JP2010265382A - Coke oven carbonization chamber furnace wall state evaluating method - Google Patents

Coke oven carbonization chamber furnace wall state evaluating method Download PDF

Info

Publication number
JP2010265382A
JP2010265382A JP2009117806A JP2009117806A JP2010265382A JP 2010265382 A JP2010265382 A JP 2010265382A JP 2009117806 A JP2009117806 A JP 2009117806A JP 2009117806 A JP2009117806 A JP 2009117806A JP 2010265382 A JP2010265382 A JP 2010265382A
Authority
JP
Japan
Prior art keywords
furnace wall
extrusion
wall state
carbonization chamber
coke oven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009117806A
Other languages
Japanese (ja)
Other versions
JP5432586B2 (en
Inventor
Kohei Ota
晃平 大田
Hiroko Nishihata
裕子 西端
Shingo Asada
真吾 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP2009117806A priority Critical patent/JP5432586B2/en
Publication of JP2010265382A publication Critical patent/JP2010265382A/en
Application granted granted Critical
Publication of JP5432586B2 publication Critical patent/JP5432586B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coke oven carbonization chamber furnace wall state evaluating method by which extrusion resistance causing extrusion trouble is suitably grasped and a furnace wall state after operation of empty kiln can be easily evaluated. <P>SOLUTION: The coke oven carbonization chamber furnace wall state evaluating method by which a furnace wall state of a coke oven carbonization chamber is evaluated includes steps for: measuring extrusion power values P<SB>n</SB>to extrusion frequencies n after operation of empty kiln of a carbonization chamber 1; performing classification into a decreasing interval where extrusion power values P<SB>n</SB>are decreased with increase of extrusion frequencies n and an increasing interval where extrusion power values P<SB>n</SB>are increased with increase of extrusion frequencies n after the decreasing interval; calculating a furnace wall state value A<SB>D</SB>and an extrusion power decreasing index k<SB>n</SB>of the following approximation formula (1) using the extrusion frequencies n and the extrusion power values P<SB>n</SB>in the decreasing interval; and evaluating the furnace wall state by using the calculated furnace wall state value A<SB>D</SB>. P<SB>n</SB>=A<SB>D</SB>×EXP(-k<SB>n</SB>×n) (1). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、コークス炉炭化室の炉壁状態を評価するコークス炉炭化室炉壁状態評価方法に関するものである。   The present invention relates to a coke oven carbonization chamber furnace wall state evaluation method for evaluating a furnace wall state of a coke oven carbonization chamber.

一般にコークス炉は、下部に蓄熱室があり、その上部に炭化室(以下、窯ということもある)と燃焼室とが交互に多数配列された構造をしている。蓄熱室は、燃料ガスおよび空気を予熱し、燃焼室に供給することができる。燃焼室は、供給された燃料ガスおよび空気を燃焼させ、その両側に隣接する炭化室に炉壁を通して間接的に伝熱し、炭化室内の石炭を乾留してコークス化することができる。   In general, a coke oven has a heat storage chamber in the lower part, and a carbonization chamber (hereinafter sometimes referred to as a kiln) and combustion chambers are arranged in the upper part. The heat storage chamber can preheat fuel gas and air and supply them to the combustion chamber. The combustion chamber combusts the supplied fuel gas and air, transfers heat indirectly to the carbonization chamber adjacent to both sides through the furnace wall, and dry-coalizes the coal in the carbonization chamber for coking.

乾留後のコークスは、押出機により押し出されて炭化室から排出される。しかし、押出機による押出作業時において、種々の原因により押出トラブルが発生する。特に重要な原因として、コークス炉炭化室の炉壁に付着したカーボンが押出時に生じさせる抵抗があり、この押出抵抗は、押出ラムの停止という押出トラブルを引き起こす。   The coke after the carbonization is extruded by an extruder and discharged from the carbonization chamber. However, an extrusion trouble occurs due to various causes at the time of the extrusion operation by the extruder. As a particularly important cause, there is a resistance caused by the carbon adhering to the furnace wall of the coke oven carbonization chamber during the extrusion, and this extrusion resistance causes an extrusion trouble that stops the extrusion ram.

そのため、押出トラブルを低減または解消するためには、炉壁に付着したカーボンを除去しなければならない。現在、炉壁に付着したカーボンを除去する方法として、空窯がある。空窯とは、炭化室への装入口を開放し、この装入口から空気を流入させながら、石炭を装入せずに炭化室を数時間または数サイクルの間放置する操作のことである。ここで、サイクルとは、石炭の装入からコークスの押出までの一連の操作を意味する。空窯を実施することで、炭化室の炉壁に付着したカーボンを焼き落とし、除去することができる。   Therefore, in order to reduce or eliminate the extrusion trouble, the carbon adhering to the furnace wall must be removed. Currently, there is an empty kiln as a method for removing carbon adhering to the furnace wall. An empty kiln is an operation in which a charcoal chamber is left for several hours or several cycles without charging coal while opening a charge port to the charcoal chamber and allowing air to flow from the charge port. Here, the cycle means a series of operations from coal charging to coke extrusion. By carrying out an empty kiln, carbon adhering to the furnace wall of the carbonization chamber can be burned out and removed.

一方で空窯を行うと、空気の流入による冷却に起因して炭化室炉壁(煉瓦)を傷めることになる。空窯を繰り返し実施すると、炭化室炉壁が損傷し、押出抵抗が大きくなり、上記の付着カーボンと同様に押出トラブルの原因となる。そのため、空窯の実施などにより発生した損傷が大きい場合には、溶射による炉壁の補修が施される。   On the other hand, if an empty kiln is performed, the carbonization chamber furnace wall (brick) will be damaged due to cooling by the inflow of air. If the empty kiln is repeatedly performed, the carbonization chamber furnace wall is damaged, the extrusion resistance is increased, and it causes the extrusion trouble like the above-mentioned adhered carbon. For this reason, when the damage caused by the implementation of an empty kiln is large, the furnace wall is repaired by thermal spraying.

これらの空窯実施後または補修後の炭化室の炉壁状態を評価する方法としては、例えば、作業者の目視による評価が行われている。しかし、炉長15m以上、炉高6m以上もある炉壁内を目視することは、作業効率が悪いだけではなく、定性的な評価しかできない。   As a method for evaluating the state of the furnace wall of the carbonization chamber after the implementation or repair of these empty kilns, for example, evaluation by visual observation by an operator is performed. However, visually observing the inside of a furnace wall having a furnace length of 15 m or more and a furnace height of 6 m or more not only has poor work efficiency, but can only be qualitatively evaluated.

そのため、下記特許文献1には、非接触式距離計等を用いて炭化室プロフィールを求め、それを基に炉壁の状況を指標化する方法が開示されている。また、下記引用文献2には、炭化室の任意の高さにおける長さ方向複数位置の炉壁間距離を測定し、得られる実測炉壁間距離変位線に基づいて、実測炉壁間距離の平準化変位線を求めて、実測炉壁間距離変位線と平準化変位線を比較することにより、炭化室の炉壁状態を診断する方法が開示されている。また、下記特許文献3では、壁面観察装置で得られた画像信号を用いて炉壁3次元プロフィールデータを生成し、この炉壁3次元プロフィールデータを用いて、押し出されるコークスが受ける抵抗を指標化した抵抗指数を求めている。   Therefore, Patent Document 1 below discloses a method for obtaining a carbonization chamber profile using a non-contact distance meter or the like and indexing the state of the furnace wall based on the profile. Further, in the cited reference 2 below, the distance between the furnace walls at a plurality of positions in the longitudinal direction at an arbitrary height of the carbonization chamber is measured, and the distance between the measured furnace wall distances is calculated based on the obtained displacement line between the measured furnace wall distances. A method for diagnosing the state of the furnace wall in the coking chamber by obtaining a leveled displacement line and comparing the measured displacement distance between the furnace wall distances and the leveled displacement line is disclosed. Moreover, in the following Patent Document 3, furnace wall three-dimensional profile data is generated using an image signal obtained by a wall surface observation device, and resistance received by extruded coke is indexed using the furnace wall three-dimensional profile data. The calculated resistance index.

特開2001−294867号公報JP 2001-294867 A 特開2003−183661号公報JP 2003-183661 A 特開2008−201993号公報JP 2008-201993 A

しかしながら、引用文献1〜3に開示された方法は、炭化室の炉壁を直接計測又は観察するものであり、炉壁全体の凹凸状態を評価するのに時間がかかってしまう。また、引用文献1〜3の方法は、炉壁の損傷といった炉壁状態を示すものではあるが、炉壁状態に起因する押出抵抗を直接的に示すものではないため、押出抵抗による押出トラブルを適切に判断することができない。上記のように、炉壁の損傷によっては押出トラブルを生じさせる場合があり、押出性への影響を低減させるために損傷などの炉壁状態は評価され、必要に応じて炉壁の補修等の処置が行われる。   However, the methods disclosed in the cited documents 1 to 3 directly measure or observe the furnace wall of the carbonization chamber, and it takes time to evaluate the uneven state of the entire furnace wall. Moreover, although the method of the cited documents 1-3 shows the furnace wall state, such as damage of a furnace wall, since it does not show the extrusion resistance resulting from a furnace wall state directly, it has the extrusion trouble by extrusion resistance. Cannot judge properly. As mentioned above, extrusion trouble may occur depending on the damage of the furnace wall, and the furnace wall condition such as damage is evaluated to reduce the influence on the extrudability, and repair of the furnace wall etc. Treatment is performed.

本発明は上記実情に鑑みてなされたものであり、その課題は、押出トラブルの原因となる押出抵抗を適切に把握し、空窯実施後の炉壁状態を容易に評価することができるコークス炉炭化室炉壁状態評価方法を提供することである。   The present invention has been made in view of the above circumstances, and the problem is that a coke oven that can appropriately grasp the extrusion resistance causing the extrusion trouble and can easily evaluate the furnace wall state after the empty kiln is implemented. It is to provide a carbonization chamber furnace wall condition evaluation method.

上記の課題を解決するために、本発明のコークス炉炭化室炉壁状態評価方法は、
コークス炉炭化室の炉壁状態を評価するコークス炉炭化室炉壁状態評価方法であって、
炭化室の空窯実施後の押出回数nに対する押出電力値Pを測定するステップと、
押出回数nの増加とともに押出電力値Pが低下する低下区間と、この低下区間後に押出回数nの増加とともに押出電力値Pが上昇する上昇区間とに区分するステップと、
前記低下区間における押出回数nと押出電力値Pとの値を用いて、以下の近似式(1)の炉壁状態値Aおよび押出電力低下指数kを求めるステップと、
求めた炉壁状態値Aを用いて炉壁状態を評価するステップと、を含むことを特徴とするものである。
=A×EXP(−k×n) (1)
In order to solve the above problems, the coke oven carbonization chamber furnace wall state evaluation method of the present invention,
A coke oven carbonization chamber furnace wall state evaluation method for evaluating the coke oven carbonization chamber wall state,
Measuring an extrusion power value P n with respect to the number of extrusions n after performing an empty kiln in the carbonization chamber;
A step of dividing into a decrease section in which the extrusion power value P n decreases with an increase in the number of extrusions n, and an increase section in which the extrusion power value P n increases with an increase in the number of extrusions n after this decrease section;
Using the values of the extrusion number n and the extrusion power value P n of the reduced section, determining a furnace wall state value A D and extrusion power reduction index k n of the following approximate expression (1),
And a step of evaluating the furnace wall state using the obtained furnace wall state value AD .
P n = A D × EXP ( -k n × n) (1)

かかる構成によるコークス炉炭化室炉壁状態評価方法の作用・効果を説明する。空窯実施後の押出回数nに対する押出電力値Pは、通常、図3のグラフのような推移を示す。ここで、押出電力値Pは、乾留後のコークスを炭化室から押し出す際に必要な電力値であり、コークス押出時の押出抵抗を示すと言える。空窯実施直後は、炉壁に付着していたカーボンが焼け落ち、炉壁の損傷部(凹み)が明らかとなり、その凹みにより押出抵抗は増え、結果として押出電力値Pは大きくなっている。その後、押出を繰り返すと、カーボンが炉壁の損傷部に付着し、損傷部の凹みがカーボンにより埋まっていくので、押出回数nの増加とともに、押出抵抗は減少し、押出電力値Pは低下していく。本発明では、このような押出回数nの増加とともに押出電力値Pが低下する区間を低下区間とする。この低下区間後、さらに押出を繰り返すと、カーボンが局所的に張り出し、張り出したカーボンが押出抵抗となるので、押出回数nの増加とともに、押出抵抗は増大し、押出電力値Pは上昇していく。本発明では、このような押出回数nの増加とともに押出電力値Pが上昇する区間を上昇区間とする。 The effect | action and effect of the coke oven carbonization chamber furnace wall state evaluation method by such a structure are demonstrated. Extrusion power value P n relative to the extrusion number n after empty kiln implementation typically shows changes such as the graph of FIG. Here, the extrusion power value Pn is a power value necessary for extruding the coke after dry distillation from the carbonization chamber, and can be said to indicate the extrusion resistance at the time of coke extrusion. Immediately after the implementation of the empty kiln, the carbon adhering to the furnace wall burns off, and the damaged part (dent) of the furnace wall becomes clear, and the extrusion resistance increases due to the depression, and as a result, the extrusion power value P n increases. . After that, when repeated extrusion, carbon adheres to the damaged portion of the furnace wall, since the recess of the damaged portion is gradually filled by carbon, with increasing extrusion times n, extrusion resistance decreases, the extrusion power value P n decrease I will do it. In the present invention, such a section where the extrusion power value P n decreases as the number of extrusions n increases is defined as a decrease section. If extrusion is further repeated after this lowering section, the carbon is locally stretched, and the stretched carbon becomes extrusion resistance. Therefore, as the number of extrusions n increases, the extrusion resistance increases and the extrusion power value Pn increases. Go. In the present invention, a section in which the extrusion power value P n increases as the number of times of extrusion n increases is defined as a rising section.

このようにして区分した低下区間と上昇区間のうち、低下区間における押出回数nと押出電力値Pとの値を用いて、近似式(1)の炉壁状態値Aおよび押出電力低下指数kを求める。上記のように、低下区間においては、炉壁状態そのものが押出抵抗に大きく影響している。ただし、図3のように、低下区間の初期(押出回数nが少ないとき)には、炉壁状態の他に炉温や石炭性状などの要因も影響して、押出電力値Pにはバラつきがあり、押出電力値Pそのものを用いても炉壁状態による押出抵抗を適切に把握することは難しい。また、低下区間中、押出電力値Pが安定して低下する区間は、炉壁の損傷部(凹み)にカーボンが付着して徐々に平滑化される状態であるため、この区間の押出電力値Pは、空窯実施後の炉壁状態を示しているとは言えない。 Using the values of the number of extrusions n and the extrusion power value P n in the lowering section among the lowering section and the rising section thus divided, the furnace wall state value AD and the extrusion power lowering index of the approximate expression (1) are used. determine the k n. As described above, in the lowered section, the furnace wall state itself greatly affects the extrusion resistance. However, as shown in FIG. 3, at the beginning of the lowering section (when the number of extrusions n is small), factors such as furnace temperature and coal properties are also affected in addition to the furnace wall state, and the extrusion power value P n varies. Even when the extrusion power value Pn itself is used, it is difficult to properly grasp the extrusion resistance due to the furnace wall state. Further, in the decreasing section, the section where the extrusion power value Pn stably decreases is a state in which carbon adheres to the damaged portion (dent) of the furnace wall and is gradually smoothed. The value Pn cannot be said to indicate the state of the furnace wall after the empty kiln.

そこで、本発明では、近似式(1)により求めた炉壁状態値Aを用いることで、炉壁状態以外の要因を抑え、空窯実施後の炉壁状態による押出抵抗を適切に把握することが可能になる。 Therefore, in the present invention, by using the furnace wall state value AD obtained by the approximate expression (1), factors other than the furnace wall state are suppressed, and the extrusion resistance due to the furnace wall state after the empty kiln is appropriately grasped. It becomes possible.

また、炉壁状態値Aが大きいということは、空窯実施後の初めての押出から押出電力値が大きく、押出抵抗が大きいことを示している。逆に、炉壁状態値Aが小さいということは、空窯実施後の初めての押出から押出電力値が小さく、押出抵抗が小さいことを示している。また、炉壁の損傷が大きいと押出電力値は大きいので、損傷の大小は炉壁状態値Aの大小で評価することが可能といえる。つまり、炉壁状態値Aを用いることで、炉壁状態を容易に評価することができる。 Further, the fact that the furnace wall state value AD is large indicates that the extrusion power value is large and the extrusion resistance is large since the first extrusion after the empty kiln is performed. On the contrary, the fact that the furnace wall state value AD is small indicates that the extrusion power value is small and the extrusion resistance is small since the first extrusion after the empty kiln. Moreover, since the extrusion power value is large when the furnace wall is greatly damaged, it can be said that the magnitude of the damage can be evaluated by the magnitude of the furnace wall state value AD . In other words, the furnace wall state can be easily evaluated by using the furnace wall state value AD .

なお、本発明で空窯実施後とは、単に空窯を実施した後だけでなく、空窯を実施し、さらに溶射等の補修を行った後も含むものとする。   In addition, after carrying out an empty kiln in this invention, not only after implementing an empty kiln but also after performing an empty kiln and also performing repairs, such as thermal spraying.

本発明に係るコークス炉炭化室炉壁状態評価方法において、各炭化室の炉壁状態値Aをランク分けするステップをさらに含むことが好ましい。 The coke oven carbonization chamber furnace wall state evaluation method according to the present invention preferably further includes a step of ranking the furnace wall state value AD of each carbonization chamber.

コークス炉は、複数の炭化室を備えるので、各炭化室の炉壁状態値Aをランク分けすることで、複数の炭化室の中で炉壁の補修を強化する優先順位を容易に決定することができる。 Since the coke oven is provided with a plurality of carbonization chambers, it is possible to easily determine the priority order for strengthening the repair of the furnace wall among the plurality of carbonization chambers by ranking the furnace wall state values AD of the respective carbonization chambers. be able to.

コークス炉の炭化室の断面図Cross section of coking oven coking chamber 炭化室を押出方向に見た断面図Sectional view of carbonization chamber viewed in the extrusion direction 空窯実施後の押出電力値の推移を示すグラフGraph showing transition of extrusion power value after empty kiln implementation

以下、本発明の実施の形態について、詳細に説明する。図1は、コークス炉の炭化室1の断面図を示している。一般に、コークス炉は、炭化室1が複数並べられているが、ここでは説明の便宜のために、ひとつの炭化室1について説明を行う。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 shows a cross-sectional view of a carbonization chamber 1 of a coke oven. In general, a plurality of coking chambers 1 are arranged in a coke oven. Here, for convenience of explanation, only one coking chamber 1 will be described.

炭化室1の上部には、炭化室1へ石炭を装入するための装入車2が移動可能に設けられている。装入車2には、複数のホッパーからなるホッパー群Hが搭載されており、各ホッパーに充填された石炭を炭化室1内に装入することができる。石炭の炭化室1への装入は、炭化室1の上部に各ホッパーに対応して設けられた装入口3を介して行われる。また、炭化室1の上部には、装入口3のほか、ガスの抜け道である上昇管4が設けられている。なお、装入口3の個数は、適宜設定可能である。   A charging vehicle 2 for charging coal into the carbonizing chamber 1 is movably provided at the upper portion of the carbonizing chamber 1. A hopper group H including a plurality of hoppers is mounted on the charging vehicle 2, and coal filled in each hopper can be charged into the carbonization chamber 1. Charging the coal into the carbonizing chamber 1 is performed through charging ports 3 provided in the upper part of the carbonizing chamber 1 corresponding to the hoppers. Further, in addition to the charging port 3, a rising pipe 4, which is a gas escape path, is provided at the upper part of the carbonization chamber 1. Note that the number of loading ports 3 can be set as appropriate.

炭化室1の両側には燃焼室が設けられており、燃焼室内で燃焼ガスを燃焼させて生じた燃焼熱によって、炭化室1内に装入された石炭を乾留してコークスCを製造することができる。なお、図1には示していないが、燃焼室は図1の炭化室1の奥方向および手前方向にそれぞれ設けられる。   Combustion chambers are provided on both sides of the carbonization chamber 1, and the coke C is produced by dry distillation of the coal charged into the carbonization chamber 1 by the combustion heat generated by burning the combustion gas in the combustion chamber. Can do. Although not shown in FIG. 1, the combustion chambers are respectively provided in the back direction and the front direction of the carbonization chamber 1 in FIG. 1.

炭化室1内に装入された石炭の乾留が終了すると、図1の炭化室1の両側の窯口に配設された炉蓋5,6を開放する。一方の窯口側には押出機7が設けられており、この押出機7によって、炭化室1内のコークスCは他方の窯口(排出口)から排出される。ここでは、図1の炉蓋5の左側方に押出機7が配置され、炉蓋6が配設された窯口が排出口であるとする。   When the carbonization of the coal charged in the carbonization chamber 1 is completed, the furnace lids 5 and 6 disposed at the kilns on both sides of the carbonization chamber 1 in FIG. 1 are opened. An extruder 7 is provided on one side of the kiln, and the coke C in the carbonization chamber 1 is discharged from the other kiln (discharge port) by the extruder 7. Here, it is assumed that the extruder 7 is arranged on the left side of the furnace lid 5 in FIG. 1 and the kiln opening in which the furnace cover 6 is arranged is a discharge port.

<炭化室炉壁状態評価方法>
押出機7によってコークスCを炭化室1から押し出す際、押出機7には押出抵抗が加わる。本実施形態では、コークスCを炭化室1から押し出す際に必要な押出機7の電力値(kw)である、押出電力値Pを測定している。押出電力値Pは、押出抵抗に応じた値となる。なお、押出機7の電力値は、押出工程の中で炭化室1の押出方向(図1の左右方向)の位置によって変化するが、本実施形態では、一回の押出工程の中での最大電力値を押出電力値Pとしている。
<Coating chamber furnace wall condition evaluation method>
When the coke C is extruded from the carbonization chamber 1 by the extruder 7, extrusion resistance is added to the extruder 7. In the present embodiment, the extrusion power value Pn , which is the power value (kw) of the extruder 7 required when the coke C is extruded from the carbonization chamber 1, is measured. The extrusion power value Pn is a value corresponding to the extrusion resistance. The power value of the extruder 7 varies depending on the position of the carbonizing chamber 1 in the extrusion direction (left-right direction in FIG. 1) in the extrusion process, but in this embodiment, the maximum value in one extrusion process. The power value is set as the extrusion power value Pn .

本実施形態では、炭化室1に対して空窯を実施した後、石炭の装入からコークスCの押出までの一連の操作を繰り返し、その繰り返し回数、すなわち、押出回数nに対する押出電力値Pを測定する。なお、炭化室1に対して空窯を実施した後、炉壁の補修のために溶射が行われることもある。 In this embodiment, after performing an empty kiln with respect to the carbonization chamber 1, a series of operations from the charging of coal to the extrusion of coke C are repeated, and the number of repetitions, that is, the extrusion power value P n for the number of extrusions n. Measure. In addition, after implementing an empty kiln with respect to the carbonization chamber 1, spraying may be performed for repair of a furnace wall.

炭化室1に対して空窯実施後の押出回数nに対する押出電力値Pは、上述したように、通常、図3のグラフのような推移を示す。横軸を押出回数n(回)、縦軸を押出電力値P(kw)とする。なお、図3の縦軸は、対数目盛としている。 Extrusion power values P n for extrusion number n after empty kiln performed for coking chamber 1, as described above, usually, shows changes such as the graph of FIG. The horizontal axis represents the number of extrusions n (times), and the vertical axis represents the extrusion power value P n (kw). The vertical axis in FIG. 3 is a logarithmic scale.

押出回数nに対する押出電力値Pが図3のような推移を示す理由について、図2を用いて説明する。図2は、炭化室1を押出方向に見た断面図である。炭化室1の炉壁10は、例えば、耐火煉瓦を積み重ねることによって形成されている。 The reason why the extrusion power value P n with respect to the number of extrusions n changes as shown in FIG. 3 will be described with reference to FIG. FIG. 2 is a cross-sectional view of the carbonization chamber 1 as viewed in the extrusion direction. The furnace wall 10 of the carbonization chamber 1 is formed, for example, by stacking refractory bricks.

空窯実施直後は、図2(a)に示すように、炉壁10に付着していたカーボンが焼け落ち、炉壁10の損傷部10aが明らかとなる。このような損傷部10aは、空窯の繰り返し等によって生じる。損傷部10aの凹みにより、コークスCを押し出す際には押出抵抗は増え、結果として押出電力値Pは大きくなっている。 Immediately after the implementation of the empty kiln, as shown in FIG. 2A, the carbon adhering to the furnace wall 10 is burned off, and the damaged portion 10a of the furnace wall 10 becomes clear. Such a damaged part 10a is caused by repeated empty kilns. When the coke C is pushed out due to the dent of the damaged portion 10a, the extrusion resistance increases, and as a result, the extrusion power value P n increases.

その後、押出を繰り返すと、図2(b)に示すように、カーボン11が炉壁10の損傷部10aに付着し、損傷部10aの凹みがカーボン11により徐々に埋まっていく。凹みがカーボン11により埋まっていき、炉壁10は平滑化していくので、押出回数nの増加とともに、押出抵抗は減少し、押出電力値Pは低下していく。本実施形態では、このような押出回数nの増加とともに押出電力値Pが低下する区間を低下区間と称する。 Thereafter, when the extrusion is repeated, as shown in FIG. 2B, the carbon 11 adheres to the damaged portion 10 a of the furnace wall 10, and the dent of the damaged portion 10 a is gradually filled with the carbon 11. Since the dent is filled with the carbon 11 and the furnace wall 10 is smoothed, the extrusion resistance decreases and the extrusion power value P n decreases as the number of extrusions n increases. In the present embodiment, a section in which the extrusion power value P n decreases as the number of extrusions n increases is referred to as a decrease section.

低下区間後、さらに押出を繰り返すと、図2(c)に示すように、カーボン11が局所的に張り出し、張り出したカーボン11が押出抵抗となるので、押出回数nの増加とともに、押出抵抗は増大し、押出電力値Pは上昇していく。本実施形態では、このような押出回数nの増加とともに押出電力値Pが上昇する区間を上昇区間と称する。 When extrusion is further repeated after the lowering section, as shown in FIG. 2 (c), the carbon 11 is locally projected and the projected carbon 11 becomes extrusion resistance, so that the extrusion resistance increases as the number of extrusions n increases. Then, the extrusion power value Pn increases. In the present embodiment, such a section in which the extrusion power value P n increases as the number of times of extrusion n increases is referred to as a rising section.

このようにして区分した低下区間と上昇区間のうち、低下区間における押出回数nと押出電力値Pとの値を用いて、以下の近似式(1)の炉壁状態値Aおよび押出電力低下指数kを求める。近似式(1)のグラフは、図3に直線で示しており、炉壁状態値Aは、この直線のy切片である。なお、押出電力値Pの低下区間と上昇区間との境界は、空窯実施後から押出回数ごとに近似式(1)を算出していき、式の相関係数値が最大値を示すときの押出回数とする。
=A×EXP(−k×n) (1)
Of this way a reduced section which is divided by rise zone, using the values of the extrusion number n and the extrusion power value P n in reducing section, the furnace wall state value A D and extrusion power of the following approximate expression (1) seek a reduction index k n. The graph of the approximate expression (1) is shown by a straight line in FIG. 3, and the furnace wall state value AD is a y-intercept of this straight line. In addition, the boundary between the decrease section and the increase section of the extrusion power value Pn is calculated when the approximate expression (1) is calculated for each number of extrusions after the empty kiln, and the correlation coefficient value of the expression shows the maximum value. The number of extrusions.
P n = A D × EXP ( -k n × n) (1)

低下区間においては、炉壁状態そのものが押出抵抗に大きく影響している。ただし、図3のように、低下区間の初期(押出回数nが少ないとき)には、炉壁状態の他に炉温や石炭性状などの要因も影響して、押出電力値Pにはバラつきがある。 In the lowered section, the furnace wall condition itself has a great influence on the extrusion resistance. However, as shown in FIG. 3, at the beginning of the lowering section (when the number of extrusions n is small), factors such as furnace temperature and coal properties are also affected in addition to the furnace wall state, and the extrusion power value P n varies. There is.

また、低下区間中、押出電力値Pが安定して低下する区間は、上記のように、炉壁10の凹みにカーボン11が付着して徐々に平滑化される状態であるため、この区間の押出電力値Pは、空窯実施後または溶射補修後の炉壁状態を示しているとは言えない。 Further, in the lowering section, the section where the extrusion power value Pn stably decreases is a state in which the carbon 11 adheres to the recess of the furnace wall 10 and is gradually smoothed as described above. It cannot be said that the extrusion electric power value Pn of indicates the furnace wall state after the empty kiln or after spraying repair.

そこで、近似式(1)により求められた炉壁状態値Aを用いることで、炉壁状態以外の要因を抑え、空窯実施後の初期の炉壁状態による押出抵抗を適切に把握することが可能になる。 Therefore, by using the furnace wall state value AD obtained by the approximate expression (1), factors other than the furnace wall state are suppressed, and the extrusion resistance due to the initial furnace wall state after the empty furnace is appropriately grasped. Is possible.

炉壁状態値Aが大きいということは、空窯実施後の初めての押出から押出電力値Pが大きく、押出抵抗が大きいことを示している。逆に、炉壁状態値Aが小さいということは、空窯実施後の初めての押出から押出電力値Pが小さく、押出抵抗が小さいことを示している。また、炉壁10の損傷が大きいと押出電力値Pは大きいので、損傷の大小は炉壁状態値Aの大小で評価することが可能といえる。つまり、炉壁状態値Aを用いることで、空窯実施後の炉壁状態を容易に評価することができる。 The fact that the furnace wall state value AD is large indicates that the extrusion power value Pn is large and the extrusion resistance is large since the first extrusion after the empty kiln. Conversely, the fact that the furnace wall state value AD is small indicates that the extrusion power value Pn is small and the extrusion resistance is small from the first extrusion after the empty kiln is implemented. Moreover, since the extrusion electric power value Pn is large when the damage of the furnace wall 10 is large, it can be said that the magnitude of damage can be evaluated by the magnitude of the furnace wall state value AD . That is, by using the furnace wall state value AD , the furnace wall state after the empty furnace can be easily evaluated.

また、炉壁状態値Aが大きいと、空窯実施後に押出不良が頻繁に発生する。押出不良が発生すると押出機7で押しても炭化室1からコークスCを排出できなくなくなる押し詰まりの危険性が高くなる。押し詰まりの危険性を減らすためには、石炭の装入量を低減する(調整装入)などの特別の処置が実施されるので、管理上の負担が大きくなる。そのため、空窯実施後に補修を行い、炉壁状態値Aを下げることで、押し詰まりの危険性が減少し、調整装入も減少して管理上の負担も小さくなり、その結果、生産能力の向上に繋がる。 Moreover, when the furnace wall state value AD is large, poor extrusion frequently occurs after the empty kiln is implemented. If an extrusion failure occurs, there is a high risk of clogging that prevents coke C from being discharged from the carbonization chamber 1 even if pushed by the extruder 7. In order to reduce the risk of clogging, special measures such as reducing the amount of coal charged (adjustment charging) are implemented, which increases the administrative burden. Therefore, repairing after the empty kiln is carried out and the furnace wall state value AD is lowered, thereby reducing the risk of clogging, reducing the adjustment charging, and reducing the administrative burden. It leads to improvement.

また、仮に炉壁状態値Aが大きい場合であっても、上記のように、押出回数nの増加とともに押出電力値Pは低下していくが、炉壁状態値Aが大きい場合には空窯実施後の溶射等の補修が十分でなかったことが推察される。よって、次回の空窯実施後の溶射は特に注意して補修精度を強化する必要がある。このように、炉壁状態値Aを用いて炉壁状態を評価することで、炭化室の炉壁の損傷の大小や、補修の必要性などを容易に判断することが可能になる。 Further, even if the furnace wall state value AD is large, as described above, the extrusion power value Pn decreases as the number of extrusions n increases, but when the furnace wall state value AD is large. It is inferred that repairs such as thermal spraying after the empty kiln were not sufficient. Therefore, the thermal spraying after the next empty kiln needs to be enhanced with special care. As described above, by evaluating the furnace wall state using the furnace wall state value AD , it is possible to easily determine the magnitude of damage to the furnace wall of the carbonization chamber, the necessity for repair, and the like.

<別実施形態>
上記の実施形態では、コークスCの押出時の押出抵抗を表すものとして、押出電力値Pを測定したが、押出機7のモータの押出時電流値や反力値を測定しもよい。
<Another embodiment>
In the above embodiment, the extrusion power value Pn is measured as representing the extrusion resistance at the time of extrusion of the coke C, but the current value and reaction force value at the time of extrusion of the motor of the extruder 7 may be measured.

1 炭化室
3 装入口
7 押出機
10 炉壁
10a 損傷部
11 カーボン
C コークス
DESCRIPTION OF SYMBOLS 1 Carbonization chamber 3 Charger 7 Extruder 10 Furnace wall 10a Damaged part 11 Carbon C coke

Claims (2)

コークス炉炭化室の炉壁状態を評価するコークス炉炭化室炉壁状態評価方法であって、
炭化室の空窯実施後の押出回数nに対する押出電力値Pを測定するステップと、
押出回数nの増加とともに押出電力値Pが低下する低下区間と、この低下区間後に押出回数nの増加とともに押出電力値Pが上昇する上昇区間とに区分するステップと、
前記低下区間における押出回数nと押出電力値Pとの値を用いて、以下の近似式(1)の炉壁状態値Aおよび押出電力低下指数kを求めるステップと、
求めた炉壁状態値Aを用いて炉壁状態を評価するステップと、を含むコークス炉炭化室炉壁状態評価方法。
=A×EXP(−k×n) (1)
A coke oven carbonization chamber furnace wall state evaluation method for evaluating the coke oven carbonization chamber wall state,
Measuring an extrusion power value P n with respect to the number of extrusions n after performing an empty kiln in the carbonization chamber;
A step of dividing into a decrease section in which the extrusion power value P n decreases with an increase in the number of extrusions n, and an increase section in which the extrusion power value P n increases with an increase in the number of extrusions n after this decrease section;
Using the values of the extrusion number n and the extrusion power value P n of the reduced section, determining a furnace wall state value A D and extrusion power reduction index k n of the following approximate expression (1),
A step of evaluating the furnace wall state using the obtained furnace wall state value AD , and a coke oven carbonization chamber furnace wall state evaluation method.
P n = A D × EXP ( -k n × n) (1)
各炭化室の炉壁状態値Aをランク分けするステップをさらに含む請求項1に記載のコークス炉炭化室炉壁状態評価方法。
The coke oven coking chamber furnace wall state evaluation method according to claim 1, further comprising a step of ranking the furnace wall state value AD of each coking chamber.
JP2009117806A 2009-05-14 2009-05-14 Coke oven carbonization chamber furnace wall condition evaluation method Active JP5432586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009117806A JP5432586B2 (en) 2009-05-14 2009-05-14 Coke oven carbonization chamber furnace wall condition evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009117806A JP5432586B2 (en) 2009-05-14 2009-05-14 Coke oven carbonization chamber furnace wall condition evaluation method

Publications (2)

Publication Number Publication Date
JP2010265382A true JP2010265382A (en) 2010-11-25
JP5432586B2 JP5432586B2 (en) 2014-03-05

Family

ID=43362644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009117806A Active JP5432586B2 (en) 2009-05-14 2009-05-14 Coke oven carbonization chamber furnace wall condition evaluation method

Country Status (1)

Country Link
JP (1) JP5432586B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231086A (en) * 1985-04-04 1986-10-15 Nippon Steel Corp Method of automatically burning and removing adhered carbon in carbonizing chamber of coke oven
JPH01247483A (en) * 1988-03-30 1989-10-03 Sumitomo Metal Ind Ltd Monitoring of pushing force of coke oven
JP2005200551A (en) * 2004-01-15 2005-07-28 Kansai Coke & Chem Co Ltd Method for selecting carbon-attached carbonization chamber, and method for operating coke oven
JP2009057491A (en) * 2007-08-31 2009-03-19 Kansai Coke & Chem Co Ltd Diagnosis method for furnace wall of coke oven

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231086A (en) * 1985-04-04 1986-10-15 Nippon Steel Corp Method of automatically burning and removing adhered carbon in carbonizing chamber of coke oven
JPH01247483A (en) * 1988-03-30 1989-10-03 Sumitomo Metal Ind Ltd Monitoring of pushing force of coke oven
JP2005200551A (en) * 2004-01-15 2005-07-28 Kansai Coke & Chem Co Ltd Method for selecting carbon-attached carbonization chamber, and method for operating coke oven
JP2009057491A (en) * 2007-08-31 2009-03-19 Kansai Coke & Chem Co Ltd Diagnosis method for furnace wall of coke oven

Also Published As

Publication number Publication date
JP5432586B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5461768B2 (en) Coke oven carbonization chamber diagnostic method
JP2008201993A5 (en)
JP5432586B2 (en) Coke oven carbonization chamber furnace wall condition evaluation method
JP6107776B2 (en) Coke oven carbonization chamber prediction method and coke oven carbonization chamber repair method
CN102197111B (en) Method for estimation of coke oven load generated during coke extrusion
JP2019006940A (en) Method for diagnosing furnace wall of coke oven
JP2005036021A (en) Method for charging coal into coke oven and coal-charging apparatus
JP5052944B2 (en) Coke oven operation method
JP4142333B2 (en) Coke oven coking chamber diagnostic method
JP4444764B2 (en) Selection method of carbon adhesion chamber and operation method of coke oven
JP5907343B2 (en) Coke cake extrusion method
JP2013234228A (en) Method for deciding time for repairing coke oven and method for inspecting wall of coke oven
JP2010100729A (en) Method for estimating side surface load at the time of coke extrusion in chamber type coke oven, and method for operating chamber type coke oven based on estimated side surface load
JP4361378B2 (en) Selection method of carbon adhesion chamber and operation method of coke oven
JP5920579B2 (en) Coke oven furnace body management method
JP3536753B2 (en) Cooling tower internal monitoring device for coke dry fire extinguishing equipment and coke reforming method in coke dry fire extinguishing equipment using the same
JP3603741B2 (en) Coke oven wall management method
WO2024028991A1 (en) Furnace wall shape measurement method for coke oven and furnace wall repair method for coke oven
JP5720298B2 (en) Coke force estimation method and coke oven operation method
JP2005060661A (en) Repairing procedure, control apparatus and program of coke oven
JP6252526B2 (en) Coke oven operation method
JPH026592A (en) Method of detecting damage to brick wall of carbonizing chamber of coke oven
JP7493131B1 (en) Method for predicting the life of coke oven batteries
JP5369489B2 (en) Method for estimating temperature distribution in coke oven carbonization chamber, method for operating coke oven, and method for producing coke
JP5935493B2 (en) Method for estimating coke force output and method for operating coke oven

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5432586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250