JP3318316B2 - Control method of carburizing condition in carburizing process - Google Patents

Control method of carburizing condition in carburizing process

Info

Publication number
JP3318316B2
JP3318316B2 JP2000151325A JP2000151325A JP3318316B2 JP 3318316 B2 JP3318316 B2 JP 3318316B2 JP 2000151325 A JP2000151325 A JP 2000151325A JP 2000151325 A JP2000151325 A JP 2000151325A JP 3318316 B2 JP3318316 B2 JP 3318316B2
Authority
JP
Japan
Prior art keywords
carburizing
refractive index
treated
carbon concentration
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000151325A
Other languages
Japanese (ja)
Other versions
JP2001040465A (en
Inventor
信幸 金山
秀一 朝比奈
優 植田
明弘 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimane Prefecture
Original Assignee
Shimane Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimane Prefecture filed Critical Shimane Prefecture
Priority to JP2000151325A priority Critical patent/JP3318316B2/en
Publication of JP2001040465A publication Critical patent/JP2001040465A/en
Application granted granted Critical
Publication of JP3318316B2 publication Critical patent/JP3318316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、金属表面の浸炭
処理における浸炭状態の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a carburizing state in a carburizing treatment of a metal surface.

【0002】[0002]

【従来の技術】一般に金属表面の浸炭処理方法として
は、コークス、グラファイト、木炭を利用する固体浸炭
法、メタン、エタン、プロパン、一酸化炭素、油蒸気、
アルコール中で行うガス浸炭法、メタン、エタン、プロ
パン等と水素ガスの混合気体を直流高電圧または高周波
を施し生成するプラズマ中で行うプラズマ浸炭法が知ら
れている。そしてこれら浸炭法では被処理材を浸炭炉中
に導入し、ヒートパターンで加熱制御して浸炭処理する
方法が一般に採用されている。
2. Description of the Related Art Generally, carburizing treatment methods for metal surfaces include solid carburizing methods using coke, graphite, and charcoal, methane, ethane, propane, carbon monoxide, oil vapor, and the like.
A gas carburizing method performed in alcohol and a plasma carburizing method performed in plasma generated by applying a DC high voltage or high frequency to a mixed gas of methane, ethane, propane, and the like and a hydrogen gas are known. In these carburizing methods, a method of introducing a material to be treated into a carburizing furnace and controlling the heating with a heat pattern to perform carburizing is generally adopted.

【0003】ところが、この方法は過去の浸炭結果に基
づく経験則であり、普遍的な表面制御は行えない。ま
た、使用している浸炭炉に固有の経験則であり、浸炭炉
毎に浸炭処理を試行することで確立しなければならな
い。
However, this method is an empirical rule based on the past carburizing results, and cannot perform universal surface control. In addition, this is an empirical rule specific to the carburizing furnace used, and must be established by performing carburizing treatment for each carburizing furnace.

【0004】推測と経験則に基づくヒートパターンに依
存した浸炭処理制御法に普遍性を与える技術としては、
浸炭被処理材の電気抵抗変化からカーボンポテンシャル
を求めて雰囲気制御する方法(特開昭63−17186
4号)、活性化炭素を浸炭雰囲気中で一定量だけ通過さ
せる浸炭制御材を、浸炭被処理材の浸炭制御面に貼付し
て所定時間浸炭処理することにより、浸炭制御面の浸炭
層厚を制御する方法(特開平3−20452号)、浸炭
被処理材の表面にペースト状の還元めっき組成物を塗布
してめっき膜を形成した後、浸炭処理することにより所
望の厚さの浸炭層を形成する方法(特開平6−2102
号)が開示されている。
[0004] As a technique for giving universality to a carburizing treatment control method depending on a heat pattern based on guesses and empirical rules, there are the following techniques.
A method of controlling the atmosphere by obtaining a carbon potential from a change in electric resistance of a carburized material (Japanese Patent Application Laid-Open No. 63-17186)
No. 4), a carburizing control material that allows a certain amount of activated carbon to pass through in a carburizing atmosphere is attached to the carburizing control surface of the material to be carburized and carburized for a predetermined time to reduce the carburizing layer thickness of the carburizing control surface. Control method (Japanese Patent Application Laid-Open No. Hei 3-20452), after applying a paste-like reduced plating composition to the surface of a material to be carburized to form a plating film, and then carburizing to form a carburized layer having a desired thickness. Forming method (JP-A-6-2102)
No.) is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記公報
に開示された各方法は浸炭被処理材の表面炭素濃度を直
接測定するものではなく、正確な炭素濃度の測定は行え
ない。また、浸炭処理中に形成されつつある表面炭素濃
度の経時変化を測定することは不可能であり、測定結果
を用いた浸炭処理の制御を行うことができない。
However, the methods disclosed in the above publications do not directly measure the surface carbon concentration of the material to be carburized, and cannot measure the carbon concentration accurately. Further, it is impossible to measure the change with time of the surface carbon concentration being formed during the carburizing treatment, and it is not possible to control the carburizing treatment using the measurement results.

【0006】高品質浸炭材の製造には極めて高い精度の
浸炭層を作製することが必要である。また、測定結果を
浸炭制御に反映させるためには安全、簡便、迅速かつ被
処理材の品質に影響を及ぼすことない測定が必要であ
る。これらの条件に対して上記公報に開示された各方法
は十分な測定方法とは言えない。
[0006] The production of high quality carburized materials requires the production of extremely high precision carburized layers. In addition, in order to reflect the measurement result in carburizing control, it is necessary to measure safely, simply, quickly, and without affecting the quality of the material to be treated. Under these conditions, the methods disclosed in the above publications cannot be said to be sufficient measurement methods.

【0007】これらの問題を解決するために本発明者ら
は鋭意研究を重ね、浸炭被処理材表面の屈折率nが浸炭
層の炭素濃度(以下浸炭濃度)に対し単調増加の関係を
示すこと、浸炭被処理材表面の屈折率時間変化が浸炭速
度に対し単調増加の関係を示すことを見出した。これよ
り、浸炭処理中に被処理材表面に可視領域の偏光を照射
し、反射光を計測し被処理材表面の屈折率及び炭素濃度
を算出した結果に基づいて浸炭制御因子フィードバッ
ク制御することにより、浸炭処理中において炭素濃度の
測定及び浸炭状態の即時制御を行うことを提唱するもの
である。
In order to solve these problems, the present inventors have conducted intensive studies and found that the refractive index n of the surface of the material to be carburized shows a monotonically increasing relationship with the carbon concentration of the carburized layer (hereinafter, carburized concentration). , the refractive index time variation of the carburized workpiece surface is found to exhibit the relationship monotonically increases with respect to carburizing rate. Thus, during the carburizing process, the surface of the material to be treated is irradiated with polarized light in the visible region, the reflected light is measured, and the carburizing control factor is fed back based on the result of calculating the refractive index and carbon concentration of the surface of the material to be treated. br /> by controlling click, it is to propose that performing an immediate control of the measurement and carburizing condition of the carbon concentration during carburization.

【0008】[0008]

【課題を解決するための手段】上記問題点を解決するた
めの本発明の方法は、浸炭処理に際し、浸炭処理中に被
処理材表面に偏光を照射して反射光を計測することによ
り、被処理材表面の屈折率を経時的に測定し、屈折率の
絶対値より被処理剤表面の炭素濃度を算出するとともに
屈折率の時間変化より浸炭速度を算出し、上記炭素濃度
と浸炭速度の算出結果に基づいて浸炭制御因子をフィー
ドバック制御し、被処理材表面が目標炭素濃度に対応す
る屈折率を示す状態になるまで浸炭処理することを特徴
としている。
According to the method of the present invention for solving the above-mentioned problems, the method is applied during carburizing.
By irradiating the surface of the treated material with polarized light and measuring the reflected light
Ri, measured over time the refractive index of the treated material surface, Ri by time change of <br/> refractive index to calculate the concentration of carbon <br/> absolute value than the treated material surface of the refractive index carburizing Calculate the speed and the above carbon concentration
Carburizing control factor based on the calculation result of the carburizing rate and fee <br/> Dobakku control and, the treated material surface is to correspond to the target carbon concentration
It is characterized in that carburizing is performed until a state of exhibiting a high refractive index is obtained.

【0009】[0009]

【発明の実施の形態】以下図示する本発明の実施形態に
つき説明すると、本発明では浸炭処理中に被処理材表面
に可視領域の偏光を照射し、反射光を計測し被処理材表
面の屈折率及び表面炭素濃度を算出し、浸炭制御因子
フィードバック制御することによる、浸炭処理中におけ
る表面炭素濃度の測定及び浸炭状態の即時制御方法を提
案するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiments of the present invention will be described below. In the present invention, the surface of the material to be treated is irradiated with polarized light in the visible region during the carburizing process, the reflected light is measured, and the surface of the material to be treated is refracted. calculating the rate and surface carbon concentration, due to <br/> feedback control of the carburizing control factor and proposes an immediate control method of the measurement and carburizing condition of surface carbon concentration in carburizing.

【0010】該方法においては偏光を被処理材に入射さ
せ、被処理材表面から放射された反射光の測定を行う。
偏光は波長200nm〜800nmの範囲のものが有効である。入
射光と反射光の強度と位相差、被処理材母材と被処理材
浸炭表面層の光学定数より浸炭表面層の屈折率、浸炭濃
度の時間変化の算出が可能となる。好ましくは分光偏光
解析装置を用いる。これより光学定数の分光特性が得ら
れるため、より高精度な情報を取得できる。
In this method, polarized light is made incident on a material to be processed, and reflected light emitted from the surface of the material to be processed is measured.
The polarized light having a wavelength in the range of 200 nm to 800 nm is effective. The temporal changes in the refractive index and carburizing concentration of the carburized surface layer can be calculated from the intensity and phase difference between the incident light and the reflected light, and the optical constants of the material to be treated and the carburized surface layer of the material to be treated. Preferably, a spectroscopic ellipsometer is used. As a result, spectral characteristics of optical constants can be obtained, so that more accurate information can be obtained.

【0011】この発明の方法においては浸炭表面層の屈
折率時間変化から表面炭素濃度、浸炭速度の算出を行
う。浸炭表面の屈折率と表面炭素濃度、屈折率時間変化
と浸炭速度が各々単調増加の関係を示すことは、本研究
によって初めて確認された挙動であり、屈折率測定、屈
折率時間変化結果より表面炭素濃度、浸炭速度が各々一
意的に決定される。さらに、被処理材の拡散定数、浸炭
処理圧力、温度より被処理材に形成される浸炭層厚は容
易に算出できる。
In the method of the present invention, the surface carbon concentration and the carburizing speed are calculated from the time change of the refractive index of the carburized surface layer. The monotonically increasing relationship between the refractive index of the carburized surface and the surface carbon concentration, the change in the refractive index over time, and the carburizing rate are the first behaviors confirmed by this study. Each of the carbon concentration and the carburizing rate is uniquely determined. Further, the thickness of the carburized layer formed on the material to be treated can be easily calculated from the diffusion constant, the carburizing pressure and the temperature of the material to be treated.

【0012】被処理材表面の屈折率の処理時間に対する
変化を図1に示す。軟鋼鋼鈑を被処理材として陰極に設
置し、浸炭炉内にCH4ガスを流量400ccmで導入し、炉
内温度930℃、印加電圧550VでDCメタンプラズマによる
浸炭処理を行った。また、炉内圧力2.2Torrで12分間浸
炭処理を行い、その後7分間プラズマを止め炭素を被処
理材内に拡散させ、さらに炉内圧力3.4Torrで5分間再
度浸炭処理を行った。被処理材表面の屈折率は浸炭処理
の進行に伴う表面炭素濃度の上昇に対して単調増加し
た。この方法により屈折率の測定により浸炭処理に伴う
被処理材の表面炭素濃度の即時測定が可能となる。
FIG. 1 shows the change in the refractive index of the surface of the material to be processed with respect to the processing time. A mild steel plate was placed on the cathode as a material to be treated, CH 4 gas was introduced into the carburizing furnace at a flow rate of 400 ccm, and carburizing treatment was performed with DC methane plasma at a furnace temperature of 930 ° C. and an applied voltage of 550 V. Carburizing treatment was performed at a furnace pressure of 2.2 Torr for 12 minutes, after which the plasma was stopped for 7 minutes to diffuse carbon into the material to be treated, and carburizing treatment was performed again at a furnace pressure of 3.4 Torr for 5 minutes. The refractive index of the surface of the material to be treated increased monotonically with the increase of the surface carbon concentration accompanying the progress of the carburizing treatment. According to this method, the surface carbon concentration of the material to be treated accompanying the carburizing treatment can be immediately measured by measuring the refractive index.

【0013】CH4ガス流量の変化に対して屈折率の時
間に対する傾きは変化し、ガス流量を増加させると屈折
率の傾きは増加した。ガス流量と被処理材の表面炭素濃
度は単調増加の関係にあることから、屈折率の傾きをガ
ス流量と対応させることにより、被処理材表面における
浸炭速度の即時測定が可能となる。
The gradient of the refractive index with respect to time changes with the change of the CH 4 gas flow rate, and the gradient of the refractive index increases as the gas flow rate increases. Since the gas flow rate and the surface carbon concentration of the material to be treated have a monotonically increasing relationship, the carburization rate on the surface of the material to be treated can be measured immediately by associating the gradient of the refractive index with the gas flow rate.

【0014】偏光測定により得られた浸炭中の被処理材
表面屈折率に対する浸炭濃度の変化を図2に示す。被処
理材浸炭濃度は浸炭中の屈折率相対変化量Δ<n>/<n
>に対して単調増加の傾向を示した。屈折率と浸炭濃度
の関係は被処理材種類毎に固有かつ普遍であり、各処理
材に対する屈折率、浸炭濃度間の関係を回帰直線あるい
は回帰曲線として得ることにより、測定された屈折率よ
り被処理材浸炭濃度を直ちに求め、浸炭処理の即時制御
を行うことが可能となる。
FIG. 2 shows the change in carburizing concentration with respect to the surface refractive index of the material to be treated during carburization, obtained by polarization measurement. The carburized concentration of the material to be treated is the relative refractive index change during carburization Δ <n> / <n
> Tended to increase monotonically. The relationship between the refractive index and the carburizing concentration is unique and universal for each type of material to be treated, and by obtaining the relationship between the refractive index and the carburizing concentration for each material as a regression line or regression curve, the relationship between the measured refractive index and It is possible to immediately obtain the carburized concentration of the treated material and to immediately control the carburizing process.

【0015】該方法においては屈折率測定、屈折率時間
変化測定によって得られた浸炭濃度、浸炭速度により
炭制御因子浸炭処理装置に対しフィードバック制御を
行う。浸炭処理装置はガス浸炭装置、プラズマ浸炭装置
が有効であり、各装置の制御条件を浸炭濃度、浸炭速度
測定結果と対応させることで、目標品質の浸炭層が被処
理材に対して施されるよう制御することが可能となる。
[0015] performing refractive index measurement in the method, carburizing concentration obtained by a change measuring refractive index time, the feedback control to the carburizing apparatus <br/> charcoal regulators immersion by carburization rate. Gas carburizing equipment and plasma carburizing equipment are effective as carburizing equipment, and the carburizing layer of target quality is applied to the material to be treated by associating the control conditions of each equipment with the carburizing concentration and carburizing speed measurement results. It becomes possible to perform such control.

【0016】屈折率、屈折率時間変化測定結果の取得、
屈折率、屈折率時間変化測定結果の表面炭素濃度、浸炭
速度への変換、浸炭処理装置制御条件と表面炭素濃度、
浸炭速度測定結果と対応付け、制御条件の浸炭処理装置
への指定には、電子計算機及び附属の通信装置を用いる
ことが極めて有効である。これにより浸炭処理中の浸炭
被処理材表面性状の等時間間隔での監視及び浸炭条件の
即時制御が可能となる。
Acquisition of refractive index and refractive index time change measurement results;
Conversion of refractive index, refractive index time change measurement results to surface carbon concentration, carburizing speed, carburizing equipment control conditions and surface carbon concentration,
It is very effective to use an electronic computer and an attached communication device for associating with a carburizing speed measurement result and designating control conditions to a carburizing apparatus. This makes it possible to monitor the surface properties of the material to be carburized during the carburizing process at equal time intervals and to immediately control the carburizing conditions.

【0017】[0017]

【実施例】浸炭炉内にCH4ガスを流量400ccmで導入
し、軟鋼鋼鈑(50mm×50mm×5mm)被処理材を陰極と
し、炉内温度930℃、印加電圧550V、処理開始後炉内圧
力2.2TorrでDCメタンプラズマによる浸炭処理を行っ
た。浸炭処理中に屈折率nの即時測定を行い、被処理材
表面が目標表面炭素濃度(0.55mass%)に対応する屈折率
を示す状態になるまで浸炭処理を行った。浸炭処理後、
電子プローブ顕微鏡による化学分析を行い、被処理材表
面炭素濃度を測定した。結果を表1上欄に示す。
[Example] CH 4 gas was introduced into a carburizing furnace at a flow rate of 400 ccm, a mild steel plate (50 mm × 50 mm × 5 mm) was used as a cathode, a furnace temperature of 930 ° C., an applied voltage of 550 V, and a furnace after the start of processing. Carburizing treatment with DC methane plasma was performed at a pressure of 2.2 Torr. Immediate measurement of the refractive index n was performed during the carburizing treatment, and the carburizing treatment was performed until the surface of the material to be treated showed a refractive index corresponding to the target surface carbon concentration (0.55 mass%). After carburizing,
Chemical analysis was performed with an electron probe microscope to measure the carbon concentration on the surface of the material to be treated. The results are shown in the upper column of Table 1.

【0018】[0018]

【比較例】浸炭炉内にCH4ガスを流量400ccmで導入
し、軟鋼鋼鈑(50mm×50mm×5mm)被処理材を陰極と
し、炉内温度930℃、印加電圧550VでDCメタンプラズマ
による浸炭処理を行った。炉内圧力2.2Torrで9分間、12
分間、15分間の浸炭処理を行った試料を作製し、各試料
の表面炭素濃度を電子プローブ顕微鏡により測定した。
浸炭処理時間と表面炭素濃度の関係から、目標表面炭素
濃度(0.55mass%)に対応する浸炭時間を回帰的に算出
し、再度軟鋼鋼鈑のメタンプラズマによる浸炭処理を行
い、作製された試料表面炭素濃度を電子プローブ顕微鏡
により測定した。結果を表1下欄に示す。
[Comparative Example] Injection of CH 4 gas into a carburizing furnace at a flow rate of 400 ccm, carburizing with DC methane plasma at a furnace temperature of 930 ° C and an applied voltage of 550 V using a mild steel plate (50 mm x 50 mm x 5 mm) as a cathode. Processing was performed. At furnace pressure 2.2 Torr for 9 minutes, 12
For 15 minutes, carburized samples were prepared, and the surface carbon concentration of each sample was measured using an electron probe microscope.
Based on the relationship between the carburizing time and the surface carbon concentration, the carburizing time corresponding to the target surface carbon concentration (0.55 mass%) was calculated recursively, and the mild steel sheet was carburized again with methane plasma to produce a sample surface. The carbon concentration was measured with an electron probe microscope. The results are shown in the lower column of Table 1.

【0019】表1に示す結果から明らかなように、実施
例と比較例(従来方法)では、目標値に対する誤差に1
1倍の差があり、本発明の方法によるものが格段に正確
であることが明らかである。
As is clear from the results shown in Table 1, in the example and the comparative example (conventional method), the error with respect to the target value is 1%.
There is a one-fold difference and it is clear that the method according to the invention is much more accurate.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】以上の如く構成される本発明の方法で
は、表面炭素濃度が光学測定によって直接計測されるた
め、上記従来の方法において提唱された方法と比較し、
極めて高い精度の炭素濃度を短時間に計測することがで
きる。また、可視領域の偏光を用いた測定方法であるた
め、安全、簡便かつ高精度の測定が可能であり、浸炭処
理の進行および被処理材の品質に影響を及ぼすことなく
測定を行うことが可能である。
According to the method of the present invention configured as described above, since the surface carbon concentration is directly measured by optical measurement, compared with the method proposed in the above conventional method,
Extremely accurate carbon concentration can be measured in a short time. In addition, since the measurement method uses polarized light in the visible region, safe, simple, and highly accurate measurement is possible, and measurement can be performed without affecting the progress of carburization and the quality of the material to be treated. It is.

【0022】さらにこの本発明の方法では、短時間で行
われる浸炭濃度測結果により浸炭制御因子浸炭炉に
対してフィードバック制御することができる。このた
め、浸炭濃度の直接測定による浸炭層厚の即時制御が可
能である。
[0022] In yet a method of the present invention, it is possible to feedback control the carburization regulators against carburizing furnace by carburization concentration measurement results to be performed in a short time. Therefore, it is possible to immediately control the thickness of the carburized layer by directly measuring the carburized concentration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例に示す方法により浸炭処理を施した軟鋼
鋼鈑表面の屈折率nの経時変化を示す。横軸は浸炭炉へ
の試料導入時からの時刻を示す。 浸炭開始時刻(印加電圧550V,炉内圧力2.2Torr)を示
す。 浸炭終了時刻を示す。 再浸炭開始時刻(印加電圧550V,炉内圧力3.4Torr)を
示す。 再浸炭終了時刻を示す。 被処理材表面領域における炭素拡散終了時刻を示
す。
FIG. 1 shows the change over time in the refractive index n of the surface of a mild steel sheet that has been carburized by the method described in the example. The horizontal axis shows the time since the sample was introduced into the carburizing furnace. Shows the carburization start time (applied voltage 550 V, furnace pressure 2.2 Torr). Indicates the carburization end time. The recarburization start time (applied voltage 550 V, furnace pressure 3.4 Torr) is shown. Indicates the end time of recarburization. This shows the carbon diffusion end time in the surface area of the material to be treated.

【図2】実施例により浸炭処理を施した軟鋼鋼鈑表面の
屈折率相対変化量Δ<n>/<n>に対する表面炭素濃度
の変化を示す。破線は測定値を、実線は測定値より求め
た回帰直線を示す。
FIG. 2 shows a change in surface carbon concentration with respect to a refractive index relative change Δ <n> / <n> of a surface of a mild steel sheet subjected to a carburizing treatment according to an example. The broken line indicates the measured value, and the solid line indicates the regression line obtained from the measured value.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森谷 明弘 島根県松江市西川津町1060 島根大学総 合理工学部内 (56)参考文献 特開 平6−77301(JP,A) 特開 平10−116871(JP,A) In−situ制御によるプラズマ利 用表皮処理プロセスの開発,ハイテクイ ンフォメーション,日本,財団法人中国 技術振興センター,2000年11月30日, 125号,12−15頁 (58)調査した分野(Int.Cl.7,DB名) C23C 8/22 C23C 8/38 G01N 33/20 G01N 21/41 JICSTファイル(JOIS) WPI(DIALOG) WPI/L(QUESTEL)────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihiro Moriya 1060 Nishikawazu-cho, Matsue-shi, Shimane Pref. Shimane University Faculty of Science and Engineering (56) References JP-A-6-77301 (JP, A) JP-A-10-116871 (JP, A) In-situ controlled plasma-based skin treatment process development, high-tech information, Japan, China Technology Promotion Center, November 30, 2000, No. 125, pp. 12-15 (58) Survey Field (Int.Cl. 7 , DB name) C23C 8/22 C23C 8/38 G01N 33/20 G01N 21/41 JICST file (JOIS) WPI (DIALOG) WPI / L (QUESTEL)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 浸炭処理に際し、浸炭処理中に被処理
材表面に偏光を照射して反射光を計測することにより、
被処理材表面の屈折率を経時的に測定し、屈折率の絶対
値より被処理剤表面の炭素濃度を算出するとともに屈折
率の時間変化より浸炭速度を算出し、上記炭素濃度と浸
炭速度の算出結果に基づいて浸炭制御因子をフィードバ
ック制御し、被処理材表面が目標炭素濃度に対応する屈
折率を示す状態になるまで浸炭処理することを特徴とす
る、浸炭処理中における浸炭状態の制御方法。
Claims: 1. During carburizing, the material is treated during the carburizing process.
By irradiating polarized light to the material surface and measuring the reflected light,
The refractive index of the treated material surface was measured over time, it calculates the concentration of carbon absolute value than the treated material surface of the refractive index to calculate the carburizing rate Ri by the time change of the refractive index, immersion and the carbon concentration
Bending the carburizing control factor based on the calculation result of the coal velocity Fidoba <br/> click control, the treated material surface is corresponding to the target carbon concentration
A method of controlling a carburizing state during a carburizing process, wherein the carburizing process is performed until a state showing a folding ratio is reached .
JP2000151325A 1999-05-25 2000-05-23 Control method of carburizing condition in carburizing process Expired - Fee Related JP3318316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000151325A JP3318316B2 (en) 1999-05-25 2000-05-23 Control method of carburizing condition in carburizing process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-145194 1999-05-25
JP14519499 1999-05-25
JP2000151325A JP3318316B2 (en) 1999-05-25 2000-05-23 Control method of carburizing condition in carburizing process

Publications (2)

Publication Number Publication Date
JP2001040465A JP2001040465A (en) 2001-02-13
JP3318316B2 true JP3318316B2 (en) 2002-08-26

Family

ID=26476386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000151325A Expired - Fee Related JP3318316B2 (en) 1999-05-25 2000-05-23 Control method of carburizing condition in carburizing process

Country Status (1)

Country Link
JP (1) JP3318316B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
In−situ制御によるプラズマ利用表皮処理プロセスの開発,ハイテクインフォメーション,日本,財団法人中国技術振興センター,2000年11月30日,125号,12−15頁

Also Published As

Publication number Publication date
JP2001040465A (en) 2001-02-13

Similar Documents

Publication Publication Date Title
Busch et al. Surface layer determination for the Si spheres of the Avogadro project
FC et al. Correlation between ID⁄ IG ratio from visible raman spectra and sp2/sp3 ratio from XPS spectra of annealed hydrogenated DLC film
Manakhov et al. Optimization of cyclopropylamine plasma polymerization toward enhanced layer stability in contact with water
Zebda et al. Surface energy and hybridization studies of amorphous carbon surfaces
EP0537062A1 (en) Treatment method for vapor deposition of a carbon layer on the surface of a metallic substrate
Xu et al. The high-accuracy prediction of carbon content in semi-coke by laser-induced breakdown spectroscopy
JP3318316B2 (en) Control method of carburizing condition in carburizing process
Anderson et al. Dynamics of polyimide curing and degradation: An in situx‐ray photoemission study
US9109277B2 (en) Method and apparatus for heat treating a metal
JP2008045975A (en) Carbon concentration distribution measuring method, and manufacturing method of carburized member using it
Antoun et al. Cryogenic nanoscale etching of silicon nitride selectively to silicon by alternating SiF4/O2 and Ar plasmas
Chin et al. An Ellipsometric Spectroscopic Study of the Passive Film on Iron‐Potential and Chloride Ion Dependence
Kovac et al. Time-dependent evolution of thin TiN films prepared by ion beam assisted deposition
JP4845014B2 (en) Method for real-time measurement of processing state in surface treatment of metal
Canchal-Arias et al. Measurement and interpretation of the mid-infrared properties of single crystal and polycrystalline gold
Diao et al. Use of angle-resolved XPS to determine depth profiles based on Fick’s second law of diffusion: description of method and simulation study
Cioffi et al. Deposition and analytical characterization of fluoropolymer thin films modified by palladium nanoparticles
Khamdokhov et al. XPS study of TiN films formed by the electric arc technique
Akimov et al. Characteristics of morphology, structure and composition of titanium surface under its modification by electrochemical polarization in phosphate‐alkaline solutions
Dorka et al. Investigation of SiO2 layers by glow discharge optical emission spectroscopy including layer thickness determination by an optical interference effect
JP5382704B2 (en) Method and apparatus for producing hydrophilic carbonaceous film
Theeten et al. In Situ Surface Analysis of the Vapor Phase Epitaxy of GaAs
CN114047090B (en) Method for accurately positioning high-jet flame thermal shock test sample and high-jet flame thermal shock test method
Tucker et al. Analysis of charge rejection by an ionomeric plasma polymerized film for biomedical sensor applications
Balducci et al. On the vapourization thermodynamics of cobalt trifluoride

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130614

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees