得ることができる。   The manganese dioxide layer in (1) is obtained by impregnating manganese nitrate and then thermally decomposing it to form a manganese dioxide layer, or by attaching a permanganate aqueous solution, overheating and reducing to form a manganese dioxide layer. Obtainable.

(2)における溶媒溶解性の導電性高分子を含有した溶液として、具体的にはポリアニリンをN−メチルピロリドン(NMP)に0.1〜10重量%溶解した液が挙げられる。
このような溶液を誘電体酸化被膜が形成された弁作用金属上に塗布後、50℃〜150℃にて加熱乾燥することによって、予備導電層(A)を形成することができる。
また、(2)における溶媒分散性の導電性高分子を含有した溶液として、具体的には、水あるいはアルコール、メチルエチルケトン、トルエン又はそれらの混合物等の有機溶剤に、ポリピロール又はポリエチレンジオキシチオフェンの重合体微粒子が分散混合された溶液が挙げられる。
なお、この分散溶液中には、必要に応じてドーパントとなる有機スルホン酸系アニオンや有機高分子スルホン酸系アニオンが含有されていても良い。
このような溶液を誘電体酸化被膜が形成された弁作用金属上に塗布後、50℃〜150℃にて加熱乾燥することによって、予備導電層(A)を形成することができる。
Specific examples of the solution containing the solvent-soluble conductive polymer in (2) include a solution obtained by dissolving 0.1 to 10% by weight of polyaniline in N-methylpyrrolidone (NMP).
The preliminary conductive layer (A) can be formed by applying such a solution onto the valve action metal on which the dielectric oxide film is formed and then drying by heating at 50 ° C. to 150 ° C.
In addition, as the solution containing the solvent-dispersible conductive polymer in (2), specifically, water or an organic solvent such as alcohol, methyl ethyl ketone, toluene, or a mixture thereof is added to polypyrrole or polyethylene dioxythiophene. Examples thereof include a solution in which coalesced fine particles are dispersed and mixed.
In addition, in this dispersion solution, the organic sulfonic acid type | system | group anion and organic polymer sulfonic acid type | system | group anion used as a dopant may contain as needed.
The preliminary conductive layer (A) can be formed by applying such a solution onto the valve action metal on which the dielectric oxide film is formed and then drying by heating at 50 ° C. to 150 ° C.

(3)における導電性高分子単量体を化学酸化重合によって形成された導電性高分子層について説明する。
導電性高分子単量体としては、ピロール又はその誘導体、アニリン又はその誘導体、エチレンジオキシチオフェン又はその誘導体が挙げられる。
化学酸化重合の方法としては、前記導電性高分子単量体を含有する溶液と、酸化剤とを、誘電体酸化被膜が形成された弁作用金属上にて接触し、酸化重合する方法が挙げられる。
前記酸化剤としては、過酸化水素、過硫酸塩、過ホウ酸塩等の無機酸化剤や、塩化第二鉄、硫酸第二鉄等の無機第二鉄塩、あるいは、パラトルエンスルホン酸第二鉄塩等の有機スルホン酸第二鉄塩が挙げられ、好ましくはそれらを適切な濃度に調整した溶液を酸化剤として用いることができる。
上記のよう導電性高分子単量体を含有する溶液と、前記酸化剤含有溶液とを弁作用金属上で接触させることで、予備導電層(A)を形成することができる。
The conductive polymer layer formed by chemical oxidative polymerization of the conductive polymer monomer in (3) will be described.
Examples of the conductive polymer monomer include pyrrole or a derivative thereof, aniline or a derivative thereof, and ethylenedioxythiophene or a derivative thereof.
Examples of the chemical oxidative polymerization method include a method in which a solution containing the conductive polymer monomer and an oxidant are brought into contact with each other on a valve action metal on which a dielectric oxide film is formed to perform oxidative polymerization. It is done.
Examples of the oxidizing agent include inorganic oxidizing agents such as hydrogen peroxide, persulfate and perborate; inorganic ferric salts such as ferric chloride and ferric sulfate; An organic sulfonic acid ferric salt such as an iron salt can be used, and preferably a solution prepared by adjusting them to an appropriate concentration can be used as an oxidizing agent.
The preliminary conductive layer (A) can be formed by bringing the solution containing the conductive polymer monomer into contact with the oxidizing agent-containing solution on the valve action metal as described above.

次に弁作用金属から陽極リード端子、陰極層から陰極リード端子を接続して電極を取り出して素子を形成し、この素子全体をエポキシ樹脂等の絶縁性樹脂或いはセラミック製や金属製の外装ケース等により封止することで固体電解コンデンサを得ることができる。   Next, an anode lead terminal is connected from the valve action metal, a cathode lead terminal is connected from the cathode layer, and an electrode is taken out to form an element. The entire element is made of an insulating resin such as epoxy resin or a ceramic or metal outer case. By sealing with, a solid electrolytic capacitor can be obtained.

前記導電性高分子形成用電解重合液を用いることによって、乾燥時に収縮が小さく変形の少ない導電性高分子層が得られ、さらに前記導電性高分子層を固体電解質とすることにより、熱耐久性を有する固体電解コンデンサを得ることができる。   By using the electropolymerization liquid for forming the conductive polymer, a conductive polymer layer that is small in shrinkage and small in deformation upon drying can be obtained, and further, by using the conductive polymer layer as a solid electrolyte, heat durability can be obtained. A solid electrolytic capacitor having the following can be obtained.

弁作用金属表面の誘電体酸化被膜上に導電性高分子層を有する固体電解コンデンサにおいて、導電性高分子層がポリビニルアルコールと導電性高分子を含有する複合層からなることを特徴とする固体電解コンデンサである。   A solid electrolytic capacitor having a conductive polymer layer on a dielectric oxide film on a valve action metal surface, wherein the conductive polymer layer is composed of a composite layer containing polyvinyl alcohol and a conductive polymer. It is a capacitor.

上記複合層は、予備導電層、導電性高分子層等からなる層である。   The composite layer is a layer composed of a preliminary conductive layer, a conductive polymer layer, and the like.

図1は本発明の固体電解コンデンサの断面図である。1は弁作用金属、2は誘電体酸化被膜、3は予備導電層、4は導電性高分子層である。   FIG. 1 is a cross-sectional view of a solid electrolytic capacitor of the present invention. 1 is a valve metal, 2 is a dielectric oxide film, 3 is a preliminary conductive layer, and 4 is a conductive polymer layer.

本発明に用いられる陽極弁作用金属としては、アルミニウム、タンタル、ニオブ又はチタンからなる群から選ばれた1種が挙げられ、焼結体又は箔の形状で用いられる。   The anode valve action metal used in the present invention includes one selected from the group consisting of aluminum, tantalum, niobium and titanium, and is used in the form of a sintered body or foil.

本発明の固体電解コンデンサは、用いられる陽極弁作用金属の種類、形状により、チップ型又は巻回型のいずれとすることができる。   The solid electrolytic capacitor of the present invention can be either a chip type or a wound type depending on the type and shape of the anode valve action metal used.

以下、本発明について実施例を挙げより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

(電解重合導電性高分子フィルムの評価)
(実施例1)
30mm×30mmサイズのスズ含有酸化インジウムからなる透明導電膜付きの基板を用意し、これをアセトン、純水にて洗浄後、105℃乾燥機中で10分間乾燥させた。つぎに、電解重合液(アルキルナフタレンスルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+ポリビニルアルコール(VF−17、日本酢ビ・ポバール(株)製、重合度1700、ケン化度98.0〜99.0mol%):0.5g+HO:45.8(g)の混合液)中に浸漬し、透明導電膜側を陽極として、電流値を0.4mAに固定して電解重合を行い、基板上に導電性高分子層を形成した。
(Evaluation of electropolymerized conductive polymer film)
Example 1
A substrate with a transparent conductive film made of tin-containing indium oxide having a size of 30 mm × 30 mm was prepared, washed with acetone and pure water, and then dried in a dryer at 105 ° C. for 10 minutes. Next, an electrolytic polymerization solution (sodium alkylnaphthalenesulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + polyvinyl alcohol (VF-17, manufactured by Nippon Acetate Bipoval Co., Ltd., polymerization degree 1700, Saponification degree 98.0 to 99.0 mol%): 0.5 g + H 2 O: 45.8 (g)), and the transparent conductive film side is set as the anode, and the current value is fixed at 0.4 mA. Then, electropolymerization was performed to form a conductive polymer layer on the substrate.

次に、上記透明導電膜付き基板上に形成された導電性高分子層を剥離し、導電性高分子フィルムを完成させた。   Next, the conductive polymer layer formed on the substrate with the transparent conductive film was peeled off to complete a conductive polymer film.

(実施例2)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例1と同様にして、導電性高分子フィルムを得た。すなわち、電解重合液アルキルフタレンスルホン酸ナトリウム:0.4(g)+ピロール:0.6(g)+ポリビニルアルコール(JM−33、日本酢ビ・ポバール(株)製、重合度3300、ケン化度93.5〜94.5mol%):0.5g+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子フィルムを形成した。
(Example 2)
A conductive polymer film was obtained in the same manner as in Example 1 except that the production method of the conductive polymer was changed to the following method. That is, electrolytic polymerization solution sodium alkylphthalene sulfonate: 0.4 (g) + pyrrole: 0.6 (g) + polyvinyl alcohol (JM-33, manufactured by Nihon Acetate / Poval Co., Ltd., polymerization degree 3300, Ken The degree of conversion was 93.5 to 94.5 mol%): 0.5 g + H 2 O: 45.8 (g), and electropolymerization was performed to form a conductive polymer film.

(実施例3)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例1と同様にして、導電性高分子フィルムを得た。すなわち、電解重合液にブチルナフタレンスルホン酸ナトリウム:0.4(g)+ピロール:0.6(g)+ポリビニルアルコール(JM−05、日本酢ビ・ポバール(株)製、重合度500、ケン化度93.5〜94.5mol%):0.5g+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子フィルムを形成した。
(Example 3)
A conductive polymer film was obtained in the same manner as in Example 1 except that the production method of the conductive polymer was changed to the following method. That is, sodium butylnaphthalenesulfonate: 0.4 (g) + pyrrole: 0.6 (g) + polyvinyl alcohol (JM-05, manufactured by Nippon Acetate / Poval Co., Ltd., polymerization degree 500, Ken The degree of conversion was 93.5 to 94.5 mol%): 0.5 g + H 2 O: 45.8 (g), and electropolymerization was performed to form a conductive polymer film.

(実施例4)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例1と同様にして、導電性高分子フィルムを得た。すなわち、電解重合液にブチルナフタレンスルホン酸ナトリウム:0.4(g)+ピロール:0.6(g)+ポリビニルアルコール(JF−17、日本酢ビ・ポバール(株)製、重合度1700、ケン化度98〜99mol%):0.5g+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子フィルムを形成した。
Example 4
A conductive polymer film was obtained in the same manner as in Example 1 except that the production method of the conductive polymer was changed to the following method. That is, sodium butylnaphthalenesulfonate: 0.4 (g) + pyrrole: 0.6 (g) + polyvinyl alcohol (JF-17, manufactured by Nippon Bibyo-Poval Co., Ltd., polymerization degree 1700, Ken The degree of conversion was 98 to 99 mol%): 0.5 g + H 2 O: 45.8 (g), and electropolymerization was performed to form a conductive polymer film.

(実施例5)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例1と同様にして、導電性高分子フィルムを得た。すなわち、電解重合液にメチルナフタレンスルホン酸カリウム:0.4(g)+ピロール:0.6(g)+ポリビニルアルコール(JMR−10HH、重合度240、ケン化度99mol%):0.5g+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子フィルムを形成した。
(Example 5)
A conductive polymer film was obtained in the same manner as in Example 1 except that the production method of the conductive polymer was changed to the following method. That is, potassium methyl naphthalenesulfonate: 0.4 (g) + pyrrole: 0.6 (g) + polyvinyl alcohol (JMR-10HH, polymerization degree 240, saponification degree 99 mol%): 0.5 g + H 2 Electrolytic polymerization was performed using a mixed solution of O: 45.8 (g) to form a conductive polymer film.

(実施例6)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例1と同様にして、導電性高分子フィルムを得た。すなわち、電解重合液にメチルナフタレンスルホン酸カリウム:0.4(g)+ピロール:0.6(g)+4−ニトロフェノール0.25(g)+ポリビニルアルコール(JMR−10HH、日本酢ビ・ポバール(株)製、重合度240、ケン化度99mol%):0.5g+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子フィルムを形成した。
(Example 6)
A conductive polymer film was obtained in the same manner as in Example 1 except that the production method of the conductive polymer was changed to the following method. In other words, potassium methyl naphthalenesulfonate: 0.4 (g) + pyrrole: 0.6 (g) + 4-nitrophenol 0.25 (g) + polyvinyl alcohol (JMR-10HH, Nippon Vinegar-Povar) A conductive polymer film was formed by electrolytic polymerization using a mixed solution of Co., Ltd., polymerization degree 240, saponification degree 99 mol%): 0.5 g + H 2 O: 45.8 (g).

(比較例1)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例1と同様にして、導電性高分子フィルムを得た。すなわち、電解重合液にアルキルナフタレンスルホン酸ナトリウム:0.4(g)+ピロール:0.6(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子フィルムを形成した。
(Comparative Example 1)
A conductive polymer film was obtained in the same manner as in Example 1 except that the production method of the conductive polymer was changed to the following method. That is, electrolytic polymerization is performed using a mixed solution of sodium alkylnaphthalene sulfonate: 0.4 (g) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) as the electrolytic polymerization solution, and the conductive property. A polymer film was formed.

(比較例2)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例1と同様にして、導電性高分子フィルムを得た。すなわち、電解重合液にアルキルナフタレンスルホン酸ナトリウム:0.4(g)+ピロール:0.6(g)+4−ニトロフェノール:0.25(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子フィルムを形成した。
(Comparative Example 2)
A conductive polymer film was obtained in the same manner as in Example 1 except that the production method of the conductive polymer was changed to the following method. That is, a mixture of sodium alkylnaphthalenesulfonate: 0.4 (g) + pyrrole: 0.6 (g) + 4-nitrophenol: 0.25 (g) + H 2 O: 45.8 (g) in the electrolytic polymerization solution Electrolytic polymerization was performed using the liquid to form a conductive polymer film.

実施例1〜6、比較例1、2より得られた導電性高分子フィルムの電導度を4端子法により測定した。   The electrical conductivity of the conductive polymer films obtained from Examples 1 to 6 and Comparative Examples 1 and 2 was measured by the 4-terminal method.

Figure 2010267868
Figure 2010267868

表1より、支持電解質としてアルキルナフタレンスルホン酸を用いた場合、ポリビニルアルコールを含有させることで電導度が向上することがわかった。   From Table 1, it was found that when alkyl naphthalene sulfonic acid was used as the supporting electrolyte, the electrical conductivity was improved by containing polyvinyl alcohol.

(固体電解コンデンサの評価)
(実施例7)
表面に誘電体酸化皮膜が形成された3mm×5mmサイズのエッチドアルミニウム化成箔を105℃乾燥機中で10分間乾燥させた。これを、18℃サーモプレート上に10分間静置した。次に18℃に冷却したモノマー液(ピロール:3(g)+エタノール:5(g)+HO:18.4(g)の混合液):4μlを箔上に滴下し、1分間静置した。さらに、酸化剤液(p−トルエンスルホン酸テトラエチルアンモニウム(PTS−TEA):5.6(mmol)+ペルオキソ二硫酸アンモニウム:1.56(g)+HO:10.63(g)の混合液):12μlを箔上に滴下し、10分間静置することで化学酸化重合しプレコート層を形成した。これを純水にて洗浄し、105℃乾燥機中で10分間乾燥させた。
(Evaluation of solid electrolytic capacitors)
(Example 7)
A 3 mm × 5 mm size etched aluminum formed foil having a dielectric oxide film formed on the surface was dried in a 105 ° C. dryer for 10 minutes. This was left to stand on an 18 ° C. thermoplate for 10 minutes. Next, 4 μl of a monomer liquid (pyrrole: 3 (g) + ethanol: 5 (g) + H 2 O: 18.4 (g) mixed liquid) cooled to 18 ° C. was dropped on the foil and left for 1 minute. did. Furthermore, an oxidizing agent solution (p-toluenesulfonate tetraethylammonium (PTS-TEA): 5.6 (mmol) + ammonium peroxodisulfate: 1.56 (g) + H 2 O: 10.63 (g)) : 12 μl was dropped on the foil and left to stand for 10 minutes for chemical oxidative polymerization to form a precoat layer. This was washed with pure water and dried in a 105 ° C. dryer for 10 minutes.

次に、電解重合液(アルキルナフタレンスルホン酸ナトリウム:0.4(g)+ピロール:0.6(g)+ポリビニルアルコール(日本酢ビ・ポバール(株)製、VF−17、重合度1700、ケン化度98.0〜99.0mol%):0.5g+HO:45.8(g)の混合液)を用意した。 Next, electrolytic polymerization solution (sodium alkylnaphthalenesulfonate: 0.4 (g) + pyrrole: 0.6 (g) + polyvinyl alcohol (manufactured by Nippon Acetate / Poval), VF-17, polymerization degree 1700, (Saponification degree 98.0-99.0 mol%): 0.5 g + H 2 O: 45.8 (g) mixed solution).

プレコート層形成済みエッチドアルミニウム化成箔を電解重合液中に浸漬し、プレコート層に接触させた外部電極を陽極として、電流値を0.4mAに固定して電解重合を行い、導電性高分子層(固体電解質層)を形成した。   A conductive polymer layer is formed by immersing an etched aluminum formed foil with a precoat layer formed in an electrolytic polymerization solution, using the external electrode brought into contact with the precoat layer as an anode, fixing the current value to 0.4 mA, and performing electrolytic polymerization. (Solid electrolyte layer) was formed.

次に、上記アルミニウム箔の導電性高分子層を形成した部分にカーボンペーストと銀ペーストを順に塗布し、乾燥させて、合計20個のコンデンサ素子を完成させた。   Next, a carbon paste and a silver paste were sequentially applied to the portion of the aluminum foil where the conductive polymer layer was formed and dried to complete a total of 20 capacitor elements.

これら20個のコンデンサ素子について、初期特性として100kHzにおける等価直列抵抗(ESR)を測定した。   About these 20 capacitor | condenser elements, the equivalent series resistance (ESR) in 100 kHz was measured as an initial characteristic.

(実施例8)
製造方法を以下の方法に代えたこと以外は実施例7と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にアルキルナフタレンスルホン酸ナトリウム:0.4(g)+ピロール:0.6(g)+ポリビニルアルコール(JM−33、日本酢ビ・ポバール(株)製、ポリビニルアルコール、重合度3300、ケン化度93.5〜94.5mol%):0.5g+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例7と同様に行った。
(Example 8)
Twenty capacitor elements were obtained in the same manner as in Example 7 except that the manufacturing method was changed to the following method. That is, sodium alkylnaphthalene sulfonate: 0.4 (g) + pyrrole: 0.6 (g) + polyvinyl alcohol (JM-33, manufactured by Nihon Acetate / Poval Co., Ltd., polyvinyl alcohol, polymerization degree) 3300, saponification degree 93.5 to 94.5 mol%): 0.5 g + H 2 O: 45.8 (g) was used for electrolytic polymerization to form a conductive polymer layer. The characteristic evaluation of the capacitor element was performed in the same manner as in Example 7.

(実施例9)
製造方法を以下の方法に代えたこと以外は実施例7と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にブチルナフタレンスルホン酸ナトリウム:0.4(g)+ピロール:0.6(g)+ポリビニルアルコール(日本酢ビ・ポバール(株)製、JM−05、重合度500、ケン化度93.5〜94.5mol%):0.5g+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例7と同様に行った。
Example 9
Twenty capacitor elements were obtained in the same manner as in Example 7 except that the manufacturing method was changed to the following method. That is, sodium butyl naphthalenesulfonate: 0.4 (g) + pyrrole: 0.6 (g) + polyvinyl alcohol (manufactured by Nippon Vinegar Poval Co., Ltd., JM-05, polymerization degree 500, Ken The degree of conversion was 93.5 to 94.5 mol%): 0.5 g + H 2 O: 45.8 (g), and electropolymerization was performed to form a conductive polymer layer. The characteristic evaluation of the capacitor element was performed in the same manner as in Example 7.

(実施例10)
製造方法を以下の方法に代えたこと以外は実施例7と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にブチルナフタレンスルホン酸ナトリウム:0.4(g)+ピロール:0.6(g)+ポリビニルアルコール(日本酢ビ・ポバール(株)製、JF−17、重合度1700、ケン化度98〜99mol%):0.5g+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例7と同様に行った。
(Example 10)
Twenty capacitor elements were obtained in the same manner as in Example 7 except that the manufacturing method was changed to the following method. That is, sodium butyl naphthalenesulfonate: 0.4 (g) + pyrrole: 0.6 (g) + polyvinyl alcohol (manufactured by Nippon Vinegar Poval Co., Ltd., JF-17, polymerization degree 1700, Ken degree 98~99mol%): 0.5g + H 2 O: perform electrolytic polymerization using a mixture of 45.8 (g), thereby forming a conductive polymer layer. The characteristic evaluation of the capacitor element was performed in the same manner as in Example 7.

(実施例11)
製造方法を以下の方法に代えたこと以外は実施例7と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にメチルナフタレンスルホン酸ナトリウム:0.4(g)+ピロール:0.6(g)+ポリビニルアルコール(日本酢ビ・ポバール(株)製、JMR−10HH、重合度240、ケン化度99mol%):0.5g+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例7と同様に行った。
(Example 11)
Twenty capacitor elements were obtained in the same manner as in Example 7 except that the manufacturing method was changed to the following method. That is, sodium methyl naphthalenesulfonate: 0.4 (g) + pyrrole: 0.6 (g) + polyvinyl alcohol (manufactured by Nippon Vinegar Poval Co., Ltd., JMR-10HH, polymerization degree 240, Ken The degree of conversion was 99 mol%): 0.5 g + H 2 O: 45.8 (g) was used for electrolytic polymerization to form a conductive polymer layer. The characteristic evaluation of the capacitor element was performed in the same manner as in Example 7.

(実施例12)
製造方法を以下の方法に代えたこと以外は実施例7と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にメチルナフタレンスルホン酸ナトリウム:0.4(g)+ピロール:0.6(g)+4−ニトロフェノール0.25(g)+ポリビニルアルコール(日本酢ビ・ポバール(株)製、JMR−10HH、重合度240、ケン化度99mol%):0.5g+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例7と同様に行った。
(Example 12)
Twenty capacitor elements were obtained in the same manner as in Example 7 except that the manufacturing method was changed to the following method. That is, sodium methyl naphthalenesulfonate: 0.4 (g) + pyrrole: 0.6 (g) + 4-nitrophenol 0.25 (g) + polyvinyl alcohol (Nippon Acetate, manufactured by Poval Co., Ltd.) , JMR-10HH, polymerization degree 240, saponification degree 99 mol%): 0.5 g + H 2 O: 45.8 (g) was used for electrolytic polymerization to form a conductive polymer layer. The characteristic evaluation of the capacitor element was performed in the same manner as in Example 7.

(比較例3)
製造方法を以下の方法に代えたこと以外は実施例7と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にアルキルナフタレンスルホン酸ナトリウム:0.4(g)+ピロール:0.6(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例7と同様に行った。
(Comparative Example 3)
Twenty capacitor elements were obtained in the same manner as in Example 7 except that the manufacturing method was changed to the following method. That is, electrolytic polymerization is performed using a mixed solution of sodium alkylnaphthalene sulfonate: 0.4 (g) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) as the electrolytic polymerization solution, and the conductive property. A polymer layer was formed. The characteristic evaluation of the capacitor element was performed in the same manner as in Example 7.

(比較例4)
製造方法を以下の方法に代えたこと以外は実施例7と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にアルキルナフタレンスルホン酸ナトリウム:0.4(g)+ピロール:0.6(g)+4−ニトロフェノール:0.25(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例7と同様に行った。
(Comparative Example 4)
Twenty capacitor elements were obtained in the same manner as in Example 7 except that the manufacturing method was changed to the following method. That is, a mixture of sodium alkylnaphthalenesulfonate: 0.4 (g) + pyrrole: 0.6 (g) + 4-nitrophenol: 0.25 (g) + H 2 O: 45.8 (g) in the electrolytic polymerization solution Electrolytic polymerization was performed using the liquid to form a conductive polymer layer. The characteristic evaluation of the capacitor element was performed in the same manner as in Example 7.

実施例7〜12、比較例3、4のコンデンサ素子の測定結果を表2に示す。   Table 2 shows the measurement results of the capacitor elements of Examples 7 to 12 and Comparative Examples 3 and 4.

Figure 2010267868
Figure 2010267868

実施例7〜12と比較例3、4より、ポリビニルアルコールを含有させることで、優れたESRが得られることがわかった。   From Examples 7 to 12 and Comparative Examples 3 and 4, it was found that excellent ESR was obtained by containing polyvinyl alcohol.

本発明の導電性高分子形成用電解重合液は、固体電解コンデンサはもとより、有機ELディスプレイ、有機トランジスタ、ポリマー電池、太陽電池、各種センサー材料、電磁波シールド材料、帯電防止材料、エレクトロクロミック材料、人工筋肉などに好適に使用できる。   The electropolymerization liquid for forming a conductive polymer of the present invention is not only a solid electrolytic capacitor, but also an organic EL display, an organic transistor, a polymer battery, a solar battery, various sensor materials, an electromagnetic shielding material, an antistatic material, an electrochromic material, an artificial material. It can be suitably used for muscles and the like.

本発明の固体電解コンデンサの断面図Sectional view of the solid electrolytic capacitor of the present invention

1 弁作用金属
2 誘電体酸化被膜
3 予備導電層(A)
4 ポリビニルアルコールを含有する導電性高分子層(B)
1 Valve metal 2 Dielectric oxide film 3 Preliminary conductive layer (A)
4 Conductive polymer layer containing polyvinyl alcohol (B)

Claims (11)

導電性高分子単量体と支持電解質が、溶媒に溶解されてなる導電性高分子形成用電解重合液において、支持電解質としてアルキルナフタレンスルホン酸又はその塩、かつ、添加剤としてポリビニルアルコールを含有することを特徴とする導電性高分子形成用電解重合液。   In an electropolymerization liquid for forming a conductive polymer in which a conductive polymer monomer and a supporting electrolyte are dissolved in a solvent, alkylnaphthalenesulfonic acid or a salt thereof as a supporting electrolyte and polyvinyl alcohol as an additive An electropolymerization liquid for forming a conductive polymer. 導電性高分子単量体がピロールであることを特徴とする請求項1に記載の導電性高分子形成用電解重合液。   The electropolymerization liquid for forming a conductive polymer according to claim 1, wherein the conductive polymer monomer is pyrrole. 導電性高分子形成用電解重合液の溶媒が水であることを特徴とする請求項1又は2に記載の導電性高分子形成用電解重合液。   The electropolymerization liquid for forming a conductive polymer according to claim 1 or 2, wherein the solvent of the electropolymerization liquid for forming a conductive polymer is water. 下記一般式(1)〜(3)で示される少なくとも一つの化合物が添加剤として溶解されてなることを特徴とする請求項1から3のいずれかに記載の導電性高分子形成用電解重合液。
Figure 2010267868
(式(1)〜(3)中、Rはそれぞれ同一でも異なっていてもよい、水素原子、ニトロ基、水酸基、炭素数1〜6の直鎖状又は分岐鎖状アルキル基又はフェニル基を示し、少なくとも一つはニトロ基、かつ、少なくとも一つは水酸基を示す。)
4. The electropolymerization liquid for forming a conductive polymer according to claim 1, wherein at least one compound represented by the following general formulas (1) to (3) is dissolved as an additive. .
Figure 2010267868
(In the formulas (1) to (3), R represents a hydrogen atom, a nitro group, a hydroxyl group, a linear or branched alkyl group having 1 to 6 carbon atoms or a phenyl group, which may be the same or different. , At least one represents a nitro group, and at least one represents a hydroxyl group.)
誘電体酸化被膜が形成された弁作用金属上への導電性高分子層の形成において、請求項1から4のいずれかに記載の導電性高分子形成用電解重合液中で導電性高分子層を電解重合により形成する工程を有する固体電解コンデンサの製造方法。   In the formation of the conductive polymer layer on the valve action metal on which the dielectric oxide film is formed, the conductive polymer layer in the electropolymerization liquid for forming a conductive polymer according to any one of claims 1 to 4. The manufacturing method of the solid electrolytic capacitor which has the process of forming by electropolymerization. 誘電体酸化被膜が形成された弁作用金属上への導電性高分子層の形成において、予備導電層(A)を形成する工程と、前記予備導電層(A)上に請求項1から4のいずれかに記載の導電性高分子形成用電解重合液中で導電性高分子層(B)を電解重合により形成する工程とを有する固体電解コンデンサの製造方法。   In the formation of the conductive polymer layer on the valve action metal on which the dielectric oxide film is formed, the step of forming the preliminary conductive layer (A), and the preliminary conductive layer (A) according to claim 1 A method for producing a solid electrolytic capacitor comprising: forming a conductive polymer layer (B) by electrolytic polymerization in the electropolymerization liquid for forming a conductive polymer according to any one of the above. 予備導電層(A)が、二酸化マンガン層を含有することを特徴とする請求項6に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 6, wherein the preliminary conductive layer (A) contains a manganese dioxide layer. 予備導電層(A)が、溶媒溶解性又は溶媒分散性の導電性高分子を含有した溶液を塗布後乾燥させることにより形成された導電性高分子層を含有することを特徴とする請求項6に記載の固体電解コンデンサの製造方法。   The preliminary conductive layer (A) contains a conductive polymer layer formed by applying a solution containing a solvent-soluble or solvent-dispersible conductive polymer and then drying the solution. The manufacturing method of the solid electrolytic capacitor of description. 予備導電層(A)が、導電性高分子単量体の化学重合により形成された導電性高分子層を含有することを特徴とする請求項6に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 6, wherein the preliminary conductive layer (A) contains a conductive polymer layer formed by chemical polymerization of a conductive polymer monomer. 弁作用金属表面の誘電体酸化被膜上に導電性高分子層を有する固体電解コンデンサにおいて、
導電性高分子層が、ポリビニルアルコールと導電性高分子を含有する複合層からなることを特徴とする固体電解コンデンサ。
In a solid electrolytic capacitor having a conductive polymer layer on a dielectric oxide film on the surface of a valve metal,
A solid electrolytic capacitor, wherein the conductive polymer layer comprises a composite layer containing polyvinyl alcohol and a conductive polymer.
請求項5から9のいずれかに記載の固体電解コンデンサの製造方法により得られた請求項10に記載の固体電解コンデンサ。   The solid electrolytic capacitor according to claim 10, obtained by the method for producing a solid electrolytic capacitor according to claim 5.
JP2009118874A 2009-05-15 2009-05-15 Manufacturing method of solid electrolytic capacitor Expired - Fee Related JP5289183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009118874A JP5289183B2 (en) 2009-05-15 2009-05-15 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009118874A JP5289183B2 (en) 2009-05-15 2009-05-15 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2010267868A true JP2010267868A (en) 2010-11-25
JP5289183B2 JP5289183B2 (en) 2013-09-11

Family

ID=43364582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009118874A Expired - Fee Related JP5289183B2 (en) 2009-05-15 2009-05-15 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5289183B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118162A1 (en) * 2011-03-01 2012-09-07 日本ケミコン株式会社 Polymerization solution, conductive polymer film obtained from polymerization solution, and solid eletrolytic capacitor
JP2013042118A (en) * 2011-07-08 2013-02-28 Eternal Chemical Co Ltd Electrolyte material formulation, electrolyte material composition formed therefrom, and use thereof
CN106710882A (en) * 2015-08-19 2017-05-24 中国科学院福建物质结构研究所 Solid electrolytic capacitor with composite solid electrolyte and preparation method of capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134363A (en) * 2000-10-23 2002-05-10 Japan Carlit Co Ltd:The Solid capacitor and its manufacturing method
JP2005011925A (en) * 2003-06-18 2005-01-13 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacturing process
JP2005281410A (en) * 2004-03-29 2005-10-13 Matsushita Electric Ind Co Ltd Conductive polymer and solid electrolitic capacitor using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134363A (en) * 2000-10-23 2002-05-10 Japan Carlit Co Ltd:The Solid capacitor and its manufacturing method
JP2005011925A (en) * 2003-06-18 2005-01-13 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacturing process
JP2005281410A (en) * 2004-03-29 2005-10-13 Matsushita Electric Ind Co Ltd Conductive polymer and solid electrolitic capacitor using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118162A1 (en) * 2011-03-01 2012-09-07 日本ケミコン株式会社 Polymerization solution, conductive polymer film obtained from polymerization solution, and solid eletrolytic capacitor
CN103430262A (en) * 2011-03-01 2013-12-04 日本贵弥功株式会社 Polymerization solution, conductive polymer film obtained from polymerization solution, and solid eletrolytic capacitor
US9558891B2 (en) 2011-03-01 2017-01-31 Nippon Chemi-Con Corporation Polymerization solution, conductive polymer film obtained from the polymerization solution, and solid electrolytic capacitor
JP2013042118A (en) * 2011-07-08 2013-02-28 Eternal Chemical Co Ltd Electrolyte material formulation, electrolyte material composition formed therefrom, and use thereof
CN106710882A (en) * 2015-08-19 2017-05-24 中国科学院福建物质结构研究所 Solid electrolytic capacitor with composite solid electrolyte and preparation method of capacitor

Also Published As

Publication number Publication date
JP5289183B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP4730908B2 (en) Solid electrolytic capacitor
JP5441952B2 (en) Conductive polymer suspension and method for producing the same, conductive polymer material, and electrolytic capacitor and method for producing the same
JP5872872B2 (en) Method for producing conductive polymer composition, method for producing conductive polymer material, method for producing conductive substrate, method for producing electrode, and method for producing solid electrolytic capacitor
JP6017148B2 (en) Conductive polymer suspension solution, conductive polymer material, electrolytic capacitor and method for producing the same
JP2012244077A (en) Method for manufacturing solid electrolytic capacitor
WO2004075220A1 (en) Solid electrolytic capacitor and method for manufacturing same
JP5289183B2 (en) Manufacturing method of solid electrolytic capacitor
JP2011138814A (en) Electrolytic capacitor and method of manufacturing the same
JP5763960B2 (en) Conductive polymer suspension and method for producing the same, conductive organic material, solid electrolytic capacitor and method for producing the same
WO2011052237A1 (en) Solid electrolytic capacitor and method for producing same
JP6223703B2 (en) Conductive polymer solution and method for producing the same, conductive polymer material, and solid electrolytic capacitor
JP2014192183A (en) Solid electrolytic capacitor and method of manufacturing the same
JP5327844B2 (en) Electrolytic polymerization liquid for forming conductive polymer, conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
JP2008288342A (en) Method of forming electrolyte for electrolytic capacitor
JP2008227399A (en) Method for manufacturing solid-state electrolytic capacitor
JP4925144B2 (en) Manufacturing method of solid electrolytic capacitor
JP2013157591A (en) Polyaniline solution for manufacturing solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor using the same
JP4986062B2 (en) Manufacturing method of solid electrolytic capacitor
JP4891140B2 (en) Manufacturing method of solid electrolytic capacitor
JP2010267867A (en) Solid electrolytic capacitor and method of manufacturing the same
JP2012089542A (en) Electrolytic polymerization solution for forming conductive polymer and method of manufacturing solid electrolytic capacitor using the same
JP5305351B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2010143996A (en) Electroconductive polymer, solid electrolytic capacitor using the same, and method for manufacturing the same
JP2011236339A (en) Electrolytic polymerization liquid for forming conductive polymer and method for manufacturing solid electrolytic capacitor using the same
JP2012054258A (en) Electrolytic polymerization solution for forming conductive polymer, solid electrolytic capacitor, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130604

R150 Certificate of patent or registration of utility model

Ref document number: 5289183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees