JP2010267106A - 太陽光発電システム及び制御方法 - Google Patents

太陽光発電システム及び制御方法 Download PDF

Info

Publication number
JP2010267106A
JP2010267106A JP2009118424A JP2009118424A JP2010267106A JP 2010267106 A JP2010267106 A JP 2010267106A JP 2009118424 A JP2009118424 A JP 2009118424A JP 2009118424 A JP2009118424 A JP 2009118424A JP 2010267106 A JP2010267106 A JP 2010267106A
Authority
JP
Japan
Prior art keywords
solar cell
conversion unit
cell array
group
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009118424A
Other languages
English (en)
Other versions
JP5302096B2 (ja
Inventor
Mitsuru Kudo
満 工藤
Makoto Tanaka
田中  良
Masashi Nakura
将司 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2009118424A priority Critical patent/JP5302096B2/ja
Publication of JP2010267106A publication Critical patent/JP2010267106A/ja
Application granted granted Critical
Publication of JP5302096B2 publication Critical patent/JP5302096B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

【課題】 容量の異なるチョッパ及び/又はインバータを組み合わせることによって、日射量が少なくPCSの負荷率の小さい場合や発電停止・減少する状況下においても、PCSを比較的効率良く運転継続させる。
【解決手段】 太陽電池毎の出力率(発電電力/定格容量)を算出し、各太陽電池アレイ1の出力率を比較し、その差が所定割合、例えば、30%以上であれば、出力率の高いグループと低いグループに分別する。低いグループの総出力が小容量チョッパの制御範囲内(許容容量内)である場合、低いグループの太陽電池アレイ1を小容量チョッパに収容制御し、高いグループの太陽電池アレイ1を大容量チョッパに収容制御する。切替装置2内の各スイッチ21を制御することにより、太陽電池アレイ1とチョッパの接続ラインを、制御装置5からの信号によって切り替える。
【選択図】図1

Description

本発明は、太陽光発電システム、及び、太陽光発電システムの制御方法に関する。
太陽光発電システムは主に太陽電池とPCS(パワーコンディショナ)から構成されており、太陽電池は太陽エネルギーを電気に変換し、PCSは負荷や電力系統への供給条件に対応した電力の変換機能(昇降圧機能、インバータ機能、最大電力追従機能等)を有している。PCSの容量については、一般的に太陽電池の定格容量と同等容量のものが設置される。近年では、太陽光発電システムの大規模化に伴い、数百キロワットの大容量のPCSが開発されており、数メガワット級の太陽光発電システムには複数台のPCSが設置されている。また、PCSはDC/DCコンバータ(チョッパ)、AC/DCコンバータ(インバータ)などの電力変換装置から構成されている。
PCSの変換効率は、太陽電池の出力(PCSの観点からは負荷率)によって変化し、太陽電池の出力が小さい時にはその変換効率が低くなるため、複数台のPCSを並列運転するシステムにおいては、そのPCSの運転台数を増減させることにより、効率良く発電しているシステムなどがある。太陽電池の出力は日射強度や太陽電池表面温度によって変動するため、PCSのチョッパは直流動作電圧を調整することにより、太陽電池から最大出力を取り出す最大電力追従制御(MPPT制御)を行っている。なお、PCSの大容量化に伴い、PCS1台あたりに収容する太陽電池の範囲が広くなるため、複数のチョッパにて、分散してMPPT制御を行うPCSがある。
従来技術として、例えば、特許文献1には、太陽電池モジュールやセルの接続数を自由にすることができ、しかも太陽電池が設置可能な場所に、必要な太陽電池を敷きつめることを可能にして、常に高効率で屋根等の設置場所の利用効率をも向上させた、非常に優れた太陽光発電装置が記載されている。
また、例えば、特許文献2には、太陽電池モジュール毎の日射量のばらつきに起因する出力電流の低下を抑える太陽光発電装置を設計する実用的な太陽光発電装置用設計支援装置及び太陽光発電装置設計方法が記載されている。
特開平9−294340号公報 特開2004−094660号公報
従来の技術では、PCSの運転台数の変更による制御はなされているものの、PCSの運転台数が1台までなった場合、もしくは、1台のみのPCSで運用されているシステムの場合、PCSの負荷率が低い領域においては、変換効率の低下、及び、PCSの消費電力が太陽電池の出力を下回ることによる発電停止による損失が発生する場合がある。また、太陽電池の一部に影が発生するとMPPT制御が不安定となり、発電効率が低下することが懸念される。
本発明は、以上の点に鑑み、PCS内部のチョッパを台数制御すること、及びPCS内部にて容量の異なるチョッパ及び/又はインバータ等を組み合わせることによって、負荷率の小さい場合においても、PCSを比較的効率良く運転する(無駄なく発電させる)ことが可能な太陽光発電システム及び制御方法を提供することを目的のひとつとする。
また、本発明は、部分的な影等の影響がある太陽電池や発電停止・減少する太陽電池を検出するとともに、影の無い太陽電池と影の有る太陽電池をグループ化し、それぞれ異なるチョッパ及び/又はインバータ等にてMPPT制御することにより、発電電力の向上が可能な太陽光発電システム及び制御方法を提供することを目的のひとつとする。
そして、本発明は、太陽電池アレイ群の総出力に対応したチョッパ及び/又はインバータ等に切替えるだけでなく、部分影などが発生し、太陽電池群の足を引っ張る太陽電池アレイのみを別のチョッパ及び/又はインバータ等に切替えることにより、効率良く発電させることが可能な太陽光発電システム及び制御方法を提供することを目的のひとつとする。
本発明は、特に、太陽光発電システムにおいて、PCS内部のチョッパを台数制御することや、容量の異なるチョッパ及び/又はインバータを組み合わせることによって、日射量が少なくPCSの負荷率の小さい場合や発電停止・減少する状況下においても、PCSを比較的効率良く運転継続させるシステム及び制御方法である。
小容量のチョッパ及び/又はインバータと大容量のチョッパ及び/又はインバータとを併設したシステムの場合、大容量チョッパの停止、もしくは低効率領域となる状況下(発電量小)において、太陽電池の出力を一つの小容量のチョッパに集め、高効率かつ運転を継続する。
また、太陽電池毎の出力率(発電出力(発電電力)/定格出力(定格容量))を算出し、各太陽電池の出力率を比較し、その差が所定割合、例えば、30%以上であれば、出力率の高いグループと低いグループに分別する。低いグループの総出力が小容量チョッパの制御範囲内(許容容量内)である場合、低いグループの太陽電池を小容量チョッパに収容制御し、高いグループの太陽電池を大容量チョッパに収容制御する。切替装置内の各スイッチを制御することにより、太陽電池アレイとチョッパの接続ラインを、制御装置からの信号によって切り替える。
本発明の第1の解決手段によると、
複数の太陽電池アレイと、
各前記太陽電池アレイの電圧及び電流を計測する計測器と、
第1の定格容量の変換部、第1の定格容量より大きい第2の定格容量の変換部を有する電力変換装置と、
各前記太陽電池アレイを第1又は第2の変換部のいずれかに接続する複数のスイッチを含む切替装置と、
前記計測器の計測値に従い、前記切替装置を切り替え、MPPT制御を行い電力を出力するための制御装置と、
を備えた太陽光発電システムであって、
前記制御装置は、
各太陽電池アレイIDに対応して、グループID及び各太陽電池アレイと接続される前記第1又は第2の変換部の変換部IDを記憶した変換部指定テーブルと、
各太陽電池アレイIDに対応して、発電電力及び出力率を記憶する発電データテーブルと、
前記変換部指定テーブル及び前記発電データテーブルからデータを読み出し、前記変換部指定テーブル及び前記発電データテーブルにデータを書き込み、制御処理を統括する最適制御ユニット
を備え、
前記最適制御ユニットは、前記計測器により計測された各太陽電池アレイの電流値及び電圧値から求められた各太陽電池アレイの電流及び電圧の平均値データに基づき、各太陽電池アレイの発電電力及び出力率を算出し、各太陽電池アレイIDに対応して発電電力及び出力率を前記発電データテーブルに記憶し、
前記最適制御ユニットは、発電電力又は出力率を基に、前記太陽電池アレイの発電電力又は出力率の最高値を基準に、複数の太陽電池アレイの発電電力又は出力率が最高値の所定割合より小さい第1のグループと大きい第2のグループに分別し、各太陽電池アレイIDに対応してグループIDを前記変換部指定テーブルに記憶し、
前記最適制御ユニットは、前記変換部指定テーブルを参照し、複数にグループ化されているかを判定し、
前記最適制御ユニットは、複数にグループ化されている場合、前記発電データテーブルを参照し、各グループ毎の太陽電池アレイの総発電電力を算出し、
前記最適制御ユニットは、第1のグループの総発電電力が第1の変換部の定格容量以下の場合は、第1のグループの太陽電池アレイを第1の変換部に接続指定し、第2のグループの太陽電池アレイを第2の変換部に接続指定し、太陽電池アレイIDに対応して指定された変換部IDを前記変換部指定テーブルに格納し、
一方、前記最適制御ユニットは、第1のグループの総発電電力が第1の変換部の定格電力より大きい場合は、第1及び第2のグループの太陽電池アレイを第2の変換部に接続指定し、太陽電池アレイIDに対応して指定された変換部IDを前記変換部指定テーブルに格納し、
前記最適制御ユニットは、各太陽電池アレイが、前記変換部指定テーブルに指定された変換部に接続するための接続切替指令を前記切替装置に送り、前記切替装置にスイッチの切替処理を実行させる
前記太陽光発電システムが提供される。
また、本発明の第2の解決手段によると、
複数の太陽電池アレイと、
各前記太陽電池アレイの電圧及び電流を計測する計測器と、
第1の定格容量の変換部、第1の定格容量より大きい第2の定格容量の変換部を有する電力変換装置と、
各前記太陽電池アレイを第1又は第2の変換部のいずれかに接続する複数のスイッチを含む切替装置と、
前記計測器の計測値に従い、前記切替装置を切り替え、MPPT制御を行い電力を出力するための制御装置と、
を備えた太陽光発電システムであって、

前記制御装置は、
各太陽電池アレイIDに対応して、グループID及び各太陽電池アレイと接続される前記第1又は第2の変換部の変換部IDを記憶した変換部指定テーブルと、
各太陽電池アレイIDに対応して、発電電力及び出力率を記憶する発電データテーブルと、
前記変換部指定テーブル及び前記発電データテーブルからデータを読み出し、前記変換部指定テーブル及び前記発電データテーブルにデータを書き込み、制御処理を統括する最適制御ユニット
を備えた前記太陽光発電システムの制御方法において、

前記最適制御ユニットは、前記計測器により計測された各太陽電池アレイの電流値及び電圧値から求められた各太陽電池アレイの電流及び電圧の平均値データに基づき、各太陽電池アレイの発電電力及び出力率を算出し、各太陽電池アレイIDに対応して発電電力及び出力率を前記発電データテーブルに記憶し、
前記最適制御ユニットは、発電電力又は出力率を基に、前記太陽電池アレイの発電電力又は出力率の最高値を基準に、複数の太陽電池アレイの発電電力又は出力率が最高値の所定割合より小さい第1のグループと大きい第2のグループに分別し、各太陽電池アレイIDに対応してグループIDを前記変換部指定テーブルに記憶し、
前記最適制御ユニットは、前記変換部指定テーブルを参照し、複数にグループ化されているかを判定し、
前記最適制御ユニットは、複数にグループ化されている場合、前記発電データテーブルを参照し、各グループ毎の太陽電池アレイの総発電電力を算出し、
前記最適制御ユニットは、第1のグループの総発電電力が第1の変換部の定格容量以下の場合は、第1のグループの太陽電池アレイを第1の変換部に接続指定し、第2のグループの太陽電池アレイを第2の変換部に接続指定し、太陽電池アレイIDに対応して指定された変換部IDを前記変換部指定テーブルに格納し、
一方、前記最適制御ユニットは、第1のグループの総発電電力が第1の変換部の定格容量より大きい場合は、第1及び第2のグループの太陽電池アレイを第2の変換部に接続指定し、太陽電池アレイIDに対応して指定された変換部IDを前記変換部指定テーブルに格納し、
前記最適制御ユニットは、各太陽電池アレイが、前記変換部指定テーブルに指定された変換部に接続するための接続切替指令を前記切替装置に送り、前記切替装置にスイッチの切替処理を実行させる
前記太陽光発電システムの制御方法が提供される。
本発明によると、PCS内部のチョッパを台数制御することによって、日射量が少なくPCSの負荷率の小さい場合や発電停止する状況下においても、PCSを比較的運転継続させることにより、発電量を増加できる。
また、本発明によると、PCSの変換効率(チョッパとインバータの変換ロス等からなる効率)が、例えば80%以下となるような気象条件下においても、太陽電池の出力を集電し、チョッパへの入力電力を増加させチョッパ単体に対する負荷率を高くすることにより、例えば95%程度の効率で運用できる。
さらに、本発明によると、チョッパの負荷率向上による変換効率の維持及び、停止したチョッパの消費電力分を利得をとすることができる。
本発明によると、チョッパ台数を減少させることによる、MPPT効果の低下は、日射量が少ない状況下であるため、ほとんど無くすことができる。
例えば、500kWの太陽電池、及び、定格出力時の変換効率95%の500kWPCSから構成される太陽光発電システムを運用している場合、太陽電池の直流出力が定格の1/10の50kWであり、50kW出力におけるPCSの変換効率が80%の低効率運転状態とすると、そのシステムとしての発電量は40kWとなる。ここで、定格出力時の変換効率で運用できていれば、47.5kWの発電量が得られることから、インバータの低効率運転により約7.5kWの利得が見込まれる。上記例にて太陽電池の直流出力が定格の1/10で大容量インバータが停止する場合は、約47.5kWの利得効果がある。特に日の出、日の入り、曇天時、及び、冬季等、日射量が少ない状況における太陽電池の発電出力に対して効果がある。
また、部分影を含む太陽電池を同一チョッパで収容制御する場合、I−Vカーブが段付となりMPPT制御のミスマッチが発生するが、本発明によると、部分影を含む太陽電池を切り離し、別のチョッパで制御することにより、影の無い太陽電池は期待される発電出力を維持できるとともに、部分影を含む太陽電池も最大限に利用できる。
太陽光発電システムの構成図(1)。 制御系のハードウェア詳細構成図。 最適制御ユニットの機能構成図。 全体的な処理においてのメインフローチャート。 入力処理フローチャート。 計測処理フローチャート。 第一演算処理フローチャート。 第二演算処理フローチャート。 ルート切替処理フローチャート(1)。 ルート切替処理フローチャート(2)。 PCSの変換効率特性の説明図。 太陽電池のI−V特性図。 部分影を含む太陽電池や発電停止・減少する太陽電池のI−V特性図。 グループ分別の具体例の説明図。 発電イメージの説明図。 データ記憶部の構成図。 計測データテーブルの説明図。 発電データテーブルの説明図。 チョッパ指定テーブルの説明図。 接続テーブルの説明図。 ルート設定テーブルの説明図。 第一及び第二演算処理、ルート切替処理についての説明図。 太陽光発電システムの構成図(2)。 太陽光発電システムの構成図(3)。
以下に、本発明に係る太陽光発電システムの好適な実施の一形態について、添付図面を参照しつつ説明する。
1.発電制御の原理
図11に、PCSの変換効率特性の説明図を示す。
チョッパやインバータ等のPCS(電力変換装置)の変換効率特性は、図のように、太陽電池の出力(負荷率)が小さい帯域では変換効率が低くなる特性となる。
図11において、変換効率は電力変換装置の変換効率であり、出力は太陽電池の出力電力をpu値によって正規化したものである。太陽電池の出力電力がPCSの定格容量である場合に1puとなる。本実施の形態では簡単のため、チョッパ及びインバータは同様の効率特性とするが、これに限られない。0.2puから発電効率が徐々に低下し、0.1puでは定格時の効率に比べ約10%低下していることから、本実施の形態におけるチョッパの低効率状態を0.1pu以下と定義する。制御方法としては、太陽電池アレイの出力がそれぞれ20kW以上の場合、それぞれ個別にチョッパを運転し、太陽電池アレイの出力が20kW未満の場合、チョッパに対して0.1pu以下となり低効率状態となることから、1台のチョッパに集電するように切替装置にて接続ラインを切り替える。また、解列したチョッパは停止する。
本実施の形態では、複数の太陽電池の出力を集電し、同一チョッパや、同一チョッパ及びインバータに収容して制御するので、PCSの変換効率特性の変換効率の高い領域を使用することができる。
図12に、太陽電池のI−V特性図を示す。
太陽電池の出力値としては、一般に、電圧(V)と電流(I)の二つの積であるワット(W=仕事率)で表現される。太陽電池から最大電力を取り出すためには、電流と電圧の積が最大になるように電圧を制御する必要がある。太陽電池のI−V(電流−電圧)特性において、この出力を最大とする動作点を最大電力点(Maximum Power Point)という。太陽電池は、接続されている負荷が実際に必要としている電圧によって最大電力点がずれる。I−V特性は、日射強度やモジュール温度や状態等によって変化するため(特に照射量に従いIが上下し、特に、温度に従いVが上下する。)、最大電力を得るためには、最適な電圧又は電流を自動で追従しなければならない。そこで、太陽電池を、最大電力点で動作させるように太陽電池と負荷の間に入って双方のバランスを取り双方に都合の良いポイントで動作させる制御を、MPPT(Maximum Power Point Tracking)制御という。
図13に、部分影を含む太陽電池や発電停止・減少する太陽電池のI−V特性図を示す。
部分影を含む太陽電池や発電停止・減少する太陽電池を、同一チョッパや、同一チョッパ及びインバータで収容制御する場合、I−Vカーブが複数段の段付(階段状)となる。そのため、最大電力点を求めることが困難な場合や、MPPT制御のミスマッチ(太陽電池が本来持っている定格の出力特性を十分取り出せなくなる状態)が発生しないように制御することが困難な場合がある。
そこで、本実施の形態では、部分影を含む太陽電池や発電停止・減少する太陽電池を切り離し、別のチョッパや別のチョッパ及びインバータで制御することにより、図12に示したようなI−V特性を複数別個に制御することになり、適切なMPPT制御が容易となる。
以上のように、影の無い太陽電池や発電停止・減少する太陽電池も、それ以外の太陽電池も、期待される発電出力を維持できるとともに、部分影を含む太陽電池や発電停止・減少する太陽電池を複数も最大限に利用できる。
2.システム構成
図1に、太陽光発電システムの構成図を示す。また、図2に、制御系のハードウェア詳細構成図を示す。
図1について、本太陽光発電システムは、複数の太陽電池アレイ1(例えば、定格容量50kWの太陽電池アレイ1が5台)と、PCS(電力変換装置)3(例えば、変換部として、定格容量250kWのチョッパ(昇降圧コンバータ)、定格容量50kWのチョッパ、定格容量250kWの商用連系インバータ)と、各太陽電池アレイ1と各チョッパの接続ラインを切替える切替装置2と、制御装置5を備え、商用系統6に電力を供給する。切替装置2内には接続ラインの切替が可能なスイッチ21を設けている。また、各太陽電池アレイ1の発電端、各チョッパ及びインバータの入力に計測器(電圧・電流)4を設けている。制御装置5は各計測器4、各スイッチ21、各チョッパ、インバータと制御線(アナログI/O信号:4−20mA、デジタルI/O信号:0−5V接点)を介して接続されている。
以下、図1について、詳細に説明する。
図1に示されるように、この太陽光発電システムは、複数のチョッパを含む太陽光発電システムを構成している。すなわち、この太陽光発電システムは、例えば、5台の同一定格容量の太陽電池アレイ1と、2台の異なる定格容量のチョッパと1台の商用連係インバータとを内部に含むPCS3とを、所定の距離だけ離れた状態で、切替装置2を介して無瞬断で切り替えられるように各々の太陽電池アレイ1とチョッパとが物理的に接続されて構成されている。尚、切替装置2の制御に関しては、例えば制御装置5からの制御指令により実行される。又、太陽電池アレイ1と切替装置2とは、太陽電池アレイ1の物理特性を測定する計測器4を介して接続される。
太陽電池アレイ1のそれぞれは、例えば太陽電池アレイ1への太陽光の照射が適度に成されるように所定の間隔で設置される。図示例では、定格容量は全て同一容量であり、例えば50kwの太陽電池アレイ1で構成されている。又、計測器4は、図示を省略したが、一般的な電圧計、電流計、温度計等で構成される。これらの計測器4は、太陽電池アレイ1の物理的特性測定等のために使用される。
太陽電池アレイ1の出力を外部へ伝達させるための配線を接続する接続端子側には切替装置2に接続するための配線が引き出されている。これらの配線の途中には、上述したように太陽電池アレイ1の物理特性を測定するための計測器4が適宜設置されている。これらの計測器4は適宜所定のタイミングで制御装置5へ計測結果を転送する。従って、これらの計測器4を利用することにより、後述する太陽電池アレイ1群の総出力に対応したチョッパを選定することができ、その結果、太陽光発電システムを効率良く発電させることができる。
次に、切替装置2について説明する。切替装置2の外部に関しては、例えば切替装置2の一方の外部端子には、太陽電池アレイ1から引き出された配線が接続され、別の外部端子には、後述するPCS3へ接続される配線が引き出されている。切替装置2の内部に関しては、例えば切替装置2内部には配線の接続経路を切り替えるスイッチ21が複数配設されている。これらの複数のスイッチ21は、接続経路を切り替えることが出来れば良く、例えば、リレー等から構成される。これらのリレーは、切替装置2の外部に設置された制御装置5からの指令が到来したときに、適宜接続経路の切替を実行する。尚、これらの指令の到来については、制御装置5からの指令によるものであるが、通常の有線接続によるもののほかに、無線接続等による場合もあり、適宜太陽光発電システムが使用される環境に応じて適宜選択可能である。
次に、PCS3について説明する。PCS3の一方の外部端子には、切替装置2からの配線が接続され、別の外部端子には、商用系統6へ接続される配線が引き出されている。PCS3の内部には、容量の異なる複数のチョッパと、商用系統6へ接続するためのインバータとが含まれている。
図示例では、このPCS3の内部には、定格容量250kwのチョッパと、定格容量50kwのチョッパとが設けられている。それらのチョッパの入力端子の各々には上述した計測器4と同様の構成の計測器4が設けられており、その計測器4で測定された物理特性、例えば、電流値、電圧値等を利用することにより、制御装置5側で適宜所定の演算を行う。その結果、発電効率の良い配線経路の選択をすることができる。尚、ここでいうチョッパとは、昇降圧を行う機能を有するコンバータである。これらのチョッパは、容量の異なるチョッパとすることにより、太陽電池アレイ1群の総出力に応じたチョッパを適宜外部指令から選択することができるようになり、効率の良い発電を実現することができる。さらに、チョッパの容量が異なることにより、太陽電池アレイ1群の効率的な発電に寄与しない太陽電池アレイ1を適宜別のチョッパへの切替をすることができる。これにより、太陽電池アレイ1群の効率的な発電に寄与する太陽電池アレイ1を効果的に利用することができるようになり、結果として、太陽光発電システムが効率良く発電をすることができる。尚、各チョッパの出力は次に説明するインバータへ接続される。
PCS3内部のインバータは、例えば商用連係用のインバータが設けられている。図示例では、定格容量250kwのインバータを用いることにより、複数のチョッパからの出力を変換することにより、商用系統6へ太陽電池アレイ1群の出力を伝達させることができる。同図のインバータでは、各チョッパからの出力を入力とし、さらにチョッパとインバータとの間に、上述した計測器4を設けている。ここでも計測器4は、物理特性を測定し、適宜任意のタイミングで制御装置5へ計測結果を転送する。また、上述したようにインバータの出力を商用系統6へ伝達させるが、インバータと商用系統6との間には、上述したようなスイッチ21等が設けられる、このスイッチ21により、適宜配線の遮断及び復帰等が可能となる。
次に、制御装置5について説明する。制御装置5の電気的なハードウェア構成については後に詳述するが、要するに、制御装置5は、上述した複数の計測器4、切替装置2、PCS3等を統合的に管理し、場合によっては、外部端末等へ適宜取得した物理特性等や演算結果等を転送する。すなわち、計測器4から転送されてきた様々な物理特性、例えば、電流値、電圧値等に基づいて、後に詳述する所定の演算を行い、その演算結果に応じて接続経路を決定し、所定のタイミングで切替装置2に指令を出すことにより、各々の太陽電池アレイ1と各々のチョッパとの接続経路を適宜変更する。
従って、このような太陽光発電システムであれば、人手を介さなくても、突然発生した雲等の部分影等の環境に起因する影響等を最小限にしつつ、常時太陽電池アレイ1の出力を最大限利用することができる。この結果、PCS3内部に含む各々のチョッパの使用効率を上げることもでき、さらには、商用系統6へ多くの電力供給することができるため、商用系統6側での総発電量を低減させることができる。従って、化石燃料等による発電量を容易に低減させることができるため、地球上に放出される有害物質を低減させることができ、地球環境汚染の低減に寄与することができる。
以下、図2について、詳細に説明する。
図2について、図1の発電システムに付加する装置として、例えば、各種演算・指令等を処理するCPU、各種入出力ポートとなるI/Oユニット、通信プロトコルを管理・通信処理する通信ユニット、初期設定データ、運用データのバックアップ処理するサーバ、及び本実施の形態の制御処理を統括する最適制御ユニット50がある。
図2に示されるように、この太陽光発電システムは、例えば、CPU、通信ユニット、I/Oユニット、及び最適制御ユニット50を含む制御装置5と、サーバと、上述したような計測器4等の計測器4、PCS3、切替装置2、太陽電池アレイ1群、及び商用系統6と、CPU、通信ユニット、及びI/Oユニットを含む別の制御装置5とを備える。制御装置5と、計測器4と、PCS3と、切替装置2とは、制御線を介して接続されており、制御線は、制御装置5内部のI/Oユニットから引き出されている。尚、I/Oユニットは、アナログI/Oユニット、若しくはデジタルI/Oユニット等への接続が可能であり、例えば、4乃至20mAのアナログI/O信号、0乃至5V接点のデジタルI/O信号にそれぞれ対応可能である。
制御装置5は、図示例では、ビルディング・ブロック型に構成されており、この例では、各種演算並びに指令等を処理するような制御を司るCPUユニットと、通信プロトコルを管理並びに通信処理するような外部とデータ通信する通信ユニットと、各種入出力ポートとなるような入力機器又は出力効きを接続するI/Oユニットと、本実施の形態の制御処理を統括する最適制御ユニット50とを含んでいて、それらのユニットが例えばバックプレインボードを介してバス接続されている。
CPUユニットは、当業者にはよく知られているように、全般の処理を実行するマイクロプロセッサと、ユーザプログラムを記憶するプログラムメモリと、いわゆるI/Oデータを記憶するI/Oメモリと、データメモリとを内蔵している。そして、CPUユニットの内蔵マイクロプロセッサは、所定のプログラムを実行することによって、I/Oリフレッシュ処理と、ユーザプログラム実行処理と、周辺サービス処理とを適宜実行する。
I/Oユニットは計測器4、PCS3、切替装置2が接続されていて、各機器に対応するデータを記憶するメモリを備えている。そして予め設定された間隔で定期的に計測器4から入力データ(電流値、電圧値等のデータを含む)を取り込んで記憶する。また、CPUの制御により最適制御ユニット50で演算された出力データ(ユーザプログラム実行結果であるデータを含む)を外部の切替装置2などに送出する。
最適制御ユニット50はプロセッサを内蔵しており、CPUからの指令により、計測器4等から収集されたデータを適宜演算し、その結果を最適制御ユニット50内のメモリに蓄積保存する。また、最適制御ユニット50は、演算結果に基づいた指令を切替装置2に送出し、切替装置2は受信した指令に基づき適宜接続経路の変更を行う。また、任意のタイミングで、最適制御ユニット50は、外部のサーバへ計測器4等から取得したデータや演算結果のデータ等を送信し、サーバはそれらのデータを蓄積する。このように、サーバは適当なタイミングで最適制御ユニット50と通信を行うことにより、最適制御ユニット50から様々なデータを取得する。こうして取得されたデータは、サーバ側で適宜処理されて、サーバが、計測器4のデータ等を画面にグラフ表示させたり、現在の接続経路を表示させたりすることで、サーバ側で遠隔監視することができるようになる。また、サーバ側で様々な初期設定データを持たせたり、運用データのバックアップ処理等を行わせることもでき、サーバがこれらのデータを管理することで、障害が発生したときの対応を迅速に行うことができるようになる。
3.最適制御ユニット
図3に、最適制御ユニットの機能構成図を示す。
計測部51は太陽電池アレイ1の発電端の計測についての計測間隔、計測レンジ、データ送受信に関する機能を有する。外部インタフェースは遠隔の設定変更等のための拡張ユニットである。MPPT制御部はチョッパの制御、電力変換部はインバータの制御に関連する。
以下、図3について、詳細に説明する。
図3に示されるように、最適制御ユニット50は、例えば、計測部51、外部インターフェース、MPPT制御部、電力変換部、統括制御部52とを備えている。
外部インターフェースは、サーバや他のユニットとの接続を行うための機能を有するものであり、具体的には外部のサーバや、内部のCPUユニット、通信ユニット、及びI/Oユニットとの間でデータ通信を行う機能を有している。
計測部51は、配線等の物理特性測定結果を処理する機能を有するものであり、太陽電池アレイ1の発電端の計測間隔、いわゆるサンプリング周波数や計測レンジを記憶させるための記憶部55、電圧値データを処理するための電圧計測部、電流値データを処理するための電流計測部、物理特性等のデータを処理するためのデータ送受信部、計測器4側と通信するための制御信号送受信部を含む。尚、言うまでもないことであるが、計測器4側で取得されたアナログデータはデジタルデータへ変換され、すなわち、エンコードされ、そのエンコードされたデータを計測部51で処理するのである。
MPPT制御部は、PCS3に内蔵されるチョッパを制御する機能を有するものであり、制御信号送受信部、チョッパ切替部、データ送受信部を含む。このMPPT制御部により、後述する統括制御部52内で演算された結果に基づいてチョッパの切替指令を送出し、外部の切替装置2で適宜適切なチョッパと太陽電池アレイ1とを接続させる。
電力変換部は、PCS3に内蔵されるインバータを制御する機能を有するものであり、制御信号送受信部、電力変換処理部、データ送受信部を含む。この電力変換部により、後述する統括制御部52内で演算された結果に基づいてインバータへ制御指令を送出し、商用系統6への電力供給を適切に行う。
次に、統括制御部52について説明する。統括制御部52は、計測部51からのデータを基に所定の演算を行い、その演算結果に基づいて適宜PCS3並びに切替装置2への制御を行う。その結果、外部環境に応じた太陽電池アレイ1の出力変動に迅速に対応することができ、太陽光発電システムの発電効率が上昇する。統括制御部52は、データ送受信部、制御信号出力部、記憶部53、データサンプリング間隔決定部、処理種別決定部、演算処理部、チョッパ選定処理部、ルート決定部とを含む。
データ送受信部は、いわゆるインターフェースであり、統括制御部52で演算されたデータを他へ送信するとともに統括制御部52へ送信されてきたデータを受信する機能を有するものである。
制御信号出力部は、統括制御部52で演算された結果に基づいた指令を出力する機能を有するものであり、例えば、MPPT制御部へチョッパを切り替えるための接続経路データを送信する。
記憶部53は、本実施の形態を実施するための所定のデータを記憶する機能を有するものであり、太陽電池アレイ1の定格容量等が記憶された初期設定記憶部56、統括制御部52での演算データ等を一次的に記憶するための一次記憶部57、接続経路パターン等のデータからなる接続テーブル等を記憶するためのデータ記憶部58とを備える。統括制御部52は、記憶部53から適宜データを取得することにより、接続経路を決定するための演算を行う。
データサンプリング間隔決定部は、いわゆる計測間隔であるサンプリング周波数等のデータを計測部51へ送信する機能を有する。尚、サンプリング周波数は、外部の図示しないディップスイッチ等で確定させてもよく、またサーバ等の外部からデータを送信することで確定させてもよい。
処理種別決定部は、後述する動作例の第一演算処理を行うものであり、出力率算出部、出力比較部、分別演算部を備える。具体的には、処理種別決定部は、出力特性の類似した太陽電池アレイ1のグルーピングを行うものである。すなわち、計測結果に基づいて太陽電池アレイ1の実際の発電電力及び出力率を算出し、各々の太陽電池アレイ1の出力率についての比較を行い、比較結果を所定の閾値に基づいて分別することで、出力率の類似した太陽電池アレイ1を一つのグループとして指定する。要するに、処理種別決定部は、出力率に応じたチョッパを選定させるための前段階である太陽電池アレイ1の分別処理を行う。
演算処理部は、後述する動作例の第二演算処理を行うものであり、一括算出部、一括データ比較部とを含む一括処理部と、グループ算出部、グループデータ比較部とを含むグループ処理部を備える。具体的には、演算処理部は、第一演算処理で算出された分別結果に基づいて、予め設置されたチョッパを最大限利用させるようにPCS3に内蔵された複数のチョッパの中から一つのチョッパと、出力率の類似した太陽電池アレイ1のグループとを紐付けさせる。
チョッパ選定処理部は、上述した一括データ比較部並びにグループデータ比較部から適宜呼び出される処理部であり、条件判断部、一括用チョッパ選定処理部、グループ用チョッパ選定処理部を備える。具体的には、チョッパ選定処理部は、2つ以上のグループか存在するか否かにより、一括用の処理と、グループ用の処理とがあり、2つ以上のグループが存在しないときには、一括用の処理にて、太陽電池アレイ1群と該当するチョッパとを紐付けさせ、2つ以上のグループが存在するときには、グループ用の処理にて、太陽電池アレイ1のグループ毎に各々のチョッパを紐付けさせる。
ルート決定部は、上述した処理結果と、予め記憶された接続経路テーブル等とを比較することにより、チョッパを最大限利用できるように接続経路を決定する処理であり、テーブル比較部、ルート決定処理部を備える。具体的には、ルート決定部は、全ての経路パターンのデータが格納されている接続テーブル、第二演算処理にて指定されたデータが格納されているチョッパ指定テーブル、及び現在稼働している接続経路データが格納されているルート設定テーブル等の各種接続経路データをそれぞれ比較することにより、所定の間隔で接続切替の指令を送信する。
このように、統括制御部52にて所定の演算を行うことにより、太陽電池アレイ1とチョッパとの適切な接続経路を決定する。この結果、人手を介さなくても、突然発生した雲等の部分影等の環境に起因する影響等を最小限にしつつ、常時太陽電池アレイ1の出力を最大限利用することができる。
図16に、データ記憶部の構成図を示す。
データ記憶部58は、例えば、計測データテーブル581と、発電データテーブル582と、チョッパ指定テーブル(変換部指定テーブル)583と、接続テーブル584と、ルート設定テーブル585とを含む。

図17に、計測データテーブルの説明図を示す。
計測データテーブル581は、例えば、太陽電池アレイID毎に計測時刻に対応して、電流値及び電圧値、電流値の平均値及び電圧値の平均値を含む。
図18に、発電データテーブルの説明図を示す。
発電データテーブル582は、例えば、各太陽電池アレイ1を識別するための太陽電池アレイID(識別情報)に対応して、発電電力及び出力率を含む。

図19に、チョッパ指定テーブルの説明図を示す。
チョッパ指定テーブル583は、例えば、各太陽電池アレイIDに対応して、グループを識別するためのグループID及び各太陽電池アレイ1と接続されるチョッパ及び/又はインバータ等の変換部を識別するためのチョッパID(変換部ID)を含む。
図20に、接続テーブルの説明図を示す。
接続テーブル584は、例えば、接続パターン番号に対応して、各太陽電池アレイ1(この例では、A〜E)を収容するチョッパID(変換部ID)を含む。

図21に、ルート設定テーブルの説明図を示す。
ルート設定テーブル585は、例えば、各太陽電池アレイ1と接続されるチョッパ及び/又はインバータ等の変換部の接続パターン番号に対応して、各太陽電池アレイ1をON/OFFするための切替装置2の各スイッチ21のON/OFF組み合わせ情報を含む。
4.制御フロー
次に、太陽光発電システムの動作について説明する。
制御フローとしては下記処理フローが順次実行される。
図4に、全体的な処理についてのメインフローチャートを示す。
この処理メインフローとしては、最適制御ユニット50のシステム起動後、入力処理(S100)、計測処理(S200)、第一演算処理(S300)、第二演算処理(S400)、ルート切替処理(S600)を順次実行する。ただし、第二演算処理(S400)後にルート案と接続中のルートの差異からルート切替処理(S600)の必要性の判定が実行される(S500)。このステップS500では、一定期間(サンプリング間隔×差分検出間隔)経過後、出力率が所定の閾値以上変動したか否かを判定する。閾値以上変動していない場合、最適制御ユニット50は、ステップS200に戻り、以降の処理を繰り返す。一方、閾値以上変動した場合、最適制御ユニット50は、ルート切替処理(S600)を実行する。また、最適制御ユニット50は、ルート切替処理(S600)にヒステリシスを持たせるための判定処理を実行してもよい。最適制御ユニット50は、ルート切替処理(S600)後にシステムの初期設定の変更に伴う判定処理(S700)を実行する。このステップS700では、最適制御ユニット50は、太陽光発電システムが変更されたか否かを判定する。太陽光発電システムが変更された場合、最適制御ユニット50は、ステップS100に戻り以降の処理を繰り返す。一方、太陽光発電システムが変更されていない場合、最適制御ユニット50は、ステップS200に戻り、以降の処理を繰り返す。
図5に、入力処理フローチャートを示す。
入力処理フローは、初期設定の入力と更新の処理フローである。
待機状態(S101)を基本とし、制御装置5内のボタン等のハードスイッチを押下処理すること等の入力(S103)に従い、統括制御部52により太陽電池アレイ1やPCS3の台数など太陽光発電システムの基本構成や、接続ルートに対応した各スイッチ21の短絡開放、各チョッパ起動停止などの接続テーブル584が入力され、キャッシュメモリに格納され(S105)、初期設定記憶部56にデータ転送される(S107)。なお、入力されるデータとして、例えば、サンプリング間隔、差分検出間隔、PCS3台数、PCS3容量、チョッパ台数、チョッパ容量、太陽電池アレイ1の数、太陽電池アレイ1の容量、接続テーブル584(太陽電池アレイ1、スイッチ21、チョッパ、インバータ)、その他のパラメータが転送される。また、ステップS103において、パラメータが入力されなかった場合、統括制御部52は、ステップS101に戻り、以降の処理を繰り返す。
図6に、計測処理フローチャートを示す。
計測処理フローは、計測器4のデータ収集と統括制御部52(例えば、演算処理部)へのデータ転送の処理フローである。
まず、計測部51は、記憶部55(予め定められたサンプリング周期)に基づき、サンプリングのタイミングであれば(S201)、電流値及び電圧値を計測し(S203)、計測データをキャッシュメモリに格納する(S205)。その後、計測部51は、所定期間内の計測データの計測値(電流・電圧値)の平均値を算出し、算出した平均値をキャッシュメモリに格納するとともに、統括制御部52に転送する(S207〜S213)。本実施の形態の場合、例えばサンプリング周期6秒で1分平均を格納などが現実的である。統括制御部52は、転送された計測データの平均値をデータ記憶部58の計測データテーブル581に記憶する。
図22に、第一及び第二演算処理、ルート切替処理についての説明図を示す。図22中、接続テーブル及びルート設定テーブルは、それぞれ図20の接続テーブル584、及び、図21のルート設定テーブル585に対応する。

以下、第一及び第二演算処理、ルート切替処理について説明する。
図7に、第一演算処理フローチャートを示す。
第一演算処理フローは、各太陽電池アレイ1の発電量及び出力率を算出するとともに、出力率を基に出力の多いグループと少ないグループを分別する処理フローである。
統括制御部52は、初期設定記憶部56から各太陽電池アレイ1の定格容量を読み込み(S301)、それに対応した平均値データをデータ記憶部58の計測データテーブル581から読み込む(S303)。その後、統括制御部52は、各太陽電池アレイ1の発電電力、出力率を算出し、発電データテーブル582に記憶する(S305)。発電電力は、例えば、電圧値と電流値を乗算、出力率は発電電力を定格容量で除算するとともに百分率で算出することができる。次に、統括制御部52は、平均値データの総数を算出する(S307)。統括制御部52は、算出したデータ数をMとし(S309)、M個のデータを発電電力、出力率を降順に並べ替え(S311)、最も出力率の高い太陽電池アレイ1と、その他の太陽電池アレイ1の出力率を順次比較し(S313〜S323)、最も高い出力率とN番目の出力率との間に30%以上の差がある場合(S323:Yes)、N番目以降の太陽電池アレイ1をグループB「小」に指定する(S325)。一方、30%以上の差がない場合(S323:No)、統括制御部52は、N=N−1として(S327)、ステップS317に戻り以降の処理を繰り返す。
また、統括制御部52は、ステップS317でN=1とすると、それ以外の太陽電池アレイ1をグループA「大」に指定する(S329)。なお、太陽電池アレイ1数及びチョッパ数が多い場合は、2つ以上のグループに分別しても良い。
図14に、グループ分別の具体例の説明図を示す。
この例では、(a)は、グループ分別ありの例を示す。この例では、各太陽電池アレイ1間の出力率差が30%以上の例(部分影等あり)を示す。また、(b)は、グループ分別なしの例を示す。この例では、各太陽電池アレイ1間の出力率差が30%以下の例(部分影等なし)を示す。

ステップS331では、さらに、グループBの総出力が0の場合、統括制御部52は、グループAをグループ「大」とし、グループ数を「1」とし、グループ分別のデータをデータ記憶部58のチョッパ指定テーブル583に記憶する(S341)。一方、グループBの総出力が0でない場合(S331)、統括制御部52は、グループ数を「2」に指定し(S333)、グループAの出力と、グループBの出力とを比較する(S335)。グループAの出力がグループBの出力以上の場合、統括制御部52は、グループAをグループ「大」とし、グループBをグループ「小」としてグループ分別のデータをデータ記憶部58のチョッパ指定テーブル583に記憶する(S337)。一方、グループBの出力がグループAの出力より大きい場合、統括制御部52は、グループAをグループ「小」とし、グループBをグループ「大」とし、グループ分別のデータをデータ記憶部58のチョッパ指定テーブル583に記憶する(S339)。なお、図19及び図22のチョッパ指定テーブル583の例では、グループ「大」がグループID「2」、グループ「小」がグループID「1」に指定されている。
図8に、第二演算処理フローチャートを示す。
第二演算処理フローは、振り分けたグループ毎に、チョッパが収容可能かを判定し、可能であれば複数のチョッパでグループ毎に処理し、不可能であれば、1台のチョッパで一括処理することと判定し、判定結果に対応した接続ルートを決定する処理フローである。
まず、統括制御部52は、チョッパ指定テーブル583を参照し、前記第一演算フローにて2つ以上にグループ化されているかを判定し(S401)、2以上にグループ化されていない場合、ステップS407〜S411の一括処理に移行する。一括処理とは太陽電池アレイ1全てを1台のチョッパに接続する処理である。統括制御部52は、発電データテーブル582を参照し、全ての発電電力の値を一次記憶部57に読み込み、総発電電力Cを算出する。統括制御部52は、総発電電力Cが50kW<C(≦260kW)の範囲であれば(S407:Yes)、全ての(グループ「大」に該当する)太陽電池アレイ1をチョッパ「大」に接続指定し(S409)、一方、C≦50kWであれば(S407:No)、全ての(グループ「大」に該当する)太陽電池アレイ1をチョッパ「小」に接続指定する(S411)。統括制御部52は、この指定結果をチョッパ指定テーブル583に格納する(S417)。なお、図19及び図22のチョッパ指定テーブル583の例では、チョッパ「大」がチョッパ「2」、チョッパ「小」がチョッパ「1」に指定されている。
一方、ステップS401で、統括制御部52は、チョッパ指定テーブル583を参照し、グループ化されている場合、発電データテーブル582に基づき各グループの総発電電力を算出し、一次記憶部57に読み込む。その後、グループ「小」の総発電電力が50kW以下であり(S403)、且つ、グループ「大」とグループ「小」の合計発電電力が50kW以上であれば(S413)、統括制御部52は、グループ「小」に該当する太陽電池アレイ1をチョッパ「小」に接続指定し、グループ「大」に該当する太陽電池アレイ1をチョッパ「大」に接続指定する(S415)。
一方、ステップS403で、グループ「小」の総発電電力が50kWより大きければ、統括制御部52は、グループ化を破棄し、上述の一括処理に変更する(S405)。また、グループ「小」の総発電電力が50kW以下であっても(S403)、グループ「大」とグループ「小」の合計発電電力が50kWより小さければ(S413)、統括制御部52は、グループ化を破棄し、上述の一括処理に変更する(S405)。そして、統括制御部52は、チョッパの指定結果をチョッパ指定テーブル583に格納する(S417)(図22のチョッパ指定テーブル583の「出力先チョッパ」)の欄参照。)。
図9及び図10に、ルート切替処理フローチャートを示す。
ルート切替処理フローは、前述した第二演算処理(S400)より決定された、太陽電池アレイ1とチョッパの接続ルートを切替えるために、スイッチ21を動作させる処理フローである。
統括制御部52は、接続テーブル584と、チョッパ指定テーブル583と、ルート設定テーブル585とを一次記憶部57に読み込む(S601〜S605)。統括制御部52は、接続テーブル584とチョッパ指定テーブル583を参照し、チョッパ指定テーブル583で指定された各チョッパIDに一致する接続パターン番号を求め、以前に設定された接続パターン番号と同一であるかを判定する(S607〜S613)。同一であれば(S613:Yes)、統括制御部52は、所定の時間待機し、処理を終了する。一方、異なっていれば(S613:No)、統括制御部52は、チョッパ指定テーブル583に従い、接続テーブル584の中から接続パターンが同一のパターン番号を検索し、所定の時間を越えたら各スイッチ21を動作させるための接続切替指令を切替装置2に送信する(S615〜S623)。なお、ステップS619において、所定の時間を経過していない場合、統括制御部52は、処理を終了し、繰り返す。

なお、ルート切替処理においては、各チョッパの起動停止及びスイッチによる配線の切り替えを制御装置によって行うこともできる。また、切替えるか否かの判定には、切り替え後数分間は切り替え制御を行わないなど、ある程度のヒステリシスを設定しても良い。
5.変形例
以上、本実施の形態につき説明したが、本発明は、必ずしも上記した手段及び手法に限定されるものではなく、本発明による目的を達成し、本発明による効果を有する範囲において適宣変更実施することが可能なものである。
図23に、太陽光発電システムの構成図(2)を示す。
これは、例えば、チョッパ及びインバータの容量の1/10の小容量チョッパ及び小容量インバータを併設したPCSで構成される太陽光発電システムであって、異なる容量のチョッパが混在するシステムである。
このようなシステムのように、容量の異なるチョッパ及びインバータから構成される変換部を備えたPCSを適用したシステムについても、集電先が小容量のチョッパ及びインバータであり、それ以外は上記と基本的には同様の制御を行う。なお、このシステムでは、図1に示すシステムに比べ、インバータも常に高い負荷率を維持できる。
その他の実施の形態として、例えば、チョッパとインバータを一体構成としても動作可能である。

さらに、図24に、太陽光発電システムの構成図(3)を示す。
本実施の形態は、図示のように、インバータを省略し、直流電力を供給するシステムにも適用可能である。
6.発電特性
図15に、発電イメージの説明図を示す。
図15の実線は従来システム、点線は本実施の形態の太陽光発電システムによる発電特性を示す。
この例では、特に、朝晩の日陰の影響がある場合に、発電電力が増加していることが示される。
本発明は、交流及び直流の太陽光発電システムに適用可能である。
また、PCSの変換部の構成としては、大容量及び小容量のチョッパを備えた構成、又は、大容量及び小容量のインバータを備えた構成、又は、大容量及び小容量のチョッパ及びインバータの両方の機能を備えた構成、等を適宜用いることができる。さらに、2つにグループ分割する以外にも3つ以上の複数の定格容量のチョッパ及び/又はインバータ等の変換部を備えて、太陽電池アレイを適宜の容量のそれにグループ分割して切替接続するよう制御することもできる。
また、上述の説明では、主に、発電電力を基に、太陽電池アレイの発電電力の最高値を基準に、複数の太陽電池アレイの発電電力が最高値の所定割合より小さいグループと大きいグループに分別したが、これに限らず、出力率を基に、太陽電池アレイの出力率の最高値を基準に、複数の太陽電池アレイの出力率が最高値の所定割合より小さいグループと大きいグループに分別するようにしてもよい。
1 太陽電池アレイ
2 切替装置
3 PCS(電力変換装置)
4 計測器
5 制御装置
6 商用系統
21 スイッチ
50 最適制御ユニット
51 計測部
52 統括制御部
53 記憶部
55 記憶部(サンプリング周波数)
56 初期設定記憶部
57 一次記憶部
58 データ記憶部

Claims (18)

  1. 複数の太陽電池アレイと、
    各前記太陽電池アレイの電圧及び電流を計測する計測器と、
    第1の定格容量の変換部、第1の定格容量より大きい第2の定格容量の変換部を有する電力変換装置と、
    各前記太陽電池アレイを第1又は第2の変換部のいずれかに接続する複数のスイッチを含む切替装置と、
    前記計測器の計測値に従い、前記切替装置を切り替え、MPPT制御を行い電力を出力するための制御装置と、
    を備えた太陽光発電システムであって、

    前記制御装置は、
    各太陽電池アレイIDに対応して、グループID及び各太陽電池アレイと接続される前記第1又は第2の変換部の変換部IDを記憶した変換部指定テーブルと、
    各太陽電池アレイIDに対応して、発電電力及び出力率を記憶する発電データテーブルと、
    前記変換部指定テーブル及び前記発電データテーブルからデータを読み出し、前記変換部指定テーブル及び前記発電データテーブルにデータを書き込み、制御処理を統括する最適制御ユニット
    を備え、

    前記最適制御ユニットは、前記計測器により計測された各太陽電池アレイの電流値及び電圧値から求められた各太陽電池アレイの電流及び電圧の平均値データに基づき、各太陽電池アレイの発電電力及び出力率を算出し、各太陽電池アレイIDに対応して発電電力及び出力率を前記発電データテーブルに記憶し、
    前記最適制御ユニットは、発電電力又は出力率を基に、前記太陽電池アレイの発電電力又は出力率の最高値を基準に、複数の太陽電池アレイの発電電力又は出力率が最高値の所定割合より小さい第1のグループと大きい第2のグループに分別し、各太陽電池アレイIDに対応してグループIDを前記変換部指定テーブルに記憶し、
    前記最適制御ユニットは、前記変換部指定テーブルを参照し、複数にグループ化されているかを判定し、
    前記最適制御ユニットは、複数にグループ化されている場合、前記発電データテーブルを参照し、各グループ毎の太陽電池アレイの総発電電力を算出し、
    前記最適制御ユニットは、第1のグループの総発電電力が第1の変換部の定格容量以下の場合は、第1のグループの太陽電池アレイを第1の変換部に接続指定し、第2のグループの太陽電池アレイを第2の変換部に接続指定し、太陽電池アレイIDに対応して指定された変換部IDを前記変換部指定テーブルに格納し、
    一方、前記最適制御ユニットは、第1のグループの総発電電力が第1の変換部の定格容量より大きい場合は、第1及び第2のグループの太陽電池アレイを第2の変換部に接続指定し、太陽電池アレイIDに対応して指定された変換部IDを前記変換部指定テーブルに格納し、
    前記最適制御ユニットは、各太陽電池アレイが、前記変換部指定テーブルに指定された変換部に接続するための接続切替指令を前記切替装置に送り、前記切替装置にスイッチの切替処理を実行させる
    前記太陽光発電システム。
  2. 入力装置から太陽電池アレイの定格容量及び台数と、前記電力変換装置の前記第1及び第2の変換部の定格容量を含むシステムの基本構成、前記接続テーブル及び/又は前記ルート設定テーブルの初期設定値を入力し、記憶するための入力処理を実行することを特徴とする請求項1に記載の太陽光発電システム。
  3. 前記切替処理後に、システムの初期設定の変更に伴う前記入力処理を実行することを特徴とする請求項2に記載の太陽光発電システム。
  4. 前記最適制御ユニットは、さらに、
    太陽電池アレイID毎に電流値の平均値及び電圧値の平均値を記憶する計測データテーブル
    を備え、
    前記最適制御ユニットは、予め記憶されたサンプリング周期に基づき、前記計測器により、電流値及び電圧値を計測し、所定期間内の電流値及び電圧値の計測値の平均値を算出し、太陽電池アレイIDに対応して計測データテーブルに記憶することを特徴とする請求項1乃至3のいずれかに記載の太陽光発電システム。
  5. 全ての太陽電池アレイの各発電電力又は各出力率が、それぞれ発電電力又は出力率の前記最高値の所定割合より大きい場合は、前記第1の変換部の容量以下のときは小さい第1のグループに指定し、大きい場合は大きい第2のグループに指定し、各太陽電池アレイIDに対応してグループIDを前記変換部指定テーブルに記憶することを特徴とする請求項1乃至4のいずれかに記載の太陽光発電システム。
  6. 前記発電電力は電圧値と電流値を乗算し算出し、前記出力率は発電電力を定格容量で除算するとともに百分率で算出したことを特徴とする請求項1乃至5のいずれかに記載の太陽光発電システム。
  7. 前記最適制御ユニットは、第1のグループの総発電電力が第1の変換部の定格容量以下の場合で、且つ、第1及び第2のグループの合計発電電力が第1の変換部の定格容量より小さい場合、第1及び第2のグループの太陽電池アレイを第1の変換部に接続指定し、太陽電池アレイIDに対応して、指定された変換部IDを前記変換部指定テーブルに格納することを特徴とする請求項1乃至6のいずれかに記載の太陽光発電システム。
  8. 前記最適制御ユニットは、前記変換部指定テーブルを参照し、太陽電池アレイが複数にグループ化されていない場合、全ての太陽電池アレイの発電電力の値を前記発電データテーブルから読み込み、合計発電電力を算出し、該合計発電電力が、第1の変換部の容量より大きい場合は第2の変換部に接続指定し、第1の変換部の容量以下の場合は第1の変換部に接続指定し、太陽電池アレイIDに対応して指定された変換部IDを前記変換部指定テーブルに格納することを特徴とする請求項1乃至7のいずれかに記載の太陽光発電システム。
  9. 前記最適制御ユニットは、さらに
    接続パターン番号に対応して、各太陽電池アレイを収容する前記第1又は第2の変換部の変換部IDを記憶した接続テーブル
    を有し、
    前記最適制御ユニットは、前記接続テーブルと前記変換部指定テーブルを参照し、前記変換部指定テーブルで指定された各変換部IDに一致する接続パターン番号を求め、以前に設定された接続パターン番号と同一であるかを判定し、
    前記最適制御ユニットは、同一であれば所定の時間待機し、一方、異なっていれば、前記変換部指定テーブルの指定内容に従い各スイッチを動作させるための接続切替指令を前記切替装置に送信し、
    前記切替装置は、前記接続切替指令に従い、スイッチを切替える
    ことを特徴とする請求項1乃至8のいずれかに記載の太陽光発電システム。
  10. 前記最適制御ユニットは、さらに、
    各太陽電池アレイと接続される変換部の接続パターン番号に対応して前記切替装置の各スイッチのON/OFF組み合わせを記憶したルート設定テーブルと、
    を有し、
    前記最適制御ユニットは、接続パターン番号に従い前記ルート設定テーブルで指定された前記切替装置の各スイッチのON/OFF組み合わせを求め、ON/OFF組み合わせに従い、前記接続切替指令を前記切替装置に送信することを特徴とする請求項1乃至9のいずれかに記載の太陽光発電システム。
  11. 前記最適制御ユニットは、接続結果と接続中のルートが同一であれば接続状態を維持し、異なれば前記切替処理を実行することを特徴とする請求項1乃至10のいずれかに記載の太陽光発電システム。
  12. 前記最適制御ユニットは、前記切替処理にヒステリシスを持たせることを特徴とする請求項1乃至11のいずれかに記載の太陽光発電システム。
  13. 前記第1の変換部は、第1の定格容量の第1チョッパを備え、
    前記第2の変換部は、第1の定格容量より大きい第2の定格容量の第2チョッパを備え、
    前記第1及び第2の変換部は、共通のインバータを有することを特徴とする請求項1乃至12のいずれかに記載の太陽光発電システム。
  14. 前記第1変換部は、第1の定格容量の第1チョッパと、第1の定格容量の第1インバータを備え、
    前記第2変換部は、第1の定格容量より大きい第2の定格容量の第2チョッパと、第1の定格容量より大きい第2の定格容量の第2インバータを備えたことを特徴とする請求項1乃至13のいずれかに記載の太陽光発電システム。
  15. 前記第1変換部は、第1の定格容量の第1チョッパを備え、
    前記第2変換部は、第1の定格容量より大きい第2の定格容量の第2チョッパを備え、
    前記電力変換装置は、直流電力を出力することを特徴とする請求項1乃至14のいずれかに記載の太陽光発電システム。
  16. 複数の太陽電池アレイと、
    各前記太陽電池アレイの電圧及び電流を計測する計測器と、
    第1の定格容量の変換部、第1の定格容量より大きい第2の定格容量の変換部を有する電力変換装置と、
    各前記太陽電池アレイを第1又は第2の変換部のいずれかに接続する複数のスイッチを含む切替装置と、
    前記計測器の計測値に従い、前記切替装置を切り替え、MPPT制御を行い電力を出力するための制御装置と、
    を備えた太陽光発電システムであって、

    前記制御装置は、
    各太陽電池アレイIDに対応して、グループID及び各太陽電池アレイと接続される前記第1又は第2の変換部の変換部IDを記憶した変換部指定テーブルと、
    各太陽電池アレイIDに対応して、発電電力及び出力率を記憶する発電データテーブルと、
    前記変換部指定テーブル及び前記発電データテーブルからデータを読み出し、前記変換部指定テーブル及び前記発電データテーブルにデータを書き込み、制御処理を統括する最適制御ユニット
    を備えた前記太陽光発電システムの制御方法において、

    前記最適制御ユニットは、前記計測器により計測された各太陽電池アレイの電流値及び電圧値から求められた各太陽電池アレイの電流及び電圧の平均値データに基づき、各太陽電池アレイの発電電力及び出力率を算出し、各太陽電池アレイIDに対応して発電電力及び出力率を前記発電データテーブルに記憶し、
    前記最適制御ユニットは、発電電力又は出力率を基に、前記太陽電池アレイの発電電力又は出力率の最高値を基準に、複数の太陽電池アレイの発電電力又は出力率が最高値の所定割合より小さい第1のグループと大きい第2のグループに分別し、各太陽電池アレイIDに対応してグループIDを前記変換部指定テーブルに記憶し、
    前記最適制御ユニットは、前記変換部指定テーブルを参照し、複数にグループ化されているかを判定し、
    前記最適制御ユニットは、複数にグループ化されている場合、前記発電データテーブルを参照し、各グループ毎の太陽電池アレイの総発電電力を算出し、
    前記最適制御ユニットは、第1のグループの総発電電力が第1の変換部の定格容量以下の場合は、第1のグループの太陽電池アレイを第1の変換部に接続指定し、第2のグループの太陽電池アレイを第2の変換部に接続指定し、太陽電池アレイIDに対応して指定された変換部IDを前記変換部指定テーブルに格納し、
    一方、前記最適制御ユニットは、第1のグループの総発電電力が第1の変換部の定格容量より大きい場合は、第1及び第2のグループの太陽電池アレイを第2の変換部に接続指定し、太陽電池アレイIDに対応して指定された変換部IDを前記変換部指定テーブルに格納し、
    前記最適制御ユニットは、各太陽電池アレイが、前記変換部指定テーブルに指定された変換部に接続するための接続切替指令を前記切替装置に送り、前記切替装置にスイッチの切替処理を実行させる
    前記太陽光発電システムの制御方法。
  17. 複数の太陽電池アレイと、
    第1の定格容量の変換部、第1の定格容量より大きい第2の定格容量の変換部を有する電力変換装置と、
    MPPT制御を行い電力を出力するための制御装置と、
    を備えた太陽光発電システムであって、

    前記制御装置は、各太陽電池アレイの発電電力又は出力率を基に、前記太陽電池アレイの発電電力又は出力率の最高値を基準に、複数の太陽電池アレイの発電電力又は出力率が最高値の所定割合より小さい第1のグループと大きい第2のグループに分別し、
    前記制御装置は、複数の前記太陽電池アレイが複数にグループ化されている場合、各グループ毎の太陽電池アレイの総発電電力を算出し、
    前記制御装置は、第1のグループの総発電電力が第1の変換部の定格容量以下の場合は、第1のグループの太陽電池アレイを第1の変換部に接続指定し、第2のグループの太陽電池アレイを第2の変換部に接続指定し、
    一方、前記制御装置は、第1のグループの総発電電力が第1の変換部の定格容量より大きい場合は、第1及び第2のグループの太陽電池アレイを第2の変換部に接続指定し、
    前記制御装置は、前記接続指定に基づき、各太陽電池アレイを指定された変換部に接続する
    前記太陽光発電システム。
  18. 複数の太陽電池アレイと、
    第1の定格容量の変換部、第1の定格容量より大きい第2の定格容量の変換部を有する電力変換装置と、
    MPPT制御を行い電力を出力するための制御装置と、
    を備えた太陽光発電システムの制御方法であって、

    前記制御装置は、各太陽電池アレイの発電電力又は出力率を基に、前記太陽電池アレイの発電電力又は出力率の最高値を基準に、複数の太陽電池アレイの発電電力又は出力率が最高値の所定割合より小さい第1のグループと大きい第2のグループに分別し、
    前記制御装置は、複数の前記太陽電池アレイが複数にグループ化されている場合、各グループ毎の太陽電池アレイの総発電電力を算出し、
    前記制御装置は、第1のグループの総発電電力が第1の変換部の定格容量以下の場合は、第1のグループの太陽電池アレイを第1の変換部に接続指定し、第2のグループの太陽電池アレイを第2の変換部に接続指定し、
    一方、前記制御装置は、第1のグループの総発電電力が第1の変換部の定格容量より大きい場合は、第1及び第2のグループの太陽電池アレイを第2の変換部に接続指定し、
    前記制御装置は、前記接続指定に基づき、各太陽電池アレイを指定された変換部に接続する
    前記太陽光発電システムの制御方法。
JP2009118424A 2009-05-15 2009-05-15 太陽光発電システム及び制御方法 Expired - Fee Related JP5302096B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009118424A JP5302096B2 (ja) 2009-05-15 2009-05-15 太陽光発電システム及び制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009118424A JP5302096B2 (ja) 2009-05-15 2009-05-15 太陽光発電システム及び制御方法

Publications (2)

Publication Number Publication Date
JP2010267106A true JP2010267106A (ja) 2010-11-25
JP5302096B2 JP5302096B2 (ja) 2013-10-02

Family

ID=43364018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009118424A Expired - Fee Related JP5302096B2 (ja) 2009-05-15 2009-05-15 太陽光発電システム及び制御方法

Country Status (1)

Country Link
JP (1) JP5302096B2 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161202A (ja) * 2011-02-02 2012-08-23 Mitsubishi Electric Corp 階層型需給制御装置および電力系統制御システム
JP2012235677A (ja) * 2011-04-29 2012-11-29 General Electric Co <Ge> 非常に効率的な太陽光発電所のための分散型dc−dcコンバータの切り替え調整
KR101274632B1 (ko) 2011-06-08 2013-06-13 한밭대학교 산학협력단 태양광 발전 시스템에서 인버터의 전력 할당 방법
WO2013094396A1 (ja) * 2011-12-19 2013-06-27 パナソニック株式会社 充放電装置およびこれを用いた充放電システム
JP2013258796A (ja) * 2012-06-11 2013-12-26 Toyota Motor Corp 自然エネルギーを利用した発電システムの劣化診断装置
JP2014030357A (ja) * 2012-04-27 2014-02-13 Panasonic Corp 配線切替えシステム、制御装置、およびプログラム
JP2014067259A (ja) * 2012-09-26 2014-04-17 Panasonic Corp パワーコンディショナ
WO2014122705A1 (ja) * 2013-02-08 2014-08-14 株式会社日立アドバンストデジタル 太陽電池パネル監視プログラム、太陽電池パネル監視装置及び太陽電池パネル監視方法
CN104518508A (zh) * 2013-09-27 2015-04-15 瑞萨电子株式会社 电源电路及其控制方法
KR101550368B1 (ko) * 2015-04-17 2015-09-08 (주)에너지와공조 태양광 발전 시스템 및 태양전지 어레이의 연결을 제어하는 방법
JP2016516382A (ja) * 2013-02-20 2016-06-02 トタル マルケタン セルヴィス 発電セルに対する電子管理システム、発電システム、およびエネルギー流を電子的に管理する方法
JP2017011901A (ja) * 2015-06-23 2017-01-12 株式会社Nttファシリティーズ 太陽光発電システムの制御装置、太陽光発電システム、及び制御プログラム
JP2017524323A (ja) * 2014-07-15 2017-08-24 ▲陽▼光▲電▼源股▲分▼有限公司Sungrow Power Supply Co., Ltd. シングルステージ太陽光発電グリッドタイインバータ及びその制御方法、応用
JP2018046747A (ja) * 2013-09-27 2018-03-22 ルネサスエレクトロニクス株式会社 電源回路の制御方法
KR20190111244A (ko) * 2018-03-22 2019-10-02 알티비피얼라이언스(주) 태양광 발전출력의 최적화 제어 시스템 및 최적화 제어 방법
CN111193289A (zh) * 2020-02-12 2020-05-22 合肥阳光新能源科技有限公司 一种光伏电站并联失配的调整方法及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236220A (ja) * 1993-02-08 1994-08-23 Mitsubishi Electric Corp 太陽光発電用インバータ装置
JPH06311651A (ja) * 1993-04-19 1994-11-04 Canon Inc 太陽光発電システム
JPH0767346A (ja) * 1993-08-27 1995-03-10 Fuji Electric Co Ltd 系統連系用インバータの並列運転制御方法
JPH09294340A (ja) * 1996-02-29 1997-11-11 Kyocera Corp 太陽光発電装置
JPH1069321A (ja) * 1996-08-27 1998-03-10 Honda Motor Co Ltd 太陽光発電装置
JP2001268800A (ja) * 2000-03-16 2001-09-28 Kawasaki Steel Corp 太陽光発電制御方法及び装置
JP2001309560A (ja) * 2000-04-27 2001-11-02 Sharp Corp 系統連系インバータ装置
JP2002084763A (ja) * 2000-09-04 2002-03-22 Matsushita Electric Ind Co Ltd インバータ装置
JP2004094660A (ja) * 2002-08-30 2004-03-25 Sharp Corp 太陽光発電装置用設計支援装置および太陽光発電装置設計方法
JP2007133765A (ja) * 2005-11-11 2007-05-31 Sharp Corp インバータ装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236220A (ja) * 1993-02-08 1994-08-23 Mitsubishi Electric Corp 太陽光発電用インバータ装置
JPH06311651A (ja) * 1993-04-19 1994-11-04 Canon Inc 太陽光発電システム
JPH0767346A (ja) * 1993-08-27 1995-03-10 Fuji Electric Co Ltd 系統連系用インバータの並列運転制御方法
JPH09294340A (ja) * 1996-02-29 1997-11-11 Kyocera Corp 太陽光発電装置
JPH1069321A (ja) * 1996-08-27 1998-03-10 Honda Motor Co Ltd 太陽光発電装置
JP2001268800A (ja) * 2000-03-16 2001-09-28 Kawasaki Steel Corp 太陽光発電制御方法及び装置
JP2001309560A (ja) * 2000-04-27 2001-11-02 Sharp Corp 系統連系インバータ装置
JP2002084763A (ja) * 2000-09-04 2002-03-22 Matsushita Electric Ind Co Ltd インバータ装置
JP2004094660A (ja) * 2002-08-30 2004-03-25 Sharp Corp 太陽光発電装置用設計支援装置および太陽光発電装置設計方法
JP2007133765A (ja) * 2005-11-11 2007-05-31 Sharp Corp インバータ装置

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161202A (ja) * 2011-02-02 2012-08-23 Mitsubishi Electric Corp 階層型需給制御装置および電力系統制御システム
JP2012235677A (ja) * 2011-04-29 2012-11-29 General Electric Co <Ge> 非常に効率的な太陽光発電所のための分散型dc−dcコンバータの切り替え調整
KR101274632B1 (ko) 2011-06-08 2013-06-13 한밭대학교 산학협력단 태양광 발전 시스템에서 인버터의 전력 할당 방법
WO2013094396A1 (ja) * 2011-12-19 2013-06-27 パナソニック株式会社 充放電装置およびこれを用いた充放電システム
JPWO2013094396A1 (ja) * 2011-12-19 2015-04-27 パナソニックIpマネジメント株式会社 充放電装置およびこれを用いた充放電システム
JP2014030357A (ja) * 2012-04-27 2014-02-13 Panasonic Corp 配線切替えシステム、制御装置、およびプログラム
US10158226B2 (en) 2012-04-27 2018-12-18 Panasonic Intellectual Property Management Co., Ltd. Line switching system
JP2013258796A (ja) * 2012-06-11 2013-12-26 Toyota Motor Corp 自然エネルギーを利用した発電システムの劣化診断装置
JP2014067259A (ja) * 2012-09-26 2014-04-17 Panasonic Corp パワーコンディショナ
WO2014122705A1 (ja) * 2013-02-08 2014-08-14 株式会社日立アドバンストデジタル 太陽電池パネル監視プログラム、太陽電池パネル監視装置及び太陽電池パネル監視方法
JP2014154728A (ja) * 2013-02-08 2014-08-25 Hitachi Advanced Digital Inc 太陽電池パネル監視プログラム、太陽電池パネル監視装置及び太陽電池パネル監視方法
JP2016516382A (ja) * 2013-02-20 2016-06-02 トタル マルケタン セルヴィス 発電セルに対する電子管理システム、発電システム、およびエネルギー流を電子的に管理する方法
CN104518508B (zh) * 2013-09-27 2019-01-15 瑞萨电子株式会社 电源电路及其控制方法
JP2018046747A (ja) * 2013-09-27 2018-03-22 ルネサスエレクトロニクス株式会社 電源回路の制御方法
JP2015089326A (ja) * 2013-09-27 2015-05-07 ルネサスエレクトロニクス株式会社 電源回路、及び電源回路の制御方法
CN104518508A (zh) * 2013-09-27 2015-04-15 瑞萨电子株式会社 电源电路及其控制方法
US10218355B2 (en) 2013-09-27 2019-02-26 Renesas Electronics Corporation Power supply circuit and control method thereof
JP2017524323A (ja) * 2014-07-15 2017-08-24 ▲陽▼光▲電▼源股▲分▼有限公司Sungrow Power Supply Co., Ltd. シングルステージ太陽光発電グリッドタイインバータ及びその制御方法、応用
KR101550368B1 (ko) * 2015-04-17 2015-09-08 (주)에너지와공조 태양광 발전 시스템 및 태양전지 어레이의 연결을 제어하는 방법
JP2017011901A (ja) * 2015-06-23 2017-01-12 株式会社Nttファシリティーズ 太陽光発電システムの制御装置、太陽光発電システム、及び制御プログラム
KR20190111244A (ko) * 2018-03-22 2019-10-02 알티비피얼라이언스(주) 태양광 발전출력의 최적화 제어 시스템 및 최적화 제어 방법
KR102107290B1 (ko) * 2018-03-22 2020-05-06 알티비피얼라이언스(주) 태양광 발전출력의 최적화 제어 시스템 및 최적화 제어 방법
CN111193289A (zh) * 2020-02-12 2020-05-22 合肥阳光新能源科技有限公司 一种光伏电站并联失配的调整方法及装置
CN111193289B (zh) * 2020-02-12 2022-09-13 阳光新能源开发股份有限公司 一种光伏电站并联失配的调整方法及装置

Also Published As

Publication number Publication date
JP5302096B2 (ja) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5302096B2 (ja) 太陽光発電システム及び制御方法
US9748772B2 (en) Method of controlling a solar power plant, a power conversion system, a DC/AC inverter and a solar power plant
WO2011059067A1 (ja) 電圧設定装置、太陽光発電システム、および電圧設定装置の制御方法
KR102412303B1 (ko) 전류값을 이용하여 스트링 단위로 균등 전압을 추종하는 스트링 옵티마, 및 이를 적용한 태양광 발전 시스템
US8970065B2 (en) System and method for increasing voltage in a photovoltaic inverter
AU2018278210B2 (en) Maximum power point tracking hybrid control of an energy storage system
CN103078535B (zh) 用于操作功率变换系统的方法和系统
JP5582338B2 (ja) 電力調整装置および電力調整方法、太陽光発電システム、並びに管理装置
CN102893264A (zh) 功率点跟踪
CN105378577A (zh) 电力转换装置、电力管理方法以及电力转换系统
EP3029794B1 (en) Power-supply-device identification apparatus, power-supply-device identification method, and power conversion apparatus
WO2021129955A1 (en) System and method for load and source forecasting for increasing electrical grid component longevity
JP4561928B1 (ja) 電圧設定装置、太陽光発電システム、および電圧設定装置の制御方法
KR101541828B1 (ko) 가변형 태양광 발전장치
US20150168980A1 (en) Method and apparatus for maximum power point tracking for multi-input power converter
WO2018126551A1 (zh) 光伏阵列的最大功率点跟踪控制系统及光伏空调系统
CN109275355A (zh) 太阳光发电装置管理系统、太阳光发电装置管理方法及计算机可读存储介质
JP4631995B1 (ja) 電圧設定装置、太陽光発電システム、および電圧設定装置の制御方法
JP6023458B2 (ja) 太陽電池システム
CN113366404B (zh) 电力系统和电力转换装置
WO2009146065A2 (en) Energy interface module and power conversion system
WO2019131227A1 (ja) 電力制御装置、電力制御方法、プログラム
JP5893995B2 (ja) 電力供給システム、制御装置、及び電力供給方法
CN202197235U (zh) 太阳能光伏系统
JP6093053B2 (ja) 太陽光発電データ収集装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees