JP5369489B2 - Method for estimating temperature distribution in coke oven carbonization chamber, method for operating coke oven, and method for producing coke - Google Patents

Method for estimating temperature distribution in coke oven carbonization chamber, method for operating coke oven, and method for producing coke Download PDF

Info

Publication number
JP5369489B2
JP5369489B2 JP2008123122A JP2008123122A JP5369489B2 JP 5369489 B2 JP5369489 B2 JP 5369489B2 JP 2008123122 A JP2008123122 A JP 2008123122A JP 2008123122 A JP2008123122 A JP 2008123122A JP 5369489 B2 JP5369489 B2 JP 5369489B2
Authority
JP
Japan
Prior art keywords
carbonization
temperature
chamber
carbonization chamber
temperature distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008123122A
Other languages
Japanese (ja)
Other versions
JP2009270042A (en
Inventor
泉 下山
孝思 庵屋敷
喜代志 深田
英和 藤本
広行 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008123122A priority Critical patent/JP5369489B2/en
Publication of JP2009270042A publication Critical patent/JP2009270042A/en
Application granted granted Critical
Publication of JP5369489B2 publication Critical patent/JP5369489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for quantitatively estimating temperature distributions inside carbonization chambers and combustion chambers by a simple method without making a great facility/human investment for providing efficient operation of a coke oven and a technology for manufacturing coke with little quality unevenness. <P>SOLUTION: In the estimation method of the temperature distributions inside the coke oven carbonization chambers in a horizontal chamber coke oven wherein a plurality of carbonization chambers and combustion chambers are arranged alternately, carbonization time in the respective carbonization chambers and representative temperature of the combustion chambers heating the carbonization chambers from their both sides are measured, and then the temperature distribution condition occurring in a certain one carbonization chamber is estimated based on the relationship between the carbonization time in each of the carbonization chambers and a mean value of the representative temperature of the combustion chambers heating the carbonization chambers from their both sides. Preferably, the mean value obtained by performing measurement in each of the combustion chambers under the same condition and carrying out measurement a plurality of times during carbonization of coke in the adjacent carbonization chamber is used as the representative temperature of the combustion chambers. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は水平室炉式コークス炉において石炭類を乾留してコークスを製造するに際し、コークス炉炭化室内の温度分布を簡明な方法により推定し、その分布を制御することで効率的なコークス炉の操業を行ない、あわせてコークスの品位バラツキを低減する方法に関する。   The present invention estimates the temperature distribution in the coke oven carbonization chamber by a simple method and produces an efficient coke oven by controlling the distribution when carbonizing coal in a horizontal chamber furnace coke oven to produce coke. The present invention relates to a method for operating and reducing coke quality variation.

水平室炉式コークス炉において、石炭類を乾留してコークスを製造する際には、概略次のような工程をとる。まず、適当な性状の石炭類を粒度調整し、場合により部分的に乾燥あるいは成型を行なった後、コークス炉の炭化室と称される例えば幅約0.3〜0.6m、高さ約4〜8m、長さ約10〜20mの密閉された空間にこれらを装入する。コークス炉は、この炭化室と、燃焼室と称される例えば幅約0.5〜1m、高さ及び長さが炭化室と概略同じレンガ構造体が交互に連続して10〜50組程度設置された構成となっていて、燃焼室にはガスを燃焼させることができるバーナー構造などが設置され、炭化室に装入された石炭は燃焼室からの熱で加熱乾留される。約15〜24時間加熱することにより炭化室の石炭は約1000℃のコークスとなり、その後、炭化室の長さ方向両端に設置された炉蓋を取り除いて、片側から赤熱コークスを押出し、冷却して製品のコークスが得られる。   When producing coke by dry distillation of coal in a horizontal chamber furnace type coke oven, the following steps are generally taken. First, after adjusting the particle size of coal having appropriate properties and optionally partially drying or molding, it is called a carbonizing chamber of a coke oven, for example, having a width of about 0.3 to 0.6 m and a height of about 4 These are inserted into a sealed space of about 8 to 8 m and a length of about 10 to 20 m. The coke oven is installed with about 10 to 50 pairs of this carbonization chamber and brick structures called a combustion chamber, for example, about 0.5 to 1 m wide and the same height and length as the carbonization chamber. The burner structure etc. which can burn gas are installed in the combustion chamber, and the coal charged into the carbonization chamber is heat-distilled with heat from the combustion chamber. By heating for about 15-24 hours, the coal in the carbonization chamber becomes coke at about 1000 ° C., after which the furnace lids installed at both ends in the longitudinal direction of the carbonization chamber are removed, and red hot coke is extruded from one side and cooled. Product coke is obtained.

上記工程において、石炭に熱を供給するための燃焼室の温度制御は極めて重要である。なぜならば、燃焼室における温度の異常は、直接、炭化室内の石炭の乾留異常に結びつき、様々なトラブルの原因となるからである。例えば、燃焼室内の温度バラツキにより、炭化室内の石炭の昇温が不均一となって部分的に未乾留の部分が発生すると、コークスの品質のバラツキが増大したり、未乾留部分の熱収縮不足により、コークスを炭化室から押出す際の抵抗が増大する結果、操業トラブルを招いたりすることが知られている。また、もしこの未乾留部分を解消しようとして全体の炉温を上げると、ある部分には過剰な熱が与えられることになり、熱効率の悪化を招く。さらに、上記にように10〜50組存在する炭化室の乾留時間が温度分布の発生によってばらつくと、コークスを炭化室から押出すスケジュールに乱れをきたし、効率的な操業を行なうことは困難である。   In the above process, temperature control of the combustion chamber for supplying heat to the coal is extremely important. This is because an abnormality in temperature in the combustion chamber directly leads to an abnormality in the dry distillation of coal in the carbonization chamber and causes various troubles. For example, if the temperature of the coal in the carbonization chamber becomes uneven due to temperature variation in the combustion chamber and a part of the carbonized portion remains undried, the variation in coke quality will increase, or the heat shrinkage of the carbonized portion will be insufficient. As a result, it is known that an increase in resistance when extruding coke from the carbonization chamber results in operational trouble. Moreover, if the whole furnace temperature is raised in order to eliminate this non-distilled portion, excessive heat will be given to a certain portion, leading to deterioration in thermal efficiency. Furthermore, if the carbonization time of the carbonization chambers having 10 to 50 groups varies due to the occurrence of the temperature distribution as described above, the schedule for extruding coke from the carbonization chamber is disturbed, and it is difficult to perform efficient operation. .

しかし、炭化室および燃焼室は、幅に比べて高さと長さがそれぞれ10から40倍と、扁平な構造となっているため、内部を均一で望ましい温度に維持することは容易ではない。特に、密閉された炭化室内の温度を知り、制御しようとすることは、頻繁に石炭装入、コークス押し出し作業を行なうコークス炉にあってはセンサーを設置するということだけでも極めて困難なことと言わざるを得ない。   However, since the carbonization chamber and the combustion chamber are flat structures having a height and a length that are 10 to 40 times each compared to the width, it is not easy to maintain the inside at a uniform and desirable temperature. In particular, it is said that it is extremely difficult to know and control the temperature in a closed carbonization chamber by installing sensors in a coke oven that frequently performs coal charging and coke extrusion operations. I must.

また、コークス押出し機の押出しラムに放射温度計を取り付け、該温度計を用いてコークス炉炭化室炉長方向の温度分布を測定する技術(例えば、特許文献1参照。)、あるいは、乾留完了後コークス炉から排出される赤熱コークスの温度を順次測定する技術(例えば、特許文献2参照。)もあるが、いずれも押出し後の大気に露出した炭化室壁あるいは赤熱コークスの温度であるため温度誤差が大きく、精度上の問題がある。   In addition, a technique of attaching a radiation thermometer to the extrusion ram of the coke extruder and measuring the temperature distribution in the coke oven carbonization chamber length direction using the thermometer (for example, see Patent Document 1), or after completion of dry distillation There is also a technique for sequentially measuring the temperature of red hot coke discharged from the coke oven (see, for example, Patent Document 2), but since both are temperatures of the carbonization chamber wall or red hot coke exposed to the atmosphere after extrusion, there is a temperature error. There is a problem with accuracy.

従って、炭化室内の温度不均一にもとづく不利益を低減するためには、熱源となる燃焼室の温度を多くの部位で頻繁に測定し、適切な制御を加えることが望ましいと考えられている。
特開2006-265273号公報 特開昭58-154789号公報
Therefore, in order to reduce the disadvantages due to the non-uniform temperature in the carbonization chamber, it is considered desirable to frequently measure the temperature of the combustion chamber as a heat source at many sites and apply appropriate control.
JP 2006-265273 A JP 58-154789 A

上記のように、炭化室内の温度不均一にもとづく不利益を低減するためには、熱源となる燃焼室の温度を多くの部位で頻繁に測定し、適切な制御を加えることが望ましい。しかしながら、温度の測定点、頻度を上げることは、温度計設置コストや温度手動測定コスト、自動化コストの増大を招くため、必ずしも十分な点数で測定が行なわれているわけではなく、現実的には燃焼室温度は代表点1点(多くの場合、燃焼室の長さ方向中間点付近)を常時監視し、必要な場合にのみ長さ方向の温度分布を手動で測定することが行なわれているにすぎない。このような状況で操業を行なっているのは、燃焼室、炭化室の温度分布についての情報を簡明な手段で得る方法が知られていなかったことも一因である。   As described above, in order to reduce the disadvantage caused by the temperature nonuniformity in the carbonization chamber, it is desirable to frequently measure the temperature of the combustion chamber as a heat source at many sites and apply appropriate control. However, increasing the temperature measurement points and frequency leads to an increase in thermometer installation costs, manual temperature measurement costs, and automation costs, so measurements are not always performed with sufficient points. The combustion chamber temperature is constantly monitored at one representative point (in many cases, near the midpoint in the longitudinal direction of the combustion chamber), and the longitudinal temperature distribution is manually measured only when necessary. Only. One of the reasons for operating in such a situation is that a method for obtaining information about the temperature distribution of the combustion chamber and the carbonization chamber by a simple means has not been known.

また、炭化室(およびその熱源となる燃焼室)の温度分布を調整する作業も一般に容易ではない。すなわち、通常、コークス炉においては、燃焼室全体への燃料ガス流量を調整するための弁は設置されていて燃焼室の平均温度を調整することは比較的容易であるが、燃焼室内でのガスの分配を制御するための装置は通常備えられておらず、ガス流路に設けられた穴の開口度やレンガの位置を調整することによって調整を行なうようになっているため、温度分布の調整は困難である。さらに、炉体の老朽化に伴うレンガ構造の損傷によって燃焼室の温度分布が乱れている場合、その損傷部位の補修も容易ではない。これは、一旦温度上昇したレンガを冷却するとレンガの収縮によって割れが生じるため、コークス炉は一旦操業を開始すると、その補修は極力加熱したままの状態で行なわなければならないからである。このように、温度分布の調整に多大な労力がかかるため、多くの炭化室のうち、どの窯から優先して温度調整すべきかを知ることは重要であるにもかかわらず、各窯に発生する温度分布の異常さの度合いを定量的に評価することができる簡便な方法は知られていない。   Also, it is generally not easy to adjust the temperature distribution in the carbonization chamber (and the combustion chamber that serves as its heat source). That is, normally, in a coke oven, a valve for adjusting the flow rate of fuel gas to the entire combustion chamber is installed, and it is relatively easy to adjust the average temperature of the combustion chamber. A device for controlling the distribution of the gas is not usually provided, and adjustment is performed by adjusting the opening degree of the hole provided in the gas flow path or the position of the brick, so that the temperature distribution is adjusted. It is difficult. Furthermore, when the temperature distribution of the combustion chamber is disturbed due to the damage of the brick structure accompanying the aging of the furnace body, it is not easy to repair the damaged portion. This is because once a brick whose temperature has risen is cooled, cracking occurs due to the shrinkage of the brick. Once the coke oven starts operation, it must be repaired while being heated as much as possible. Thus, since it takes a lot of labor to adjust the temperature distribution, it is important to know which kiln should be preferentially temperature-adjusted among many carbonization chambers, but it occurs in each kiln. There is no known simple method that can quantitatively evaluate the degree of abnormality of the temperature distribution.

このような現状に鑑み、大きな設備的、人的投資を行なうことなく、簡便な方法で炭化室および燃焼室内部の温度分布を定量的に推定する方法を提供し、もって、効率的なコークス炉の操業および、品質バラツキの少ないコークスの製造技術を提供することが本発明の目的である。   In view of such a current situation, a method for quantitatively estimating the temperature distribution in the carbonization chamber and the combustion chamber is provided by a simple method without making a large facility and human investment, and thus an efficient coke oven. It is an object of the present invention to provide a coke production technique with little variation in operation.

本発明者らは、上記課題解決のため、燃焼室の温度分布によってひきおこされる炭化室内の現象に着目した。すなわち、温度分布の不均一によって引き起こされる不利益が直接には炭化室内の現象に基づいて発生することに鑑み、その観測によって温度分布の異常を検出する可能性について種々の検討を行なった結果、本発明の完成に至った。   In order to solve the above problems, the present inventors paid attention to a phenomenon in the carbonization chamber caused by the temperature distribution in the combustion chamber. That is, as a result of various investigations on the possibility of detecting abnormalities in the temperature distribution by observation, considering that the disadvantage caused by the uneven temperature distribution is directly generated based on the phenomenon in the carbonization chamber, The present invention has been completed.

すなわち、本発明の特徴は以下の通りである。
(1)、複数の炭化室と燃焼室とが交互に配列した水平室炉式コークス炉において、各炭化室における乾留時間と前記各炭化室を両側から加熱する燃焼室の代表温度とを測定し、
ある一つの炭化室内で発生した温度分布の状態を、前記各炭化室における乾留時間と前記各炭化室を両側から加熱する燃焼室の代表温度の平均値との関係に基づいて推定することを特徴とするコークス炉炭化室内温度分布の推定方法。
(2)、燃焼室の代表温度として、各燃焼室において同じ条件で測定し、隣接する炭化室における石炭の乾留中に複数回測定した平均値を用いることを特徴とする請求項1に記載のコークス炉炭化室内温度分布の推定方法。
(3)、(1)または(2)に記載のコークス炉炭化室内温度分布の推定方法を用い、得られた温度分布の推定値に基づき、炭化室の温度調整を行なうことを特徴とするコークス炉の操業方法。
(4)、(1)または(2)に記載のコークス炉炭化室内温度分布の推定方法を用い、得られた温度分布の推定値に基づき、炭化室の温度調整を行ない、炭化室内の石炭を乾留することを特徴とするコークスの製造方法。
That is, the features of the present invention are as follows.
(1) In a horizontal chamber type coke oven in which a plurality of carbonization chambers and combustion chambers are alternately arranged, the carbonization time in each carbonization chamber and the representative temperature of the combustion chamber that heats each carbonization chamber from both sides are measured. ,
A state of temperature distribution generated in one carbonization chamber is estimated based on a relationship between a carbonization time in each of the carbonization chambers and an average value of representative temperatures of the combustion chambers that heat the carbonization chambers from both sides. A method for estimating the temperature distribution in the coke oven carbonization chamber.
(2) The average value measured several times during the carbonization of coal in the adjacent carbonization chamber is used as the representative temperature of the combustion chamber, measured under the same conditions in each combustion chamber. Coke oven carbonization chamber temperature distribution estimation method.
Coke characterized in that coke chamber temperature adjustment is performed based on the estimated value of temperature distribution obtained using the method for estimating temperature distribution in coke oven carbonization chamber according to (3), (1) or (2). How to operate the furnace.
Using the estimation method for the temperature distribution in the coke oven carbonization chamber described in (4), (1) or (2), the temperature of the carbonization chamber is adjusted based on the obtained estimated value of the temperature distribution, and the coal in the carbonization chamber is A method for producing coke, characterized by dry distillation.

本発明によれば、低コストで簡便な方法で炭化室内の温度分布を知ることできる。また、コークス炉の効率的な操業が可能になる。さらに、品位バラツキの少ないコークスを製造することができる。   According to the present invention, the temperature distribution in the carbonization chamber can be known by a low-cost and simple method. In addition, the coke oven can be efficiently operated. Furthermore, coke with little quality variation can be manufactured.

以下、本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described.

本発明は、炭化室内の乾留状態が温度によって変化することを利用したものである。すなわち、高温の条件では乾留が早く進行し、低温の条件では乾留の進行が遅くなる。その結果、加熱温度により、乾留終了までの時間に差が生じる。乾留が終了すると、石炭からコークスへの転換反応が終了して石炭からのガス発生がほぼ終了するため、これを利用して石炭の乾留が終了したことを知ることができる。この乾留終了判定の方法は公知の方法がいくつか知られており、古くは石炭から発生するガスを燃やした時の色をもって判断されることが多かったが、最近では上昇管と呼ばれる発生ガス回収ライン(1つの炭化室につき1本ずつ設置されている)でのガス温度や流量、組成を測る方法が一般的である。このようにして計測される、石炭装入から乾留終了までの時間をここでは「乾留時間」と呼ぶ。なお、乾留終了のことを「火落ち」と呼ぶことがあるため、「火落ち時間」という用語も用いられているが、本発明において用いる「乾留時間」と同義語である。   The present invention utilizes the fact that the carbonization state in the carbonization chamber changes with temperature. That is, dry distillation proceeds fast under high temperature conditions, and dry distillation progresses slowly under low temperature conditions. As a result, a difference occurs in the time until the end of dry distillation depending on the heating temperature. When the dry distillation is completed, the conversion reaction from coal to coke is completed, and the gas generation from the coal is almost completed. This can be used to know that the dry distillation of coal has been completed. There are several known methods for determining the end of dry distillation, and in the old days it was often judged by the color when the gas generated from coal was burned. A general method is to measure gas temperature, flow rate, and composition in a line (one for each carbonization chamber). The time from coal charging to the end of carbonization, measured in this way, is referred to herein as “carbonization time”. Note that since the end of dry distillation is sometimes referred to as “fire-off”, the term “fire-off time” is also used, but it is synonymous with “dry distillation time” used in the present invention.

しかし、「乾留時間」の測定単独では、炭化室内の温度分布を直ちに知ることは不可能である。なぜなら、このようにして観測される乾留時間は、まず第一にその炭化室内の現象の平均的な状態を示したものであり、第二には、乾留時間は乾留温度とその分布以外にも、装入される石炭の水分や装入時の嵩密度、石炭の品質などにより影響を受けるため、単純に乾留時間の長短だけでは温度分布に関する情報は得られないからである。   However, it is impossible to immediately know the temperature distribution in the carbonization chamber by measuring the “dry distillation time” alone. This is because the carbonization time observed in this way first shows the average state of the phenomenon in the carbonization chamber, and secondly, the carbonization time is not limited to the carbonization temperature and its distribution. This is because, since it is affected by the moisture content of the coal to be charged, the bulk density at the time of charging, the quality of the coal, etc., information on the temperature distribution cannot be obtained simply by the length of the carbonization.

本発明者らは、炭化室ごとに得られる乾留時間を同一コークス炉団の他の炭化室の乾留時間と比較解析することによって炭化室の温度分布を知ることができることを見出した。ここで、コークス炉団とは、コークス炉の操業上、ほぼ同一の操業条件において操業される炭化室群のことを指す(多くの場合、同一の操業クルーによって効率的に操業できるように50〜200窯程度の炭化室の操業条件を揃えて運転されるのが一般的である。)。コークス炉の各炭化室の乾留時間とその炭化室を加熱している燃焼室の代表温度との相関を解析することによって炭化室の温度分布の乱れの程度を相対的に評価し、その情報に基づいて操業を行ない、コークスを製造するものである。この方法による炭化室の温度分布の推定は具体的には以下のようにして行なう。   The present inventors have found that the temperature distribution of the carbonization chamber can be known by comparatively analyzing the carbonization time obtained for each carbonization chamber with the carbonization time of other carbonization chambers of the same coke oven group. Here, the coke oven group refers to a group of carbonization chambers operated under almost the same operating conditions in the operation of the coke oven (in many cases, 50 to 50 so that the same operation crew can operate efficiently). It is common to operate with the operating conditions of a carbonization chamber of about 200 kilns.) By analyzing the correlation between the carbonization time of each coking chamber of the coke oven and the typical temperature of the combustion chamber heating the coking chamber, the degree of turbulence in the temperature distribution of the coking chamber is relatively evaluated, and the information Based on this operation, coke is produced. Specifically, the temperature distribution in the carbonization chamber is estimated by this method as follows.

まず、1つの炭化室について、その炭化室を加熱する両側の燃焼室の代表温度を計測する。そしてその条件におけるその炭化室の乾留時間(石炭装入から乾留終了までの時間)を求める。ここで乾留終了までの時間は公知の方法で求めることができるが、好ましくは、上昇管部でのガス温度の変化を指標として、ガス発生量の低下に伴うガス温度の低下速度が大きくなる点をもって乾留終了として計測するのが誤差が少なく望ましい。燃焼室の代表温度については、燃焼室の長さ方向のほぼ中央部、より具体的には燃焼室の長さ方向の中間点から燃焼室長さの1/4の範囲の点で測定される温度を用いることが望ましい。ここで、燃焼室温度を測定する高さ方向の位置としては燃焼室上部付近のレンガに熱電対を埋め込んで計測するのが最も好ましいが、燃焼ガス流路に設置した熱電対や、放射温度計による燃焼室内部の温度測定値を用いてもよい。いずれにせよ、燃焼室の温度測定部位および測定方法は、各燃焼室において同じ条件で測定し、各燃焼室で実質的に揃えておく必要がある。しかしながら、このようにして測定される燃焼室の温度は1回の乾留操作中においても経時的に変化するので、燃焼室の代表温度としては装入から窯出しまでの乾留中に頻繁に(望ましくは連続的測定、ないしは、1回の乾留中に最低でも5回以上)測定した値の平均値を用いる必要がある。これは、ひとつの燃焼室がその両側に位置する2つの炭化室を加熱する構造になっているため、着目している炭化室の隣の炭化室に石炭が装入されると、その石炭により熱が奪われ温度が低下してしまうこと、および、側温位置によっては、燃焼切り替え(コークス炉の蓄熱室に蓄えた熱の有効利用のため、燃焼ガスおよび空気の流路を切り替えること)による温度変動があることのため、ある瞬間の温度のみではその燃焼室の代表温度とするには不十分であることによる。   First, for one carbonization chamber, the representative temperatures of the combustion chambers on both sides that heat the carbonization chamber are measured. And the carbonization time (time from coal charging to the end of carbonization) of the carbonization chamber under the conditions is obtained. Here, the time until the end of the dry distillation can be determined by a known method, but preferably, the rate of decrease in the gas temperature accompanying the decrease in the amount of gas generation is increased with the change in the gas temperature in the riser as an index. It is desirable to measure the end of dry distillation with less error. As for the representative temperature of the combustion chamber, the temperature measured at a substantially central portion in the length direction of the combustion chamber, more specifically, at a point in the range from the midpoint of the length direction of the combustion chamber to a quarter of the length of the combustion chamber. It is desirable to use Here, the position in the height direction for measuring the combustion chamber temperature is most preferably measured by embedding a thermocouple in a brick near the upper portion of the combustion chamber, but a thermocouple installed in the combustion gas flow path or a radiation thermometer The measured temperature value in the combustion chamber may be used. In any case, the temperature measurement part and the measurement method of the combustion chamber need to be measured under the same conditions in each combustion chamber, and substantially the same in each combustion chamber. However, since the temperature of the combustion chamber measured in this way changes with time even during one dry distillation operation, the typical temperature of the combustion chamber is frequently (preferably during dry distillation from charging to kiln removal). It is necessary to use the average value of the measured values (continuous measurement or at least 5 times during one dry distillation). This is because one combustion chamber is structured to heat two carbonization chambers located on both sides of the combustion chamber, so when coal is charged into the carbonization chamber adjacent to the carbonization chamber of interest, Due to heat deprivation and temperature drop, and depending on the side temperature position, combustion switching (switching combustion gas and air flow paths for effective use of heat stored in coke oven heat storage chamber) Because of the temperature fluctuation, the temperature at a certain moment alone is not sufficient to be the representative temperature of the combustion chamber.

このようにして得られた、複数窯の炭化室の乾留時間と、その両側の燃焼室代表温度の平均値とを例えばある日の操業においてプロットすると図1のようなグラフが得られる。このようなプロットを行う期間は、原料や操業条件がほぼ一定の期間が望ましく、1日、もしくはすべての稼働炭化室の窯出しが一巡する期間のデータを用いることがより好ましい。このプロットにおける回帰線の意味するところは、燃焼室代表温度の上昇による乾留時間の平均的な短縮度合いである。この方法では、炭化室の状態を除いてほぼ同一の操業条件にある炭化室間の比較を行なうことで温度分布の乱れの相対的な大きさの評価を可能としている。   When plotting the carbonization time of the carbonization chambers of the plurality of kilns and the average value of the representative temperatures of the combustion chambers on both sides thereof, for example, in one day of operation, a graph as shown in FIG. 1 is obtained. The period during which such plotting is performed is preferably a period in which the raw materials and operating conditions are substantially constant, and it is more preferable to use data for one day or a period in which all the operating carbonization chambers take a round. The meaning of the regression line in this plot is the average degree of shortening of the carbonization time due to an increase in the combustion chamber representative temperature. In this method, the relative magnitude of the turbulence of the temperature distribution can be evaluated by making a comparison between the carbonization chambers under almost the same operating conditions except for the state of the carbonization chamber.

一般に燃焼室の温度を上げれば乾留時間が短縮することは公知であるが、老朽化などの理由によって燃焼室の温度分布が大きくなっているような場合には、単純な方法では乾留時間と燃焼室温度の良好な相関を得ることが困難となる。発明者らは、燃焼室の代表温度としてどの温度を用いた場合に相関関係が最もよく現れるかの検討を行った結果、上述のような条件が好ましいことを見出したもので、この点が従来の技術から大きく進歩した点である。   In general, it is known that increasing the temperature of the combustion chamber shortens the carbonization time. However, if the temperature distribution in the combustion chamber is large due to aging, etc., the simple method can be used to reduce the carbonization time and combustion. It becomes difficult to obtain a good correlation between the room temperatures. The inventors have found out that the above conditions are preferable as a result of investigating which temperature is used as the representative temperature of the combustion chamber, and found that this condition is preferable. This is a major advance from the technology.

このようにして得られた図1のプロットをもとにそれぞれの炭化室の温度分布を推定する。すなわち、回帰線上もしくはその付近に位置する炭化室は、炉団の平均的な状態にあるものと判断できる。しかし、この回帰線の上側に位置する炭化室は、燃焼室温度の割に乾留時間がかかっていることを示しており、炭化室内に代表温度よりも温度の低い部位があり、その影響により、乾留遅れが発生していることが推定できる。反対に、回帰線の下側に位置する炭化室は代表温度よりも温度の高い部位が存在することが推定される。いずれにせよ、回帰線から遠い位置にプロットされる炭化室ほど、炭化室内の温度分布が大きいことが推定され、こうした炭化室は公知の方法による温度調整や補修、あるいは手動による温度管理の強化を行う必要があることがわかり、この情報に基づいて操業改善を行なえば、コークス炉の効率的な操業が達成され、温度分布に起因するコークス品質の乱れも抑えることができる。   Based on the plot of FIG. 1 obtained in this way, the temperature distribution of each carbonization chamber is estimated. That is, it can be determined that the carbonization chamber located on or near the regression line is in an average state of the furnace group. However, the carbonization chamber located on the upper side of the regression line shows that the carbonization time is required for the combustion chamber temperature, and there is a portion where the temperature is lower than the representative temperature in the carbonization chamber. It can be estimated that a dry distillation delay has occurred. On the other hand, it is presumed that there is a part having a higher temperature than the representative temperature in the carbonization chamber located below the regression line. In any case, the carbonization chamber plotted farther from the regression line is estimated to have a larger temperature distribution in the carbonization chamber, and such a carbonization chamber can be adjusted or repaired by known methods, or manual temperature control can be strengthened. If it is understood that it is necessary to carry out the operation improvement based on this information, an efficient operation of the coke oven can be achieved, and the disturbance of the coke quality due to the temperature distribution can be suppressed.

図2のプロットは上述のようにして求めた、図1と同じ複数窯の炭化室の乾留時間と、その両側の燃焼室代表温度の平均値とをある日の操業においてプロットしたものである。ここで、乾留時間は、上昇管部で測定された温度の低下傾向に基づいて決定されたものであり、燃焼室代表温度は燃焼室長さ方向の中央部の燃焼室空間上部付近のレンガに埋め込まれた熱電対を用いて計測された温度の乾留時間にわたる平均値であり、炭化室両側の燃焼室の代表温度の平均を横軸としてプロットしてある。   The plot in FIG. 2 is obtained by plotting the carbonization time of the carbonization chambers of the plurality of kilns same as that in FIG. 1 and the average value of the representative temperature of the combustion chambers on both sides thereof in one day of operation. Here, the carbonization time is determined based on the decreasing tendency of the temperature measured in the riser section, and the combustion chamber representative temperature is embedded in the brick near the upper portion of the combustion chamber space in the center in the combustion chamber length direction. It is the average value over the carbonization time of the temperature measured using the measured thermocouple, and the average of the representative temperatures of the combustion chambers on both sides of the carbonization chamber is plotted on the horizontal axis.

図2中のA点で示される炭化室の両側の燃焼室の長さ方向温度分布を図3に示す。なお、この温度は燃焼室上部に設置された複数の点検口(1〜17)から放射温度計を用い手動により測定されたものであり、そのため、代表温度を求めるために設置した熱電対の値よりも高い温度を示している。一般に炭化室は押出し機が設置される側(PS)に比べてコークスの出口側(CS)が広くなっているため、CS付近の方が石炭量が多く燃焼室の温度も高めに設定されるが、図3の温度分布は正常範囲のものである。また燃焼室の両端に近い部分は放熱の影響によりやや温度が下がるがやはり正常な範囲である。   FIG. 3 shows the temperature distribution in the longitudinal direction of the combustion chambers on both sides of the carbonization chamber indicated by point A in FIG. This temperature is measured manually from a plurality of inspection ports (1 to 17) installed in the upper part of the combustion chamber using a radiation thermometer. Therefore, the value of the thermocouple installed to obtain the representative temperature is obtained. Higher temperature. In general, the carbonization chamber has a larger coke outlet side (CS) than the side where the extruder is installed (PS), so the amount of coal is higher in the vicinity of CS and the temperature of the combustion chamber is set higher. However, the temperature distribution in FIG. 3 is in the normal range. Moreover, although the temperature near the both ends of the combustion chamber is slightly lowered due to heat radiation, it is still in a normal range.

これに対し、図2中のB点およびC点の炭化室で同様に計測された温度分布を図4、5に示す。B点の炭化室では、燃焼室の中央部に比較して端部の温度低下が大きい。すなわち、正常な温度分布(図3の場合)に比べて温度分布が乱れていることがわかる。C点では逆に燃焼室中央部の温度が低下してしまっている。確認のため、炭化室中央部と炉蓋近傍に熱電対を挿入して乾留終了時点のコークス層の温度を測定したところ、炭化室Aでは中央部と炉蓋部の温度差が100℃であったのに対し、B点の炭化室では温度差が260℃と、温度分布のバラつきが大きくなっていた。このようにして、図2のプロットにより、どの炭化室およびその熱源となる燃焼室の温度分布が異常となっているかを判別することができる。   In contrast, FIGS. 4 and 5 show temperature distributions similarly measured in the carbonization chambers at points B and C in FIG. In the carbonization chamber at point B, the temperature drop at the end is greater than at the center of the combustion chamber. That is, it can be seen that the temperature distribution is disturbed compared to the normal temperature distribution (in the case of FIG. 3). Conversely, at the point C, the temperature in the center of the combustion chamber has decreased. For confirmation, a thermocouple was inserted between the center of the carbonization chamber and the vicinity of the furnace lid, and the temperature of the coke layer at the end of dry distillation was measured. In the carbonization chamber A, the temperature difference between the center and the furnace lid was 100 ° C. On the other hand, in the carbonization chamber at point B, the temperature difference was 260 ° C., and the variation in temperature distribution was large. In this manner, it is possible to determine which carbonization chamber and the temperature distribution of the combustion chamber serving as its heat source are abnormal from the plot of FIG.

図2におけるAの炭化室とBの炭化室で製造されたコークスからそれぞれ10試料のコークスをサンプリングし、それぞれの試料のJIS法によるコークス強度(DI150/15)を測定した。この時平均強度はAで84.0、Bで84.1とほぼ同等であったが、10試料のうちの最高値から最低値をひいた測定値のばらつきの範囲はAで0.6であったのに対し、Bでは1.1であった。このことより、温度分布の乱れた炭化室で製造されたコークス試料は強度のバラツキが大きいことがわかる。なお、後日Bの炭化室の温度分布をノズルプレート(燃料ガス分配を制御するための部品)交換により調整を行った後、再度同様のサンプリングを行って強度の測定を行った結果、測定値のばらつきの範囲は0.5となり、温度分布の改善によりコークス強度のバラツキも改善された。   Ten samples of coke were sampled from coke produced in the carbonization chamber A and the carbonization chamber B in FIG. 2, and the coke strength (DI150 / 15) of each sample was measured by the JIS method. At this time, the average intensity was almost equal to 84.0 for A and 84.1 for B, but the range of variation in the measured value from the highest value to the lowest value among the 10 samples was 0.6 for A. Whereas B was 1.1. From this, it can be seen that the coke sample produced in the carbonization chamber with a disturbed temperature distribution has a large variation in strength. In addition, after adjusting the temperature distribution of the carbonization chamber of B at a later date by replacing the nozzle plate (parts for controlling fuel gas distribution), the same sampling was performed again, and the strength was measured. The range of variation was 0.5, and the variation in coke strength was also improved by improving the temperature distribution.

乾留時間と燃焼室代表温度の平均の関係を示すグラフ。The graph which shows the average relationship between dry distillation time and a combustion chamber typical temperature. 乾留時間と燃焼室代表温度の平均の関係を示すグラフ。The graph which shows the average relationship between dry distillation time and a combustion chamber typical temperature. 温度分布の正常な炭化室における燃焼室の長さ方向温度分布を示すグラフ。The graph which shows the length direction temperature distribution of the combustion chamber in the carbonization chamber with a normal temperature distribution. 温度分布の異常な炭化室(B)における燃焼室の長さ方向温度分布を示すグラフ。The graph which shows the length direction temperature distribution of the combustion chamber in the carbonization chamber (B) with abnormal temperature distribution. 温度分布の異常な炭化室(C)における燃焼室の長さ方向温度分布を示すグラフ。The graph which shows the length direction temperature distribution of the combustion chamber in the carbonization chamber (C) with abnormal temperature distribution.

Claims (3)

複数の炭化室と燃焼室とが交互に配列した水平室炉式コークス炉において、
各炭化室における乾留時間を測定するとともに、
前記各炭化室を両側から加熱する各燃焼室の温度を、前記各炭化室における石炭の乾留中に複数回、前記各燃焼室において同じ条件で測定し、測定した温度の平均値を前記各燃焼室の代表温度として用い、
測定された乾留時間を縦軸に、該乾留時間が測定された炭化室両側燃焼室の代表温度の平均値を横軸にプロットしてグラフを作成し、
該グラフから、前記乾留時間を前記代表温度の平均値で表す回帰線を作成し、
前記回帰線上またはその付近に位置する炭化室を炉団の平均的な状態にあるもの(以下、A点という)と判断し、
前記回帰線の上側に位置する炭化室を、該炭化室内に代表温度よりも温度の低い部位が存在するもの(以下、B点という)と判断し、
前記回帰線の下側に位置する炭化室を、該炭化室内に代表温度よりも温度の高い部位が存在するもの(以下、C点という)と判断することで、ある一つの炭化室内で発生した温度分布の状態を推定することを特徴とするコークス炉炭化室内温度分布の推定方法。
In a horizontal chamber furnace type coke oven in which a plurality of carbonization chambers and combustion chambers are alternately arranged,
While measuring the carbonization time in each carbonization chamber ,
The temperature of each combustion chamber that heats each carbonization chamber from both sides is measured a plurality of times during the dry distillation of coal in each carbonization chamber under the same conditions in each combustion chamber, and the average value of the measured temperatures is measured for each combustion Used as a typical room temperature,
The measured dry distillation time on the vertical axis, to create a graph plotted on the horizontal axis the average of the representative temperature of the combustion chamber on both sides of the carbonization chamber wherein the drying distillation time is measured,
From the graph, create a regression line representing the carbonization time as an average value of the representative temperature,
The carbonization chamber located on or near the regression line is determined to be in the average state of the furnace group (hereinafter referred to as point A),
The carbonization chamber located on the upper side of the regression line is determined to have a portion having a temperature lower than the representative temperature in the carbonization chamber (hereinafter referred to as point B),
The carbonization chamber located below the regression line was generated in one carbonization chamber by determining that a portion having a temperature higher than the representative temperature exists in the carbonization chamber (hereinafter referred to as point C) . estimation method for a coke oven carbonization chamber temperature distribution, characterized in that to estimate the state of the temperature distribution.
請求項1に記載のコークス炉炭化室内温度分布の推定方法を用い、炭化室の温度分布を推定し、
B点及びC点の炭化室の温度分布がA点の温度分布となるように、B点及びC点の炭化室の温度調整を行なうことを特徴とするコークス炉の操業方法。
Using the method for estimating the temperature distribution in the coke oven carbonization chamber according to claim 1, estimating the temperature distribution in the coking chamber,
A method for operating a coke oven, wherein the temperature of the carbonization chambers at points B and C is adjusted so that the temperature distribution of the carbonization chambers at points B and C becomes the temperature distribution at point A.
請求項1に記載のコークス炉炭化室内温度分布の推定方法を用い、炭化室の温度分布を推定し、
B点及びC点の炭化室の温度分布がA点の温度分布となるように、B点及びC点の炭化室の温度調整を行ない、炭化室内の石炭を乾留することを特徴とするコークスの製造方法。
Using the method for estimating the temperature distribution in the coke oven carbonization chamber according to claim 1, estimating the temperature distribution in the coking chamber,
The coke is characterized in that the temperature in the carbonization chamber at point B and C is adjusted so that the temperature distribution in the carbonization chamber at point B and C is the temperature distribution at point A, and the coal in the carbonization chamber is carbonized. Production method.
JP2008123122A 2008-05-09 2008-05-09 Method for estimating temperature distribution in coke oven carbonization chamber, method for operating coke oven, and method for producing coke Active JP5369489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008123122A JP5369489B2 (en) 2008-05-09 2008-05-09 Method for estimating temperature distribution in coke oven carbonization chamber, method for operating coke oven, and method for producing coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008123122A JP5369489B2 (en) 2008-05-09 2008-05-09 Method for estimating temperature distribution in coke oven carbonization chamber, method for operating coke oven, and method for producing coke

Publications (2)

Publication Number Publication Date
JP2009270042A JP2009270042A (en) 2009-11-19
JP5369489B2 true JP5369489B2 (en) 2013-12-18

Family

ID=41436894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008123122A Active JP5369489B2 (en) 2008-05-09 2008-05-09 Method for estimating temperature distribution in coke oven carbonization chamber, method for operating coke oven, and method for producing coke

Country Status (1)

Country Link
JP (1) JP5369489B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6241195B2 (en) * 2013-10-23 2017-12-06 新日鐵住金株式会社 Method for Estimating Carbonization Product Temperature in a Laboratory Coke Oven

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238191A (en) * 1987-03-25 1988-10-04 Nippon Steel Corp Method for controlling temperature distribution in oven length direction of coke oven
JPH08337781A (en) * 1995-04-13 1996-12-24 Nippon Steel Corp Method for controlling oven temperature of coke oven and operation of coke guide dust-collector in discharging of coke oven
JP3603741B2 (en) * 2000-04-11 2004-12-22 住友金属工業株式会社 Coke oven wall management method
JP2003336075A (en) * 2002-05-23 2003-11-28 Nippon Steel Corp Method for operating coke oven with small coke extrusion load
JP4770215B2 (en) * 2005-03-22 2011-09-14 Jfeスチール株式会社 Coke oven repair method

Also Published As

Publication number Publication date
JP2009270042A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
KR101996030B1 (en) Device for evaluating quantity of coal carbonization heat
JP5369489B2 (en) Method for estimating temperature distribution in coke oven carbonization chamber, method for operating coke oven, and method for producing coke
JP2007332382A (en) Method for diagnosing coke oven carbonization chamber
JP5182006B2 (en) Method for estimating side load during coke extrusion in chamber coke oven and method for operating chamber coke oven based on estimated side load
JP4899326B2 (en) Method for estimating coke shrinkage of blended coal and method for producing coke
JP5182005B2 (en) Method for estimating coke extrusion force in chamber coke oven and method for operating chamber coke oven based on estimated extrusion force
JP2008255299A (en) Operation method of coke oven
Foosnæs et al. Measurement and control of the calcining level in anode baking furnaces
JP5907343B2 (en) Coke cake extrusion method
JP5920579B2 (en) Coke oven furnace body management method
JP6241195B2 (en) Method for Estimating Carbonization Product Temperature in a Laboratory Coke Oven
JP5919774B2 (en) Coke oven operation method and operation management device
JP3603741B2 (en) Coke oven wall management method
JP6658411B2 (en) Diagnosis method of coke oven condition
JP4142333B2 (en) Coke oven coking chamber diagnostic method
KR20110130737A (en) Apparatus and method for forecasting csr(cokes strength after reaction)
JP4770215B2 (en) Coke oven repair method
WO2014030438A1 (en) Coke oven temperature control device and coke oven temperature control method
JP5892131B2 (en) Gas cock opening calculation method, coke oven operation method, and coke manufacturing method
KR101159284B1 (en) Method of management for temperature of combustion chamber in coke oven
JP5559641B2 (en) In-furnace monitoring device and in-furnace monitoring method
JP4361378B2 (en) Selection method of carbon adhesion chamber and operation method of coke oven
JP6724738B2 (en) Judging completion method for coke oven
JP4444764B2 (en) Selection method of carbon adhesion chamber and operation method of coke oven
JP5432586B2 (en) Coke oven carbonization chamber furnace wall condition evaluation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5369489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250