JP2010265123A - Method and apparatus for producing hydrophilic carbonaceous film - Google Patents

Method and apparatus for producing hydrophilic carbonaceous film Download PDF

Info

Publication number
JP2010265123A
JP2010265123A JP2009115707A JP2009115707A JP2010265123A JP 2010265123 A JP2010265123 A JP 2010265123A JP 2009115707 A JP2009115707 A JP 2009115707A JP 2009115707 A JP2009115707 A JP 2009115707A JP 2010265123 A JP2010265123 A JP 2010265123A
Authority
JP
Japan
Prior art keywords
carbonaceous film
plasma
film
oxygen
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009115707A
Other languages
Japanese (ja)
Other versions
JP5382704B2 (en
Inventor
Tatsuyuki Nakatani
達行 中谷
Yuki Nitta
祐樹 新田
Masanori Shinohara
正典 篠原
Hiroshi Fujiyama
寛 藤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki University NUC
Toyo Advanced Technologies Co Ltd
Original Assignee
Nagasaki University NUC
Toyo Advanced Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki University NUC, Toyo Advanced Technologies Co Ltd filed Critical Nagasaki University NUC
Priority to JP2009115707A priority Critical patent/JP5382704B2/en
Publication of JP2010265123A publication Critical patent/JP2010265123A/en
Application granted granted Critical
Publication of JP5382704B2 publication Critical patent/JP5382704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To easily produce a hydrophilic carbonaceous film responding to various types of carbonaceous films. <P>SOLUTION: An apparatus for producing a hydrophilic carbonaceous film is provided with: a plasma generating unit 11 generating plasma of a gas as a carbon source for forming a carbonaceous film and plasma of oxygen; a chamber 12 for forming a carbonaceous film on the surface of a substrate 21 by using the plasma of the gas as a carbon source and irradiating the formed carbonaceous film with plasma containing oxygen; and an IR absorption measuring unit 13 measuring the IR absorption of the carbonaceous film while irradiating the film with the plasma containing oxygen. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本願は、親水性炭素質膜の製造方法及び製造装置に関し、プラズマ処理を用いた親水性炭素質膜の製造方法及び製造装置に関する。   The present application relates to a manufacturing method and a manufacturing apparatus for a hydrophilic carbonaceous film, and relates to a manufacturing method and a manufacturing apparatus for a hydrophilic carbonaceous film using plasma treatment.

ダイヤモンド様膜(DLC膜)に代表される炭素質膜は、幅広い分野において利用が期待されている。例えば、例えば、金型や治工具の表面をDLC膜によりコーティングすることにより、耐久性を向上させたり、離型性を向上させたりすることが知られている。また、生体との親和性も高いため、医療用器具の基材を表面処理する方法としても期待されている(例えば、特許文献1及び非特許文献1を参照)。   Carbonaceous films represented by diamond-like films (DLC films) are expected to be used in a wide range of fields. For example, it is known that, for example, the surface of a mold or a tool is coated with a DLC film to improve durability or improve mold release properties. In addition, since it has high affinity with a living body, it is also expected as a method for surface-treating a base material of a medical instrument (see, for example, Patent Document 1 and Non-Patent Document 1).

また、DLC膜にプラズマを照射することによりDLC膜を親水性とすることができる(例えば、特許文献2を参照。)。DLC膜に酸素プラズマを照射することにより、ぬれ性が向上したDLC膜を実現できる。   Further, the DLC film can be made hydrophilic by irradiating the DLC film with plasma (see, for example, Patent Document 2). By irradiating the DLC film with oxygen plasma, a DLC film with improved wettability can be realized.

特開平10−248923号公報JP-A-10-248923 特開2008−230880号公報JP 2008-230880 A

伊藤晴夫ら、「生体材料」、1985年、第3巻、p.45−53Haruo Ito et al., “Biomaterials”, 1985, Volume 3, p. 45-53

しかしながら、前記従来のDLC膜の親水化方法には以下のような問題があることを本願発明者らは見出した。DLC膜等の炭素質膜に酸素プラズマを照射すると親水性となりぬれ性が向上するが、その程度は大きくばらつく。酸素プラズマの照射条件によってはほとんどぬれ性が向上しない。また、偶然に親水性が高い炭素質膜が形成できたとしても、再現性に乏しい。   However, the present inventors have found that the conventional method for hydrophilizing a DLC film has the following problems. When a carbonaceous film such as a DLC film is irradiated with oxygen plasma, it becomes hydrophilic and wettability is improved, but the degree varies greatly. The wettability is hardly improved depending on the irradiation conditions of oxygen plasma. Even if a carbonaceous film having high hydrophilicity can be formed by chance, the reproducibility is poor.

本願発明者らは、このようなばらつきは酸素プラズマを照射する前の炭素質膜の性質及び照射する酸素プラズマの性質が一定していないことによることを見出した。炭素質膜は、スパッタ法や化学気相堆積法等の種々の方法により成膜することができるが、成膜方法が異なると異なる性質を有する。また、同一の成膜方法であっても炭素源の種類や成膜温度等の製造条件が異なると異なる性質を有する。性質が異なる炭素質膜のそれぞれについて適した条件で酸素プラズマを照射しなければ、劇的なぬれ性の向上は期待できない。また、照射する酸素プラズマも発生条件によって酸素ラジカルとなったり、酸素イオンとなったりする。ラジカルとイオンとでは炭素質膜の表面において生じる反応が異なり、炭素質膜を親水性とする最適条件が異なる。しかし、炭素質膜の成膜と酸素プラズマの照射とを繰り返しカットアンドトライにより製造プロセスを最適化することは現実的ではない。   The inventors of the present application have found that such variation is due to the fact that the properties of the carbonaceous film before the oxygen plasma irradiation and the properties of the oxygen plasma to be irradiated are not constant. The carbonaceous film can be formed by various methods such as a sputtering method and a chemical vapor deposition method, but has different properties when the film forming methods are different. Even if the film forming method is the same, it has different properties if the manufacturing conditions such as the type of carbon source and the film forming temperature are different. A dramatic improvement in wettability cannot be expected unless oxygen plasma is irradiated under suitable conditions for carbonaceous films having different properties. Also, the oxygen plasma to be irradiated becomes oxygen radicals or oxygen ions depending on the generation conditions. Reactions occurring on the surface of the carbonaceous film are different between radicals and ions, and the optimum conditions for making the carbonaceous film hydrophilic are different. However, it is not realistic to optimize the manufacturing process by repeatedly cutting and trying carbonaceous film formation and oxygen plasma irradiation.

本発明は、前記の問題を解決し、種々の炭素質膜に対応して、親水性の炭素質膜を容易に製造できるようにすることを目的とする。   An object of the present invention is to solve the above problems and to easily manufacture a hydrophilic carbonaceous film corresponding to various carbonaceous films.

前記の目的を達成するため、本発明は親水性炭素質膜の製造方法を、酸素プラズマを照射しつつ赤外吸収を測定することにより最適なプラズマ照射条件を算出する工程を備えた構成とする。   In order to achieve the above object, the present invention provides a method for producing a hydrophilic carbonaceous film comprising a step of calculating optimum plasma irradiation conditions by measuring infrared absorption while irradiating oxygen plasma. .

具体的に、本発明に係る親水性炭素質膜の製造方法は、基材の表面に炭素質膜本体を成膜する工程(a)と、工程(a)と同一の成膜方法により評価用炭素質膜を成膜する工程(b)と、評価用炭素質膜に対して酸素を含むプラズマを照射すると共に、評価用炭素質膜における水酸基に由来する赤外吸収を測定することにより、プラズマ照射時間と水酸基の導入量との相間を決定する工程(c)と、プラズマ照射時間と水酸基の導入量との相間に基づいて炭素質膜本体に酸素を含むプラズマを照射する工程(d)とを備えていることを特徴とする。   Specifically, the method for producing a hydrophilic carbonaceous film according to the present invention is for evaluation by the step (a) of forming a carbonaceous film main body on the surface of a substrate and the same film forming method as in step (a). The step (b) of forming the carbonaceous film and irradiating the evaluation carbonaceous film with oxygen-containing plasma and measuring the infrared absorption derived from the hydroxyl group in the evaluation carbonaceous film A step (c) of determining a phase between the irradiation time and the introduction amount of the hydroxyl group, and a step (d) of irradiating the carbonaceous film main body with oxygen-containing plasma based on the phase between the plasma irradiation time and the introduction amount of the hydroxyl group. It is characterized by having.

本発明の親水性炭素質膜の製造方法は、評価用炭素質膜を用いて求めたプラズマ照射時間と水酸基の導入量との相間に基づいてプラズマ照射時間を決定する。このため、どのような条件により成膜された炭素質膜についても容易に最適なプラズマ照射時間を決定することができる。従って、所定のぬれ性を有する親水性炭素質膜を再現性良く製造することが可能となる。   In the method for producing a hydrophilic carbonaceous film of the present invention, the plasma irradiation time is determined based on the phase between the plasma irradiation time obtained using the carbonaceous film for evaluation and the amount of hydroxyl group introduced. For this reason, the optimal plasma irradiation time can be easily determined for a carbonaceous film formed under any conditions. Therefore, it becomes possible to manufacture a hydrophilic carbonaceous film having a predetermined wettability with good reproducibility.

本発明に係る親水性炭素質膜の製造方法は、工程(d)において、酸素を含むプラズマを照射する時間は、評価用炭素質膜への水酸基の導入量が最大となるプラズマ照射時間とすればよい。   In the method for producing a hydrophilic carbonaceous film according to the present invention, in the step (d), the time for irradiating the plasma containing oxygen is the plasma irradiation time that maximizes the amount of hydroxyl groups introduced into the carbonaceous film for evaluation. That's fine.

本発明の親水性炭素質膜の製造方法は、工程(c)において、評価用炭素質膜を成膜した後、評価用炭素質膜を大気に曝すことなく酸素を含むプラズマを照射し、工程(d)において、炭素質膜本体を成膜した後、炭素質膜本体を大気に曝すことなく酸素を含むプラズマを照射する構成としてもよい。   In the method for producing a hydrophilic carbonaceous film of the present invention, after forming the carbonaceous film for evaluation in step (c), the plasma containing oxygen is irradiated without exposing the carbonaceous film for evaluation to the atmosphere. In (d), after the carbonaceous film main body is formed, the plasma containing oxygen may be irradiated without exposing the carbonaceous film main body to the atmosphere.

本発明の親水性炭素質膜の製造方法において、工程(b)及び工程(c)は、炭素源となるガスのプラズマ及び酸素を含むプラズマを生成するプラズマ生成部と、プラズマ生成部において生成したプラズマが導入されるチャンバと、チャンバ内に載置された試料の赤外吸収を測定する赤外吸収測定部とを備えた製造装置を用いて行えばよい。   In the method for producing a hydrophilic carbonaceous film of the present invention, the step (b) and the step (c) are generated in a plasma generation unit that generates a plasma of a gas serving as a carbon source and a plasma containing oxygen, and the plasma generation unit. What is necessary is just to use the manufacturing apparatus provided with the chamber into which plasma is introduced, and the infrared absorption measurement part which measures the infrared absorption of the sample mounted in the chamber.

本発明の親水性炭素質膜の製造方法において、工程(a)と工程(b)とは同一の製造装置を用いて行えばよい。   In the method for producing a hydrophilic carbonaceous film of the present invention, the step (a) and the step (b) may be performed using the same production apparatus.

本発明の親水性炭素質膜の製造方法において、工程(a)及び工程(b)は、ダイヤモンド様膜を形成する工程としても、ポリマー状炭素膜を形成する工程としてもよい。   In the method for producing a hydrophilic carbonaceous film of the present invention, the step (a) and the step (b) may be a step of forming a diamond-like film or a step of forming a polymer-like carbon film.

本発明の親水性炭素質膜の製造方法において、酸素を含むプラズマは、酸素、亜酸化窒素、一酸化炭素、二酸化炭素及び水蒸気のプラズマとすればよい。   In the method for producing a hydrophilic carbonaceous film of the present invention, the plasma containing oxygen may be oxygen, nitrous oxide, carbon monoxide, carbon dioxide, and water vapor.

本発明の親水性炭素質膜の製造方法において、工程(b)では、評価用炭素質膜を半導体プリズムの上に形成し、工程(c)では、半導体プリズムに赤外光を入射させ、半導体プリズムから出射された赤外光を測定することにより、赤外吸収を測定する構成とすればよい。   In the method for producing a hydrophilic carbonaceous film of the present invention, in step (b), a carbonaceous film for evaluation is formed on a semiconductor prism, and in step (c), infrared light is incident on the semiconductor prism, and the semiconductor The infrared absorption may be measured by measuring the infrared light emitted from the prism.

本発明の親水性炭素質膜の製造方法は、工程(c)及び工程(d)において、酸素を含むプラズマのうちラジカル成分を照射しても、酸素を含むプラズマのうちイオン成分を照射してもよい。   In the method for producing a hydrophilic carbonaceous film of the present invention, in step (c) and step (d), even if the radical component is irradiated among the plasma containing oxygen, the ion component is irradiated in the plasma containing oxygen. Also good.

本発明に係る親水性炭素質膜の製造装置は、炭素質膜を成膜するための炭素源となるガスのプラズマ及び酸素のプラズマを発生させるプラズマ生成部と、炭素源となるガスのプラズマを用いて基材の表面に炭素質膜を成膜し、成膜した炭素質膜へ酸素を含むプラズマを照射するためのチャンバと、酸素を含むプラズマの照射中に、炭素質膜の赤外吸収を測定する赤外吸収測定部とを備えていることを特徴とする。   An apparatus for producing a hydrophilic carbonaceous film according to the present invention comprises: a plasma generating unit that generates a plasma of gas and oxygen as a carbon source for forming a carbonaceous film; and a plasma of a gas as a carbon source. A carbonaceous film is formed on the surface of the substrate, and a chamber for irradiating the formed carbonaceous film with oxygen-containing plasma, and the infrared absorption of the carbonaceous film during irradiation of oxygen-containing plasma. And an infrared absorption measurement unit that measures the above.

本発明の親水性炭素質膜の製造装置は、酸素を含むプラズマの照射中に、炭素質膜の赤外吸収を測定する赤外吸収測定部を備えている。このため、どのような条件で成膜した炭素質膜についても、親水化に最適なプラズマ照射条件を容易に算出することができ、所定のぬれ性を有する親水性炭素質膜を再現性良く製造することができる。   The apparatus for producing a hydrophilic carbonaceous film of the present invention includes an infrared absorption measurement unit that measures infrared absorption of a carbonaceous film during irradiation of plasma containing oxygen. For this reason, it is possible to easily calculate the optimal plasma irradiation conditions for hydrophilization, and to produce a hydrophilic carbonaceous film having a predetermined wettability with good reproducibility. can do.

本発明に係る親水性炭素質膜の製造装置は、チャンバ内において基材にバイアス電圧を印加するバイアス電圧印加部をさらに備えていてもよい。   The apparatus for producing a hydrophilic carbonaceous film according to the present invention may further include a bias voltage applying unit that applies a bias voltage to the substrate in the chamber.

本発明に係る親水性炭素質膜の製造方法及び製造装置によれば、種々の炭素質膜に対応して、親水性の炭素質膜を容易に製造できる。   According to the method and apparatus for producing a hydrophilic carbonaceous film according to the present invention, it is possible to easily produce a hydrophilic carbonaceous film corresponding to various carbonaceous films.

例示の親水性炭素質膜の製造装置を示す模式図である。It is a schematic diagram which shows the manufacturing apparatus of an exemplary hydrophilic carbonaceous film | membrane. (a)及び(b)は例示の親水性炭素質膜の製造装置を用いた酸素プラズマの照射時における赤外吸収スペクトルを示し、(a)はダイヤモンド様膜の場合であり、(b)はポリマー状炭素膜の場合である。(A) And (b) shows the infrared absorption spectrum at the time of irradiation of oxygen plasma using the manufacturing apparatus of the illustrated hydrophilic carbonaceous film, (a) is a case of a diamond-like film, (b) This is a case of a polymer-like carbon film. 酸素プラズマの照射時間と水酸基に由来するピークの強度との関係を示すグラフである。It is a graph which shows the relationship between the irradiation time of oxygen plasma, and the intensity | strength of the peak originating in a hydroxyl group. 酸素プラズマの照射時間と水酸基に由来するピークの強度との関係を示すグラフである。It is a graph which shows the relationship between the irradiation time of oxygen plasma, and the intensity | strength of the peak originating in a hydroxyl group. 酸素プラズマ照射による接触角の変化を示すグラフである。It is a graph which shows the change of the contact angle by oxygen plasma irradiation. (a)〜(d)は接触角測定時における水滴の状態を示す写真である。(A)-(d) is a photograph which shows the state of the water droplet at the time of contact angle measurement.

本明細書において炭素質膜とは、sp2炭素−炭素結合(グラファイト結合)及びsp3炭素−炭素結合(ダイヤモンド結合)の少なくとも一方を含む膜である。アモルファス状態の膜だけでなく、結晶状態の膜も含まれる。通常、sp2炭素−水素結合及びsp3炭素−水素結合を含んでいるが、水素は必須の構成要素ではない。また、シリコン(Si)又はフッ素(F)等が添加されていてもよい。 In this specification, the carbonaceous film is a film containing at least one of sp 2 carbon-carbon bond (graphite bond) and sp 3 carbon-carbon bond (diamond bond). This includes not only an amorphous film but also a crystalline film. Usually, it contains sp 2 carbon-hydrogen bonds and sp 3 carbon-hydrogen bonds, but hydrogen is not an essential component. Further, silicon (Si), fluorine (F), or the like may be added.

ダイヤモンド様膜(DLC膜)とは、アモルファス状態の炭素質膜のうち、sp3炭素−炭素結合及びsp2炭素−炭素結合により強固な膜となったものであり、ポリマー状炭素膜(PLC膜)とは、アモルファス状態の炭素質膜のうち、水素化が進み高分子状になったものである。 A diamond-like film (DLC film) is an amorphous carbonaceous film that has become a strong film by sp 3 carbon-carbon bonds and sp 2 carbon-carbon bonds, and is a polymer-like carbon film (PLC film) ) Is a carbonaceous film in an amorphous state, which has been polymerized due to hydrogenation.

まず、親水性炭素質膜の製造に用いる製造装置について説明する。図1は、親水性炭素質膜の製造装置の一例を示している。図1に示すように、例示の製造装置は、プラズマを発生させるプラズマ生成部11と、プラズマ生成部11において発生させたプラズマが導入されるチャンバ12と、チャンバ12に載置された基材21の赤外吸収を測定する赤外吸収測定部13とを備えている。プラズマ生成部11は、一般的なプラズマ発生装置であり、ガス供給部31から供給されたガスに、RFアンテナ32を用いて高周波電力を印加することによりプラズマを発生させる。高周波電力は、RFアンテナ32に整合回路33を介して接続された高周波電源34により供給する。プラズマ生成部11に供給するガスの種類、流量及び圧力は、ガス供給部31により制御することができる。   First, a manufacturing apparatus used for manufacturing a hydrophilic carbonaceous film will be described. FIG. 1 shows an example of an apparatus for producing a hydrophilic carbonaceous film. As shown in FIG. 1, an exemplary manufacturing apparatus includes a plasma generation unit 11 that generates plasma, a chamber 12 into which plasma generated in the plasma generation unit 11 is introduced, and a base material 21 that is placed in the chamber 12. And an infrared absorption measuring unit 13 for measuring the infrared absorption of the light. The plasma generator 11 is a general plasma generator, and generates plasma by applying high-frequency power to the gas supplied from the gas supply unit 31 using the RF antenna 32. The high frequency power is supplied by a high frequency power supply 34 connected to the RF antenna 32 via a matching circuit 33. The type, flow rate, and pressure of the gas supplied to the plasma generation unit 11 can be controlled by the gas supply unit 31.

チャンバ12には、試料ホルダ22が設けられている。試料ホルダ22に保持された基材21には、任意のバイアス電圧を印加することができる。また、基材21の温度を制御することも可能である。基材21にバイアス電圧を印加しない状態においては、主にプラズマ中のラジカルが基材21に到達する。基材21にバイアス電圧を印加した状態においては、主にプラズマ中のイオンが基材21に到達する。   A sample holder 22 is provided in the chamber 12. An arbitrary bias voltage can be applied to the base material 21 held by the sample holder 22. It is also possible to control the temperature of the substrate 21. In a state where no bias voltage is applied to the base material 21, radicals in the plasma mainly reach the base material 21. In a state where a bias voltage is applied to the base material 21, ions in the plasma mainly reach the base material 21.

赤外吸収測定部13は、フーリエ変換型赤外分光装置(FTIR)であり、干渉計を有する光源41からの赤外光は、凹面鏡42により収束して試料ホルダ22に載置された基材21に入射する。基材21を出射した光は赤外光検出器43へと導かれる。   The infrared absorption measurement unit 13 is a Fourier transform infrared spectrometer (FTIR), and infrared light from a light source 41 having an interferometer is converged by a concave mirror 42 and placed on the sample holder 22. 21 is incident. The light emitted from the substrate 21 is guided to the infrared light detector 43.

基材21をシリコン等からなる半導体プリズムとすれば、基材21の表面に形成された炭素質膜の状態を減衰全反射測定(ATR)法によりリアルタイムで測定できる。また、ATR法だけでなく、外部反射法等により基材21の表面を測定してもよい。   If the substrate 21 is a semiconductor prism made of silicon or the like, the state of the carbonaceous film formed on the surface of the substrate 21 can be measured in real time by the attenuated total reflection measurement (ATR) method. Moreover, you may measure the surface of the base material 21 not only by ATR method but by the external reflection method.

例示の製造装置において、メタン(CH3)又はアセチレン(C22)等の炭素源となるガスを供給することにより、試料ホルダ22に保持した基材21の表面に炭素質膜を成膜することができる。成膜後に供給するガスを酸素ガスとすれば、炭素質膜の成膜に続いて酸素プラズマの照射を行うことができる。このため、成膜した炭素質膜を大気に曝すことなく酸素プラズマの照射が可能となる。また、基材21の表面に形成した炭素質膜に含まれる水酸基(OH)の量をリアルタイムで測定することが可能である。また、水酸基に限らず、炭素−炭素結合の状態及び炭素−水素結合の状態等に関する情報もリアルタイムで得ることが可能である。 In the exemplary manufacturing apparatus, a carbonaceous film is formed on the surface of the base 21 held by the sample holder 22 by supplying a gas serving as a carbon source such as methane (CH 3 ) or acetylene (C 2 H 2 ). can do. If the gas supplied after film formation is oxygen gas, it is possible to irradiate oxygen plasma following the formation of the carbonaceous film. For this reason, it is possible to irradiate oxygen plasma without exposing the formed carbonaceous film to the atmosphere. In addition, the amount of hydroxyl group (OH) contained in the carbonaceous film formed on the surface of the substrate 21 can be measured in real time. Further, not only the hydroxyl group but also information on the carbon-carbon bond state and the carbon-hydrogen bond state can be obtained in real time.

図2(a)及び(b)は、例示の製造装置を用いて、半導体プリズムの表面に炭素質膜を形成した後、酸素プラズマを照射した場合の赤外吸収スペクトルの変化を示している。図2(a)は炭素源としてC22を用いてDLC膜を成膜した場合を示しており、図2(b)はPLC膜を成膜した場合を示している。成膜の際には原料ガスの供給量を1sccm(cm3/分、但し1気圧、0℃)とし、チャンバ内の圧力が50mTorr(6.7Pa)となるようにして、10Wの高周波電力を印加した。DLC膜は試料に−150Vのバイアス電圧を印加して成膜し、PLC膜は試料にバイアス電圧を印加せずに成膜した。 FIGS. 2A and 2B show changes in the infrared absorption spectrum when an oxygen plasma is irradiated after a carbonaceous film is formed on the surface of the semiconductor prism using the exemplified manufacturing apparatus. FIG. 2A shows a case where a DLC film is formed using C 2 H 2 as a carbon source, and FIG. 2B shows a case where a PLC film is formed. 1sccm the supply amount of the raw material gas during the film formation (cm 3 / min, where 1 atm, 0 ° C.) and, as the pressure in the chamber is 50 mTorr (6.7 Pa), a high frequency power of 10W Applied. The DLC film was formed by applying a bias voltage of −150 V to the sample, and the PLC film was formed without applying a bias voltage to the sample.

酸素プラズマの照射は、ガスの供給量を2sccmとし、チャンバ内の圧力が50mTorrとなるようにして、10Wの高周波電力を印加してプラズマを発生させた。試料にバイアス電圧は印加せず、主に酸素ラジカルが試料に到達する条件で酸素プラズマの照射を行った。   For the oxygen plasma irradiation, a plasma was generated by applying a high frequency power of 10 W with a gas supply amount of 2 sccm and a pressure in the chamber of 50 mTorr. Bias voltage was not applied to the sample, and oxygen plasma irradiation was performed mainly under the condition that oxygen radicals reached the sample.

図2(a)及び図2(b)に示すように、DLC膜の場合にもPLC膜の場合にも、酸素プラズマの照射時間が長くなるに従い、水酸基に由来する3200cm-1から3600cm-1付近に出現する吸収ピークの高さが高くなっていることがわかる。このことから、炭素質膜を形成した後、酸素プラズマを照射することにより炭素質膜に水酸基を容易に導入できることがわかる。なお、赤外吸収には、純粋な水酸基(OH基)だけでなく、カルボキシル基(−COOH)等のOH結合による寄与もあり、両者の区別は困難である。炭素質膜の表面には水酸基とカルボキシル基の両方が形成されているのではないかと考えられるが、どちらも親水性の官能基であり以下においては代表して水酸基と表記する。 As shown in FIGS. 2A and 2B, in the case of the DLC film and the PLC film, the oxygen plasma irradiation time becomes longer as the oxygen plasma irradiation time becomes longer, from 3200 cm −1 to 3600 cm −1. It can be seen that the height of the absorption peak appearing in the vicinity is high. This shows that a hydroxyl group can be easily introduced into the carbonaceous film by irradiating oxygen plasma after forming the carbonaceous film. Infrared absorption includes not only pure hydroxyl groups (OH groups) but also contributions from OH bonds such as carboxyl groups (—COOH), making it difficult to distinguish between the two. Although it is considered that both a hydroxyl group and a carboxyl group are formed on the surface of the carbonaceous film, both are hydrophilic functional groups, and in the following, they are represented as hydroxyl groups.

図3は、酸素プラズマの照射時間と水酸基のピーク強度との関係を示している。図3においてPLC膜は、基板にバイアス電圧をかけない状態で成膜した炭素質膜であり、DLC膜は、基板に−150Vのバイアス電圧を印加した状態で成膜した炭素質膜である。酸素ラジカルの照射は、基板にバイアスをかけない状態で酸素プラズマを照射した状態であり、酸素イオンの照射は、基板に−150Vのバイアス電圧を印加した状態で酸素プラズマを照射した状態である。   FIG. 3 shows the relationship between the oxygen plasma irradiation time and the peak intensity of the hydroxyl group. In FIG. 3, the PLC film is a carbonaceous film formed without applying a bias voltage to the substrate, and the DLC film is a carbonaceous film formed with a bias voltage of −150 V applied to the substrate. Oxygen radical irradiation is a state in which oxygen plasma is irradiated without applying a bias to the substrate, and oxygen ion irradiation is a state in which oxygen plasma is irradiated with a bias voltage of −150 V applied to the substrate.

水酸基の導入量は、プラズマ照射時間が長くなるに従い増大するが、数分から数十分程度で最大に達し、その後導入量が低下する。酸素プラズマの照射により、炭素質膜の炭素−炭素結合及び炭素−水素結合の一部が開裂し酸素原子が導入される。しかし、照射時間が長くなると開裂が優勢となり、一旦導入された水酸基も分解してしまうのではないかと考えられる。   The introduction amount of the hydroxyl group increases as the plasma irradiation time becomes longer, but reaches the maximum in several minutes to several tens of minutes, and then the introduction amount decreases. By irradiation with oxygen plasma, the carbon-carbon bond and part of the carbon-hydrogen bond of the carbonaceous film are cleaved and oxygen atoms are introduced. However, it is thought that when the irradiation time becomes longer, the cleavage becomes dominant and the hydroxyl group once introduced is also decomposed.

また、水酸基の導入量が最大になるまでの時間は、炭素質膜の成膜状態及び照射する酸素プラズマの性質によって大きく変化する。例えば、PLC膜に酸素イオンを照射した場合には、2分程度で水酸基の導入量が最大となるが、DLC膜に酸素ラジカルを照射した場合には、15分程度必要であった。図4は、炭素質膜を形成する際の炭素源をメタン(CH4)とした場合の結果を示している。この場合にも、PLC膜とDLC膜との比較及び酸素イオンと酸素ラジカルとの比較において、水酸基の導入量が最大となるまでの時間が異なっていた。また、C22を原料として形成した炭素質膜と、CH4を原料として形成した炭素質膜との比較においても、水酸基の導入量が最大となるまでの時間が異なっていた。 In addition, the time until the maximum amount of hydroxyl groups is introduced varies greatly depending on the state of the carbonaceous film and the nature of the oxygen plasma to be irradiated. For example, when the PLC film is irradiated with oxygen ions, the amount of hydroxyl groups introduced is maximized in about 2 minutes, but when the DLC film is irradiated with oxygen radicals, about 15 minutes are required. Figure 4 shows the results of a carbon source for forming the carbonaceous film and methane (CH 4). Also in this case, in the comparison between the PLC film and the DLC film and in the comparison between the oxygen ions and the oxygen radicals, the time required for the maximum amount of hydroxyl groups to be introduced was different. Further, in comparison between a carbonaceous film formed using C 2 H 2 as a raw material and a carbonaceous film formed using CH 4 as a raw material, the time required for the maximum amount of hydroxyl groups to be introduced was different.

PLC膜とDLC膜との違いは、炭素−炭素結合の状態及び表面状態によって生じるのではないかと考えられる。PLC膜はDLC膜と比べ、表面の凹凸が大きく酸素プラズマとの反応がDLC膜よりも進行しやすいと考えられる。このため、DLC膜と比較すると水酸基の導入量が最大となるまでの時間が短くなると推測される。   The difference between the PLC film and the DLC film may be caused by the carbon-carbon bond state and the surface state. It is considered that the PLC film has larger surface irregularities than the DLC film, and the reaction with the oxygen plasma proceeds more easily than the DLC film. For this reason, it is estimated that the time until the introduction amount of the hydroxyl group becomes maximum is shorter than that of the DLC film.

CH4を原料として形成した膜と、C22を原料として形成した膜との違いは、炭素−水素結合の割合にあるのではないかと考えられる。CH4を原料として形成した炭素質膜は、C22を原料として形成した炭素質膜と比べて、炭素−水素結合が多く含まれている。炭素−炭素結合と比べて炭素−水素結合の方が安定であるため、CH4を原料として形成した炭素質膜の方がC22を原料として形成した炭素質膜よりも水酸基の導入に時間がかかると考えられる。また、水素を多く含む場合の方が炭素質膜の表面にダングリングボンドが形成されにくいと考えられる。このことも、CH4を原料として形成した場合に、C22を原料として形成した場合よりも水酸基の導入に時間がかかる原因となっていると考えられる。 The difference between a film formed using CH 4 as a raw material and a film formed using C 2 H 2 as a raw material may be in the ratio of carbon-hydrogen bonds. A carbonaceous film formed using CH 4 as a raw material contains more carbon-hydrogen bonds than a carbonaceous film formed using C 2 H 2 as a raw material. Since carbon-hydrogen bonds are more stable than carbon-carbon bonds, a carbonaceous film formed using CH 4 as a raw material is more effective in introducing hydroxyl groups than a carbonaceous film formed using C 2 H 2 as a raw material. It will take time. In addition, it is considered that a dangling bond is less likely to be formed on the surface of the carbonaceous film when it contains more hydrogen. This is also considered that when CH 4 is formed as a raw material, it takes longer to introduce a hydroxyl group than when C 2 H 2 is formed as a raw material.

また、酸素イオンを照射した場合には、酸素ラジカルを照射した場合と比べて化学的な表面反応も生じるが、物理的な表面反応の影響が大きいと考えられる。酸素ラジカルを照射した場合と、酸素イオンを照射した場合の炭素質膜のエッチングレートを比較すると、表1に示すように、どのようにして形成した膜においても、酸素イオンを照射した場合の方がエッチングレートが大きかった。このことからも、酸素イオンを照射した場合には、酸素ラジカルを照射した場合と比べて、化学的な表面反応に加えて、物理的な表面反応が生じやすいと考えられる。   In addition, when the surface is irradiated with oxygen ions, a chemical surface reaction occurs as compared with the case of irradiation with oxygen radicals, but it is considered that the influence of the physical surface reaction is large. Comparing the etching rate of the carbonaceous film when irradiated with oxygen radicals and when irradiated with oxygen ions, as shown in Table 1, the film formed in any way is irradiated with oxygen ions. However, the etching rate was large. From this, it is considered that when surface is irradiated with oxygen ions, physical surface reaction is more likely to occur in addition to chemical surface reaction than when irradiated with oxygen radicals.

このように、炭素質膜の形成方法及び酸素プラズマの種類に応じて、プラズマの照射時間を最適化する必要がある。例示の製造装置は、酸素プラズマを照射しつつ、水酸基の導入量の変化を測定することが可能である。このため、水酸基の導入に最適な酸素プラズマの照射条件を容易に決定することが可能となる。例えば、図3及び図4から求めた炭素質膜への水酸基の導入量が最大となる時間は、表2に示すようになる。 Thus, it is necessary to optimize the plasma irradiation time in accordance with the method for forming the carbonaceous film and the type of oxygen plasma. The exemplary manufacturing apparatus can measure a change in the amount of hydroxyl groups introduced while irradiating oxygen plasma. For this reason, it becomes possible to easily determine the optimal oxygen plasma irradiation conditions for introducing hydroxyl groups. For example, the time when the amount of hydroxyl group introduced into the carbonaceous film obtained from FIGS. 3 and 4 is maximized is as shown in Table 2.

図5は、炭素質膜に酸素プラズマを照射した場合の、接触角の大きさを示している。酸素プラズマの照射時間は、表1に示した水酸基の導入量が最大となる時間とした。接触角の測定には、協和界面科学株式会社社製の自動接触角測定機DM300型を用い、炭素質膜の表面上に1μLの水滴を置き、接触角を測定した。なお、測定値は10点の平均値とした。 FIG. 5 shows the size of the contact angle when the carbonaceous film is irradiated with oxygen plasma. The oxygen plasma irradiation time was set to the time when the introduction amount of the hydroxyl group shown in Table 1 was maximized. For the measurement of the contact angle, an automatic contact angle measuring machine DM300 manufactured by Kyowa Interface Science Co., Ltd. was used, and a 1 μL water droplet was placed on the surface of the carbonaceous film, and the contact angle was measured. The measured value was an average value of 10 points.

図5に示すように、どのような方法により形成した炭素質膜においても、プラズマ照射後の接触角は、プラズマ照射前の接触角よりも遙かに小さくなり、ぬれ性が劇的に向上していた。特に、CH4を原料とするPLC膜に酸素ラジカルを照射した場合を除いて、プラズマを照射した後の接触角は0°となり、炭素質膜の表面を超親水性とすることができた。 As shown in FIG. 5, in any carbonaceous film formed by any method, the contact angle after plasma irradiation is much smaller than the contact angle before plasma irradiation, and the wettability is dramatically improved. It was. In particular, except for the case where the oxygen film was irradiated to the PLC film made of CH 4 as a raw material, the contact angle after the plasma irradiation was 0 °, and the surface of the carbonaceous film could be made superhydrophilic.

酸素ラジカルを照射した場合にも、酸素イオンを照射した場合にも、接触角を著しく小さくすることができたが、酸素ラジカルを照射した場合と酸素イオンを照射した場合とでは、以下のような挙動の違いが認められた。   The contact angle could be remarkably reduced both when the oxygen radical was irradiated and when the oxygen ion was irradiated. Differences in behavior were observed.

図6(a)〜(d)は、C22を原料とするDLC膜の接触角を測定した場合における水滴の状態を示している。(a)は未処理のDLC膜であり、(b)は酸素ラジカルを12分間照射した場合のDLC膜であり、(c)及び(d)は酸素イオンを2分間照射した場合のDLC膜である。図6(a)〜(c)はいずれも、水滴を滴下した直後の水滴の状態を示している。一方、図6(d)は水滴を滴下して数十秒経過した後の水滴の状態を示している。酸素ラジカルを照射した場合には、水滴は一瞬にして拡がっている。しかし、酸素イオンを照射した場合には、水滴を滴下した直後は接触角が7°程度となり、次第に拡がっていく現象が認められた。同様の現象はPLC膜においても認められた。また、CH4を原料として形成したDLC膜及びPLC膜においても認められた。水滴が次第に拡がっていくという現象が認められたことから、酸素イオンを照射した場合には、炭素質膜の表面が完全に超親水性となっているのではなく、疎水性の部分が島状に残った状態となっているのではないかと考えられる。 FIG 6 (a) ~ (d) shows the state of the water droplets in the case where the C 2 H 2 and measuring the contact angle of the DLC film as a raw material. (A) is an untreated DLC film, (b) is a DLC film when irradiated with oxygen radicals for 12 minutes, and (c) and (d) are DLC films when irradiated with oxygen ions for 2 minutes. is there. 6A to 6C show the state of the water droplet immediately after the water droplet is dropped. On the other hand, FIG. 6D shows the state of the water droplet after several tens of seconds have passed since the water droplet was dropped. When irradiating with oxygen radicals, water droplets spread instantly. However, when the oxygen ions were irradiated, the contact angle became about 7 ° immediately after dropping the water droplets, and a phenomenon of gradually spreading was observed. A similar phenomenon was also observed in the PLC film. It was also observed in DLC films and PLC films formed using CH 4 as a raw material. Since the phenomenon that water droplets gradually spread was observed, when the oxygen ions were irradiated, the surface of the carbonaceous film was not completely superhydrophilic, but the hydrophobic portion was island-shaped. It is thought that it remains in the state.

以上説明したように、例示の製造装置は、基材の上に炭素質膜を成膜した後、炭素質膜の赤外吸収を測定しながら酸素プラズマを照射することができる。このため、水酸基の導入量が最大となる酸素プラズマの照射条件を容易に決定することができる。ここで言う酸素プラズマの照射条件とは、照射時間だけでなくプラズマの発生条件、基材に印加するバイアス電圧、基材に印加する温度及び炭素質膜の種類等が含まれる。   As described above, the exemplary manufacturing apparatus can irradiate oxygen plasma while measuring the infrared absorption of the carbonaceous film after forming the carbonaceous film on the substrate. For this reason, it is possible to easily determine the irradiation condition of oxygen plasma that maximizes the amount of hydroxyl group introduced. The oxygen plasma irradiation conditions mentioned here include not only the irradiation time but also the plasma generation conditions, the bias voltage applied to the substrate, the temperature applied to the substrate, the type of carbonaceous film, and the like.

具体的には、まず評価用炭素質膜を用いて酸素プラズマの照射条件を決定する。次に、評価用炭素質膜と同一の条件で基材の表面に親水化する炭素質膜を形成し、あらかじめ決定した照射条件を用いて炭素質膜への酸素プラズマの照射を行う。評価用炭素質膜において最も水酸基導入量が多くなる照射時間を選択すれば、ぬれ性が非常に高い親水性炭素質膜を容易に再現性良く得ることができる。接触角が10°以下である超親水性の炭素質膜とすることも容易である。また、照射時間を水酸基導入量が最大となる時間からずらすことによって水酸基の導入量を制御することもできるため、親水性の度合いを制御した炭素質膜を容易に再現性良く得ることも可能である。   Specifically, first, the irradiation condition of oxygen plasma is determined using the carbonaceous film for evaluation. Next, a carbonaceous film to be hydrophilized is formed on the surface of the substrate under the same conditions as the carbonaceous film for evaluation, and the carbonaceous film is irradiated with oxygen plasma using a predetermined irradiation condition. If an irradiation time in which the amount of introduced hydroxyl group is the largest in the carbonaceous film for evaluation is selected, a hydrophilic carbonaceous film having very high wettability can be easily obtained with good reproducibility. It is also easy to form a superhydrophilic carbonaceous film having a contact angle of 10 ° or less. In addition, since the amount of hydroxyl group introduced can be controlled by shifting the irradiation time from the time when the amount of hydroxyl group introduced becomes maximum, it is possible to easily obtain a carbonaceous film with a controlled degree of hydrophilicity with good reproducibility. is there.

評価用炭素質膜を形成する基材と、親水化する炭素質膜の基材とは必ずしも同一である必要はない。評価用炭素質膜と親水化する炭素質膜とを異なる材質の基材の表面に形成したとしても、炭素質膜の特性は大きく変化しない。このため、評価用炭素質膜により得られた、水酸基導入量とプラズマ照射時間との相間を用いることができる。例えば、評価用炭素質膜は半導体プリズムの表面に形成し、親水化する炭素質膜は金属材料の表面に形成することも可能である。   The base material for forming the carbonaceous film for evaluation and the base material for the carbonaceous film to be hydrophilic are not necessarily the same. Even if the carbonaceous film for evaluation and the carbonaceous film to be hydrophilized are formed on the surface of a base material made of different materials, the characteristics of the carbonaceous film do not change greatly. For this reason, the phase difference between the amount of hydroxyl group introduced and the plasma irradiation time obtained by the carbonaceous film for evaluation can be used. For example, the carbonaceous film for evaluation can be formed on the surface of the semiconductor prism, and the carbonaceous film to be hydrophilized can be formed on the surface of the metal material.

例示の製造装置は、炭素質膜の成膜と、炭素質膜への酸素プラズマの照射とを同一のチャンバーにおいて行うことができる。このため、形成された炭素質膜を大気に曝すことなく酸素プラズマの照射を行うことができる。成膜が終了した直後の炭素質膜の表面には多くのダングリングボンドが存在している。このため、成膜した炭素質膜を大気に曝すことなく酸素プラズマの照射を行うことにより、炭素質膜への水酸基の導入量を効率よく行うことが可能となる。但し、評価用炭素質膜と親水化する炭素質膜との製造条件を同じにすれば、成膜後に大気暴露を行っても問題ない。   The example manufacturing apparatus can form a carbonaceous film and irradiate the carbonaceous film with oxygen plasma in the same chamber. For this reason, it is possible to perform oxygen plasma irradiation without exposing the formed carbonaceous film to the atmosphere. Many dangling bonds exist on the surface of the carbonaceous film immediately after the film formation is completed. For this reason, it is possible to efficiently introduce the hydroxyl group into the carbonaceous film by irradiating the formed carbonaceous film with oxygen plasma without exposing it to the atmosphere. However, if the manufacturing conditions of the carbonaceous film for evaluation and the carbonaceous film to be hydrophilized are the same, there is no problem even if exposure to the atmosphere is performed after the film formation.

本実施例においては、水酸基を導入するために、酸素プラズマを照射する例を示したが、酸素を含むプラズマであればよい。具体的には、酸素と他のガスとの混合ガスのプラズマであってもよく、酸素原子を含む、亜酸化窒素(N2O)、一酸化炭素(CO)、二酸化炭素(CO2)及び水蒸気(H2O)等のプラズマであってもよい。また、プラズマの生成方法もどのようなものであってもよく、例えば、リモートプラズマの手法により生成してもよい。 In this embodiment, an example of irradiating oxygen plasma in order to introduce a hydroxyl group has been shown, but any plasma containing oxygen may be used. Specifically, it may be a plasma of a mixed gas of oxygen and another gas, and contains oxygen atoms, nitrous oxide (N 2 O), carbon monoxide (CO), carbon dioxide (CO 2 ), and Plasma such as water vapor (H 2 O) may be used. The plasma generation method may be any method, for example, it may be generated by a remote plasma method.

炭素質膜を形成する炭素源としてCH4及びC22を示したが、ベンゼン等の他の炭化水素を用いてもよい。また、シリコン原子又はフッ素原子等を含む原料を炭素源と混合して用いてもよい。 Although CH 4 and C 2 H 2 are shown as the carbon source for forming the carbonaceous film, other hydrocarbons such as benzene may be used. In addition, a raw material containing silicon atoms or fluorine atoms may be mixed with a carbon source.

評価用炭素質膜の赤外吸収を測定するために、評価用炭素質膜を半導体プリズムの上に形成する例を示した。しかし、赤外吸収の測定をATR法ではなく外部反射法等とすれば、評価用試料を形成する基材をプリズム以外の材料とすることが可能となる。また、基材と炭素質膜との間に中間層を形成することも可能である。   In order to measure the infrared absorption of the carbonaceous film for evaluation, an example in which the carbonaceous film for evaluation was formed on the semiconductor prism was shown. However, if the infrared absorption measurement is not the ATR method but the external reflection method or the like, the substrate on which the evaluation sample is formed can be made of a material other than the prism. It is also possible to form an intermediate layer between the substrate and the carbonaceous film.

本発明に係る親水性炭素質膜の製造方法及び製造装置は、種々の炭素質膜に対応して、親水性の炭素質膜を容易に製造でき、炭素質膜の改質方法等として有用である。   The method and apparatus for producing a hydrophilic carbonaceous film according to the present invention can easily produce a hydrophilic carbonaceous film corresponding to various carbonaceous films, and is useful as a method for modifying a carbonaceous film. is there.

11 プラズマ生成部
12 チャンバ
13 赤外吸収測定部
21 基材
22 試料ホルダ
31 ガス供給部
32 RFアンテナ
33 整合回路
34 高周波電源
41 光源
42 凹面鏡
43 赤外光検出器
DESCRIPTION OF SYMBOLS 11 Plasma production part 12 Chamber 13 Infrared absorption measurement part 21 Base material 22 Sample holder 31 Gas supply part 32 RF antenna 33 Matching circuit 34 High frequency power supply 41 Light source 42 Concave mirror 43 Infrared light detector

Claims (13)

基材の表面に炭素質膜本体を成膜する工程(a)と、
前記工程(a)と同一の成膜方法により評価用炭素質膜を成膜する工程(b)と、
前記評価用炭素質膜に対して酸素を含むプラズマを照射すると共に、前記評価用炭素質膜における水酸基に由来する赤外吸収を測定することにより、プラズマ照射時間と水酸基の導入量との相間を決定する工程(c)と、
前記プラズマ照射時間と水酸基の導入量との相間に基づいて前記炭素質膜本体に酸素を含むプラズマを照射する工程(d)とを備えていることを特徴とする親水性炭素質膜の製造方法。
A step (a) of forming a carbonaceous film main body on the surface of the substrate;
A step (b) of forming a carbonaceous film for evaluation by the same film forming method as in the step (a);
While irradiating the evaluation carbonaceous film with plasma containing oxygen, and measuring the infrared absorption derived from hydroxyl groups in the evaluation carbonaceous film, the phase difference between the plasma irradiation time and the amount of hydroxyl groups introduced can be determined. Determining step (c);
And (d) irradiating the carbonaceous film body with oxygen-containing plasma based on the phase between the plasma irradiation time and the amount of hydroxyl introduced. .
前記工程(d)において、前記酸素を含むプラズマを照射する時間は、前記評価用炭素質膜への水酸基の導入量が最大となるプラズマ照射時間であることを特徴とする請求項1に記載の親水性炭素質膜の製造方法。   2. The plasma irradiation time according to claim 1, wherein in the step (d), the time for irradiating the oxygen-containing plasma is a plasma irradiation time for maximizing the amount of hydroxyl groups introduced into the carbonaceous film for evaluation. A method for producing a hydrophilic carbonaceous film. 前記工程(c)において、前記評価用炭素質膜を成膜した後、前記評価用炭素質膜を大気に曝すことなく酸素を含むプラズマを照射し、
前記工程(d)において、前記炭素質膜本体を成膜した後、前記炭素質膜本体を大気に曝すことなく酸素を含むプラズマを照射することを特徴とする請求項1又は2に記載の親水性炭素質膜の製造方法。
In the step (c), after forming the evaluation carbonaceous film, the plasma containing oxygen is irradiated without exposing the evaluation carbonaceous film to the atmosphere,
3. In the step (d), after forming the carbonaceous film main body, plasma containing oxygen is irradiated without exposing the carbonaceous film main body to the atmosphere. Of producing a carbonaceous film.
前記工程(b)及び工程(c)は、
炭素源となるガスのプラズマ及び酸素を含むプラズマを生成するプラズマ生成部と、
前記プラズマ生成部において生成したプラズマが導入されるチャンバと、
前記チャンバ内に載置された試料の赤外吸収を測定する赤外吸収測定部とを備えた製造装置を用いて行うことを特徴とする請求項1〜3のいずれか1項に記載の親水性炭素質膜の製造方法。
The step (b) and the step (c)
A plasma generator for generating a plasma of a gas serving as a carbon source and a plasma containing oxygen;
A chamber into which the plasma generated in the plasma generator is introduced;
The hydrophilicity according to any one of claims 1 to 3, wherein the hydrophilicity is measured using a manufacturing apparatus including an infrared absorption measuring unit that measures infrared absorption of a sample placed in the chamber. Of producing a carbonaceous film.
前記工程(a)と前記工程(b)とは同一の製造装置を用いて行うことを特徴とする請求項4に記載の親水性炭素質膜の製造方法。   The method for producing a hydrophilic carbonaceous film according to claim 4, wherein the step (a) and the step (b) are performed using the same production apparatus. 前記工程(a)及び工程(b)は、ダイヤモンド様膜を形成する工程であることを特徴とする請求項1〜5のいずれか1項に記載の親水性炭素質膜の製造方法。   The said process (a) and process (b) are processes of forming a diamond-like film | membrane, The manufacturing method of the hydrophilic carbonaceous film of any one of Claims 1-5 characterized by the above-mentioned. 前記工程(a)及び工程(b)は、ポリマー状炭素膜を形成する工程であることを特徴とする請求項1〜5のいずれか1項に記載の親水性炭素質膜の製造方法。   The said process (a) and process (b) are processes of forming a polymer-like carbon film, The manufacturing method of the hydrophilic carbonaceous film of any one of Claims 1-5 characterized by the above-mentioned. 前記酸素を含むプラズマは、酸素、亜酸化窒素、一酸化炭素、二酸化炭素及び水蒸気のプラズマであることを特徴とする請求項1〜7のいずれか1項に記載の親水性炭素質膜の製造方法。   The said carbon containing oxygen is a plasma of oxygen, nitrous oxide, carbon monoxide, a carbon dioxide, and water vapor | steam, The manufacturing of the hydrophilic carbonaceous film of any one of Claims 1-7 characterized by the above-mentioned. Method. 前記工程(b)では、前記評価用炭素質膜を半導体プリズムの上に形成し、
前記工程(c)では、前記半導体プリズムに赤外光を入射させ、前記半導体プリズムから出射された赤外光を測定することにより、前記赤外吸収を測定することを特徴とする請求項1〜8のいずれか1項に記載の親水性炭素質膜の製造方法。
In the step (b), the carbonaceous film for evaluation is formed on a semiconductor prism,
In the step (c), the infrared absorption is measured by causing infrared light to enter the semiconductor prism and measuring the infrared light emitted from the semiconductor prism. 9. The method for producing a hydrophilic carbonaceous film according to any one of 8 above.
前記工程(c)及び工程(d)において、前記酸素を含むプラズマのうちラジカル成分を照射することを特徴とする請求項1〜9のいずれか1項に記載の親水性炭素質膜の製造方法。   The method for producing a hydrophilic carbonaceous film according to any one of claims 1 to 9, wherein in the step (c) and the step (d), a radical component is irradiated from the plasma containing oxygen. . 前記工程(c)及び工程(d)において、前記酸素を含むプラズマのうちイオン成分を照射することを特徴とする請求項1〜9のいずれか1項に記載の親水性炭素質膜の製造方法。   The method for producing a hydrophilic carbonaceous film according to any one of claims 1 to 9, wherein in the step (c) and the step (d), an ion component is irradiated in the plasma containing oxygen. . 炭素質膜を成膜するための炭素源となるガスのプラズマ及び酸素のプラズマを発生させるプラズマ生成部と、
前記炭素源となるガスのプラズマを用いて基材の表面に炭素質膜を成膜し、成膜した炭素質膜へ前記酸素を含むプラズマを照射するためのチャンバと、
前記酸素を含むプラズマの照射中に、前記炭素質膜の赤外吸収を測定する赤外吸収測定部とを備えていることを特徴とする親水性炭素質膜の製造装置。
A plasma generating section for generating a plasma of gas and oxygen to be a carbon source for forming a carbonaceous film;
A chamber for forming a carbonaceous film on the surface of the substrate using plasma of the gas serving as the carbon source, and irradiating the plasma containing oxygen to the formed carbonaceous film;
An apparatus for producing a hydrophilic carbonaceous film, comprising: an infrared absorption measurement unit that measures infrared absorption of the carbonaceous film during irradiation of the plasma containing oxygen.
前記チャンバ内において前記基材にバイアス電圧を印加するバイアス電圧印加部をさらに備えていることを特徴とする請求項12に記載の親水性炭素質膜の製造装置。   The apparatus for producing a hydrophilic carbonaceous film according to claim 12, further comprising a bias voltage applying unit that applies a bias voltage to the base material in the chamber.
JP2009115707A 2009-05-12 2009-05-12 Method and apparatus for producing hydrophilic carbonaceous film Active JP5382704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009115707A JP5382704B2 (en) 2009-05-12 2009-05-12 Method and apparatus for producing hydrophilic carbonaceous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009115707A JP5382704B2 (en) 2009-05-12 2009-05-12 Method and apparatus for producing hydrophilic carbonaceous film

Publications (2)

Publication Number Publication Date
JP2010265123A true JP2010265123A (en) 2010-11-25
JP5382704B2 JP5382704B2 (en) 2014-01-08

Family

ID=43362473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009115707A Active JP5382704B2 (en) 2009-05-12 2009-05-12 Method and apparatus for producing hydrophilic carbonaceous film

Country Status (1)

Country Link
JP (1) JP5382704B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531743A (en) * 2012-08-30 2015-11-05 トゥーエイ テクノロジーズ プライベート リミテッド Apparatus and method for generating diamond and performing real-time field analysis

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246116A (en) * 1988-03-29 1989-10-02 Natl Inst For Res In Inorg Mater Production of acicular, fibrous or porous diamond or their aggregate
WO1999040173A1 (en) * 1998-02-09 1999-08-12 Toyo Kohan Co., Ltd. Substrates for immobilizing and amplifying dna, dna-immobilized chips having dna immobilized on the substrates, and method for amplifying dna
WO2000022108A1 (en) * 1998-10-15 2000-04-20 Toyo Kohan Co., Ltd. Supports for immobilizing dna or the like
JP2001348296A (en) * 2000-04-05 2001-12-18 Kobe Steel Ltd Diamond having needle-shaped surface, carbon-based material having cilium-like surface, method of producing these materials and electrode and electronic device using these materials
JP2002038268A (en) * 2000-05-19 2002-02-06 Sanyo Electric Co Ltd Carbon coating and manufacturing method
JP2002115061A (en) * 2001-07-30 2002-04-19 Semiconductor Energy Lab Co Ltd Method for manufacturing diamond-like carbon film
JP2004037881A (en) * 2002-07-04 2004-02-05 Nippon Shinku Kogaku Kk Hydrophilic optical window of optical equipment and its manufacturing method
JP2004284915A (en) * 2003-03-25 2004-10-14 Japan Science & Technology Agency Amorphous carbon film formed body and production method therefor
JP2004288327A (en) * 2003-03-24 2004-10-14 Fuji Electric Device Technology Co Ltd Magnetic recording medium and method of manufacturing the same
JP2005320585A (en) * 2004-05-10 2005-11-17 Nippon Itf Kk Film whose wettability is controlled, method for forming the same and wettability-controlled film-coated article
JP2007195883A (en) * 2006-01-30 2007-08-09 Toyo Advanced Technologies Co Ltd Stent and its production method
JP2008189997A (en) * 2007-02-05 2008-08-21 Kensuke Honda Method for producing conductive diamond-like carbon
JP2008230880A (en) * 2007-03-19 2008-10-02 Toyo Advanced Technologies Co Ltd Method for modifying diamond-like thin film, superhydrophilic material, medical material, medical appliance and method for producing the same
WO2009060602A1 (en) * 2007-11-07 2009-05-14 Toyo Advanced Technologies Co., Ltd. Carbonaceous thin film and manufacturing method for same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246116A (en) * 1988-03-29 1989-10-02 Natl Inst For Res In Inorg Mater Production of acicular, fibrous or porous diamond or their aggregate
WO1999040173A1 (en) * 1998-02-09 1999-08-12 Toyo Kohan Co., Ltd. Substrates for immobilizing and amplifying dna, dna-immobilized chips having dna immobilized on the substrates, and method for amplifying dna
WO2000022108A1 (en) * 1998-10-15 2000-04-20 Toyo Kohan Co., Ltd. Supports for immobilizing dna or the like
JP2001348296A (en) * 2000-04-05 2001-12-18 Kobe Steel Ltd Diamond having needle-shaped surface, carbon-based material having cilium-like surface, method of producing these materials and electrode and electronic device using these materials
JP2002038268A (en) * 2000-05-19 2002-02-06 Sanyo Electric Co Ltd Carbon coating and manufacturing method
JP2002115061A (en) * 2001-07-30 2002-04-19 Semiconductor Energy Lab Co Ltd Method for manufacturing diamond-like carbon film
JP2004037881A (en) * 2002-07-04 2004-02-05 Nippon Shinku Kogaku Kk Hydrophilic optical window of optical equipment and its manufacturing method
JP2004288327A (en) * 2003-03-24 2004-10-14 Fuji Electric Device Technology Co Ltd Magnetic recording medium and method of manufacturing the same
JP2004284915A (en) * 2003-03-25 2004-10-14 Japan Science & Technology Agency Amorphous carbon film formed body and production method therefor
JP2005320585A (en) * 2004-05-10 2005-11-17 Nippon Itf Kk Film whose wettability is controlled, method for forming the same and wettability-controlled film-coated article
JP2007195883A (en) * 2006-01-30 2007-08-09 Toyo Advanced Technologies Co Ltd Stent and its production method
JP2008189997A (en) * 2007-02-05 2008-08-21 Kensuke Honda Method for producing conductive diamond-like carbon
JP2008230880A (en) * 2007-03-19 2008-10-02 Toyo Advanced Technologies Co Ltd Method for modifying diamond-like thin film, superhydrophilic material, medical material, medical appliance and method for producing the same
WO2009060602A1 (en) * 2007-11-07 2009-05-14 Toyo Advanced Technologies Co., Ltd. Carbonaceous thin film and manufacturing method for same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013029007; 篠原 正典 ほか: 'アモルファス炭素膜の成膜機構' 電気学会研究会資料 プラズマ研究会PST-08-37〜44, 20080704, 第9〜12ページ *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531743A (en) * 2012-08-30 2015-11-05 トゥーエイ テクノロジーズ プライベート リミテッド Apparatus and method for generating diamond and performing real-time field analysis

Also Published As

Publication number Publication date
JP5382704B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP3274669B2 (en) Fluorine resin with excellent wettability surface
Hegemann et al. Plasma polymerization of acrylic acid revisited
Li et al. A study of the initial film growth of PEG-like plasma polymer films via XPS and NEXAFS
JP5382704B2 (en) Method and apparatus for producing hydrophilic carbonaceous film
JP5467452B2 (en) Method for surface modification of amorphous carbon film
Rusanov et al. Tribochemistry of hydrogenated amorphous carbon through analysis of Mechanically Stimulated Gas Emission
Pachchigar et al. Hydrophobic to superhydrophobic and hydrophilic transitions of Ar plasma‐nanostructured PTFE surfaces
Antoun et al. Cryogenic nanoscale etching of silicon nitride selectively to silicon by alternating SiF4/O2 and Ar plasmas
Karaseov et al. Effect of ion bombardment on the phase composition and mechanical properties of diamond-like carbon films
Junior et al. Plasma nanotexturing of amorphous carbon films by reactive ion etching
US7879418B1 (en) Method for depositing fluorocarbon films on polymer surfaces
Mallik et al. Correlation between optical emission spectra and the process parameters of a 915 MHz microwave plasma CVD reactor used for depositing polycrystalline diamond coatings
Tajima et al. Physicochemical properties and morphology of fluorocarbon films synthesized on crosslinked polyethylene by capacitively coupled octafluorocyclobutane plasma
Soppera et al. Nanopatterning of plasma polymer reactive surfaces by DUV interferometry
Van Deynse et al. Plasma polymerization in a nitrogen/ethanol dielectric barrier discharge: a parameter study
Dey et al. Diamond like carbon coatings deposited by microwave plasma CVD: XPS and ellipsometric studies
Qian et al. The effects of magnetic field on the properties of diamond-like carbon films produced by high-density helicon wave plasma
JP2002338387A (en) Method of producing diamond film and diamond film
Ralchenko et al. Nanodiamond seeding for nucleation and growth of CVD diamond films
CN117733662B (en) Diamond polishing method based on plasma etching and modification effects
JP6493658B2 (en) Method for producing highly water-repellent film
Kim et al. Effects of argon and oxygen flow rate on water vapor barrier properties of silicon oxide coatings deposited on polyethylene terephthalate by plasma enhanced chemical vapor deposition
JP3318316B2 (en) Control method of carburizing condition in carburizing process
Lätsch et al. Diamond films by the excimer laser photoablation of polymers
Kato et al. Synchrotron radiation effect in the soft X-ray region on the surface properties of pyromellitic dianhydride-oxydianline polyimide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120322

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130925

R150 Certificate of patent or registration of utility model

Ref document number: 5382704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250