JP2010264346A - Solid acid catalyst - Google Patents

Solid acid catalyst Download PDF

Info

Publication number
JP2010264346A
JP2010264346A JP2009115967A JP2009115967A JP2010264346A JP 2010264346 A JP2010264346 A JP 2010264346A JP 2009115967 A JP2009115967 A JP 2009115967A JP 2009115967 A JP2009115967 A JP 2009115967A JP 2010264346 A JP2010264346 A JP 2010264346A
Authority
JP
Japan
Prior art keywords
monolith
skeleton
organic porous
porous body
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009115967A
Other languages
Japanese (ja)
Other versions
JP5294477B2 (en
Inventor
Hiroshi Inoue
洋 井上
Koji Yamanaka
弘次 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2009115967A priority Critical patent/JP5294477B2/en
Publication of JP2010264346A publication Critical patent/JP2010264346A/en
Application granted granted Critical
Publication of JP5294477B2 publication Critical patent/JP5294477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid acid catalyst which has remarkably improved permeability of a gas or liquid consisting of a raw material, a product or a mixture thereof while keeping satisfactorily high catalytic activity, has a special structure and consists of a porous ion exchanger. <P>SOLUTION: The solid acid catalyst is a composite structure composed of: an organic porous body composed of a continuous skeleton phase and a continuous pore phase; many particulate bodies which are stuck to the surfaces of a skeleton of the organic porous body and each of which has 4-40 μm diameter; and many projections which are formed on the surfaces of the skeleton of the organic porous body and each of which has 4-40 μm size and consists of the monolithic organic porous cation exchanger. The organic porous body has 10-150 μm average pore diameter in a water-wet state, 0.5-5 ml/g total pore volume and 1-5 mg-equivalent/g cation exchange capacity in a dry state. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有機反応を効率良く短時間で、かつ高い反応率で進行させる固体酸触媒に関するものである。   The present invention relates to a solid acid catalyst that allows an organic reaction to proceed efficiently in a short time and at a high reaction rate.

従来より、固体酸触媒としては、ゼオライトのようなシリカ・アルミナ化合物、ヘテロポリ酸、陽イオン交換樹脂などが知られているが、陽イオン交換樹脂を除いては、水を含む系で使用した場合、著しく活性が低下したり溶解したりするため使用することができず、含水系で用いられる固体酸触媒は、そのほとんどが陽イオン交換樹脂である。   Conventionally, silica / alumina compounds such as zeolite, heteropolyacids, cation exchange resins, etc. are known as solid acid catalysts, but when used in a system containing water except for cation exchange resins. The solid acid catalyst used in the water-containing system is mostly a cation exchange resin because it cannot be used because its activity is remarkably lowered or dissolved.

陽イオン交換樹脂の触媒活性を高めるためには、陽イオン交換樹脂の粒子径を小さくすればよいことが知られているが、反応塔に陽イオン交換樹脂を充填し被処理液を連続的に供給する場合、粒子径を小さくすると、被処理液の透過抵抗が大きくなり、大きな触媒活性を維持しつつ処理量を高めることはできない。また、反応を更に効率的に進行させる方法として、反応蒸留を用いる方法が知られているが、反応蒸留用固体酸触媒に従来の粒状の陽イオン交換樹脂を用いると、陽イオン交換樹脂の蒸留塔への充填が、原料や反応生成物からなる気体や液体の透過性を著しく阻害するため、反応蒸留への応用は困難であった。   In order to increase the catalytic activity of the cation exchange resin, it is known that the particle size of the cation exchange resin should be reduced. However, the reaction column is filled with the cation exchange resin and the liquid to be treated is continuously added. When supplying, if the particle diameter is reduced, the permeation resistance of the liquid to be treated increases, and the treatment amount cannot be increased while maintaining a large catalytic activity. In addition, as a method for making the reaction proceed more efficiently, a method using reactive distillation is known. If a conventional granular cation exchange resin is used as a solid acid catalyst for reactive distillation, the cation exchange resin is distilled. Application to reactive distillation has been difficult because the column filling significantly impedes the permeability of gases and liquids consisting of raw materials and reaction products.

そこで、上記欠点を解決する方法として、互いにつながっているマクロポアとマクロポアの壁内に平均径が1〜1,000μm のメソポアを有する連続気泡構造を有し、全細孔容積が1〜50ml/gであり、陽イオン交換基が均一に分布され、陽イオン交換容量が0.5mg 当量/g乾燥多孔質体以上の多孔質イオン交換体からなる固体酸触媒(特開2002−346392号公報)が提案されている。この固体酸触媒によれば、陽イオン交換基密度が高く、大きな細孔容積および比表面積を有するため、高い触媒活性を示すと共に、原料または生成物、あるいはその混合物からなる気体や液体の透過性に優れ、有機反応を効率良く短時間で、かつ高い反応率で進行させ得ることができる。なお、特開2002−306976号にはこの多孔質イオン交換体の製造方法の詳細が開示されている。   Therefore, as a method for solving the above-mentioned drawbacks, it has an open cell structure having mesopores having an average diameter of 1 to 1,000 μm in the macropores and the walls of the macropores, and the total pore volume is 1 to 50 ml / g. A solid acid catalyst (Japanese Patent Laid-Open No. 2002-346392) comprising a porous ion exchanger in which the cation exchange groups are uniformly distributed and the cation exchange capacity is 0.5 mg equivalent / g or more of a dry porous body. Proposed. This solid acid catalyst has a high cation exchange group density, a large pore volume and a specific surface area, so that it exhibits high catalytic activity and permeability of gases and liquids composed of raw materials or products, or mixtures thereof. The organic reaction can be efficiently advanced in a short time and at a high reaction rate. Japanese Patent Laid-Open No. 2002-306976 discloses details of a method for producing this porous ion exchanger.

特開2002−346392号公報(特許請求の範囲)JP 2002-346392 A (Claims) 特開2002−306976号JP 2002-306976 A 特開2009−62512号公報JP 2009-62512 A 特開2009−67982号公報JP 2009-67982 A

しかしながら、特開2002−346392号公報の固体酸触媒において、モノリスの共通の開口(メソポア)は1〜1,000μmと記載されているが、全細孔容積5ml/g以下の細孔容積の小さなモノリスについては、油中水滴型エマルジョン中の水滴の量を少なくする必要があるため共通の開口は小さくなり、実質的に開口の平均径20μm以上のものは製造できない。このため、通水差圧が大きくなってしまうという問題があった。また、特開2002−346392号公報の固体酸触媒は、触媒活性としては十分ではあるが、反応生成物に未反応物が残留し、高純度のものを得るという点では改良の余地があった。また、特開2002−346392号公報の固体酸触媒(連続気泡構造)とは異なる新たな構造のモノリスの登場も望まれていた。   However, in the solid acid catalyst disclosed in Japanese Patent Application Laid-Open No. 2002-346392, the common opening (mesopore) of the monolith is described as 1 to 1,000 μm, but the pore volume is small with a total pore volume of 5 ml / g or less. For monoliths, the amount of water droplets in the water-in-oil emulsion needs to be reduced, so that the common aperture is small, and it is not possible to produce a substantially average aperture of 20 μm or more. For this reason, there existed a problem that water flow differential pressure | voltage will become large. Further, the solid acid catalyst disclosed in JP-A No. 2002-346392 has sufficient catalytic activity, but there is room for improvement in terms of obtaining a high-purity product in which unreacted substances remain in the reaction product. . Moreover, the appearance of a monolith having a new structure different from the solid acid catalyst (open cell structure) disclosed in JP-A-2002-346392 has been desired.

従って、本発明の目的は、十分に高い触媒活性を維持しつつ、未反応物の残量を抑制し、原料または生成物、あるいはそれらの混合物からなる気体や液体の透過性を顕著に改良した、新規構造を有する多孔質イオン交換体からなる固体酸触媒を提供することにある。   Therefore, the object of the present invention is to suppress the remaining amount of unreacted substances while maintaining a sufficiently high catalytic activity, and to significantly improve the permeability of gases and liquids composed of raw materials or products, or mixtures thereof. An object of the present invention is to provide a solid acid catalyst comprising a porous ion exchanger having a novel structure.

かかる実情において、本発明者らは鋭意検討を行った結果、特開2002−306976号公報記載の方法で得られた比較的大きな細孔容積を有するモノリス状有機多孔質体(中間体)の存在下に、特定の条件下、ビニルモノマーと架橋剤を有機溶媒中で静置重合すれば、有機多孔質体を構成する骨格表面上に直径2〜20μmの多数の粒子体が固着する又は突起体が形成された複合構造を有するモノリスが得られること、この複合モノリスにイオン交換基を導入した複合モノリスイオン交換体は、固体酸触媒として用いれば、十分に高い触媒活性を維持しつつ、未反応物の残量を抑制し、原料または生成物、あるいはそれらの混合物からなる気体や液体の透過性を顕著に改良できることなどを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have conducted intensive studies, and as a result, the existence of a monolithic organic porous material (intermediate) having a relatively large pore volume obtained by the method described in JP-A-2002-306976. Below, if a vinyl monomer and a crosslinking agent are allowed to stand in an organic solvent under specific conditions, a large number of particles having a diameter of 2 to 20 μm are fixed on the surface of the skeleton constituting the organic porous body, or a protrusion. A monolith having a composite structure in which an ion exchange group is formed is obtained, and a composite monolith ion exchanger in which an ion exchange group is introduced into this composite monolith is used as a solid acid catalyst, while maintaining a sufficiently high catalytic activity and unreacted. The inventors have found that the remaining amount of the product can be suppressed and the permeability of the gas or liquid made of the raw material or product, or a mixture thereof can be remarkably improved, and the present invention has been completed.

すなわち、本発明は、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、陽イオン交換容量1〜5mg当量/g乾燥多孔質体であるモノリス状有機多孔質カチオン交換体からなることを特徴とする固体酸触媒を提供するものである。   That is, the present invention relates to an organic porous body composed of a continuous skeleton phase and a continuous pore phase, a large number of particles having a diameter of 4 to 40 μm fixed to the skeleton surface of the organic porous body, or the skeleton of the organic porous body. A composite structure with a large number of protrusions having a size of 4 to 40 μm formed on the surface, with an average pore diameter of 10 to 150 μm and a total pore volume of 0.5 to 5 ml / g in a wet state. The present invention provides a solid acid catalyst comprising a monolithic organic porous cation exchanger having a cation exchange capacity of 1 to 5 mg equivalent / g dry porous body.

本発明の新規構造の多孔質イオン交換体からなる固体酸触媒は、イオン交換帯長さに代表される接触効率が大きいため、より高い触媒活性を示すと共に、未反応物の残量を抑制し、原料または生成物、あるいはその混合物からなる気体や液体の透過性が顕著に優れる。   The solid acid catalyst comprising a porous ion exchanger having a novel structure according to the present invention has a higher contact efficiency represented by the ion exchange zone length, and therefore exhibits higher catalytic activity and suppresses the remaining amount of unreacted substances. The permeability of gas or liquid made of raw materials or products or mixtures thereof is remarkably excellent.

実施例1で得られたモノリスの倍率100のSEM画像である。2 is a SEM image of the monolith obtained in Example 1 at a magnification of 100. FIG. 実施例1で得られたモノリスの倍率300のSEM画像である。2 is an SEM image of the monolith obtained in Example 1 at a magnification of 300. FIG. 実施例1で得られたモノリスの倍率3000のSEM画像である。2 is an SEM image of the monolith obtained in Example 1 at a magnification of 3000. 実施例1で得られたモノリスカチオン交換体の表面における硫黄原子の分布状態を示したEPMA画像である。2 is an EPMA image showing the distribution state of sulfur atoms on the surface of the monolith cation exchanger obtained in Example 1. FIG. 実施例1で得られたモノリスカチオン交換体の断面(厚み)方向における硫黄原子の分布状態を示したEPMA画像である。2 is an EPMA image showing the distribution state of sulfur atoms in the cross-section (thickness) direction of the monolith cation exchanger obtained in Example 1. FIG. 実施例2で得られたモノリスの倍率100のSEM画像である。4 is a SEM image of a monolith obtained in Example 2 at a magnification of 100. FIG. 実施例2で得られたモノリスの倍率600のSEM画像である。4 is a SEM image of a monolith obtained in Example 2 at a magnification of 600. FIG. 実施例2で得られたモノリスの倍率3000のSEM画像である。3 is a SEM image of the monolith obtained in Example 2 at a magnification of 3000. 実施例3で得られたモノリスの倍率600のSEM画像である。4 is a SEM image of a monolith obtained in Example 3 at a magnification of 600. FIG. 実施例3で得られたモノリスの倍率3000のSEM画像である。4 is an SEM image of the monolith obtained in Example 3 at a magnification of 3000. 実施例4で得られたモノリスの倍率3000のSEM画像である。4 is an SEM image of the monolith obtained in Example 4 at a magnification of 3000. 実施例5で得られたモノリスの倍率100のSEM画像である。6 is a SEM image of a monolith obtained in Example 5 at a magnification of 100. FIG. 実施例5で得られたモノリスの倍率3000のSEM画像である。6 is an SEM image of the monolith obtained in Example 5 at a magnification of 3000. 突起体の模式的な断面図である。It is typical sectional drawing of a protrusion.

本発明の固体酸触媒は複合構造を有するモノリス状有機多孔質カチオン交換体である。本明細書中、「モノリス状有機多孔質体」を単に「複合モノリス」と、「モノリス状有機多孔質カチオン交換体」又は「モノリス状有機多孔質イオン交換体」を単に「複合モノリスイオン交換体」と、「モノリス状の有機多孔質中間体」を単に「モノリス中間体」とも言う。   The solid acid catalyst of the present invention is a monolithic organic porous cation exchanger having a composite structure. In the present specification, “monolithic organic porous body” is simply referred to as “composite monolith” and “monolithic organic porous cation exchanger” or “monolithic organic porous ion exchanger” is simply referred to as “composite monolithic ion exchanger”. "Monolithic organic porous intermediate" is also simply referred to as "monolith intermediate".

<複合モノリスイオン交換体の説明>
複合モノリスイオン交換体は、複合モノリスにイオン交換基を導入することで得られるものであり、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体との複合構造体であるか、又は連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、陽イオン交換容量1〜5mg当量/g乾燥多孔質体であり、陽イオン交換基が該複合構造体中に均一に分布している。なお、本明細書中、「粒子体」及び「突起体」を併せて「粒子体等」と言うことがある。
<Description of composite monolith ion exchanger>
A composite monolith ion exchanger is obtained by introducing an ion exchange group into a composite monolith, and is fixed to an organic porous body composed of a continuous skeleton phase and a continuous pore phase, and to the skeleton surface of the organic porous body. An organic porous body consisting of a continuous skeleton phase and a continuous pore phase, and a size formed on the skeleton surface of the organic porous body. A composite structure with a large number of protrusions having a thickness of 4 to 40 μm, having an average pore diameter of 10 to 150 μm, a total pore volume of 0.5 to 5 ml / g in a water-wet state, and a cation exchange capacity of 1 ˜5 mg equivalent / g dry porous body, and cation exchange groups are uniformly distributed in the composite structure. In the present specification, “particle bodies” and “projections” may be collectively referred to as “particle bodies”.

有機多孔質体の連続骨格相と連続空孔相(乾燥体)は、SEM画像により観察することができる。有機多孔質体の基本構造としては、連続マクロポア構造及び共連続構造が挙げられる。有機多孔質体の骨格相は、柱状の連続体、凹状の壁面の連続体あるいはこれらの複合体として表れるもので、粒子状や突起状とは明らかに相違する形状のものである。   The continuous skeleton phase and the continuous pore phase (dried body) of the organic porous body can be observed by an SEM image. Examples of the basic structure of the organic porous material include a continuous macropore structure and a co-continuous structure. The skeletal phase of the organic porous material appears as a columnar continuum, a concave wall continuum, or a composite thereof, and has a shape that is clearly different from a particle shape or a protrusion shape.

有機多孔質体の好ましい構造としては、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜150μmの開口となる連続マクロポア構造体(以下、「第1の有機多孔質イオン交換体」とも言う。)及び水湿潤状態で平均の太さが1〜60μmの三次元的に連続した骨格と、その骨格間に平均直径が水湿潤状態で10〜100μmの三次元的に連続した空孔とからなる共連続構造体(以下、「第2の有機多孔質イオン交換体」とも言う。)が挙げられる。   As a preferable structure of the organic porous body, a continuous macropore structure (hereinafter referred to as “first organic porous ion”) in which bubble-shaped macropores overlap each other, and the overlapping portion becomes an opening having an average diameter of 30 to 150 μm in a wet state. And a three-dimensional continuous skeleton having an average thickness of 1 to 60 μm in a water-wet state, and three-dimensional continuous having an average diameter of 10 to 100 μm in a water-wet state between the skeletons. A co-continuous structure (hereinafter, also referred to as “second organic porous ion exchanger”).

第1の有機多孔質イオン交換体の場合、有機多孔質体は、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜150μmの開口(メソポア)となる連続マクロポア構造体である。複合モノリスイオン交換体の開口の平均直径は、モノリスにイオン交換基を導入する際、複合モノリス全体が膨潤するため、乾燥状態の複合モノリスの開口の平均直径よりも大となる。開口の平均直径が30μm未満であると、液体や気体の透過時の圧力損失が大きくなってしまうため好ましくなく、開口の平均直径が大き過ぎると、液体や気体と複合モノリスイオン交換体との接触が不十分となり、その結果、触媒による反応効率が低下してしまうため好ましくない。   In the case of the first organic porous ion exchanger, the organic porous body is a continuous macropore structure in which bubble-shaped macropores are overlapped with each other, and the overlapping portions form openings (mesopores) having an average diameter of 30 to 150 μm in a wet state. It is. The average diameter of the opening of the composite monolith ion exchanger is larger than the average diameter of the opening of the composite monolith in a dry state because the entire composite monolith swells when an ion exchange group is introduced into the monolith. If the average diameter of the openings is less than 30 μm, the pressure loss during the permeation of the liquid or gas increases, which is not preferable. If the average diameter of the openings is too large, contact between the liquid or gas and the composite monolith ion exchanger Becomes unsatisfactory, and as a result, the reaction efficiency by the catalyst decreases, which is not preferable.

なお、本発明では、乾燥状態のモノリス中間体の開口の平均直径、乾燥状態の複合モノリスの空孔又は開口の平均直径及び乾燥状態の複合モノリスイオン交換体の空孔又は開口の平均直径は、水銀圧入法により測定される値である。また、本発明の有機多孔質イオン交換体において、水湿潤状態の複合モノリスイオン交換体の空孔又は開口の平均直径は、乾燥状態の複合モノリスイオン交換体の空孔又は開口の平均直径に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態の複合モノリスイオン交換体の直径がx1(mm)であり、その水湿潤状態の複合モノリスイオン交換体を乾燥させ、得られる乾燥状態の複合モノリスイオン交換体の直径がy1(mm)であり、この乾燥状態の複合モノリスイオン交換体を水銀圧入法により測定したときの空孔又は開口の平均直径がz1(μm)であったとすると、水湿潤状態の複合モノリスイオン交換体の空孔又は開口の平均直径(μm)は、次式「水湿潤状態の複合モノリスイオン交換体の空孔又は開口の平均直径(μm)=z1×(x1/y1)」で算出される。また、イオン交換基導入前の乾燥状態の複合モノリスの空孔又は開口の平均直径、及びその乾燥状態の複合モノリスにイオン交換基導入したときの乾燥状態の複合モノリスに対する水湿潤状態の複合モノリスイオン交換体の膨潤率がわかる場合は、乾燥状態の複合モノリスの空孔又は開口の平均直径に、膨潤率を乗じて、複合モノリスイオン交換体の空孔の水湿潤状態の平均直径を算出することもできる。   In the present invention, the average diameter of the openings of the dry monolith intermediate, the average diameter of the pores or openings of the dry composite monolith, and the average diameter of the holes or openings of the dry composite monolith ion exchanger are: It is a value measured by the mercury intrusion method. Further, in the organic porous ion exchanger of the present invention, the average diameter of the pores or openings of the composite monolith ion exchanger in the water wet state is the average diameter of the pores or openings of the composite monolith ion exchanger in the dry state. It is a value calculated by multiplying the swelling rate. Specifically, the diameter of the composite monolith ion exchanger in the water wet state is x1 (mm), the diameter of the composite monolith ion exchanger in the dry state obtained by drying the composite monolith ion exchanger in the water wet state. And y1 (mm), and the average diameter of the pores or openings when the dry monolithic ion exchanger is measured by mercury porosimetry is z1 (μm) The average diameter (μm) of the holes or openings of the exchanger is calculated by the following formula “average diameter of holes or openings (μm) = z1 × (x1 / y1) of the composite monolith ion exchanger in a water-wet state”. The Also, the average diameter of the pores or openings of the dry composite monolith before introduction of the ion exchange group, and the water-wetting composite monolith ion relative to the dry composite monolith when the ion exchange group is introduced into the dry composite monolith When the swelling ratio of the exchanger is known, the average diameter of the pores or openings of the composite monolith in the dry state is multiplied by the swelling ratio to calculate the average diameter of the pores of the composite monolith ion exchanger in the water wet state. You can also.

第2の有機多孔質体イオン交換体の場合、有機多孔質体は、水湿潤状態で平均直径が1〜60μmの三次元的に連続した骨格と、その骨格間に平均直径が水湿潤状態で10〜100μmの三次元的に連続した空孔を有する共連続構造である。三次元的に連続した空孔の直径が10μm未満であると、液体や気体の透過時の圧力損失が大きくなってしまうため好ましくなく、100μmを超えると、液体や気体とモノリスイオン交換体との接触が不十分となり、その結果、触媒による反応効率が低下してしまうため好ましくない。   In the case of the second organic porous body ion exchanger, the organic porous body has a three-dimensionally continuous skeleton having an average diameter of 1 to 60 μm in a water-wet state, and an average diameter between the skeletons in a water-wet state. It is a co-continuous structure having three-dimensionally continuous pores of 10 to 100 μm. If the diameter of the three-dimensionally continuous pores is less than 10 μm, the pressure loss at the time of permeation of the liquid or gas increases, which is not preferable, and if it exceeds 100 μm, the liquid or gas and the monolith ion exchanger The contact becomes insufficient, and as a result, the reaction efficiency by the catalyst is lowered, which is not preferable.

上記共連続構造の空孔の水湿潤状態での平均直径は、公知の水銀圧入法で測定した乾燥状態の複合モノリスイオン交換体の空孔の平均直径に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態の複合モノリスイオン交換体の直径がx2(mm)であり、その水湿潤状態の複合モノリスイオン交換体を乾燥させ、得られる乾燥状態の複合モノリスイオン交換体の直径がy2(mm)であり、この乾燥状態の複合モノリスイオン交換体を水銀圧入法により測定したときの空孔の平均直径がz2(μm)であったとすると、複合モノリスイオン交換体の空孔の水湿潤状態での平均直径(μm)は、次式「複合モノリスイオン交換体の空孔の水湿潤状態の平均直径(μm)=z2×(x2/y2)」で算出される。また、イオン交換基導入前の乾燥状態の複合モノリスの空孔の平均直径、及びその乾燥状態の複合モノリスにイオン交換基導入したときの乾燥状態の複合モノリスに対する水湿潤状態の複合モノリスイオン交換体の膨潤率がわかる場合は、乾燥状態の複合モノリスの空孔の平均直径に、膨潤率を乗じて、複合モノリスイオン交換体の空孔の水湿潤状態の平均直径を算出することもできる。また、上記共連続構造体の骨格の水湿潤状態での平均太さは、乾燥状態の複合モノリスイオン交換体のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、その平均値に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態の複合モノリスイオン交換体の直径がx3(mm)であり、その水湿潤状態の複合モノリスイオン交換体を乾燥させ、得られる乾燥状態の複合モノリスイオン交換体の直径がy3(mm)であり、この乾燥状態の複合モノリスイオン交換体のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、その平均値がz3(μm)であったとすると、複合モノリスイオン交換体の連続構造体の骨格の水湿潤状態での平均太さ(μm)は、次式「複合モノリスイオン交換体の連続構造体の骨格の水湿潤状態の平均太さ(μm)=z3×(x3/y3)」で算出される。また、イオン交換基導入前の乾燥状態の複合モノリスの骨格の平均太さ、及びその乾燥状態の複合モノリスにイオン交換基導入したときの乾燥状態の複合モノリスに対する水湿潤状態の複合モノリスイオン交換体の膨潤率がわかる場合は、乾燥状態の複合モノリスの骨格の平均太さに、膨潤率を乗じて、複合モノリスイオン交換体の骨格の水湿潤状態の平均太さを算出することもできる。なお、共連続構造を形成する骨格は棒状であり円形断面形状であるが、楕円断面形状等異径断面のものが含まれていてもよい。この場合の太さは短径と長径の平均である。   The average diameter of the co-continuous structure pores in the water-wet state is a value calculated by multiplying the average diameter of the pores of the composite monolith ion exchanger in the dry state measured by a known mercury intrusion method and the swelling ratio. It is. Specifically, the diameter of the composite monolith ion exchanger in the water wet state is x2 (mm), the diameter of the composite monolith ion exchanger in the dry state obtained by drying the composite monolith ion exchanger in the water wet state. Is y2 (mm), and the average diameter of the pores when the dried monolithic ion exchanger is measured by mercury porosimetry is z2 (μm), the pores of the composite monolith ion exchanger The average diameter (μm) in the water-wet state is calculated by the following formula: “Average diameter (μm) of the pores of the composite monolith ion exchanger in the water-wet state = z2 × (x2 / y2)”. In addition, the average diameter of the pores of the dry composite monolith before introduction of the ion exchange group, and the water-wet composite monolith ion exchanger with respect to the dry composite monolith when the ion exchange group is introduced into the dry composite monolith Can be calculated by multiplying the average diameter of the pores of the composite monolith in the dry state by the swelling ratio to calculate the average diameter of the pores of the composite monolith ion exchanger in the water-wet state. The average thickness of the skeleton of the co-continuous structure in the wet state is determined by performing SEM observation of the composite monolith ion exchanger in the dry state at least three times and measuring the thickness of the skeleton in the obtained image. The average value is calculated by multiplying the swelling ratio. Specifically, the diameter of the composite monolith ion exchanger in the water wet state is x3 (mm), the diameter of the composite monolith ion exchanger in the dry state obtained by drying the composite monolith ion exchanger in the water wet state. Y3 (mm), SEM observation of this dried composite monolith ion exchanger was performed at least three times, the thickness of the skeleton in the obtained image was measured, and the average value was z3 (μm). The average thickness (μm) of the skeleton of the continuous structure of the composite monolith ion exchanger in the water-wet state is expressed by the following formula: “average thickness of the skeleton of the continuous structure of the composite monolith ion exchanger in the water-wet state” (Μm) = z3 × (x3 / y3) ”. Further, the average thickness of the skeleton of the composite monolith in the dry state before the introduction of the ion exchange group, and the water-wet composite monolith ion exchanger with respect to the dry composite monolith when the ion exchange group is introduced into the dry composite monolith Can be calculated by multiplying the average thickness of the skeleton of the composite monolith in the dry state by the swell ratio to the water-wet state of the skeleton of the composite monolith ion exchanger. The skeleton forming the co-continuous structure is rod-shaped and has a circular cross-sectional shape, but may have a cross-section with different diameters such as an elliptical cross-sectional shape. The thickness in this case is the average of the minor axis and the major axis.

また、三次元的に連続した骨格の平均直径が1μm未満であると、体積当りのイオン交換容量が低下してしまうため好ましくなく、60μmを超えると、イオン交換特性の均一性が失われるため好ましくない。   Further, if the average diameter of the three-dimensionally continuous skeleton is less than 1 μm, it is not preferable because the ion exchange capacity per volume decreases, and if it exceeds 60 μm, the uniformity of ion exchange characteristics is lost. Absent.

複合モノリスイオン交換体の水湿潤状態での孔の平均直径の好ましい値は10〜120μmである。複合モノリスイオン交換体を構成する有機多孔質体が第1の有機多孔質体の場合、複合モノリスイオン交換体の孔径の好ましい値は30〜120μm、複合モノリスイオン交換体を構成する有機多孔質体が第2の有機多孔質体の場合、複合モノリスイオン交換体の孔径の好ましい値は10〜90μmである。   A preferable value of the average diameter of the pores of the composite monolith ion exchanger in a wet state with water is 10 to 120 μm. When the organic porous body constituting the composite monolith ion exchanger is the first organic porous body, the preferred pore diameter of the composite monolith ion exchanger is 30 to 120 μm, and the organic porous body constituting the composite monolith ion exchanger In the case of the second organic porous body, a preferable value of the pore diameter of the composite monolith ion exchanger is 10 to 90 μm.

本発明に係る複合モノリスイオン交換体において、水湿潤状態での粒子体の直径及び突起体の大きさは、4〜40μm、好ましくは4〜30μm、特に好ましくは4〜20μmである。なお、本発明において、粒子体及び突起体は、共に骨格表面に突起状に観察されるものであり、粒状に観察されるものを粒子体と称し、粒状とは言えない突起状のものを突起体と称する。図14に、突起体の模式的な断面図を示す。図14中の(A)〜(E)に示すように、骨格表面61から突き出している突起状のものが突起体62であり、突起体62には、(A)に示す突起体62aのように粒状に近い形状のもの、(B)に示す突起体62bのように半球状のもの、(C)に示す突起体62cのように骨格表面の盛り上がりのようなもの等が挙げられる。また、他には、突起体61には、(D)に示す突起体62dのように、骨格表面61の平面方向よりも、骨格表面61に対して垂直方向の方が長い形状のものや、(E)に示す突起体62eのように、複数の方向に突起した形状のものもある。また、突起体の大きさは、SEM観察したときのSEM画像で判断され、個々の突起体のSEM画像での幅が最も大きくなる部分の長さを指す。   In the composite monolith ion exchanger according to the present invention, the diameter of the particles and the size of the protrusions in a wet state are 4 to 40 μm, preferably 4 to 30 μm, and particularly preferably 4 to 20 μm. In the present invention, both the particles and the protrusions are observed as protrusions on the surface of the skeleton, and the particles observed are referred to as particles, and the protrusions that are not granular are protrusions. Called the body. FIG. 14 shows a schematic cross-sectional view of the protrusion. As shown to (A)-(E) in FIG. 14, the protrusion-shaped thing protruded from the skeleton surface 61 is the protrusion 62, and the protrusion 62 is like the protrusion 62a shown to (A). The shape close to a granular shape, a hemispherical shape like a projection 62b shown in (B), and a swell of the skeleton surface like a projection 62c shown in (C). In addition, the protrusion 61 has a shape that is longer in the direction perpendicular to the skeleton surface 61 than in the plane direction of the skeleton surface 61, like the protrusion 62d shown in FIG. There is a thing of the shape which protruded in the several direction like the protrusion 62e shown to (E). Further, the size of the protrusions is determined by the SEM image when observed by SEM, and indicates the length of the portion where the width of each protrusion is the largest in the SEM image.

本発明に係る複合モノリスイオン交換体において、全粒子体等中、水湿潤状態で4〜40μmの粒子体等が占める割合は70%以上、好ましくは80%以上である。なお、全粒子体等中の水湿潤状態で4〜40μmの粒子体等が占める割合は、全粒子体等の個数に占める水湿潤状態で4〜40μmの粒子体等の個数割合を指す。また、骨格相の表面は全粒子体等により40%以上、好ましくは50%以上被覆されている。なお、粒子体等による骨格層の表面の被覆割合は、SEMにより表面観察にしたときのSEM画像上の面積割合、つまり、表面を平面視したときの面積割合を指す。壁面や骨格を被覆している粒子の大きさが上記範囲を逸脱すると、流体と複合モノリスイオン交換体の骨格表面及び骨格内部との接触効率を改善する効果が小さくなってしまうため好ましくない。なお、全粒子体等とは、水湿潤状態で4〜40μmの粒子体等以外の大きさの範囲の粒子体及び突起体も全て含めた、骨格層の表面に形成されている全ての粒子体及び突起体を指す。   In the composite monolith ion exchanger according to the present invention, the proportion of 4 to 40 μm particles in a wet state in water is 70% or more, preferably 80% or more. In addition, the ratio which 4-40 micrometers particle bodies etc. occupy in the water wet state in all the particle bodies etc. points out the number ratio of 4-40 micrometers particle bodies etc. in the water wet state which occupy the number of all particle bodies. Further, the surface of the skeletal phase is covered by 40% or more, preferably 50% or more by the whole particles. The coverage ratio of the surface of the skeleton layer with particles or the like refers to the area ratio on the SEM image when the surface is observed by SEM, that is, the area ratio when the surface is viewed in plan. If the size of the particle covering the wall surface or the skeleton deviates from the above range, the effect of improving the contact efficiency between the fluid and the skeleton surface of the composite monolith ion exchanger and the inside of the skeleton is not preferable. In addition, all the particulate bodies etc. are all the particulate bodies formed on the surface of the skeleton layer including all the particulate bodies and protrusions in the size range other than the 4-40 μm particulate bodies in the wet state. And a protrusion.

上記複合モノリスイオン交換体の骨格表面に付着した粒子体等の水湿潤状態での直径又は大きさは、乾燥状態の複合モノリスイオン交換体のSEM画像の観察により得られる粒子体等の直径又は大きさに、乾燥状態から湿潤状態となった際の膨潤率を乗じて算出した値、又はイオン交換基導入前の乾燥状態の複合モノリスのSEM画像の観察により得られる粒子体等の直径又は大きさに、イオン交換基導入前後の膨潤率を乗じて算出した値である。具体的には、水湿潤状態の複合モノリスイオン交換体の直径がx4(mm)であり、その水湿潤状態の複合モノリスイオン交換体を乾燥させ、得られる乾燥状態の複合モノリスイオン交換体の直径がy4(mm)であり、この乾燥状態の複合モノリスイオン交換体をSEM観察したときのSEM画像中の粒子体等の直径又は大きさがz4(μm)であったとすると、水湿潤状態の複合モノリスイオン交換体の粒子体等の直径又は大きさ(μm)は、次式「水湿潤状態の複合モノリスイオン交換体の粒子体等の直径又は大きさ(μm)=z4×(x4/y4)」で算出される。そして、乾燥状態の複合モノリスイオン交換体のSEM画像中に観察される全ての粒子体等の直径又は大きさを測定して、その値を基に、1視野のSEM画像中の全粒子体等の水湿潤状態での直径又は大きさを算出する。この乾燥状態の複合モノリスイオン交換体のSEM観察を少なくとも3回行い、全視野において、SEM画像中の全粒子体等の水湿潤状態での直径又は大きさを算出して、直径又は大きさが4〜40μmにある粒子体等が観察されるか否かを確認し、全視野において確認された場合、複合モノリスイオン交換体の骨格表面上に、直径又は大きさが水湿潤状態で4〜40μmにある粒子体が形成されていると判断する。また、上記に従って1視野毎にSEM画像中の全粒子体等の水湿潤状態での直径又は大きさを算出し、各視野毎に、全粒子体等に占める水湿潤状態で4〜40μmの粒子体等の割合を求め、全視野において、全粒子体等中の水湿潤状態で4〜40μmの粒子体等が占める割合が70%以上であった場合には、複合モノリスイオン交換体の骨格表面に形成されている全粒子体等中、水湿潤状態で4〜40μmの粒子体等が占める割合は70%以上であると判断する。また、上記に従って1視野毎にSEM画像中の全粒子体等による骨格層の表面の被覆割合を求め、全視野において、全粒子体等による骨格層の表面の被覆割合が40%以上であった場合には、複合モノリスイオン交換体の骨格層の表面が全粒子体等により被覆されている割合が40%以上であると判断する。また、イオン交換基導入前の乾燥状態の複合モノリスの粒子体等の直径又は大きさと、その乾燥状態のモノリスにイオン交換基導入したときの乾燥状態の複合モノリスに対する水湿潤状態の複合モノリスイオン交換体の膨潤率とがわかる場合は、乾燥状態の複合モノリスの粒子体等の直径又は大きさに、膨潤率を乗じて、水湿潤状態の複合モノリスイオン交換体の粒子体等の直径又は大きさを算出して、上記と同様にして、水湿潤状態の複合モノリスイオン交換体の粒子体等の直径又は大きさ、全粒子体等中、水湿潤状態で4〜40μmの粒子体等が占める割合、粒子体等による骨格層の表面の被覆割合を求めることもできる。   The diameter or size of the particles attached to the surface of the skeleton of the composite monolith ion exchanger in the water-wet state is the diameter or size of the particles obtained by observing the SEM image of the composite monolith ion exchanger in the dry state. Further, the value calculated by multiplying the swelling rate when the dry state is changed to the wet state, or the diameter or size of the particulates obtained by observing the SEM image of the composite monolith in the dry state before introducing the ion exchange group And a value calculated by multiplying the swelling ratio before and after introduction of the ion exchange group. Specifically, the diameter of the composite monolith ion exchanger in the water wet state is x4 (mm), the diameter of the composite monolith ion exchanger in the dry state obtained by drying the composite monolith ion exchanger in the water wet state. Is y4 (mm), and the diameter or size of the particles in the SEM image of the dried composite monolith ion exchanger observed by SEM is z4 (μm). The diameter or size (μm) of the particles of the monolith ion exchanger is expressed by the following formula: “diameter or size (μm) of the particles of the composite monolith ion exchanger in a water-wet state” = z4 × (x4 / y4) Is calculated. Then, the diameter or size of all particles observed in the SEM image of the composite monolith ion exchanger in the dry state is measured, and based on the value, all particles in one field of view SEM image, etc. The diameter or size of the water in a wet state is calculated. The SEM observation of the dried composite monolith ion exchanger is performed at least three times, and the diameter or size of the whole particle in the SEM image in the water-wet state is calculated in all fields of view. It is confirmed whether or not a particle body or the like at 4 to 40 μm is observed, and when it is confirmed in the entire visual field, the diameter or size is 4 to 40 μm in a wet state on the skeleton surface of the composite monolith ion exchanger. It is determined that the particle body at is formed. Further, according to the above, the diameter or size in the water wet state of all particles in the SEM image is calculated for each visual field, and the particle size of 4 to 40 μm in the water wet state occupying in the whole particles for each visual field. When the proportion of the particles, etc. is 40% or more in the wet state in all the particles in the entire visual field, the skeleton surface of the composite monolith ion exchanger is obtained. It is determined that the proportion of 4 to 40 μm particles in the wet state is 70% or more in all particles formed in the above. Further, according to the above, the coverage ratio of the surface of the skeletal layer with all particles in the SEM image was determined for each field of view, and the coverage ratio of the surface of the skeleton layer with all particles in all fields was 40% or more. In this case, it is determined that the ratio of the surface of the skeleton layer of the composite monolith ion exchanger covered with all the particulates is 40% or more. In addition, the diameter or size of the particles of the composite monolith in the dry state before the introduction of the ion exchange group and the composite monolith ion exchange in the wet state with respect to the dry composite monolith when the ion exchange group is introduced into the monolith in the dry state If the swelling rate of the body is known, the diameter or size of the particles of the composite monolith in the dry state is multiplied by the swelling rate to obtain the diameter or size of the particles of the composite monolith ion exchanger in the water wet state. In the same manner as described above, the diameter or size of the particles of the composite monolith ion exchanger in the water wet state, the ratio of the particles of 4 to 40 μm in the water wet state, etc. in the total particles, etc. In addition, the coverage ratio of the surface of the skeleton layer with particle bodies or the like can be obtained.

粒子体等による骨格相表面の被覆率が40%未満であると、流体と複合モノリスイオン交換体の骨格内部及び骨格表面との接触効率を改善する効果が小さくなり、触媒活性が低下してしまうため好ましくない。上記粒子体等による被覆率の測定方法としては、モノリス(乾燥体)のSEM画像による画像解析方法が挙げられる。   When the coverage of the surface of the skeleton phase by particles and the like is less than 40%, the effect of improving the contact efficiency between the fluid and the inside of the skeleton of the composite monolith ion exchanger and the skeleton surface is reduced, and the catalytic activity is reduced. Therefore, it is not preferable. Examples of the method for measuring the coverage with the particulates include an image analysis method using a monolith (dry body) SEM image.

また、複合モノリスイオン交換体の全細孔容積は、複合モノリスの全細孔容積と同様である。すなわち、複合モノリスにイオン交換基を導入することで膨潤し開口径が大きくなっても、骨格相が太るため全細孔容積はほとんど変化しない。全細孔容積が0.5ml/g未満であると、単位断面積当りの透過液量や透過気体量が小さくなり、処理能力が低下してしまうため好ましくない。一方、全細孔容積が5ml/gを超えると、触媒活性が低下してしまうため好ましくない。なお、複合モノリス(モノリス中間体、複合モノリス、複合モノリスイオン交換体)の全細孔容積は、乾燥状態でも、水湿潤状態でも、同じである。   The total pore volume of the composite monolith ion exchanger is the same as the total pore volume of the composite monolith. That is, even when the ion exchange group is introduced into the composite monolith to swell and increase the opening diameter, the total pore volume hardly changes because the skeletal phase is thick. If the total pore volume is less than 0.5 ml / g, the amount of permeated liquid and the amount of permeated gas per unit cross-sectional area will be reduced, and the processing capacity will be reduced. On the other hand, if the total pore volume exceeds 5 ml / g, the catalytic activity is lowered, which is not preferable. Note that the total pore volume of the composite monolith (monolith intermediate, composite monolith, composite monolith ion exchanger) is the same both in the dry state and in the water wet state.

なお、複合モノリスイオン交換体に水を透過させた際の圧力損失は、複合モノリスに水を透過させた際の圧力損失と同様である。   Note that the pressure loss when water is permeated through the composite monolith ion exchanger is the same as the pressure loss when water is permeated through the composite monolith.

本発明の複合モノリスイオン交換体は、イオン交換基が多孔質体の表面及び骨格内部にまで均一に導入されており、そのイオン交換容量は1〜5mg当量/g乾燥多孔質体、好ましくは3〜5mg当量/g乾燥多孔質体である。特開2002−306976号に記載されているような本発明とは異なる連続マクロポア構造を有する従来型のモノリス状有機多孔質イオン交換体では、実用的に要求される低い圧力損失を達成するために、開口径を大きくすると、全細孔容積もそれに伴って大きくなってしまうため、体積当りのイオン交換容量が低下する、体積当りの交換容量を増加させるために全細孔容積を小さくしていくと、開口径が小さくなってしまうため圧力損失が増加するといった欠点を有していた。それに対して、本発明のモノリスイオン交換体は、開口径を更に大きくすると共に、連続マクロポア構造体の骨格を太くする(骨格の壁部を厚くする)ことができる。また、骨格の表面に粒子体等があることで流体との接触面積が大きくなるため、透過時の圧力損失を低く押さえたままで触媒活性を飛躍的に大きくすることができる。なお、イオン交換基が表面のみに導入された多孔質体のイオン交換容量は、多孔質体やイオン交換基の種類により一概には決定できないものの、せいぜい500μg当量/gである。   In the composite monolith ion exchanger of the present invention, the ion exchange groups are uniformly introduced to the surface of the porous body and the inside of the skeleton, and the ion exchange capacity is 1 to 5 mg equivalent / g dry porous body, preferably 3 ~ 5 mg equivalent / g dry porous material. In the conventional monolithic organic porous ion exchanger having a continuous macropore structure different from the present invention as described in JP-A-2002-306976, in order to achieve a low pressure loss that is practically required, When the opening diameter is increased, the total pore volume is increased accordingly, so that the ion exchange capacity per volume is decreased, and the total pore volume is decreased in order to increase the exchange capacity per volume. In addition, since the opening diameter is reduced, the pressure loss increases. In contrast, the monolith ion exchanger of the present invention can further increase the opening diameter and thicken the skeleton of the continuous macropore structure (thicken the skeleton wall). Moreover, since the contact area with the fluid increases due to the presence of particles on the surface of the skeleton, the catalytic activity can be dramatically increased while the pressure loss during permeation is kept low. The ion exchange capacity of a porous body in which ion exchange groups are introduced only on the surface cannot be determined unconditionally depending on the type of the porous body or ion exchange groups, but is at most 500 μg equivalent / g.

本発明の複合モノリスに導入するイオン交換基としては、スルホン酸基、カルボン酸基、イミノ二酢酸基、リン酸基、リン酸エステル基等のカチオン交換基が挙げられる。   Examples of the ion exchange group introduced into the composite monolith of the present invention include cation exchange groups such as a sulfonic acid group, a carboxylic acid group, an iminodiacetic acid group, a phosphoric acid group, and a phosphoric acid ester group.

本発明の複合モノリスイオン交換体において、導入されたイオン交換基は、複合モノリスの骨格の表面のみならず、骨格相内部にまで均一に分布している。ここで言う「イオン交換基が均一に分布している」とは、イオン交換基の分布が少なくともμmオーダーで骨格相の表面および骨格相の内部に均一に分布していることを指す。イオン交換基の分布状況は、EPMA等を用いることで、比較的簡単に確認することができる。また、イオン交換基が、複合モノリスの表面のみならず、骨格相の内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。   In the composite monolith ion exchanger of the present invention, the introduced ion exchange groups are uniformly distributed not only on the surface of the skeleton of the composite monolith but also inside the skeleton phase. Here, “the ion exchange groups are uniformly distributed” means that the distribution of the ion exchange groups is uniformly distributed at least on the order of μm on the surface of the skeleton phase and inside the skeleton phase. The distribution of ion exchange groups can be confirmed relatively easily by using EPMA or the like. In addition, when the ion exchange groups are uniformly distributed not only on the surface of the composite monolith but also inside the skeleton phase, the physical and chemical properties of the surface and the interior can be made uniform, so that the swelling and shrinkage can be prevented. Durability is improved.

本発明の複合モノリスイオン交換体は、その厚みが1mm以上であり、膜状の多孔質体とは区別される。厚みが1mm未満であると、多孔質体一枚当りのイオン交換容量が極端に低下してしまうため好ましくない。該複合モノリスイオン交換体の厚みは、好適には3mm〜1000mmである。また、本発明の複合モノリスイオン交換体は、骨格の基本構造が連続空孔構造であるため、機械的強度が高い。   The composite monolith ion exchanger of the present invention has a thickness of 1 mm or more, and is distinguished from a membrane-like porous body. When the thickness is less than 1 mm, the ion exchange capacity per porous body is extremely reduced, which is not preferable. The thickness of the composite monolith ion exchanger is preferably 3 mm to 1000 mm. In addition, the composite monolith ion exchanger of the present invention has high mechanical strength because the basic structure of the skeleton is a continuous pore structure.

本発明の複合モノリスイオン交換体は、イオン交換基を含まない油溶性モノマー、一分子中に少なくとも2個以上のビニル基を有する第1架橋剤、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5〜30ml/gの連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する第2架橋剤、ビニルモノマーや第2架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス状の有機多孔質中間体の存在下で重合を行うIII工程、III工程で得られたモノリス状有機多孔質体にイオン交換基を導入するIV工程、を行い、モノリス状有機多孔質体を製造する際に、下記(1)〜(5):
(1)III工程における重合温度が、重合開始剤の10時間半減温度より、少なくとも5℃低い温度である;
(2)II工程で用いる第2架橋剤のモル%が、I工程で用いる第1架橋剤のモル%の2倍以上である;
(3)II工程で用いるビニルモノマーが、I工程で用いた油溶性モノマーとは異なる構造のビニルモノマーである;
(4)II工程で用いる有機溶媒が、分子量200以上のポリエーテルである;
(5)II工程で用いるビニルモノマーの濃度が、II工程の混合物中、30重量%以下である;の条件のうち、少なくとも一つを満たす条件下でII工程又はIII工程を行うことにより得られる。
The composite monolith ion exchanger of the present invention is obtained by stirring a mixture of an oil-soluble monomer containing no ion exchange group, a first crosslinking agent having at least two or more vinyl groups in one molecule, a surfactant and water. Preparing a water-in-oil emulsion and then polymerizing the water-in-oil emulsion to obtain a monolithic organic porous intermediate having a continuous macropore structure with a total pore volume of 5 to 30 ml / g, vinyl monomer, A mixture comprising a second crosslinking agent having at least two vinyl groups in one molecule, an organic solvent that dissolves the vinyl monomer or the second crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer, and a polymerization initiator. Step II for preparing the compound II. The mixture obtained in Step II is allowed to stand, and polymerization is performed in the presence of the monolithic organic porous intermediate obtained in Step I II When the monolithic organic porous material is produced by performing the IV step of introducing an ion exchange group into the monolithic organic porous material obtained in the steps I and III, the following (1) to (5):
(1) The polymerization temperature in step III is at least 5 ° C. lower than the 10-hour half-life temperature of the polymerization initiator;
(2) The mol% of the second cross-linking agent used in step II is at least twice the mol% of the first cross-linking agent used in step I;
(3) The vinyl monomer used in Step II is a vinyl monomer having a structure different from that of the oil-soluble monomer used in Step I;
(4) The organic solvent used in step II is a polyether having a molecular weight of 200 or more;
(5) The concentration of the vinyl monomer used in Step II is 30% by weight or less in the mixture of Step II; obtained by performing Step II or Step III under conditions that satisfy at least one of the conditions .

(モノリス中間体の製造方法)
本発明のモノリスの製造方法において、I工程は、イオン交換基を含まない油溶性モノマー、一分子中に少なくとも2個以上のビニル基を有する第1架橋剤、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5〜30ml/gの連続マクロポア構造のモノリス中間体を得る工程である。このモノリス中間体を得るI工程は、特開2002−306976号公報記載の方法に準拠して行なえばよい。
(Method for producing monolith intermediate)
In the method for producing a monolith according to the present invention, in the step I, an oil-soluble monomer not containing an ion exchange group, a first crosslinking agent having at least two or more vinyl groups in one molecule, a mixture of a surfactant and water are stirred. In this step, a water-in-oil emulsion is prepared, and then the water-in-oil emulsion is polymerized to obtain a monolith intermediate having a continuous macropore structure having a total pore volume of 5 to 30 ml / g. The step I for obtaining the monolith intermediate may be performed according to the method described in JP-A-2002-306976.

イオン交換基を含まない油溶性モノマーとしては、例えば、カルボン酸基、スルホン酸基、四級アンモニウム基等のイオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーが挙げられる。これらモノマーの好適なものとしては、スチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン、エチレン、プロピレン、イソブテン、ブタジエン、エチレングリコールジメタクリレート等が挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。   Examples of the oil-soluble monomer that does not contain an ion exchange group include an oleophilic monomer that does not contain an ion exchange group such as a carboxylic acid group, a sulfonic acid group, and a quaternary ammonium group, has low solubility in water. Preferable examples of these monomers include styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, divinyl benzene, ethylene, propylene, isobutene, butadiene, ethylene glycol dimethacrylate, and the like. These monomers can be used alone or in combination of two or more.

一分子中に少なくとも2個以上のビニル基を有する第1架橋剤としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート等が挙げられる。これら架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい第1架橋剤は、機械的強度の高さから、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。第1架橋剤の使用量は、ビニルモノマーと第1架橋剤の合計量に対して0.3〜10モル%、特に0.3〜5モル%、更に0.3〜3モル%であることが好ましい。第1架橋剤の使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくない。一方、10モル%を越えると、モノリスの脆化が進行して柔軟性が失われる、イオン交換基の導入量が減少してしまうといった問題点が生じるため好ましくない。   Examples of the first crosslinking agent having at least two or more vinyl groups in one molecule include divinylbenzene, divinylnaphthalene, divinylbiphenyl, and ethylene glycol dimethacrylate. These crosslinking agents can be used singly or in combination of two or more. A preferred first cross-linking agent is an aromatic polyvinyl compound such as divinylbenzene, divinylnaphthalene, and divinylbiphenyl because of its high mechanical strength. The amount of the first crosslinking agent used is 0.3 to 10 mol%, particularly 0.3 to 5 mol%, and more preferably 0.3 to 3 mol%, based on the total amount of the vinyl monomer and the first crosslinking agent. Is preferred. If the amount of the first crosslinking agent used is less than 0.3 mol%, the mechanical strength of the monolith is insufficient, which is not preferable. On the other hand, if it exceeds 10 mol%, the monolith becomes more brittle and the flexibility is lost, and the amount of ion exchange groups introduced decreases, which is not preferable.

界面活性剤は、イオン交換基を含まない油溶性モノマーと水とを混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノオレエート等の非イオン界面活性剤;オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性剤;ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルベタイン等の両性界面活性剤を用いることができる。これら界面活性剤は1種単独又は2種類以上を組み合わせて使用することができる。なお、油中水滴型エマルジョンとは、油相が連続相となり、その中に水滴が分散しているエマルジョンを言う。上記界面活性剤の添加量としては、油溶性モノマーの種類および目的とするエマルジョン粒子(マクロポア)の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2〜70%の範囲で選択することができる。   The surfactant is not particularly limited as long as it can form a water-in-oil (W / O) emulsion when an oil-soluble monomer containing no ion exchange group and water are mixed, and sorbitan monooleate, Nonionic surfactants such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene nonylphenyl ether, polyoxyethylene stearyl ether, polyoxyethylene sorbitan monooleate; potassium oleate Anionic surfactants such as sodium dodecylbenzenesulfonate and dioctyl sodium sulfosuccinate; cationic surfactants such as distearyldimethylammonium chloride; amphoteric surfactants such as lauryldimethylbetaine can be used . These surfactants can be used alone or in combination of two or more. The water-in-oil emulsion refers to an emulsion in which an oil phase is a continuous phase and water droplets are dispersed therein. The amount of the surfactant added may vary depending on the type of oil-soluble monomer and the size of the target emulsion particles (macropores), but it cannot be generally stated, but the total amount of oil-soluble monomer and surfactant Can be selected within a range of about 2 to 70%.

また、I工程では、油中水滴型エマルジョン形成の際、必要に応じて重合開始剤を使用してもよい。重合開始剤は、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、過酸化水素−塩化第一鉄、過硫酸ナトリウム−酸性亜硫酸ナトリウム等が挙げられる。   In Step I, a polymerization initiator may be used as necessary when forming a water-in-oil emulsion. As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator may be water-soluble or oil-soluble. For example, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2 , 2′-azobis (2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis ( 4-Cyanovaleric acid), 1,1'-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, hydrogen peroxide-ferrous chloride, sodium persulfate- Examples include acidic sodium sulfite.

イオン交換基を含まない油溶性モノマー、第1架橋剤、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、第1架橋剤、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサーやホモジナイザー、高圧ホモジナイザー等を用いることができ、目的のエマルジョン粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルジョン粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。   There is no particular limitation on the mixing method when mixing the oil-soluble monomer containing no ion exchange group, the first cross-linking agent, the surfactant, water and the polymerization initiator to form a water-in-oil emulsion, A method of mixing components all at once, an oil-soluble monomer, a first crosslinking agent, a surfactant, an oil-soluble component that is an oil-soluble polymerization initiator, and a water-soluble component that is water or a water-soluble polymerization initiator For example, a method in which each component is mixed after being uniformly dissolved separately can be used. There is no particular limitation on the mixing apparatus for forming the emulsion, and a normal mixer, homogenizer, high-pressure homogenizer, or the like can be used, and an appropriate apparatus may be selected to obtain the desired emulsion particle size. Moreover, there is no restriction | limiting in particular about mixing conditions, The stirring rotation speed and stirring time which can obtain the target emulsion particle size can be set arbitrarily.

I工程で得られるモノリス中間体は、連続マクロポア構造を有する。これを重合系に共存させると、そのモノリス中間体の構造を鋳型として連続マクロポア構造の骨格相の表面に粒子体等が形成したり、共連続構造の骨格相の表面に粒子体等が形成したりする。また、モノリス中間体は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜10モル%、好ましくは0.3〜5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくない。一方、10モル%を越えると、多孔質体の脆化が進行し、柔軟性が失われるため好ましくない。   The monolith intermediate obtained in Step I has a continuous macropore structure. When this coexists in the polymerization system, particles or the like are formed on the surface of the skeleton phase of the continuous macropore structure using the structure of the monolith intermediate as a template, or particles or the like are formed on the surface of the skeleton phase of the co-continuous structure. Or The monolith intermediate is an organic polymer material having a crosslinked structure. Although the crosslinking density of the polymer material is not particularly limited, it contains 0.3 to 10 mol%, preferably 0.3 to 5 mol% of crosslinked structural units with respect to all the structural units constituting the polymer material. Is preferred. When the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 10 mol%, the porous body becomes brittle and the flexibility is lost, which is not preferable.

モノリス中間体の全細孔容積は、5〜30ml/g、好適には6〜28ml/gである。全細孔容積が小さ過ぎると、ビニルモノマーを重合させた後で得られるモノリスの全細孔容積が小さくなりすぎ、流体透過時の圧力損失が大きくなるため好ましくない。一方、全細孔容積が大き過ぎると、ビニルモノマーを重合させた後で得られるモノリスの構造が不均一になりやすく、場合によっては構造崩壊を引き起こすため好ましくない。モノリス中間体の全細孔容積を上記数値範囲とするには、モノマーと水の比(重量)を、概ね1:5〜1:35とすればよい。   The total pore volume of the monolith intermediate is 5-30 ml / g, preferably 6-28 ml / g. If the total pore volume is too small, the total pore volume of the monolith obtained after polymerizing the vinyl monomer becomes too small, and the pressure loss during fluid permeation increases, which is not preferable. On the other hand, if the total pore volume is too large, the structure of the monolith obtained after polymerizing the vinyl monomer tends to be non-uniform, and in some cases, the structure collapses, which is not preferable. In order to set the total pore volume of the monolith intermediate in the above numerical range, the ratio (weight) of the monomer to water may be set to approximately 1: 5 to 1:35.

このモノマーと水との比を、概ね1:5〜1:20とすれば、モノリス中間体の全細孔容積が5〜16ml/gの連続マクロポア構造のものが得られ、III工程を経て得られる複合モノリスの有機多孔質体が第1の有機多孔質体のものが得られる。また、該配合比率を、概ね1:20〜1:35とすれば、モノリス中間体の全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のものが得られ、III工程を経て得られる複合モノリスの有機多孔質体が第2の有機多孔質体のものが得られる。   When the ratio of this monomer to water is approximately 1: 5 to 1:20, a monolith intermediate having a total pore volume of 5 to 16 ml / g and a continuous macropore structure can be obtained and obtained through Step III. The obtained composite monolithic organic porous body is the first organic porous body. Further, if the blending ratio is approximately 1:20 to 1:35, a monolith intermediate having a total pore volume of more than 16 ml / g and a continuous macropore structure of 30 ml / g or less can be obtained. The organic porous body of the composite monolith obtained through the above is obtained as the second organic porous body.

また、モノリス中間体は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が乾燥状態で20〜100μmである。開口の平均直径が20μm未満であると、ビニルモノマーを重合させた後で得られるモノリスの開口径が小さくなり、通水過時の圧力損失が大きくなってしまうため好ましくない。一方、100μmを超えると、ビニルモノマーを重合させた後で得られるモノリスの開口径が大きくなりすぎ、水の流路が均一に形成されにくくなるため好ましくない。モノリス中間体は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。   Moreover, the average diameter of the opening (mesopore) which is an overlap part of a macropore and a macropore is 20-100 micrometers in a dry state in a monolith intermediate. When the average diameter of the openings is less than 20 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes small, and the pressure loss at the time of passing water becomes large, which is not preferable. On the other hand, if it exceeds 100 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes too large, and it becomes difficult to form a water flow path uniformly. Monolith intermediates preferably have a uniform structure with uniform macropore size and aperture diameter, but are not limited to this, and the uniform structure is dotted with nonuniform macropores larger than the size of the uniform macropore. You may do.

(複合モノリスの製造方法)
II工程は、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する第2架橋剤、ビニルモノマーや第2架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製する工程である。なお、I工程とII工程の順序はなく、I工程後にII工程を行ってもよく、II工程後にI工程を行ってもよい。
(Production method of composite monolith)
Step II is an organic solvent in which a vinyl monomer, a second cross-linking agent having at least two vinyl groups in one molecule, a vinyl monomer or a second cross-linking agent dissolves, but a polymer formed by polymerization of the vinyl monomer does not dissolve. And a step of preparing a mixture comprising a polymerization initiator. In addition, there is no order of I process and II process, II process may be performed after I process, and I process may be performed after II process.

II工程で用いられるビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性のビニルモノマーであれば、特に制限はない。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等の芳香族ビニルモノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。本発明で好適に用いられるビニルモノマーは、スチレン、ビニルベンジルクロライド等の芳香族ビニルモノマーである。   The vinyl monomer used in step II is not particularly limited as long as it is a lipophilic vinyl monomer that contains a polymerizable vinyl group in the molecule and has high solubility in an organic solvent. Specific examples of these vinyl monomers include aromatic vinyl monomers such as styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, vinyl biphenyl and vinyl naphthalene; α-olefins such as ethylene, propylene, 1-butene and isobutene; Diene monomers such as butadiene, isoprene and chloroprene; halogenated olefins such as vinyl chloride, vinyl bromide, vinylidene chloride and tetrafluoroethylene; nitrile monomers such as acrylonitrile and methacrylonitrile; vinyl such as vinyl acetate and vinyl propionate Esters: methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-methacrylic acid 2- Hexyl, cyclohexyl methacrylate, benzyl methacrylate, and (meth) acrylic monomer of glycidyl methacrylate. These monomers can be used alone or in combination of two or more. The vinyl monomer suitably used in the present invention is an aromatic vinyl monomer such as styrene or vinyl benzyl chloride.

これらビニルモノマーの添加量は、重合時に共存させるモノリス中間体に対して、重量で3〜40倍、好ましくは4〜30倍である。ビニルモノマー添加量が多孔質体に対して3倍未満であると、生成したモノリスの骨格に粒子体を形成できず、イオン交換基導入後の体積当りのイオン交換容量が小さくなってしまうため好ましくない。一方、ビニルモノマー添加量が40倍を超えると、開口径が小さくなり、流体透過時の圧力損失が大きくなってしまうため好ましくない。   The added amount of these vinyl monomers is 3 to 40 times, preferably 4 to 30 times, by weight with respect to the monolith intermediate coexisting during polymerization. If the amount of vinyl monomer added is less than 3 times that of the porous body, it is preferable because the particles cannot be formed in the skeleton of the produced monolith, and the ion exchange capacity per volume after introduction of the ion exchange groups is reduced. Absent. On the other hand, if the amount of vinyl monomer added exceeds 40 times, the opening diameter becomes small and the pressure loss during fluid permeation increases, which is not preferable.

II工程で用いられる第2架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。第2架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら第2架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい第2架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。第2架橋剤の使用量は、ビニルモノマーと第2架橋剤の合計量に対して0.3〜20モル%、特に0.3〜10モル%であることが好ましい。架橋剤使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくない。一方、20モル%を越えると、モノリスの脆化が進行して柔軟性が失われる、イオン交換基の導入量が減少してしまうといった問題点が生じるため好ましくない。   As the second crosslinking agent used in Step II, one having at least two polymerizable vinyl groups in the molecule and having high solubility in an organic solvent is preferably used. Specific examples of the second crosslinking agent include divinylbenzene, divinylnaphthalene, divinylbiphenyl, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, butanediol diacrylate, and the like. These 2nd crosslinking agents can be used individually by 1 type or in combination of 2 or more types. A preferred second crosslinking agent is an aromatic polyvinyl compound such as divinylbenzene, divinylnaphthalene, and divinylbiphenyl because of its high mechanical strength and stability to hydrolysis. The amount of the second crosslinking agent used is preferably 0.3 to 20 mol%, particularly 0.3 to 10 mol%, based on the total amount of the vinyl monomer and the second crosslinking agent. When the amount of the crosslinking agent used is less than 0.3 mol%, the mechanical strength of the monolith is insufficient, which is not preferable. On the other hand, if it exceeds 20 mol%, the monolith becomes more brittle and the flexibility is lost, and the amount of ion exchange groups introduced decreases, which is not preferable.

II工程で用いられる有機溶媒は、ビニルモノマーや第2架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、プロピレングリコール、テトラメチレングリコール等のアルコール類;ジエチルエーテル、ブチルセロソルブ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状(ポリ)エーテル類;ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン等の鎖状飽和炭化水素類;酢酸エチル、酢酸イソプロピル、酢酸セロソルブ、プロピオン酸エチル等のエステル類が挙げられる。また、ジオキサンやTHF、トルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。これら有機溶媒の使用量は、上記ビニルモノマーの濃度が5〜80重量%となるように用いることが好ましい。有機溶媒使用量が上記範囲から逸脱してビニルモノマー濃度が5重量%未満となると、重合速度が低下してしまうため好ましくない。一方、ビニルモノマー濃度が80重量%を超えると、重合が暴走する恐れがあるため好ましくない。   The organic solvent used in step II is an organic solvent that dissolves the vinyl monomer and the second cross-linking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer, in other words, a poor solvent for the polymer formed by polymerization of the vinyl monomer. It is. Since the organic solvent varies greatly depending on the type of vinyl monomer, it is difficult to list general specific examples. For example, when the vinyl monomer is styrene, the organic solvent includes methanol, ethanol, propanol, butanol, Alcohols such as hexanol, cyclohexanol, octanol, 2-ethylhexanol, decanol, dodecanol, propylene glycol, tetramethylene glycol; chain (poly) ethers such as diethyl ether, butyl cellosolve, polyethylene glycol, polypropylene glycol, polytetramethylene glycol Chain saturated hydrocarbons such as hexane, heptane, octane, isooctane, decane, dodecane, etc .; Ethyl acetate, isopropyl acetate, cellosolve acetate, ethyl propionate, etc. Ethers, and the like. Moreover, even if it is a good solvent of polystyrene like a dioxane, THF, and toluene, when it is used with the said poor solvent and the usage-amount is small, it can be used as an organic solvent. These organic solvents are preferably used so that the concentration of the vinyl monomer is 5 to 80% by weight. If the amount of the organic solvent used deviates from the above range and the vinyl monomer concentration is less than 5% by weight, the polymerization rate is lowered, which is not preferable. On the other hand, if the vinyl monomer concentration exceeds 80% by weight, the polymerization may run away, which is not preferable.

重合開始剤としては、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は油溶性であるほうが好ましい。本発明で用いられる重合開始剤の具体例としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、テトラメチルチウラムジスルフィド等が挙げられる。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、ビニルモノマーと第2架橋剤の合計量に対して、約0.01〜5%の範囲で使用することができる。   As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator is preferably oil-soluble. Specific examples of the polymerization initiator used in the present invention include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis (4-cyanovaleric acid) 1,1′-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, tetramethylthiuram disulfide and the like. The amount of polymerization initiator used varies greatly depending on the type of monomer, polymerization temperature, etc., but can be used in a range of about 0.01 to 5% with respect to the total amount of vinyl monomer and second crosslinking agent. .

III工程は、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体の存在下、重合を行い、複合モノリスを得る工程である。III工程で用いるモノリス中間体は、本発明の斬新な構造を有するモノリスを創出する上で、極めて重要な役割を担っている。特表平7−501140号等に開示されているように、モノリス中間体不存在下でビニルモノマーと第2架橋剤を特定の有機溶媒中で静置重合させると、粒子凝集型のモノリス状有機多孔質体が得られる。それに対して、本発明のように上記重合系に連続マクロポア構造のモノリス中間体を存在させると、重合後のモノリスの構造は劇的に変化し、粒子凝集構造は消失し、上述の特定の骨格構造を有するモノリスが得られる。   In step III, the mixture obtained in step II is allowed to stand, and in the presence of the monolith intermediate obtained in step I, polymerization is performed to obtain a composite monolith. The monolith intermediate used in the step III plays a very important role in creating the monolith having the novel structure of the present invention. As disclosed in JP-A-7-501140 and the like, when a vinyl monomer and a second cross-linking agent are allowed to stand in a specific organic solvent in the absence of a monolith intermediate, a particle aggregation type monolithic organic material is obtained. A porous body is obtained. On the other hand, when a monolith intermediate having a continuous macropore structure is present in the polymerization system as in the present invention, the structure of the monolith after polymerization changes dramatically, the particle aggregation structure disappears, and the specific skeleton described above is lost. A monolith having a structure is obtained.

反応容器の内容積は、モノリス中間体を反応容器中に存在させる大きさのものであれば特に制限されず、反応容器内にモノリス中間体を載置した際、平面視でモノリスの周りに隙間ができるもの、反応容器内にモノリス中間体が隙間無く入るもののいずれであってもよい。このうち、重合後のモノリスが容器内壁から押圧を受けることなく、反応容器内に隙間無く入るものが、モノリスに歪が生じることもなく、反応原料などの無駄がなく効率的である。なお、反応容器の内容積が大きく、重合後のモノリスの周りに隙間が存在する場合であっても、ビニルモノマーや架橋剤は、モノリス中間体に吸着、分配されるため、反応容器内の隙間部分に粒子凝集構造物が生成することはない。   The internal volume of the reaction vessel is not particularly limited as long as it is large enough to allow the monolith intermediate to exist in the reaction vessel. When the monolith intermediate is placed in the reaction vessel, there is a gap around the monolith in plan view. Or a monolith intermediate in the reaction vessel with no gap. Of these, the monolith after polymerization does not receive any pressure from the inner wall of the vessel and enters the reaction vessel without any gap, so that the monolith is not distorted and the reaction raw materials are not wasted and efficient. Even when the internal volume of the reaction vessel is large and there are gaps around the monolith after polymerization, the vinyl monomer and the crosslinking agent are adsorbed and distributed on the monolith intermediate, so the gaps in the reaction vessel A particle aggregate structure is not generated in the portion.

III工程において、反応容器中、モノリス中間体は混合物(溶液)で含浸された状態に置かれる。II工程で得られた混合物とモノリス中間体の配合比は、前述の如く、モノリス中間体に対して、ビニルモノマーの添加量が重量で3〜40倍、好ましくは4〜30倍となるように配合するのが好適である。これにより、適度な開口径を有しつつ、特定の骨格を有するモノリスを得ることができる。反応容器中、混合物中のビニルモノマーと架橋剤は、静置されたモノリス中間体の骨格に吸着、分配しされ、モノリス中間体の骨格内で重合が進行する。   In step III, the monolith intermediate is placed in a reaction vessel impregnated with the mixture (solution). As described above, the blending ratio of the mixture obtained in Step II and the monolith intermediate is 3 to 40 times by weight, preferably 4 to 30 times by weight, relative to the monolith intermediate. It is suitable to mix. Thereby, it is possible to obtain a monolith having a specific skeleton while having an appropriate opening diameter. In the reaction vessel, the vinyl monomer and the crosslinking agent in the mixture are adsorbed and distributed on the skeleton of the monolith intermediate that has been allowed to stand, and polymerization proceeds in the skeleton of the monolith intermediate.

重合条件は、モノマーの種類、開始剤の種類により様々な条件が選択できる。例えば、開始剤として2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル等を用いたときには、不活性雰囲気下の密封容器内において、20〜100℃で1〜48時間加熱重合させればよい。加熱重合により、モノリス中間体の骨格に吸着、分配したビニルモノマーと架橋剤が該骨格内で重合し、該特定の骨格構造を形成させる。重合終了後、内容物を取り出し、未反応ビニルモノマーと有機溶媒の除去を目的に、アセトン等の溶剤で抽出して特定骨格構造のモノリスを得る。   Various polymerization conditions can be selected depending on the type of monomer and the type of initiator. For example, when 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, lauroyl peroxide, or the like is used as an initiator, an inert atmosphere What is necessary is just to heat-polymerize at 20-100 degreeC for 1 to 48 hours in the lower sealed container. By heat polymerization, the vinyl monomer adsorbed and distributed on the skeleton of the monolith intermediate and the crosslinking agent are polymerized in the skeleton to form the specific skeleton structure. After completion of the polymerization, the content is taken out and extracted with a solvent such as acetone for the purpose of removing unreacted vinyl monomer and organic solvent to obtain a monolith having a specific skeleton structure.

上述の複合モノリスを製造する際に、下記(1)〜(5)の条件のうち、少なくとも一つを満たす条件下でII工程又はIII工程行うと、本発明の特徴的な構造である、骨格表面に粒子体等が形成された複合モノリスを製造することができる。   When the above-mentioned composite monolith is produced, the skeleton, which is the characteristic structure of the present invention, is obtained by performing the II step or the III step under the conditions satisfying at least one of the following conditions (1) to (5). A composite monolith having particles or the like formed on the surface can be produced.

(1)III工程における重合温度が、重合開始剤の10時間半減温度より、少なくとも5℃低い温度である。
(2)II工程で用いる第2架橋剤のモル%が、I工程で用いる第1架橋剤のモル%の2倍以上である。
(3)II工程で用いるビニルモノマーが、I工程で用いた油溶性モノマーとは異なる構造のビニルモノマーである。
(4)II工程で用いる有機溶媒が、分子量200以上のポリエーテルである。
(5)II工程で用いるビニルモノマーの濃度が、II工程の混合物中、30重量%以下である。
(1) The polymerization temperature in step III is a temperature that is at least 5 ° C. lower than the 10-hour half-life temperature of the polymerization initiator.
(2) The mol% of the second cross-linking agent used in step II is at least twice the mol% of the first cross-linking agent used in step I.
(3) The vinyl monomer used in step II is a vinyl monomer having a structure different from that of the oil-soluble monomer used in step I.
(4) The organic solvent used in step II is a polyether having a molecular weight of 200 or more.
(5) The concentration of the vinyl monomer used in Step II is 30% by weight or less in the mixture of Step II.

(上記(1)の説明)
10時間半減温度は重合開始剤の特性値であり、使用する重合開始剤が決まれば10時間半減温度を知ることができる。また、所望の10時間半減温度があれば、それに該当する重合開始剤を選択することができる。III工程において、重合温度を低下させることで、重合速度が低下し、骨格相の表面に粒子体等を形成させることができる。その理由は、モノリス中間体の骨格相の内部でのモノマー濃度低下が緩やかとなり、液相部からモノリス中間体へのモノマー分配速度が低下するため、余剰のモノマーがモノリス中間体の骨格層の表面近傍で濃縮され、その場で重合したためと考えられる。
(Description of (1) above)
The 10-hour half temperature is a characteristic value of the polymerization initiator, and if the polymerization initiator to be used is determined, the 10-hour half temperature can be known. Moreover, if there exists desired 10-hour half temperature, the polymerization initiator applicable to it can be selected. In step III, the polymerization rate is lowered by lowering the polymerization temperature, and particles and the like can be formed on the surface of the skeleton phase. The reason for this is that the monomer concentration drop inside the skeleton phase of the monolith intermediate becomes gradual, and the monomer distribution rate from the liquid phase part to the monolith intermediate decreases, so the surplus monomer is on the surface of the skeleton layer of the monolith intermediate. It is thought that it was concentrated in the vicinity and polymerized in situ.

重合温度の好ましいものは、用いる重合開始剤の10時間半減温度より少なくとも10℃低い温度である。重合温度の下限値は特に限定されないが、温度が低下するほど重合速度が低下し、重合時間が実用上許容できないほど長くなってしまうため、重合温度を10時間半減温度に対して5〜20℃低い範囲に設定することが好ましい。   The preferred polymerization temperature is a temperature that is at least 10 ° C. lower than the 10-hour half-life temperature of the polymerization initiator used. Although the lower limit of the polymerization temperature is not particularly limited, the polymerization rate decreases as the temperature decreases, and the polymerization time becomes unacceptably long. Therefore, the polymerization temperature is 5 to 20 ° C. with respect to the 10-hour half temperature. It is preferable to set to a low range.

((2)の説明)
II工程で用いる第2架橋剤のモル%を、I工程で用いる第1架橋剤のモル%の2倍以上に設定して重合すると、本発明の複合モノリスが得られる。その理由は、モノリス中間体と含浸重合によって生成したポリマーとの相溶性が低下し相分離が進行するため、含浸重合によって生成したポリマーはモノリス中間体の骨格相の表面近傍に排除され、骨格相表面に粒子体等の凹凸を形成したものと考えられる。なお、架橋剤のモル%は、架橋密度モル%であって、ビニルモノマーと架橋剤の合計量に対する架橋剤量(モル%)を言う。
(Description of (2))
When the mol% of the second cross-linking agent used in Step II is set to be twice or more of the mol% of the first cross-linking agent used in Step I, the composite monolith of the present invention is obtained. The reason for this is that the compatibility between the monolith intermediate and the polymer produced by impregnation polymerization is reduced and phase separation proceeds, so the polymer produced by impregnation polymerization is excluded in the vicinity of the surface of the skeleton phase of the monolith intermediate, It is considered that irregularities such as particles are formed on the surface. In addition, mol% of a crosslinking agent is a crosslinking density mol%, Comprising: The amount of crosslinking agents (mol%) with respect to the total amount of a vinyl monomer and a crosslinking agent is said.

II工程で用いる第2架橋剤モル%の上限は特に制限されないが、第2架橋剤モル%が著しく大きくなると、重合後のモノリスにクラックが発生する、モノリスの脆化が進行して柔軟性が失われる、イオン交換基の導入量が減少してしまうといった問題点が生じるため好ましくない。好ましい第2架橋剤モル%の倍数は2倍〜10倍である。一方、I工程で用いる第1架橋剤モル%をII工程で用いられる第2架橋剤モル%に対して2倍以上に設定しても、骨格相表面への粒子体等の形成は起こらず、本発明の複合モノリスは得られない。   The upper limit of the second crosslinker mol% used in step II is not particularly limited, but if the second crosslinker mol% is extremely large, cracks occur in the monolith after polymerization, and the brittleness of the monolith proceeds and flexibility is increased. This is not preferable because it causes a problem that the amount of ion exchange groups to be lost is reduced. A preferred multiple of the second crosslinking agent mol% is 2 to 10 times. On the other hand, even when the mol% of the first cross-linking agent used in step I is set to be twice or more the mol% of the second cross-linking agent used in step II, the formation of particles on the surface of the skeleton phase does not occur. The composite monolith of the present invention cannot be obtained.

((3)の説明)
II工程で用いるビニルモノマーが、I工程で用いた油溶性モノマーとは異なる構造のビニルモノマーであると、本発明の複合モノリスが得られる。例えば、スチレンとビニルベンジルクロライドのように、ビニルモノマーの構造が僅かでも異なると、骨格相表面に粒子体等が形成された複合モノリスが生成する。一般に、僅かでも構造が異なる二種類のモノマーから得られる二種類のホモポリマーは互いに相溶しない。したがって、I工程で用いたモノリス中間体形成に用いたモノマーとは異なる構造のモノマー、すなわち、I工程で用いたモノリス中間体形成に用いたモノマー以外のモノマーをII工程で用いてIII工程で重合を行うと、II工程で用いたモノマーはモノリス中間体に均一に分配や含浸がされるものの、重合が進行してポリマーが生成すると、生成したポリマーはモノリス中間体とは相溶しないため、相分離が進行し、生成したポリマーはモノリス中間体の骨格相の表面近傍に排除され、骨格相の表面に粒子体等の凹凸を形成したものと考えられる。
(Explanation of (3))
When the vinyl monomer used in Step II is a vinyl monomer having a structure different from that of the oil-soluble monomer used in Step I, the composite monolith of the present invention is obtained. For example, if the structures of vinyl monomers are slightly different, such as styrene and vinyl benzyl chloride, a composite monolith having particles or the like formed on the surface of the skeleton phase is generated. In general, two types of homopolymers obtained from two types of monomers that are slightly different in structure are not compatible with each other. Therefore, a monomer having a structure different from that of the monomer used for forming the monolith intermediate used in Step I, that is, a monomer other than the monomer used for forming the monolith intermediate used in Step I is used in Step II to polymerize in Step III. The monomer used in Step II is uniformly distributed and impregnated into the monolith intermediate, but when the polymerization proceeds and the polymer is produced, the produced polymer is not compatible with the monolith intermediate. Separation proceeds, and the produced polymer is considered to be excluded in the vicinity of the surface of the skeleton phase of the monolith intermediate, and irregularities such as particles are formed on the surface of the skeleton phase.

((4)の説明)
II工程で用いる有機溶媒が、分子量200以上のポリエーテルであると、本発明の複合モノリスが得られる。ポリエーテルはモノリス中間体との親和性が比較的高く、特に低分子量の環状ポリエーテルはポリスチレンの良溶媒、低分子量の鎖状ポリエーテルは良溶媒ではないがかなりの親和性を有している。しかし、ポリエーテルの分子量が大きくなると、モノリス中間体との親和性は劇的に低下し、モノリス中間体とほとんど親和性を示さなくなる。このような親和性に乏しい溶媒を有機溶媒に用いると、モノマーのモノリス中間体の骨格内部への拡散が阻害され、その結果、モノマーはモノリス中間体の骨格の表面近傍のみで重合するため、骨格相表面に粒子体等が形成され骨格表面に凹凸を形成したものと考えられる。
(Explanation of (4))
When the organic solvent used in step II is a polyether having a molecular weight of 200 or more, the composite monolith of the present invention is obtained. Polyethers have a relatively high affinity with monolith intermediates, especially low molecular weight cyclic polyethers are good solvents for polystyrene, and low molecular weight chain polyethers are not good solvents but have considerable affinity. . However, as the molecular weight of the polyether increases, the affinity with the monolith intermediate dramatically decreases and shows little affinity with the monolith intermediate. When such a solvent having poor affinity is used as the organic solvent, diffusion of the monomer into the skeleton of the monolith intermediate is inhibited, and as a result, the monomer is polymerized only near the surface of the skeleton of the monolith intermediate. It is considered that particles and the like are formed on the phase surface and irregularities are formed on the skeleton surface.

ポリエーテルの分子量は、200以上であれば上限に特に制約はないが、あまりに高分子量であると、II工程で調製される混合物の粘度が高くなり、モノリス中間体内部への含浸が困難になるため好ましくない。好ましいポリエーテルの分子量は200〜100000、特に好ましくは200〜10000である。また、ポリエーテルの末端構造は、未修飾の水酸基であっても、メチル基やエチル基等のアルキル基でエーテル化されていてもよいし、酢酸、オレイン酸、ラウリン酸、ステアリン酸等でエステル化されていてもよい。   The upper limit of the molecular weight of the polyether is not particularly limited as long as it is 200 or more. However, when the molecular weight is too high, the viscosity of the mixture prepared in the step II becomes high, and it is difficult to impregnate the monolith intermediate. Therefore, it is not preferable. The molecular weight of the preferred polyether is 200 to 100,000, particularly preferably 200 to 10,000. The terminal structure of the polyether may be an unmodified hydroxyl group, etherified with an alkyl group such as a methyl group or an ethyl group, or esterified with acetic acid, oleic acid, lauric acid, stearic acid, or the like. It may be made.

((5)の説明)
II工程で用いるビニルモノマーの濃度が、II工程中の混合物中、30重量%以下であると、本発明の複合モノリスが得られる。II工程でモノマー濃度を低下させることで、重合速度が低下し、前記(1)と同様の理由で、骨格相表面に粒子体等が形成でき、骨格相表面に凹凸を形成されることができる。モノマー濃度の下限値は特に限定されないが、モノマー濃度が低下するほど重合速度が低下し、重合時間が実用上許容できないほど長くなってしまうため、モノマー濃度は10〜30重量%に設定することが好ましい。
(Explanation of (5))
When the concentration of the vinyl monomer used in Step II is 30% by weight or less in the mixture in Step II, the composite monolith of the present invention is obtained. By reducing the monomer concentration in the step II, the polymerization rate is reduced, and for the same reason as the above (1), particles and the like can be formed on the surface of the skeleton phase, and irregularities can be formed on the surface of the skeleton phase. . Although the lower limit of the monomer concentration is not particularly limited, the polymerization rate decreases as the monomer concentration decreases and the polymerization time becomes unacceptably long, so the monomer concentration may be set to 10 to 30% by weight. preferable.

III工程で得られた複合モノリスは、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する多数の粒子体又は該有機多孔質体の骨格表面上に形成される多数の突起体との複合構造体である。有機多孔質体の連続骨格相と連続空孔相は、SEM画像により観察することができる。有機多孔質体の基本構造は、連続マクロポア構造か、共連続構造である。   The composite monolith obtained in the step III includes an organic porous body composed of a continuous skeleton phase and a continuous pore phase, a large number of particles fixed to the skeleton surface of the organic porous body, or a skeleton surface of the organic porous body. It is a composite structure with a number of protrusions formed on it. The continuous skeleton phase and the continuous pore phase of the organic porous body can be observed by SEM images. The basic structure of the organic porous body is a continuous macropore structure or a co-continuous structure.

複合モノリスにおける連続マクロポア構造は、気泡状のマクロポア同士が重なり合い、この重なる部分が乾燥状態での平均直径20〜100μmの開口となるものであり、複合モノリスにおける共連続構造体は、平均の太さが乾燥状態で0.8〜40μmの三次元的に連続した骨格と、その骨格間に乾燥で平均直径が8〜80μmの三次元的に連続した空孔とからなるものである。   The continuous macropore structure in the composite monolith is such that bubble-shaped macropores overlap each other, and the overlapping portion becomes an opening having an average diameter of 20 to 100 μm in a dry state. The bicontinuous structure in the composite monolith has an average thickness. Is composed of a three-dimensionally continuous skeleton of 0.8 to 40 μm in a dry state and three-dimensionally continuous pores having an average diameter of 8 to 80 μm by drying between the skeletons.

IV工程は、III工程で得られた複合モノリスにイオン交換基を導入する工程である。この導入方法によれば、得られる複合モノリスイオン交換体の多孔構造を厳密にコントロールできる。   Step IV is a step of introducing an ion exchange group into the composite monolith obtained in step III. According to this introduction method, the porous structure of the obtained composite monolith ion exchanger can be strictly controlled.

上記複合モノリスに陽イオン交換基を導入する方法としては、特に制限はなく、高分子反応やグラフト重合等の公知の方法を用いることができる。例えば、スルホン酸基を導入する方法としては、複合モノリスがスチレン-ジビニルベンゼン共重合体等であればクロロ硫酸や濃硫酸、発煙硫酸を用いてスルホン化する方法;複合モノリスに均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部に導入し、スチレンスルホン酸ナトリウムやアクリルアミド−2−メチルプロパンスルホン酸をグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換によりスルホン酸基を導入する方法等が挙げられる。これらスルホン酸基を導入する方法においては、クロロ硫酸を用いてスチレン-ジビニルベンゼン共重合体にスルホン酸基を導入する方法が、イオン交換基を均一かつ定量的に導入できる点で好ましい。なお、導入するイオン交換基としては、カルボン酸基、イミノ二酢酸基、スルホン酸基、リン酸基、リン酸エステル基等のカチオン交換基が挙げられる。   There is no restriction | limiting in particular as a method of introduce | transducing a cation exchange group into the said composite monolith, Well-known methods, such as a polymer reaction and graft polymerization, can be used. For example, as a method of introducing a sulfonic acid group, if the composite monolith is a styrene-divinylbenzene copolymer, etc., a method of sulfonation using chlorosulfuric acid, concentrated sulfuric acid, or fuming sulfuric acid; radical initiating groups uniformly on the composite monolith And a method of grafting sodium styrene sulfonate or acrylamido-2-methylpropane sulfonic acid by introducing a chain transfer group into the skeleton surface or inside the skeleton; Similarly, after graft polymerization of glycidyl methacrylate, the sulfonic acid group is converted by functional group conversion. The method etc. which introduce | transduce are mentioned. Among these methods for introducing sulfonic acid groups, the method of introducing sulfonic acid groups into a styrene-divinylbenzene copolymer using chlorosulfuric acid is preferable because ion exchange groups can be introduced uniformly and quantitatively. Examples of ion exchange groups to be introduced include cation exchange groups such as carboxylic acid groups, iminodiacetic acid groups, sulfonic acid groups, phosphoric acid groups, and phosphoric acid ester groups.

本発明の固体酸触媒は、例えば、エステル化、エステルの加水分解などの有機反応に用いることができ、特に、供給した反応原料を反応蒸留塔において反応させながら、反応生成物を連続的に反応系外に沸点の差を利用して取り出す反応蒸留法で使用することが、十分に高い触媒活性を維持しつつ、原料または生成物、あるいはそれらの混合物からなる気体や液体の透過性を飛躍的に向上させることができる点で好適である。   The solid acid catalyst of the present invention can be used for organic reactions such as esterification and ester hydrolysis. In particular, the reaction product is continuously reacted while the supplied reaction raw materials are reacted in a reactive distillation column. Use in a reactive distillation method that takes out the difference in boiling point outside the system, while maintaining sufficiently high catalytic activity, dramatically improves the permeability of gases and liquids consisting of raw materials or products, or mixtures thereof. It is suitable at the point which can be improved to.

本発明の固体酸触媒の反応塔への充填形態としては、特に制限されず、例えば、反応塔内の形状に合わせて製造したものをそのまま充填する方法、複数のブロック形状に分割し、これを積層して充填する方法、従来の粒状の陽イオン交換樹脂を使用した層を一部に組み込んで使用する方法などが挙げられる。更に、本発明の固体酸触媒と支持部材とを加工成形したものを充填することができる。この場合、反応塔内における固体酸触媒の支持強度が高まり、反応塔内における通液速度が高い場合においても使用することができる。   The form of packing the solid acid catalyst of the present invention into the reaction tower is not particularly limited, for example, a method of packing a product produced according to the shape in the reaction tower as it is, dividing into a plurality of block shapes, A method of laminating and filling, a method of incorporating a layer using a conventional granular cation exchange resin in part, and the like can be mentioned. Furthermore, it can be filled with a processed product of the solid acid catalyst and the support member of the present invention. In this case, the support strength of the solid acid catalyst in the reaction tower is increased, and the solid acid catalyst can be used even when the liquid passing speed in the reaction tower is high.

(実施例)
次に、実施例を挙げて本発明を具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
(Example)
Next, the present invention will be specifically described by way of examples, but this is merely an example and does not limit the present invention.

実施例1
(I工程;モノリス中間体の製造)
スチレン9.28g、ジビニルベンゼン0.19g、ソルビタンモノオレエート(以下SMOと略す)0.50gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に,当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを反応容器に速やかに移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。水銀圧入法により測定した該モノリス中間体のマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は40μm、全細孔容積は15.8ml/gであった。
Example 1
(Step I; production of monolith intermediate)
9.28 g of styrene, 0.19 g of divinylbenzene, 0.50 g of sorbitan monooleate (hereinafter abbreviated as SMO) and 0.26 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture is added to 180 g of pure water, and a vacuum stirring defoaming mixer (manufactured by EM Corp.) which is a planetary stirring device. Was used under reduced pressure in a temperature range of 5 to 20 ° C. to obtain a water-in-oil emulsion. The emulsion was immediately transferred to a reaction vessel, and after sealing, it was allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the content was taken out, extracted with isopropanol, and then dried under reduced pressure to produce a monolith intermediate having a continuous macropore structure. The average diameter of the openings (mesopores) where the macropores and macropores of the monolith intermediate were measured by mercury porosimetry was 40 μm, and the total pore volume was 15.8 ml / g.

(複合モノリスの製造)
次いで、スチレン36.0g、ジビニルベンゼン4.0g、1-デカノール60g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.4gを混合し、均一に溶解させた(II工程)。重合開始剤として用いた2,2’-アゾビス(2,4-ジメチルバレロニトリル)の10時間半減温度は、51℃であった。モノリス中間体の架橋密度1.3モル%に対して、II工程で用いたスチレンとジビニルベンゼンの合計量に対するジビニルベンゼンの使用量は6.6モル%であり、架橋密度比は5.1倍であった。次に上記モノリス中間体を外径70mm、厚さ約20mmの円盤状に切断して、3.2g分取した。分取したモノリス中間体を内径73mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約30mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した(III工程)。
(Manufacture of composite monolith)
Next, 36.0 g of styrene, 4.0 g of divinylbenzene, 60 g of 1-decanol, and 0.4 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly (step II). The 10-hour half-life temperature of 2,2′-azobis (2,4-dimethylvaleronitrile) used as the polymerization initiator was 51 ° C. The amount of divinylbenzene used is 6.6 mol% with respect to the total amount of styrene and divinylbenzene used in Step II, while the crosslink density of the monolith intermediate is 1.3 mol%, and the crosslink density ratio is 5.1 times. Met. Next, the monolith intermediate was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 20 mm, and 3.2 g was collected. The separated monolith intermediate is placed in a reaction vessel having an inner diameter of 73 mm, immersed in the styrene / divinylbenzene / 1-decanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture, and removed in a vacuum chamber. After bubbling, the reaction vessel was sealed and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the monolith-like contents having a thickness of about 30 mm were taken out, subjected to Soxhlet extraction with acetone, and then dried under reduced pressure at 85 ° C. overnight (step III).

このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる複合モノリス(乾燥体)の内部構造を、SEMにより観察した結果を図1〜図3に示す。図1〜図3のSEM画像は、倍率が異なるものであり、モノリスを任意の位置で切断して得た切断面の任意の位置における画像である。図1〜図3から明らかなように、当該複合モノリスは連続マクロポア構造を有しており、連続マクロポア構造体を構成する骨格相の表面は、平均粒子径4μmの粒子体で被覆され、粒子被覆率は80%であった。また、粒径3〜5μmの粒子体が全体の粒子体に占める割合は90%であった。   The results of observing the internal structure of the composite monolith (dried body) composed of the styrene / divinylbenzene copolymer thus obtained by SEM are shown in FIGS. The SEM images in FIGS. 1 to 3 are different in magnification, and are images at arbitrary positions on a cut surface obtained by cutting a monolith at an arbitrary position. As apparent from FIGS. 1 to 3, the composite monolith has a continuous macropore structure, and the surface of the skeletal phase constituting the continuous macropore structure is coated with particles having an average particle diameter of 4 μm. The rate was 80%. Moreover, the ratio for which the particle body with a particle size of 3-5 micrometers occupied to the whole particle body was 90%.

また、水銀圧入法により測定した当該複合モノリスの開口の平均直径は16μm、全細孔容積は2.3ml/gであった。その結果を表1及び表2にまとめて示す。表1中、仕込み欄は左から順に、II工程で用いたビニルモノマー、架橋剤、有機溶媒、I工程で得られたモノリス中間体を示す。また、粒子体等は粒子で示した。   Moreover, the average diameter of the opening of the composite monolith measured by mercury porosimetry was 16 μm, and the total pore volume was 2.3 ml / g. The results are summarized in Tables 1 and 2. In Table 1, the preparation column shows the vinyl monomer, the crosslinking agent, the organic solvent used in Step II, and the monolith intermediate obtained in Step I in order from the left. Further, the particle bodies and the like are shown as particles.

(複合モノリスカチオン交換体の製造)
上記の方法で製造した複合モノリスを、外径70mm、厚み約15mmの円盤状に切断した。モノリスの重量は19.6gであった。これにジクロロメタン1500mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸98.9gを徐々に加え、昇温して35℃で24時間反応させた。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄して複合モノリスカチオン交換体を得た。
(Production of complex monolith cation exchanger)
The composite monolith produced by the above method was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 15 mm. The weight of the monolith was 19.6 g. To this, 1500 ml of dichloromethane was added and heated at 35 ° C. for 1 hour, then cooled to 10 ° C. or less, 98.9 g of chlorosulfuric acid was gradually added, and the temperature was raised and reacted at 35 ° C. for 24 hours. Thereafter, methanol was added to quench the remaining chlorosulfuric acid, which was then washed with methanol to remove dichloromethane and further washed with pure water to obtain a composite monolith cation exchanger.

得られたカチオン交換体の反応前後の膨潤率は1.3倍であり、体積当りのイオン交換容量は、水湿潤状態で1.11mg当量/mlであった。水湿潤状態での有機多孔質イオン交換体の開口の平均直径を、有機多孔質体の値と水湿潤状態のカチオン交換体の膨潤率から見積もったところ21μmであり、同様の方法で求めた被覆粒子の平均粒径は5μmであった。なお、全粒子体等による骨格表面の粒子被覆率は80%、全細孔容積は2.3ml/gであった。また、粒径4〜7μmの粒子体が全体の粒子体に占める割合は90%であった。また、水を透過させた際の圧力損失の指標である差圧係数は、0.057MPa/m・LVであり、実用上要求される圧力損失と比較して、それを下回る低い圧力損失であった。更に、イオン交換帯長さは9mmであり、著しく短い値を示した。結果を表2にまとめて示す。   The swelling rate before and after the reaction of the obtained cation exchanger was 1.3 times, and the ion exchange capacity per volume was 1.11 mg equivalent / ml in a water wet state. The average diameter of the openings of the organic porous ion exchanger in the water wet state was 21 μm as estimated from the value of the organic porous body and the swelling ratio of the cation exchanger in the water wet state. The average particle size of the particles was 5 μm. The particle coverage of the skeletal surface with all particles was 80%, and the total pore volume was 2.3 ml / g. Moreover, the ratio for which the particle body of 4-7 micrometers of particle | grains accounts to the whole particle body was 90%. The differential pressure coefficient, which is an index of pressure loss when water is permeated, is 0.057 MPa / m · LV, which is a lower pressure loss than that required for practical use. It was. Further, the length of the ion exchange zone was 9 mm, showing a remarkably short value. The results are summarized in Table 2.

次に、複合モノリスカチオン交換体中のスルホン酸基の分布状態を確認するため、EPMAにより硫黄原子の分布状態を観察した。その結果を図4及び図5に示す。図4及び図5共に、左右の写真はそれぞれ対応している。図4は硫黄原子のカチオン交換体の表面における分布状態を示したものであり、図5は硫黄原子のカチオン交換体の断面(厚み)方向における分布状態を示したものである。図4及び図5より、スルホン酸基はカチオン交換体の骨格表面及び骨格内部(断面方向)にそれぞれ均一に導入されていることがわかる。   Next, in order to confirm the distribution state of the sulfonic acid group in the composite monolith cation exchanger, the distribution state of sulfur atoms was observed by EPMA. The results are shown in FIGS. 4 and 5, the left and right photographs correspond to each other. FIG. 4 shows the distribution of sulfur atoms on the surface of the cation exchanger, and FIG. 5 shows the distribution of sulfur atoms in the cross-section (thickness) direction of the cation exchanger. 4 and 5, it can be seen that the sulfonic acid groups are uniformly introduced on the skeleton surface of the cation exchanger and inside the skeleton (cross-sectional direction).

実施例2〜5
(複合モノリスの製造)
ビニルモノマーの使用量、架橋剤の使用量、有機溶媒の種類と使用量、III工程で重合時に共存させるモノリス中間体の多孔構造、架橋密度と使用量及び重合温度を表1に示す配合量に変更した以外は、実施例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。また、複合モノリス(乾燥体)の内部構造を、SEMにより観察した結果を図6〜図13に示す。図6〜図8は実施例2、図9及び図10は実施例3、図11は実施例4、図12及び図13は実施例5のものである。なお、実施例2については架橋密度比(2.5倍)、実施例3については有機溶媒の種類(PEG;分子量400)、実施例4についてはビニルモノマー濃度(28.0%)、実施例5については重合温度(40℃;重合開始剤の10時間半減温度より11℃低い)について、本発明の製造条件を満たす条件で製造した。図6〜図13から実施例3〜5の複合モノリスの骨格表面に付着しているものは粒子体というよりは突起体であった。突起体の「粒子平均径」は突起体の大きさ(最大径)の平均径である。図6〜図13及び表2から、参考例2〜6のモノリス骨格表面に付着している粒子の平均径は3〜8μm、全粒子体等による骨格表面の粒子被覆率は50〜95%であった。また、実施例2が粒径3〜6μmの粒子体が全体の粒子体に占める割合は80%、実施例3が粒径3〜10μmの突起体が全体の粒子体に占める割合は80%、実施例4が粒径3〜5μmの粒子体が全体の粒子体に占める割合は90%、実施例5が粒径3〜7μmの粒子体が全体の粒子体に占める割合は90%であった。
Examples 2-5
(Manufacture of composite monolith)
The amount of vinyl monomer used, the amount of crosslinking agent used, the type and amount of organic solvent used, the porous structure of the monolith intermediate that coexists during polymerization in step III, the crosslinking density and the amount used, and the polymerization temperature are shown in Table 1. A monolith was produced in the same manner as in Example 1 except for the change. The results are shown in Tables 1 and 2. Moreover, the result of having observed the internal structure of composite monolith (dry body) by SEM is shown in FIGS. 6 to 8 are of the second embodiment, FIGS. 9 and 10 are of the third embodiment, FIG. 11 is of the fourth embodiment, and FIGS. 12 and 13 are of the fifth embodiment. For Example 2, the crosslinking density ratio (2.5 times), for Example 3, the type of organic solvent (PEG; molecular weight 400), for Example 4, the vinyl monomer concentration (28.0%), Example For No. 5, the polymerization temperature (40 ° C .; 11 ° C. lower than the 10-hour half-life temperature of the polymerization initiator) was produced under conditions satisfying the production conditions of the present invention. From FIG. 6 to FIG. 13, what adhered to the skeleton surface of the composite monoliths of Examples 3 to 5 were protrusions rather than particles. The “particle average diameter” of the protrusion is the average diameter of the protrusions (maximum diameter). From FIG. 6 to FIG. 13 and Table 2, the average diameter of the particles adhering to the surface of the monolith skeleton of Reference Examples 2 to 6 is 3 to 8 μm, and the particle coverage of the skeleton surface by all particles is 50 to 95%. there were. Further, in Example 2, the proportion of particles having a particle diameter of 3 to 6 μm occupying the entire particles is 80%, and in Example 3, the proportion of protrusions having a particle diameter of 3 to 10 μm is occupying the entire particles. In Example 4, the proportion of particles having a particle size of 3 to 5 μm in the total particles was 90%, and in Example 5, the proportion of particles having a particle size of 3 to 7 μm in the total particles was 90%. .

(複合モノリスカチオン交換体の製造)
上記の方法で製造した複合モノリスを、それぞれ実施例1と同様の方法でクロロ硫酸と反応させ、複合モノリスカチオン交換体を製造した。その結果を表2に示す。実施例2〜5における複合モノリスカチオン交換体の連続細孔の平均直径は21〜52μmであり、骨格表面に付着している粒子体等の平均径は5〜13μm、全粒子体等による骨格表面の粒子被覆率も50〜95%と高く、差圧係数も0.010〜0.057MPa/m・LVと小さい上に、イオン交換帯長さも8〜12mmと著しく小さな値であった。また、粒径5〜10μmの粒子体が全体の粒子体に占める割合は90%であった。
(Production of complex monolith cation exchanger)
The composite monolith produced by the above method was reacted with chlorosulfuric acid in the same manner as in Example 1 to produce a composite monolith cation exchanger. The results are shown in Table 2. The average diameter of the continuous pores of the composite monolith cation exchanger in Examples 2 to 5 is 21 to 52 μm, the average diameter of the particles attached to the skeleton surface is 5 to 13 μm, the skeleton surface due to all the particles, etc. The particle coverage was as high as 50 to 95%, the differential pressure coefficient was as small as 0.010 to 0.057 MPa / m · LV, and the ion exchange zone length was as extremely small as 8 to 12 mm. Moreover, the ratio for which the particle body with a particle size of 5-10 micrometers occupied to the whole particle body was 90%.

比較例1
(モノリスの製造)
ビニルモノマーの使用量、架橋剤の使用量、有機溶媒の種類と使用量、III工程で重合時に共存させるモノリス中間体の使用量を表1に示す配合量に変更した以外は、実施例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。なお、不図示のSEM写真から骨格表面には粒子体や突起体の形成は全く認められなかった。表1及び表2から、本発明の特定の製造条件と逸脱する条件、すなわち、上記(1)〜(5)の要件から逸脱した条件下でモノリスを製造すると、モノリス骨格表面での粒子生成が認められないことがわかる。
Comparative Example 1
(Manufacture of monoliths)
Except for changing the usage amount of the vinyl monomer, the usage amount of the crosslinking agent, the type and usage amount of the organic solvent, and the usage amount of the monolith intermediate coexisting during the polymerization in Step III to the blending amounts shown in Table 1, Example 1 and A monolith was produced in a similar manner. The results are shown in Tables 1 and 2. From the SEM photograph (not shown), the formation of particles and protrusions was not observed at all on the skeleton surface. From Table 1 and Table 2, when a monolith is produced under conditions deviating from the specific production conditions of the present invention, that is, conditions deviating from the requirements (1) to (5) above, particle formation on the surface of the monolith skeleton is caused. It turns out that it is not recognized.

(モノリスカチオン交換体の製造)
上記の方法で製造したモノリスを、実施例1と同様の方法でクロロ硫酸と反応させ、モノリスカチオン交換体を製造した。結果を表2に示す。得られたモノリスカチオン交換体のイオン交換帯長さは26mmであり、実施例1〜5と比較して大きな値であった。
(Production of monolith cation exchanger)
The monolith produced by the above method was reacted with chlorosulfuric acid in the same manner as in Example 1 to produce a monolith cation exchanger. The results are shown in Table 2. The obtained monolith cation exchanger had an ion exchange zone length of 26 mm, which was a large value as compared with Examples 1-5.

比較例2〜4
(モノリスの製造)
ビニルモノマーの使用量、架橋剤の使用量、有機溶媒の種類と使用量、III工程で重合時に共存させるモノリス中間体の多孔構造、架橋密度および使用量を表1に示す配合量に変更した以外は、実施例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。なお、比較例2については架橋密度比(0.2倍)、比較例3については有機溶媒の種類(2-(2-メトキシエトキシ)エタノール;分子量120)、比較例4については重合温度(50℃;重合開始剤の10時間半減温度より1℃低い)について、本発明の製造条件を満たさない条件で製造した。結果を表2に示す。比較例2、4のモノリスについては骨格表面での粒子生成はなかった。また、比較例3では単離した生成物は透明であり、多孔構造が崩壊、消失していた。
Comparative Examples 2-4
(Manufacture of monoliths)
The amount of vinyl monomer used, the amount of crosslinking agent used, the type and amount of organic solvent used, the porous structure of the monolith intermediate that coexists during polymerization in step III, the crosslinking density, and the amount used were changed to the amounts shown in Table 1. Produced a monolith in the same manner as in Example 1. The results are shown in Tables 1 and 2. In Comparative Example 2, the crosslinking density ratio (0.2 times), in Comparative Example 3, the type of organic solvent (2- (2-methoxyethoxy) ethanol; molecular weight 120), and in Comparative Example 4, the polymerization temperature (50 C .: 1 ° C. lower than the 10-hour half-life temperature of the polymerization initiator) was produced under conditions that did not satisfy the production conditions of the present invention. The results are shown in Table 2. For the monoliths of Comparative Examples 2 and 4, there was no particle formation on the skeleton surface. In Comparative Example 3, the isolated product was transparent, and the porous structure was collapsed and disappeared.

(モノリスカチオン交換体の製造)
比較例3を除き、上記の方法で製造した有機多孔質体を、比較例1と同様の方法でクロロ硫酸と反応させ、モノリスカチオン交換体を製造した。その結果を表2に示す。得られたモノリスカチオン交換体のイオン交換帯長さは23〜26mmであり、実施例1〜5と比較して大きな値であった。
(Production of monolith cation exchanger)
Except for Comparative Example 3, the organic porous material produced by the above method was reacted with chlorosulfuric acid in the same manner as in Comparative Example 1 to produce a monolith cation exchanger. The results are shown in Table 2. The obtained monolith cation exchanger had an ion exchange zone length of 23 to 26 mm, which was a larger value than Examples 1 to 5.

比較例5
(モノリス状有機多孔質陽イオン交換体の製造(公知品))
スチレン27.7g、ジビニルベンゼン6.9g、ソルビタンモノオレエート3.8gおよびアゾビスイソブチロニトリル0.14gを混合し、均一に溶解させた。次に当該スチレン/ジビニルベンゼン/ソルビタンモノオレエート/アゾビスイソブチロニトリル混合物を450mlの純水に添加し、ホモジナイザーを用いて20,000回転/分で2分間攪拌し、油中水滴型エマルジョンを得た。乳化終了後、油中水滴型エマルジョンをオートクレーブに移し、窒素で十分置換した後密封し、静置下60℃で24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで18時間ソックスレー抽出し、未反応モノマーとソルビタンモノオレエートを除去した後、40℃で一昼夜減圧乾燥した。この様にして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を14モル%含有した多孔質体30gを分取し、テトラクロロエタン2リットルを加え60℃で30分加熱した後、室温まで冷却し、クロロ硫酸120gを徐々に加え、室温で4時間反応させた。その後、酢酸を加え、多量の水中に反応物を投入し、水洗、乾燥して多孔質陽イオン交換体を得た。この多孔質体のイオン交換容量は、乾燥多孔質体換算で4.0mg当量/gであり、EPMAを用いた硫黄原子のマッピングにより、スルホン酸基が多孔質体に均一に導入されていることを確認した。この多孔質体の内部構造は、SEMにより観察した結果、連続気泡構造を有しており、平均径30μm のマクロポアの大部分が重なり合い、マクロポアとマクロポアの重なりで形成されるメソポアの直径の平均値は5μm 、全細孔容積は、10.1ml/gであった。また、上記多孔質体を10mmの厚みに切り出し、水透過速度および空気透過速度を測定したところ、それぞれ14,000L/分・m・MPa、3,600m/ 分・m・MPaであった。また、イオン交換帯長さは41mmであった。
Comparative Example 5
(Production of monolithic organic porous cation exchanger (known product))
27.7 g of styrene, 6.9 g of divinylbenzene, 3.8 g of sorbitan monooleate and 0.14 g of azobisisobutyronitrile were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / sorbitan monooleate / azobisisobutyronitrile mixture is added to 450 ml of pure water, stirred at 20,000 rpm for 2 minutes using a homogenizer, and a water-in-oil emulsion. Got. After emulsification, the water-in-oil emulsion was transferred to an autoclave, sufficiently substituted with nitrogen, sealed, and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the content was taken out, extracted with Soxhlet for 18 hours with isopropanol, unreacted monomer and sorbitan monooleate were removed, and dried under reduced pressure at 40 ° C. overnight. 30 g of a porous material containing 14 mol% of a cross-linking component composed of a styrene / divinylbenzene copolymer thus obtained was fractionated, 2 liters of tetrachloroethane was added, and the mixture was heated at 60 ° C. for 30 minutes. After cooling, 120 g of chlorosulfuric acid was gradually added and reacted at room temperature for 4 hours. Then, acetic acid was added, the reaction product was poured into a large amount of water, washed with water and dried to obtain a porous cation exchanger. The ion exchange capacity of this porous material is 4.0 mg equivalent / g in terms of dry porous material, and sulfonic acid groups are uniformly introduced into the porous material by mapping of sulfur atoms using EPMA. It was confirmed. As a result of observation by SEM, the internal structure of this porous body has an open-cell structure. Most of the macropores having an average diameter of 30 μm overlap, and the average value of the diameters of the mesopores formed by the overlap of the macropores and the macropores. Was 5 μm and the total pore volume was 10.1 ml / g. Further, the porous body was cut into a thickness of 10 mm, and the water permeation rate and the air permeation rate were measured to be 14,000 L / min · m 2 · MPa and 3,600 m 3 / min · m 2 · MPa, respectively. It was. The ion exchange zone length was 41 mm.

<固体酸触媒の評価試験>
(反応蒸留による酢酸メチルの加水分解反応(その1)
内径25mmのジャケット付カラムを反応蒸留塔として用い、下部に直径4mmのガラス製へリックスを高さ800mmにわたって充填して回収部とし、その上部に実施例2で得られた多孔質陽イオン交換体を直径25mm、高さ800mmの大きさに切り出して固体酸触媒として充填し、反応部とした。充填量は、乾燥重量で27.5gであった。この反応蒸留塔に、酢酸メチル/ メタノール混合液(モル比1.0/0.4 )を反応部の下端から100g/時間の速度で供給し、一方、水を反応部の上端から100g/時間の速度で供給し、反応を行った。なお、供給液はいずれも65℃に加温して供給し、反応蒸留塔のジャケットには65℃の温水を循環させ、スチル中の液は85℃に加熱して全還流で運転した。反応が安定した後、加水分解率(反応率)を測定したところ、平均で99.3%の反応率が得られた。なお、実施例2の複合モノリスイオン交換体の水透過速度および空気透過速度を測定したところ、それぞれ110,000L/ 分・m・MPa、28,000m/ 分・m・MPaであり、良好な透過性を示した。
<Evaluation test of solid acid catalyst>
(Hydrolysis reaction of methyl acetate by reactive distillation (Part 1)
A jacketed column with an inner diameter of 25 mm is used as a reactive distillation column, and a lower part is filled with a glass helix with a diameter of 4 mm over a height of 800 mm to form a recovery part. The porous cation exchanger obtained in Example 2 is provided on the upper part. Was cut into a size of 25 mm in diameter and 800 mm in height and filled as a solid acid catalyst to form a reaction part. The filling amount was 27.5 g in dry weight. A methyl acetate / methanol mixture (molar ratio 1.0 / 0.4) is supplied to the reactive distillation column from the lower end of the reaction section at a rate of 100 g / hour, while water is supplied from the upper end of the reaction section to 100 g / hour. The reaction was carried out at a rate of In addition, all the supplied liquids were heated to 65 ° C. and supplied, 65 ° C. warm water was circulated through the jacket of the reactive distillation column, and the liquid in the still was heated to 85 ° C. and operated at total reflux. When the hydrolysis rate (reaction rate) was measured after the reaction was stabilized, an average reaction rate of 99.3% was obtained. In addition, when the water permeation rate and the air permeation rate of the composite monolith ion exchanger of Example 2 were measured, they were 110,000 L / min · m 2 · MPa and 28,000 m 3 / min · m 2 · MPa, respectively. Good permeability was shown.

(反応蒸留による酢酸メチルの加水分解反応(その2))
実施例2で得られた多孔質陽イオン交換体に代えて、比較例5で得られた多孔質陽イオン交換体を使用した以外は、反応蒸留による酢酸メチルの加水分解反応(その1)と同様の方法により行なった。その結果、平均で97%の反応率が得られた。
(Methyl acetate hydrolysis by reactive distillation (Part 2))
Hydrolysis reaction of methyl acetate by reactive distillation (Part 1), except that the porous cation exchanger obtained in Comparative Example 5 was used instead of the porous cation exchanger obtained in Example 2 The same method was used. As a result, an average reaction rate of 97% was obtained.

固体酸触媒の反応において、イオン交換帯長さに代表される接触効率が向上すると、反応効率が向上する。上記のように、イオン交換帯長さは、実施例1〜5で8〜12mm、比較例1〜5で23〜41mmである。その結果、反応率は比較例品より実施例品の方がよかった。なお、反応率97%と99.3%との差は、原料の未反応物の残存量から見ると、3%から0.7%への低減、すなわち、低減率77%であり、反応分野においては顕著な効果である。   In the reaction of the solid acid catalyst, when the contact efficiency represented by the ion exchange zone length is improved, the reaction efficiency is improved. As described above, the length of the ion exchange zone is 8 to 12 mm in Examples 1 to 5, and 23 to 41 mm in Comparative Examples 1 to 5. As a result, the reaction rate of the example product was better than that of the comparative example product. The difference between the reaction rate of 97% and 99.3% is a reduction from 3% to 0.7%, that is, a reduction rate of 77% when viewed from the remaining amount of unreacted raw materials. This is a remarkable effect.

本発明の固体酸触媒によれば、有機反応を効率良く短時間で、かつ高い反応率で進行させ得るものであり、通常の有機反応プロセスのみならず、反応蒸留用固体酸触媒として、広範な用途分野で応用することができる。   According to the solid acid catalyst of the present invention, an organic reaction can be efficiently advanced in a short time and at a high reaction rate, and it is widely used as a solid acid catalyst for reactive distillation as well as a normal organic reaction process. It can be applied in application fields.

Claims (4)

連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、陽イオン交換容量1〜5mg当量/g乾燥多孔質体であるモノリス状有機多孔質カチオン交換体からなることを特徴とする固体酸触媒。   An organic porous body composed of a continuous skeleton phase and a continuous pore phase, and a large number of particles having a diameter of 4 to 40 μm fixed to the skeleton surface of the organic porous body or the skeleton surface of the organic porous body It is a composite structure with many protrusions having a size of 4 to 40 μm, and has an average pore diameter of 10 to 150 μm, a total pore volume of 0.5 to 5 ml / g in a wet state, and a cation exchange capacity. A solid acid catalyst comprising a monolithic organic porous cation exchanger which is 1 to 5 mg equivalent / g dry porous material. 前記有機多孔質体が、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜150μmの開口となる連続マクロポア構造体であることを特徴とする請求項1記載の固体酸触媒。   2. The solid acid according to claim 1, wherein the organic porous body is a continuous macropore structure in which bubble-shaped macropores overlap each other, and the overlapping portion forms an opening having an average diameter of 30 to 150 μm when wet. catalyst. 前記有機多孔質体が、水湿潤状態で平均の太さが1〜60μmの三次元的に連続した骨格と、その骨格間に平均直径が水湿潤状態で10〜100μmの三次元的に連続した空孔とからなる共連続構造体であることを特徴とする請求項1記載の固体酸触媒。   The organic porous body is a three-dimensionally continuous skeleton having an average thickness of 1 to 60 μm in a water-wet state, and a three-dimensionally continuous skeleton having an average diameter of 10 to 100 μm in a water-wet state between the skeletons. 2. The solid acid catalyst according to claim 1, which is a co-continuous structure comprising pores. 反応蒸留法に使用されることを特徴とする請求項1〜3のいずれか1項に記載の固体酸触媒。   The solid acid catalyst according to any one of claims 1 to 3, wherein the solid acid catalyst is used in a reactive distillation method.
JP2009115967A 2009-05-12 2009-05-12 Solid acid catalyst Active JP5294477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009115967A JP5294477B2 (en) 2009-05-12 2009-05-12 Solid acid catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009115967A JP5294477B2 (en) 2009-05-12 2009-05-12 Solid acid catalyst

Publications (2)

Publication Number Publication Date
JP2010264346A true JP2010264346A (en) 2010-11-25
JP5294477B2 JP5294477B2 (en) 2013-09-18

Family

ID=43361827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009115967A Active JP5294477B2 (en) 2009-05-12 2009-05-12 Solid acid catalyst

Country Status (1)

Country Link
JP (1) JP5294477B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017171623A (en) * 2016-03-25 2017-09-28 オルガノ株式会社 Method for producing ester compound

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515785A (en) * 1991-07-10 1993-01-26 Japan Atom Energy Res Inst Solid acid catalyst for reactive distillation
JP2002306976A (en) * 2001-04-13 2002-10-22 Japan Organo Co Ltd Porous ion exchanger, deionizing module using the same, and electrical device for producing deionized water
JP2002346392A (en) * 2001-05-22 2002-12-03 Japan Organo Co Ltd Solid acid catalyst
JP2009007550A (en) * 2007-05-28 2009-01-15 Japan Organo Co Ltd Particle-agglomerated type monolithic organic porous article, its manufacturing process, particle-agglomerated type monolithic organic porous ion exchanger and chemical filter
JP2009062512A (en) * 2007-08-10 2009-03-26 Japan Organo Co Ltd Monolith organic porous body, monolith organic porous ion exchanger, method for producing those and chemical filter
JP2009067982A (en) * 2007-08-22 2009-04-02 Japan Organo Co Ltd Monolithic organic porous body, monolithic organic porous ion exchanger, methods for manufacturing them and chemical filter
JP2009108294A (en) * 2007-10-11 2009-05-21 Japan Organo Co Ltd Monolith-like organic porous material, monolith-like organic porous ion exchanger, method for producing thereof, and chemical filter
JP2010259989A (en) * 2009-05-01 2010-11-18 Japan Organo Co Ltd Platinum-group metal supported catalyst, method of producing treated water with hydrogen peroxide composed, method of producing treated with dissolved oxygen removed and method of cleaning electronic part
JP2010264344A (en) * 2009-05-12 2010-11-25 Japan Organo Co Ltd Apparatus for manufacturing ultrapure water
JP2010264347A (en) * 2009-05-12 2010-11-25 Japan Organo Co Ltd Electric deionized-water production device and deionized-water production method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515785A (en) * 1991-07-10 1993-01-26 Japan Atom Energy Res Inst Solid acid catalyst for reactive distillation
JP2002306976A (en) * 2001-04-13 2002-10-22 Japan Organo Co Ltd Porous ion exchanger, deionizing module using the same, and electrical device for producing deionized water
JP2002346392A (en) * 2001-05-22 2002-12-03 Japan Organo Co Ltd Solid acid catalyst
JP2009007550A (en) * 2007-05-28 2009-01-15 Japan Organo Co Ltd Particle-agglomerated type monolithic organic porous article, its manufacturing process, particle-agglomerated type monolithic organic porous ion exchanger and chemical filter
JP2009062512A (en) * 2007-08-10 2009-03-26 Japan Organo Co Ltd Monolith organic porous body, monolith organic porous ion exchanger, method for producing those and chemical filter
JP2009067982A (en) * 2007-08-22 2009-04-02 Japan Organo Co Ltd Monolithic organic porous body, monolithic organic porous ion exchanger, methods for manufacturing them and chemical filter
JP2009108294A (en) * 2007-10-11 2009-05-21 Japan Organo Co Ltd Monolith-like organic porous material, monolith-like organic porous ion exchanger, method for producing thereof, and chemical filter
JP2010259989A (en) * 2009-05-01 2010-11-18 Japan Organo Co Ltd Platinum-group metal supported catalyst, method of producing treated water with hydrogen peroxide composed, method of producing treated with dissolved oxygen removed and method of cleaning electronic part
JP2010264344A (en) * 2009-05-12 2010-11-25 Japan Organo Co Ltd Apparatus for manufacturing ultrapure water
JP2010264347A (en) * 2009-05-12 2010-11-25 Japan Organo Co Ltd Electric deionized-water production device and deionized-water production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017171623A (en) * 2016-03-25 2017-09-28 オルガノ株式会社 Method for producing ester compound

Also Published As

Publication number Publication date
JP5294477B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5290604B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
WO2010070774A1 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, and process for producing the monolithic organic porous body and the monolithic organic porous ion exchanger
JP5019471B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5116724B2 (en) Ultrapure water production equipment
JP5698813B2 (en) Ultrapure water production equipment
JP2009035668A (en) Monolithic organic porous ion exchanger, method of use thereof, production method of the same, and casting mold used in production of the same
JP5383310B2 (en) Deionization module and electric deionized water production apparatus
WO2010104004A1 (en) Ion adsorption module and method of treating water
TWI758266B (en) Method of refining organic solvent
JP2009221428A (en) Monolithic organic porous material, method for producing the same, and monolithic organic porous ion exchanger
JP5685632B2 (en) Ion adsorption module and water treatment method
JP5486162B2 (en) Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
JP5137896B2 (en) Electric deionized water production apparatus and deionized water production method
JP5525754B2 (en) Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP5465463B2 (en) Ion adsorption module and water treatment method
JP4712223B2 (en) Solid acid catalyst
JP5294477B2 (en) Solid acid catalyst
JP5421688B2 (en) Solid acid catalyst
JP2010264362A (en) Electric deionized-water producing apparatus
JP5567958B2 (en) Method for producing platinum group metal supported catalyst
JP5586979B2 (en) Electric deionized water production apparatus and operation method thereof
JP5268722B2 (en) Solid acid catalyst
JP5642211B2 (en) Solid acid catalyst
JP5030182B2 (en) Electric deionized liquid production equipment
KR20170121469A (en) Porous organic/inorganic composite and method for preparing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Ref document number: 5294477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250