JP2009035668A - Monolithic organic porous ion exchanger, method of use thereof, production method of the same, and casting mold used in production of the same - Google Patents

Monolithic organic porous ion exchanger, method of use thereof, production method of the same, and casting mold used in production of the same Download PDF

Info

Publication number
JP2009035668A
JP2009035668A JP2007202650A JP2007202650A JP2009035668A JP 2009035668 A JP2009035668 A JP 2009035668A JP 2007202650 A JP2007202650 A JP 2007202650A JP 2007202650 A JP2007202650 A JP 2007202650A JP 2009035668 A JP2009035668 A JP 2009035668A
Authority
JP
Japan
Prior art keywords
organic porous
ion exchanger
water
radius
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007202650A
Other languages
Japanese (ja)
Other versions
JP4931006B2 (en
Inventor
Hitoshi Takada
仁 高田
Satoshi Kondo
聡 近藤
Mitsuo Endo
三男 遠藤
Akira Nakamura
彰 中村
Hiroshi Inoue
洋 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2007202650A priority Critical patent/JP4931006B2/en
Publication of JP2009035668A publication Critical patent/JP2009035668A/en
Application granted granted Critical
Publication of JP4931006B2 publication Critical patent/JP4931006B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monolithic organic porous ion exchanger which is chemically stable, provides low pressure drop when a fluid permeates through it, and has a large ion exchange capacity, and to provide a production method of the same and a casting mold used in the production method. <P>SOLUTION: The monolithic organic porous ion exchanger is characterized in that in an organic porous body of a continuous pore structure, which has three-dimensionally continuous pores among the skeletons of a three-dimensionally continuous organic polymer and a thickness of ≥5 mm, a plurality of linear or spiral through-holes each extending in the thickness direction and having a radius of 0.05-0.30 mm are formed in a direction orthogonal to the thickness direction, and ion exchange groups are uniformly introduced. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、化学的に安定で、流体透過時の圧力損失が低く、イオン交換容量を大きくできるモノリス状有機多孔質イオン交換体、その使用方法、製造方法及び製造方法で用いる鋳型に関するものである。   The present invention relates to a monolithic organic porous ion exchanger that is chemically stable, has a low pressure loss during fluid permeation, and can have a large ion exchange capacity, a method for using the same, a manufacturing method, and a mold used in the manufacturing method. .

特開2003−246809号公報には、互いにつながっているマクロポアとマクロポアの壁内に半径が0.01〜10μmのメソポアを有する連続マクロポア構造を有し、全細孔容積が1〜50ml/gであり、更に細孔分布曲線の主ピークにおける半値幅を該主ピークの半径で除した値が0.5以下であり、且つイオン交換基を含有してなる有機多孔質イオン交換体が開示されている。該有機多孔質イオン交換体は特に吸着速度に優れており、特に水中の微量イオンの捕捉能力に優れている。   Japanese Patent Laid-Open No. 2003-246809 has a continuous macropore structure having macropores connected to each other and mesopores having a radius of 0.01 to 10 μm in the wall of the macropore, and the total pore volume is 1 to 50 ml / g. There is further disclosed an organic porous ion exchanger having a value obtained by dividing the half width at the main peak of the pore distribution curve by the radius of the main peak being 0.5 or less and containing an ion exchange group Yes. The organic porous ion exchanger is particularly excellent in the adsorption rate, and particularly excellent in the ability to trap trace ions in water.

一方、粒子凝集型構造を有する多孔質体が特表平7−501140号等に開示されている。この粒子凝集型モノリス状有機多孔質体は、約200nm未満の小さな孔と、直径が約600nm以上から約3000nmに及ぶ大きな孔が形成されており、クロマトグラフィーカラムに好適なプラグである。   On the other hand, a porous body having a particle aggregation type structure is disclosed in JP 7-501140 A. This particle-aggregated monolithic organic porous material has small pores of less than about 200 nm and large pores having a diameter ranging from about 600 nm to about 3000 nm, and is a plug suitable for a chromatography column.

このような有機多孔質イオン交換体は、水処理機器に限らず、分析機器などの充填材として有望である。これら装置に組み込む吸着材あるいはイオン交換材料には低い通水抵抗が望まれる。通水抵抗を低減することで、充填容器の耐圧性能を低く設定できる、大量の被処理水を短時間で処理できるなどのメリットがあるからである。
特開2003−246809号公報(請求項5) 特表平7−501140号(第4頁左下欄第3行〜第8行)
Such an organic porous ion exchanger is promising as a filler for analytical equipment as well as water treatment equipment. A low water resistance is desired for the adsorbent or ion exchange material incorporated in these devices. This is because by reducing the water flow resistance, the pressure resistance performance of the filling container can be set low, and a large amount of water to be treated can be treated in a short time.
JP 2003-246809 A (Claim 5) Special table hei 7-501140 (page 4, lower left column, lines 3 to 8)

しかしながら、特開2003−246809号公報に記載の有機多孔質イオン交換体はイオン交換容量を大きくするために、油溶性モノマーの比率を高めて重合すると通水経路となる連続マクロポア構造中の共通の開口が小さくなるため、通水差圧が高くなるという問題があった。また、特表平7−501140号に記載の方法で得られた多孔質体は、前記の如く、連続した空孔径が最大でも約3μmと小さく、低圧で大流量の処理を行うことが要求される工業規模の脱イオン水製造装置等に用いることはできないという問題があった。   However, the organic porous ion exchanger described in Japanese Patent Application Laid-Open No. 2003-246809 has a common macropore structure in a continuous macropore structure that forms a water passage when polymerized by increasing the ratio of oil-soluble monomers in order to increase the ion exchange capacity. Since the opening is small, there is a problem that the water flow differential pressure increases. In addition, as described above, the porous body obtained by the method described in JP-A-7-501140 has a continuous pore diameter as small as about 3 μm at the maximum, and is required to perform a large flow rate treatment at a low pressure. There is a problem that it cannot be used for an industrial scale deionized water production apparatus.

従って、本発明の目的は、上記従来の技術の問題点を解決したものであって、化学的に安定で、流体透過時の圧力損失が低く、イオン交換容量を大きくできるモノリス状有機多孔質イオン交換体、その製造方法およびその製造方法に用いる鋳型を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and is monolithic organic porous ions that are chemically stable, have low pressure loss during fluid permeation, and can increase ion exchange capacity. An object of the present invention is to provide an exchanger, a manufacturing method thereof, and a mold used for the manufacturing method.

かかる実情において、本発明者らは鋭意検討を行った結果、三次元的に連続した有機ポリマーの骨格間に三次元的に連続した空孔を有する厚みが5mm以上の連続空孔構造の有機多孔質体に、厚み方向に延びる半径0.05〜0.25mmの直線状または螺旋状の貫通孔が厚み方向に直交する方向に多数形成されたものであり、且つイオン交換基が均一に導入されてなるものであれば、化学的に安定で、流体透過時の圧力損失が低く、イオン交換容量を大きくできることなどを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have conducted intensive studies, and as a result, organic porous having a continuous pore structure having a thickness of 5 mm or more having three-dimensionally continuous pores between the skeletons of three-dimensionally continuous organic polymers. A large number of linear or spiral through-holes having a radius of 0.05 to 0.25 mm extending in the thickness direction are formed in the material in a direction perpendicular to the thickness direction, and ion exchange groups are uniformly introduced. Thus, the present inventors have found that it is chemically stable, has a low pressure loss during fluid permeation, and can increase the ion exchange capacity.

すなわち、本発明は、三次元的に連続した有機ポリマーの骨格間に三次元的に連続した空孔を有する厚みが5mm以上の連続空孔構造の有機多孔質体に、厚み方向に延びる半径0.05〜0.25mmの直線状または螺旋状の貫通孔が厚み方向に直交する方向に多数形成されたものであり、且つイオン交換基が均一に導入されてなるモノリス状有機多孔質イオン交換体を提供するものである。   That is, the present invention provides an organic porous body having a continuous pore structure having a three-dimensionally continuous pore between three-dimensionally continuous organic polymer skeletons having a thickness of 5 mm or more and a radius 0 extending in the thickness direction. A monolithic organic porous ion exchanger in which a large number of linear or spiral through-holes of 0.05 to 0.25 mm are formed in a direction perpendicular to the thickness direction and ion-exchange groups are uniformly introduced Is to provide.

また、前記モノリス状有機多孔質イオン交換体は円柱形状物であって、該円柱形状物を2つ以上として端面同士を当接させ、隣接する円柱状物同士を軸中心として所定角度回動させて積層し、容器に充填して使用するモノリス状有機多孔質イオン交換体の使用方法を提供するものである。   Further, the monolithic organic porous ion exchanger is a cylindrical object, and the end surfaces are brought into contact with each other with two or more cylindrical objects, and the adjacent cylindrical objects are rotated by a predetermined angle around the axis. And a method for using a monolithic organic porous ion exchanger that is used by being stacked and filled in a container.

また、本発明は、ビニルモノマー、界面活性剤、水及び必要に応じて重合開始剤や架橋剤を混合し、該混合物を撹拌して油中水滴型エマルジョンを調製する工程と、容器内の該油中水滴型エマルジョン中に針の長手方向が厚み方向となるように多数の針を配置し、静置下重合する工程と、重合体から該多数の針を外す工程と、得られた有機多孔質体にイオン交換基を導入する工程とを有するモノリス状有機多孔質体の製造方法を提供するものである。   The present invention also includes a step of mixing a vinyl monomer, a surfactant, water and, if necessary, a polymerization initiator and a crosslinking agent, stirring the mixture to prepare a water-in-oil emulsion, Arranging many needles in the water-in-oil emulsion so that the longitudinal direction of the needles is in the thickness direction, polymerizing under standing, removing the many needles from the polymer, and organic porous obtained The present invention provides a method for producing a monolithic organic porous body having a step of introducing an ion exchange group into a mass.

また、本発明は、ビニルモノマー、一分子中に少なくとも2個のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる液状混合物を調製する工程と、容器内の該液状混合物中に針の長手方向が厚み方向となるように多数の針を配置し、静置下重合する工程と、該重合体から該多数の針を取り外す工程と、得られた有機多孔質体にイオン交換基を導入する工程とを有するモノリス状有機多孔質イオン交換体の製造方法を提供するものである。   The present invention also includes a vinyl monomer, a crosslinking agent having at least two vinyl groups in one molecule, an organic solvent that dissolves the vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer, and polymerization initiation. A step of preparing a liquid mixture comprising an agent, a step of arranging a number of needles in the liquid mixture in a container so that the longitudinal direction of the needles is in the thickness direction, and polymerizing under standing, and from the polymer The present invention provides a method for producing a monolithic organic porous ion exchanger having a step of removing a large number of needles and a step of introducing ion exchange groups into the obtained organic porous body.

また、本発明は、前記製造方法で用いる鋳型であって、脚部により所定の高さに保持される台座の所定領域に、半径0.05〜0.25mmの針が通る貫通穴を多数形成し、該貫通穴を通らない大きさのストッパー部を後端に形成した該針を、該針の先端から該貫通穴に通して吊り下げ状に支持したものである鋳型を提供するものである。   Further, the present invention is a mold used in the manufacturing method, wherein a plurality of through holes through which a needle having a radius of 0.05 to 0.25 mm passes are formed in a predetermined region of a pedestal held at a predetermined height by a leg portion. And providing a mold in which the needle formed with a stopper portion having a size that does not pass through the through hole is supported in a suspended manner through the through hole from the tip of the needle. .

本発明のモノリス状有機多孔質イオン交換体は、水中の微量イオンを効果的に捕捉する能力に優れ、且つ通水差圧を低減しつつイオン交換容量を高くすることができる。また、連続空孔構造が、連続マクロポア構造である場合、モノマー濃度比率を高めることで共通の開口が小さくなっても、特定形状の大きな貫通孔が多数形成されているため、低圧、大流量の水処理が可能となる。また、連続空孔構造が、粒子凝集型空孔構造の場合、これまでにない大変ユニークな構造を採り、前記同様の効果を奏する。   The monolithic organic porous ion exchanger of the present invention is excellent in the ability to effectively trap trace ions in water, and can increase the ion exchange capacity while reducing the water differential pressure. In addition, when the continuous pore structure is a continuous macropore structure, a large number of through holes having a specific shape are formed even if the common opening is reduced by increasing the monomer concentration ratio. Water treatment becomes possible. Further, when the continuous pore structure is a particle aggregation type pore structure, a very unique structure which has never been obtained is adopted, and the same effect as described above is obtained.

本発明のモノリス状有機多孔質イオン交換体(以下、単に「モノリス」とも言う。)の基本構造は、三次元的に連続した有機ポリマーの骨格間に三次元的に連続した空孔を有する厚みが5mm以上の連続空孔構造の多孔質体に、厚み方向に延びる所定形状の貫通孔が厚み方向に直交する方向に形成されたものである。すなわち、本発明のモノリスは、貫通孔と連続空孔構造の空孔とは互いに繋がっており、貫通孔において、液体や気体が低い圧力損失で流れる大きな流路を形成し、連続空孔構造において、液体や気体が浸透する該貫通孔よりも小さな流路を形成する。   The basic structure of the monolithic organic porous ion exchanger of the present invention (hereinafter also simply referred to as “monolith”) has a thickness having three-dimensionally continuous pores between three-dimensionally continuous organic polymer skeletons. A through-hole having a predetermined shape extending in the thickness direction is formed in a direction perpendicular to the thickness direction in a porous body having a continuous pore structure of 5 mm or more. That is, in the monolith according to the present invention, the through hole and the hole having the continuous hole structure are connected to each other, and in the through hole, a large flow path through which liquid or gas flows with a low pressure loss is formed. A flow path smaller than the through hole through which liquid or gas permeates is formed.

本発明のモノリスは、その厚みが5mm以上であり、膜状の多孔質体とは区別される。厚みが5mm未満であると、イオン交換容量が極端に低下してしまうため好ましくない。該有機多孔質イオン交換体の厚みは、好適には5mm〜1000mmである。   The monolith of the present invention has a thickness of 5 mm or more, and is distinguished from a membrane-like porous body. If the thickness is less than 5 mm, the ion exchange capacity is extremely lowered, which is not preferable. The thickness of the organic porous ion exchanger is preferably 5 mm to 1000 mm.

本発明のモノリスを構成する連続空孔構造としては、互いに繋がっているマクロポアとマクロポアの該繋がり部分が半径0.01〜10μmの開口となり、且つ全細孔容積が2〜20ml/gの連続マクロポア構造(以下、単に「連続マクロポア構造」とも言う。)又は架橋構造単位を有する半径0.5〜25μmの有機ポリマー粒子が凝集して三次元的に連続した骨格部分を形成し、その骨格間に空孔半径が10〜50μmの三次元的に連続した空孔を有する粒子凝集型空孔構造(以下、単に「粒子凝集型空孔構造」とも言う。)が挙げられる。   As the continuous pore structure constituting the monolith of the present invention, the continuous macropores having a radius of 0.01 to 10 μm and a total pore volume of 2 to 20 ml / g are connected to each other. Organic polymer particles having a structure (hereinafter also referred to simply as “continuous macropore structure”) or cross-linked structural units and having a radius of 0.5 to 25 μm aggregate to form a three-dimensional continuous skeleton portion, and between the skeletons Examples thereof include a particle aggregation type pore structure having three-dimensionally continuous pores having a pore radius of 10 to 50 μm (hereinafter also simply referred to as “particle aggregation type pore structure”).

連続マクロポア構造は、互いに繋がっているマクロポアとマクロポアの該繋がり部分が半径0.01〜10μm、好ましくは0.1〜10μmの開口を有する構造である。すなわち、連続マクロポア構造は、通常、半径0.2〜250μmのマクロポアとマクロポアが重なり合い、この重なる部分が開口となる構造を有するもので、その部分がオープンポア構造のものである。オープンポア構造は、液体や気体を流せば該マクロポアと該開口で形成される空孔構造内が流路となる。マクロポアは、連続マクロポア構造中、概ね同じ半径のものが均一に分散されているが、上記数値範囲を越える更に大きなポアが不均一に所々点在していてもよい。   The continuous macropore structure is a structure in which the macropores connected to each other have openings having a radius of 0.01 to 10 μm, preferably 0.1 to 10 μm. That is, the continuous macropore structure usually has a structure in which a macropore having a radius of 0.2 to 250 μm and a macropore overlap each other, and this overlapping portion is an opening, and the portion has an open pore structure. In the open pore structure, when a liquid or gas is flowed, the pore structure formed by the macropore and the opening becomes a flow path. The macropores having the same radius are uniformly distributed in the continuous macropore structure, but larger pores exceeding the above numerical range may be scattered in some places.

マクロポアとマクロポアの重なりは、1個のマクロポアで1〜2個、多くのものは3〜10個である。開口の半径が0.01μm未満であると、液体または気体透過時の圧力損失が大きくなるため好ましくない。一方、開口の半径が10μmを越えると、骨格構造の密度が減少することで、体積当りのイオン交換容量が減少してしまい、その結果、吸着特性やイオン交換特性が低下してしまうため好ましくない。   The number of overlapping macropores is 1-2 for one macropore, and 3-10 for many. If the radius of the opening is less than 0.01 μm, the pressure loss during liquid or gas permeation increases, which is not preferable. On the other hand, if the radius of the opening exceeds 10 μm, the density of the skeletal structure decreases, so that the ion exchange capacity per volume decreases. As a result, the adsorption characteristics and the ion exchange characteristics decrease, which is not preferable. .

連続マクロポア構造は、全細孔容積が2〜20ml/g、好ましくは3〜20ml/gである。全細孔容積が小さ過ぎると、単位断面積当りの通水量が小さくなってしまい、流体が流れ難くなるため好ましくない。一方、全細孔容積が大き過ぎると、骨格部分のポリマーの占める割合が低下し、多孔質体の強度が著しく低下したり、イオン交換基を多く導入できない等の点で好ましくない。連続マクロポア構造中の全細孔容積は、水銀圧入法により測定することができる。連続マクロポア構造を形成する骨格部分のポリマーは、架橋構造を有する有機ポリマー材料を用い、該ポリマー材料はポリマー材料を構成する全構成単位に対して、10〜90モル%の架橋構造単位を含むことが好ましい。架橋構造単位が10モル%未満であると、機械的強度が不足するため好ましくなく、一方、90モル%を越えると、イオン交換基の導入が困難となり、イオン交換容量が低下してしまうため好ましくない。連続マクロポア構造における全細孔容積は、SEMにより平均マクロポア径を求めることで概ね知ることができる。   The continuous macropore structure has a total pore volume of 2 to 20 ml / g, preferably 3 to 20 ml / g. If the total pore volume is too small, the amount of water flow per unit cross-sectional area becomes small, which makes it difficult for the fluid to flow. On the other hand, if the total pore volume is too large, the proportion of the polymer in the skeleton portion decreases, which is not preferable in that the strength of the porous body is remarkably reduced and a large number of ion exchange groups cannot be introduced. The total pore volume in the continuous macropore structure can be measured by mercury porosimetry. The polymer of the skeleton part that forms the continuous macropore structure uses an organic polymer material having a crosslinked structure, and the polymer material contains 10 to 90 mol% of the crosslinked structural unit with respect to all the structural units constituting the polymer material. Is preferred. If the cross-linking structural unit is less than 10 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 90 mol%, it is difficult to introduce an ion exchange group, and the ion exchange capacity is decreased. Absent. The total pore volume in the continuous macropore structure can be generally known by obtaining the average macropore diameter by SEM.

連続マクロポア構造を構成する材料の種類に特に制限はなく、例えば、ポリスチレン、ポリ(α−メチルスチレン)、ポリビニルベンジルクロライド等のスチレン系ポリマー;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリ塩化ビニル、ポリテトラフルオロエチレン等のポリ(ハロゲン化ポリオレフィン);ポリアクリロニトリル等のニトリル系ポリマー;ポリメタクリル酸メチル、ポリメタクリル酸グリシジル、ポリアクリル酸エチル等の(メタ)アクリル系ポリマー;スチレン−ジビニルベンゼン共重合体、ビニルベンジルクロライド−ジビニルベンゼン共重合体等が挙げられる。上記ポリマーは、単独のモノマー及び、必要に応じて架橋剤を重合させて得られるポリマーでも、複数のモノマー及び、必要に応じて架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、イオン交換基導入の容易性と機械的強度の高さ、および酸・アルカリに対する安定性の高さから、スチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体が好ましい材料として挙げられる。   There are no particular limitations on the type of material constituting the continuous macropore structure. For example, styrene polymers such as polystyrene, poly (α-methylstyrene), and polyvinylbenzyl chloride; polyolefins such as polyethylene and polypropylene; polyvinyl chloride, polytetrafluoro Poly (halogenated polyolefins) such as ethylene; Nitrile polymers such as polyacrylonitrile; (Meth) acrylic polymers such as polymethyl methacrylate, polyglycidyl methacrylate, and polyethyl acrylate; Styrene-divinylbenzene copolymer, vinyl Examples thereof include benzyl chloride-divinylbenzene copolymer. The polymer may be a single monomer and a polymer obtained by polymerizing a crosslinking agent as necessary, or may be a polymer obtained by polymerizing a plurality of monomers and, if necessary, a crosslinking agent, Two or more kinds of polymers may be blended. Among these organic polymer materials, styrene-divinylbenzene copolymer and vinylbenzyl chloride-divinylbenzene copolymer are used because of their ease of ion-exchange group introduction, high mechanical strength, and high stability against acids and alkalis. A polymer is mentioned as a preferable material.

粒子凝集型空孔構造において、有機ポリマー粒子の半径が小さ過ぎると、骨格間の連続した空孔半径が小さくなり過ぎるため好ましくなく、大き過ぎると、液体または気体とモノリス状多孔質体等との接触が不十分となり、その結果、イオン交換特性が低下してしまうため好ましくない。また、骨格間に存在する三次元的に連続した空孔半径の大きさが小さ過ぎると、水や気体等の流体を透過させた際の圧力損失が大きくなってしまうため好ましくなく、一方、大き過ぎると、液体または気体と有機多孔質体や有機多孔質イオン交換体との接触が不十分となり、イオン交換特性が低下してしまうため好ましくない。上記有機ポリマー粒子の大きさは、SEMを用いることで簡便に測定できる。また、骨格間に存在する三次元的に連続した空孔径の大きさは、凝集型空孔構造部分に対する水銀圧入法により求めたものであり、水銀圧入法により得られた細孔分布曲線の極大値を指す。   In the particle aggregation type pore structure, if the radius of the organic polymer particles is too small, the continuous pore radius between the skeletons becomes too small, which is not preferable. If too large, the liquid or gas and the monolithic porous body, etc. The contact becomes insufficient, and as a result, the ion exchange characteristics deteriorate, which is not preferable. Also, if the size of the three-dimensional continuous pore radius existing between the skeletons is too small, it is not preferable because the pressure loss when a fluid such as water or gas is permeated increases. If it is too high, contact between the liquid or gas and the organic porous body or organic porous ion exchanger becomes insufficient, and the ion exchange characteristics deteriorate, which is not preferable. The size of the organic polymer particles can be easily measured by using SEM. In addition, the size of the three-dimensional continuous pore diameter existing between the skeletons was obtained by the mercury intrusion method for the aggregated pore structure, and the maximum pore distribution curve obtained by the mercury intrusion method was obtained. Points to the value.

また、粒子凝集型空孔構造は、前記連続マクロポア構造と同様の全細孔容積を有する。また、当該構造を構成する骨格部分の有機ポリマー材料は、ビニルモノマーからなる構成単位と、分子中に2個以上のビニル基を有する架橋剤構造単位とを有するものであり、該ポリマー材料はポリマー材料を構成する全構成単位に対して、好ましくは1〜5モル%、特に好ましくは1〜4モル%の架橋構造単位を含んでいる。架橋構造単位が少な過ぎると、機械的強度が不足するため好ましくなく、一方、多くなり過ぎると、上記骨格間に三次元的に連続して存在する空孔径が小さくなってしまい、圧力損失が大きくなってしまうため好ましくない。   The particle aggregation type pore structure has the same total pore volume as the continuous macropore structure. Moreover, the organic polymer material of the skeleton part constituting the structure has a constitutional unit composed of a vinyl monomer and a crosslinking agent structural unit having two or more vinyl groups in the molecule, and the polymer material is a polymer. It preferably contains 1 to 5 mol%, particularly preferably 1 to 4 mol% of cross-linked structural units with respect to all the structural units constituting the material. When the number of cross-linking structural units is too small, it is not preferable because the mechanical strength is insufficient. On the other hand, when the number is too large, the diameter of pores existing three-dimensionally continuously between the skeletons becomes small, resulting in a large pressure loss. This is not preferable.

本発明において、貫通孔は、連続空孔構造の有機多孔質体の厚み方向に延びる半径0.05〜0.30mm、好ましくは0.08〜0.20mmの直線状または螺旋状の孔であって、厚み方向に対して直交する方向に所定のピッチで多数形成されたものである。貫通孔の半径が小さ過ぎると通水差圧の低減効果はほとんど見られないため好ましくなく、大き過ぎると、貫通孔内壁と貫通孔を流れる液体との接触効率が低下しイオン交換帯長さが著しく長くなる点で好ましくない。貫通孔は、直線状のものが、鋳型構造が簡易でよく、孔径の制御がし易く、また針の引き抜きが容易である点で好ましい。   In the present invention, the through hole is a linear or spiral hole having a radius of 0.05 to 0.30 mm, preferably 0.08 to 0.20 mm, extending in the thickness direction of the organic porous body having a continuous pore structure. Thus, a large number are formed at a predetermined pitch in a direction orthogonal to the thickness direction. If the radius of the through hole is too small, the effect of reducing the water differential pressure is hardly seen, which is not preferable. It is not preferable in that it becomes extremely long. A straight through hole is preferable in that the mold structure may be simple, the hole diameter can be easily controlled, and the needle can be easily pulled out.

直線状の貫通孔としては、厚み方向に真っ直ぐ延びる貫通孔、やや傾斜状に延びる貫通孔、やや先細りの貫通孔等が挙げられる。なお、やや先細りは通液方向を逆方向とすれば、やや先拡径となるものであり、本発明においては、やや先細りとやや先拡径は同義である。傾斜状の貫通孔としては、貫通孔全てが同じ方向のもの、それぞれが任意の方向に延びるものが挙げられる。   Examples of the straight through-hole include a through-hole that extends straight in the thickness direction, a through-hole that extends slightly in an inclined shape, and a slightly tapered through-hole. Note that slightly tapering is a slightly larger diameter if the liquid passing direction is the opposite direction. In the present invention, slightly tapered and slightly larger diameter are synonymous. Examples of the inclined through holes include those in which all the through holes are in the same direction, and those in which each extends in an arbitrary direction.

螺旋状の貫通孔の形状としては、特に制限されないが、極力直線に近いものが、有機ポリマー中に形成し易い点で好ましい。螺旋形状の好ましいものは、螺旋形状の中心軸からの径方向の長さ(平面視の半径に相当)が0.5mm以内、螺旋形状の厚み方向の1ピッチの長さ(P)が、P/厚み(同じ単位)で1以下のものである。螺旋形状は、規則性のない捻り形状のものも含まれる。   The shape of the spiral through-hole is not particularly limited, but a shape close to a straight line as much as possible is preferable because it can be easily formed in the organic polymer. The spiral shape preferably has a radial length (corresponding to a radius in plan view) within 0.5 mm from the central axis of the spiral shape, and a length (P) of one pitch in the thickness direction of the spiral shape is P / Thickness (same unit) is 1 or less. The spiral shape includes a twisted shape having no regularity.

貫通孔は、厚み方向に対して直交する方向に多数形成されるが、隣接する貫通孔間のピッチは一定であっても、一定でなくてもよく、適宜決定される。モノリス状有機多孔質体の見かけの体積に対する貫通孔の膨潤時の体積比率は、通常0.5〜16%、好ましくは1〜8%である。この体積比率が0.5%未満では、通水差圧の低減効果はほとんど見られないため好ましくなく、体積比率が12%を超えると、貫通孔内壁と貫通孔を流れる液体との接触効率が低下するか、あるいは貫通孔の形成本数が多くなり、製作し難い点で好ましくない。   A large number of through holes are formed in a direction orthogonal to the thickness direction, but the pitch between adjacent through holes may or may not be constant, and is determined as appropriate. The volume ratio at the time of swelling of the through holes with respect to the apparent volume of the monolithic organic porous body is usually 0.5 to 16%, preferably 1 to 8%. If the volume ratio is less than 0.5%, the effect of reducing the water differential pressure is hardly seen, which is not preferable. If the volume ratio exceeds 12%, the contact efficiency between the inner wall of the through hole and the liquid flowing through the through hole is poor. It is not preferable in that it is lowered or the number of through holes formed is increased and it is difficult to manufacture.

本発明のモノリスは、モノリス状有機多孔質体の骨格表面及び骨格内部に更にイオン交換基を均一に導入したものであり、そのイオン交換容量としては、特に制限されないが、水湿潤状態での体積当りのイオン交換容量が0.2mg当量/ml以上、好ましくは0.3mg当量/ml以上のイオン交換容量を有しているものである。水湿潤状態での体積当りのイオン交換容量が0.2mg当量/ml未満であると、破過までに処理できるイオンを含んだ水の量、即ち脱イオン水の製造能力が低下してしまうため好ましくない。   The monolith of the present invention is a monolith-like organic porous material in which ion exchange groups are further uniformly introduced into the skeleton surface and inside the skeleton, and the ion exchange capacity is not particularly limited, but is a volume in a water-wet state. The ion exchange capacity per unit is 0.2 mg equivalent / ml or more, preferably 0.3 mg equivalent / ml or more. If the ion exchange capacity per volume in a water-wet state is less than 0.2 mg equivalent / ml, the amount of water containing ions that can be processed before breakthrough, that is, the ability to produce deionized water is reduced. It is not preferable.

導入されたイオン交換基は、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布している。ここで言う「イオン交換基が均一に分布している」とは、イオン交換基の分布が少なくともμmオーダーで表面および骨格内部に均一に分布していることを指す。イオン交換基の分布状況は、EPMAやSIMS等を用いることで、比較的簡単に確認することができる。また、イオン交換基が、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。   The introduced ion exchange groups are uniformly distributed not only on the surface of the porous body but also within the skeleton of the porous body. Here, “ion exchange groups are uniformly distributed” means that the distribution of ion exchange groups is uniformly distributed on the surface and inside the skeleton in the order of at least μm. The distribution of ion exchange groups can be confirmed relatively easily by using EPMA, SIMS, or the like. In addition, if the ion exchange groups are uniformly distributed not only on the surface of the porous body but also within the skeleton of the porous body, the physical and chemical properties of the surface and the interior can be made uniform, so that the swelling And durability against shrinkage is improved.

有機多孔質体に導入するイオン交換基としては、スルホン酸基、カルボン酸基、イミノ二酢酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基;アミノリン酸基、スルホベタイン等の両性イオン交換基が挙げられる。   Examples of ion exchange groups to be introduced into the organic porous material include cation exchange groups such as sulfonic acid groups, carboxylic acid groups, iminodiacetic acid groups, phosphoric acid groups, and phosphoric acid ester groups; quaternary ammonium groups, tertiary amino groups, Examples include anion exchange groups such as secondary amino group, primary amino group, polyethyleneimine group, tertiary sulfonium group, and phosphonium group; amphoteric ion exchange groups such as aminophosphate group and sulfobetaine.

次に、本発明のモノリス状有機多孔質体の製造方法について説明する。すなわち、当該製造方法は、ビニルモノマー、界面活性剤、水及び必要に応じて重合開始剤や架橋剤を混合し、該混合物を撹拌して油中水滴型エマルジョンを調製するI-A工程と、容器内の該油中水滴型エマルジョン中に針の長手方向が厚み方向となるように多数の針を配置し、静置下重合するII-A工程と、重合体から該多数の針を取り外すIII-A工程と、得られた有機多孔質体にイオン交換基を導入するIV-A工程とを有する第1の製造方法及びビニルモノマー、一分子中に少なくとも2個のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる液状混合物を調製するI-B工程と、容器内の該液状混合物中に針の長手方向が厚み方向となるように多数の針を配置し、静置下重合するII-B工程と、該重合体から多数の針を取り外すIII-B工程と、得られた有機多孔質体にイオン交換基を導入するIV-B工程とを有する第2の製造方法が挙げられる。   Next, the manufacturing method of the monolithic organic porous body of this invention is demonstrated. That is, the production method comprises a step IA in which a vinyl monomer, a surfactant, water and, if necessary, a polymerization initiator and a crosslinking agent are mixed, and the mixture is stirred to prepare a water-in-oil emulsion. A plurality of needles are placed in the water-in-oil emulsion in the container so that the longitudinal direction of the needles is in the thickness direction, and polymerized under standing, and the many needles are removed from the polymer III A first production method and vinyl monomer having a -A step and an IV-A step of introducing an ion exchange group into the obtained organic porous material, a crosslinking agent having at least two vinyl groups in one molecule, A step IB for preparing a liquid mixture comprising an organic solvent and a polymerization initiator that dissolves the vinyl monomer and the cross-linking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer, and the needle in the liquid mixture in the container. Longitudinal direction is thickness A plurality of needles arranged so as to be oriented, a step II-B in which the polymer is allowed to stand, a step III-B in which a number of needles are removed from the polymer, and an ion exchange group on the resulting organic porous material. The 2nd manufacturing method which has IV-B process to introduce | transduce is mentioned.

第1の製造方法を説明する。I-A工程で用いられるビニルモノマーとしては、分子中に重合可能なビニル基を含有し、水に対する溶解性が低く、親油性のモノマーであれば、特に制限はない。これらビニルモノマーの具体例としては、スチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド等のスチレン系モノマー;エチレン、プロピレン、1−ブテン、イソブテン等のα−オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。本発明で好適に用いられるビニルモノマーは、スチレン、ビニルベンジルクロライド等のスチレン系モノマーである。   The first manufacturing method will be described. The vinyl monomer used in step IA is not particularly limited as long as it contains a polymerizable vinyl group in the molecule, has low solubility in water, and is a lipophilic monomer. Specific examples of these vinyl monomers include styrene monomers such as styrene, α-methylstyrene, vinyl toluene, and vinyl benzyl chloride; α-olefins such as ethylene, propylene, 1-butene, and isobutene; butadiene, isoprene, chloroprene, and the like. Diene monomers; Halogenated olefins such as vinyl chloride, vinyl bromide, vinylidene chloride and tetrafluoroethylene; Nitrile monomers such as acrylonitrile and methacrylonitrile; Vinyl esters such as vinyl acetate and vinyl propionate; Methyl acrylate and Acrylic Ethyl acetate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate Examples include (meth) acrylic monomers such as syl, benzyl methacrylate, and glycidyl methacrylate. These monomers can be used alone or in combination of two or more. The vinyl monomer suitably used in the present invention is a styrene monomer such as styrene or vinyl benzyl chloride.

I-A工程で用いられる任意の構成要素である架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。   As the cross-linking agent that is an optional component used in the step IA, those having at least two polymerizable vinyl groups in the molecule and having high solubility in an organic solvent are preferably used. Specific examples of the crosslinking agent include divinylbenzene, divinylnaphthalene, divinylbiphenyl, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, butanediol diacrylate, and the like. These crosslinking agents can be used singly or in combination of two or more. Preferred cross-linking agents are aromatic polyvinyl compounds such as divinylbenzene, divinylnaphthalene and divinylbiphenyl because of their high mechanical strength and stability to hydrolysis.

I-A工程で用いられる界面活性剤は、ビニルモノマーと水を混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、ソルビタンモノオレート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレート、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノオレート等の非イオン界面活性剤;オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性剤;ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルベタイン等の両性界面活性剤を用いることができる。これら界面活性剤は、1種単独または2種類以上を組み合わせて使用することができる。なお、油中水滴型エマルジョンとは、油相が連続相となり、その中に水滴が分散しているエマルジョンを言う。上記界面活性剤の添加量は、油溶性モノマーの種類及び、目的とするエマルジョン粒子の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2〜70%の範囲で選択することができる。   The surfactant used in the step IA is not particularly limited as long as it can form a water-in-oil (W / O) emulsion when the vinyl monomer and water are mixed, and sorbitan monooleate and sorbitan mono Nonionic surfactants such as laurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene nonylphenyl ether, polyoxyethylene stearyl ether, polyoxyethylene sorbitan monooleate; potassium oleate, dodecylbenzene Anionic surfactants such as sodium sulfonate and dioctyl sodium sulfosuccinate; cationic surfactants such as distearyl dimethyl ammonium chloride; amphoteric surfactants such as lauryl dimethyl betaine can be used. These surfactants can be used alone or in combination of two or more. The water-in-oil emulsion refers to an emulsion in which an oil phase is a continuous phase and water droplets are dispersed therein. The amount of the surfactant added is not unclear because it varies greatly depending on the type of the oil-soluble monomer and the size of the target emulsion particles, but the total amount of the oil-soluble monomer and the surfactant A range of about 2 to 70% can be selected.

I-A工程で用いられる任意の構成要素である重合開始剤としては、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は油溶性であるほうが好ましい。本発明で用いられる重合開始剤の具体例としては、2,2’−アゾビス(イソブチロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビスイソ酪酸ジメチル、4,4’−アゾビス(4−シアノ吉草酸)、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド等が挙げられる。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、ビニルモノマーと架橋剤の合計量に対して、約0.01〜5%の範囲で使用することができる。   As the polymerization initiator that is an optional component used in the step IA, a compound that generates a radical by heat and light irradiation is preferably used. The polymerization initiator is preferably oil-soluble. Specific examples of the polymerization initiator used in the present invention include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis (4-cyanovaleric acid) 1,1′-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, tetramethylthiuram disulfide and the like. The amount of the polymerization initiator used varies greatly depending on the type of monomer, polymerization temperature, etc., but can be used in a range of about 0.01 to 5% with respect to the total amount of vinyl monomer and crosslinking agent.

I-A工程において、ビニルモノマー、界面活性剤、水及び必要に応じて重合開始剤や架橋剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサーやホモジナイザー、高圧ホモジナイザー等を用いることができ、目的のエマルジョン粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルジョン粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。なお、上記油溶性成分と水溶性成分の混合比は、重量比で(油溶性成分)/(水溶性成分)=5/95〜30/70、好ましくは10/90〜25/75の範囲で任意に設定することができる。これにより、全細孔容積を2〜20ml/g、好ましくは3〜10ml/gのものを製造することができる。   In the step IA, there is no particular limitation as a mixing method when forming a water-in-oil emulsion by mixing a vinyl monomer, a surfactant, water and, if necessary, a polymerization initiator and a crosslinking agent to form a water-in-oil emulsion, Method of mixing each component at once, oil-soluble monomer, surfactant, and oil-soluble component that is oil-soluble polymerization initiator and water-soluble component that is water and water-soluble polymerization initiator separately and uniformly dissolved Then, a method of mixing the respective components can be used. The mixing apparatus for forming the emulsion is not particularly limited, and a normal mixer, homogenizer, high-pressure homogenizer, or the like can be used, and an appropriate apparatus may be selected to obtain a desired emulsion particle size. Moreover, there is no restriction | limiting in particular about mixing conditions, The stirring rotation speed and stirring time which can obtain the target emulsion particle size can be set arbitrarily. The mixing ratio of the oil-soluble component and the water-soluble component is (oil-soluble component) / (water-soluble component) = 5/95 to 30/70, preferably 10/90 to 25/75 in weight ratio. It can be set arbitrarily. As a result, a product having a total pore volume of 2 to 20 ml / g, preferably 3 to 10 ml / g can be produced.

開口の半径0.01〜10μmは、油中水滴型エマルジョンを得る工程において、ビニルモノマーの添加量、界面活性剤の添加量、攪拌混合における攪拌回転数及び攪拌時間などを適宜に決定することで達成することができる。また、攪拌混合の際、アルコール、カルボン酸あるいは炭化水素を共存させることにより調整することもできる。開口の半径0.01μm近傍は、ビニルモノマーの添加量や界面活性剤の添加量を多くしたり、攪拌回転数を高めたり、攪拌時間を長くとることにより、逆に半径100μm近傍は、界面活性剤の添加量を少なくしたり、攪拌回転数を低くしたり、攪拌時間を短くすることで達成することができる。   The opening radius of 0.01 to 10 μm is determined by appropriately determining the amount of vinyl monomer added, the amount of surfactant added, the number of stirring revolutions and the stirring time in stirring and mixing in the step of obtaining a water-in-oil emulsion. Can be achieved. Moreover, it can also adjust by making alcohol, carboxylic acid, or a hydrocarbon coexist in the case of stirring and mixing. In the vicinity of the opening radius of 0.01 μm, by increasing the addition amount of vinyl monomer and surfactant, increasing the rotation speed of stirring, and increasing the stirring time, conversely, in the vicinity of radius of 100 μm, the surface activity is increased. This can be achieved by reducing the addition amount of the agent, lowering the rotation speed of stirring, or shortening the stirring time.

II-A工程は、容器内の油中水滴型エマルジョン中に多数の針を厚み方向に延出するように配置し、静置下重合する工程である。II-A工程においては、容器内に油中水滴型エマルジョンを導入し、その後、多数の針を設置してもよく(第1の方法)、容器内に多数の多数の針を設置し、その後、油中水滴型エマルジョンを導入してもよい(第2の方法)。なお、重合終了後の有機ポリマーと針の離型性を高めるために離型剤を予め針に塗布しても良い。離型剤としては、シリコンオイル、界面活性剤などが挙げられる。   Step II-A is a step in which a large number of needles are arranged in the water-in-oil emulsion in the container so as to extend in the thickness direction and polymerize while standing. In the step II-A, the water-in-oil emulsion may be introduced into the container, and then a large number of needles may be installed (first method). A water-in-oil emulsion may be introduced (second method). A release agent may be applied to the needle in advance in order to improve the release property between the organic polymer after completion of polymerization and the needle. Examples of the mold release agent include silicone oil and surfactant.

II-A工程で用いる多数の針は、静置時及び重合時にその形状を保持してエマルジョンやポリマー中に存在し、重合後は該容器から取り除かれポリマー中に当該形状の貫通孔を形成するものである。多数の針が直線針である場合、例えば図1及び図2の剣山状の鋳型を用いればよい。図1(A)は鋳型の平面図、(B)は鋳型の正面図、図2は台座への針の支持方法を説明する図である。図1の剣山状の鋳型10は、脚部1により設置面から所定の高さに保持される台座2の所定領域3に、半径0.05〜0.25mmの直線針4が通る貫通穴5を多数形成し、貫通穴5を通らない大きさのストッパー部6を後端(頭部)7に形成した直線針4を、直線針4の先端から貫通穴5に通して吊り下げ状に支持したものである。所定領域3は図1では、四角形の板状物の中央部に位置する平面視が四角形の領域である。かかる領域の形状はこれに限定されず、製造されるモノリスの形状や容器形状により適宜決定される。通常は、平面視が円形である。   Many needles used in the II-A process are present in the emulsion or polymer while maintaining their shape during standing and polymerization, and are removed from the container after polymerization to form through holes of the shape in the polymer. Is. When a large number of needles are straight needles, for example, the sword-mount mold shown in FIGS. 1 and 2 may be used. 1A is a plan view of the mold, FIG. 1B is a front view of the mold, and FIG. 2 is a view for explaining a method of supporting the needle on the base. 1 has a through hole 5 through which a straight needle 4 having a radius of 0.05 to 0.25 mm passes through a predetermined region 3 of a pedestal 2 held by a leg 1 at a predetermined height from an installation surface. Are formed, and a straight needle 4 formed with a stopper 6 having a size that does not pass through the through hole 5 at the rear end (head) 7 is supported in a suspended manner through the through hole 5 from the tip of the straight needle 4. It is a thing. In FIG. 1, the predetermined area 3 is an area having a square shape in plan view located at the center of the square plate-like object. The shape of the region is not limited to this, and is appropriately determined depending on the shape of the monolith to be manufactured and the shape of the container. Usually, the plan view is circular.

また、直線針4の長さは脚部1の長さよりやや短くするのが、吊り下げられた直線針4を鉛直に且つ安定して台座2に支持することができる点で好ましい。なお、直線針4の長さを短くすることで、下方部分のモノリスは貫通孔の無い部分が製造されるが、当該部分は厚みの直角方向に切断することで、厚み方向に貫通孔を形成することができる。また、台座2の貫通穴5の内径は直線針4の本体7が隙間なく通る程度のものが、台座2の面に対して針の垂直性が保持できる点で好ましい。   In addition, it is preferable that the length of the straight needle 4 is slightly shorter than the length of the leg portion 1 because the suspended straight needle 4 can be supported vertically and stably on the base 2. In addition, by shortening the length of the straight needle 4, the monolith in the lower part is manufactured without a through hole, but the part is cut in a direction perpendicular to the thickness to form a through hole in the thickness direction. can do. Further, the inner diameter of the through hole 5 of the pedestal 2 is preferably such that the main body 7 of the linear needle 4 passes through without any gap in that the perpendicularity of the needle to the surface of the pedestal 2 can be maintained.

II-A工程においては、剣山状の鋳型10の針部を収容し、脚部1の内側に設置できる容器を準備する。この容器の中に、剣山状の鋳型10の多数の針4が入るように、セットし、その後、容器内に油中水滴型エマルジョンを静かに注入していく。なお、容器の中に先ず油中水滴型エマルジョンを注入し、その後、剣山状の鋳型10を設置してもよい。   In the step II-A, a container that accommodates the needle portion of the sword-shaped mold 10 and can be installed inside the leg portion 1 is prepared. The container is set so that a large number of needles 4 of the sword mountain-shaped mold 10 can enter, and then the water-in-oil emulsion is gently poured into the container. Alternatively, the water-in-oil emulsion may first be poured into the container, and then the sword mountain-shaped mold 10 may be installed.

剣山状の鋳型10によれば、直線針4を着脱自在にすることで、洗浄が容易になり、繰り返し使用ができる。また、直線針4とすることで、貫通孔の制御が容易になる。加えて万が一、直線針4が曲がってしまった場合でも曲がった直線針4だけを交換することができる。また直線針4にポリエチレン等の高分子化合物(離型剤)を塗布する際にも均一な離型剤の塗布が行い易い。また、直線針4の頭部にストッパー部6を設けることで、台座2から直線針4が脱落することを防止すると共に、摘み易いため、抜き差しが容易となる。   According to the sword mountain-shaped mold 10, by making the straight needle 4 detachable, cleaning becomes easy and it can be used repeatedly. Moreover, by using the straight needle 4, the control of the through hole is facilitated. In addition, even if the straight needle 4 is bent, only the bent straight needle 4 can be replaced. Further, even when a polymer compound (release agent) such as polyethylene is applied to the linear needle 4, it is easy to apply a uniform release agent. Further, by providing the stopper portion 6 at the head of the straight needle 4, it is possible to prevent the straight needle 4 from falling off the pedestal 2, and it is easy to pick and remove it.

台座2は、耐薬品性や加工性に優れるものが好ましい。これにより、重合及び洗浄工程での有機溶媒による材料の変形や劣化を防止することができ、また、微細な穴を精度よく空けることができる。溶液やエマルジョンに浸漬する側の直線針4の先端形状としては、抜き取る際に針と溶液やエマルジョンの接触部における連続空孔構造をもったゲル組織を著しく傷つけるようなものでなければいずれの形状でも構わないが、例えば、平型、ドーム型、山形などが挙げられる。   The base 2 is preferably excellent in chemical resistance and workability. Thereby, the deformation | transformation and deterioration of the material by the organic solvent in a superposition | polymerization and a washing | cleaning process can be prevented, and a fine hole can be opened accurately. The shape of the tip of the straight needle 4 on the side immersed in the solution or emulsion is any shape as long as it does not significantly damage the gel structure having a continuous pore structure at the contact portion between the needle and the solution or emulsion during extraction. However, for example, a flat shape, a dome shape, a mountain shape, and the like can be given.

図1の剣山状の鋳型10は、螺旋状の貫通孔を形成する場合にも適用できる。すなわち、上記剣山状の鋳型10において、直線針4に代えて螺旋状針を使用すればよい。この際、台座2の貫通穴5は、当該螺旋形状に見合った形状とすることが好ましく、隣接する螺旋針が抜き差しの際に干渉しないよう、平面視での径方向の長さを小さくするかあるいは隣接する針との間隔(ピッチ)を大きくすることが好ましい。   The sword-mount mold 10 shown in FIG. 1 can also be applied when a spiral through-hole is formed. That is, in the sword mountain-shaped mold 10, a spiral needle may be used instead of the straight needle 4. At this time, it is preferable that the through hole 5 of the pedestal 2 has a shape commensurate with the spiral shape, and the length in the radial direction in plan view should be reduced so that adjacent spiral needles do not interfere during insertion and removal. Alternatively, it is preferable to increase the interval (pitch) between adjacent needles.

II-A工程において、重合条件は、モノマーの種類、重合開始剤の種類により様々な条件が選択できる。例えば、重合開始剤として2,2’−アゾビス(イソブチロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム等を用いたときには、不活性雰囲気下の密封容器内において、30〜100℃で1〜48時間加熱重合させればよい。   In the step II-A, various polymerization conditions can be selected depending on the type of monomer and the type of polymerization initiator. For example, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate and the like were used as polymerization initiators. Sometimes, heat polymerization may be performed at 30 to 100 ° C. for 1 to 48 hours in a sealed container under an inert atmosphere.

III-A工程は、重合体から多数の針を取り除く工程である。すなわち、重合終了後、剣山状の鋳型10から有機ポリマー中の貫通孔の形状を保持したまま多数の針4を抜き取る。針4の抜き取りは、一本毎に抜き取る方法、部分的に纏めて抜き取る方法、あるいは全部一度に抜き取る方法など適宜選択して行なう。螺旋針の場合は、一本毎に軸中心としてまわしながら抜き取ることが、ポリマー内に形成された貫通孔の形状を損傷させることが無い点で好ましい。次ぎに、容器から内容物を取り出し、未反応ビニルモノマーと有機溶媒の除去を目的に、2−プロパノール等の溶剤で抽出してモノリス状有機多孔質体を得る。   Step III-A is a step of removing a large number of needles from the polymer. That is, after the polymerization is completed, a large number of needles 4 are extracted from the sword-shaped mold 10 while maintaining the shape of the through holes in the organic polymer. The extraction of the needles 4 is performed by selecting as appropriate, such as a method of extracting needles one by one, a method of extracting parts collectively, or a method of extracting all at once. In the case of a spiral needle, it is preferable that each needle is extracted while being rotated as the center of the shaft because the shape of the through-hole formed in the polymer is not damaged. Next, the contents are taken out from the container and extracted with a solvent such as 2-propanol for the purpose of removing unreacted vinyl monomer and organic solvent to obtain a monolithic organic porous material.

IV-A工程は、得られた有機多孔質体にイオン交換基を導入する工程である。当該工程で得られたモノリス状有機多孔質イオン交換体は、モノリス状有機多孔質体の骨格表面及び骨格内部にイオン交換基を均一に導入したものであって、水湿潤状態での体積当りのイオン交換容量が0.2mg当量/ml以上、好ましくは0.3〜5.0mg当量/mlである。このように、予めモノリス状有機多孔質体を製造し、その後、イオン交換基を導入する方法が、モノリス状有機多孔質イオン交換体の多孔構造を厳密にコントロールできる点で好ましい。   The IV-A step is a step of introducing an ion exchange group into the obtained organic porous material. The monolithic organic porous ion exchanger obtained in this step is a monolithic organic porous body in which ion-exchange groups are uniformly introduced on the skeleton surface and inside the skeleton, and the volume per volume in a wet state of water is The ion exchange capacity is 0.2 mg equivalent / ml or more, preferably 0.3 to 5.0 mg equivalent / ml. Thus, the method of manufacturing a monolithic organic porous body in advance and then introducing an ion exchange group is preferable in that the porous structure of the monolithic organic porous ion exchanger can be strictly controlled.

上記モノリス状有機多孔質体の表面及び骨格内部にイオン交換基を均一に導入する方法としては、特に制限はなく、高分子反応やグラフト重合等の公知の方法を用いることができる。例えば、スルホン酸基を導入する方法としては、有機多孔質体がスチレン-ジビニルベンゼン共重合体等であればクロロ硫酸や濃硫酸、発煙硫酸を用いてスルホン化する方法;有機多孔質体の表面及び骨格内部にラジカル開始基や連鎖移動基を導入し、スチレンスルホン酸ナトリウムやアクリルアミド−2−メチルプロパンスルホン酸をグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換によりスルホン酸基を導入する方法等が挙げられる。また、四級アンモニウム基を導入する方法としては、有機多孔質体がスチレン-ジビニルベンゼン共重合体等であればクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法;有機多孔質体をクロロメチルスチレンとジビニルベンゼンの共重合により製造し、三級アミンと反応させる方法;有機多孔質体の表面及び骨格内部にラジカル開始基や連鎖移動基を導入し、N,N,N−トリメチルアンモニウムエチルアクリレートやN,N,N−トリメチルアンモニウムプロピルアクリルアミドをグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換により四級アンモニウム基を導入する方法等が挙げられる。また、ベタインを導入する方法としては、有機多孔質体に三級アミンを導入した後、モノヨード酢酸を反応させ導入する方法等が挙げられる。これらの方法のうち、スルホン酸基を導入する方法については、クロロ硫酸を用いてスチレン-ジビニルベンゼン共重合体にスルホン酸基を導入する方法が、四級アンモニウム基を導入する方法としては、スチレン-ジビニルベンゼン共重合体にクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法やクロロメチルスチレンとジビニルベンゼンの共重合により有機多孔質体を製造し、三級アミンと反応させる方法が、イオン交換基を骨格表面及び骨格内部に均一かつ定量的に導入できる点で好ましい。なお、導入するイオン交換基としては、カルボン酸基、イミノ二酢酸基、スルホン酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基;アミノリン酸基、ベタイン、スルホベタイン等の両性イオン交換基が挙げられる。   The method for uniformly introducing ion exchange groups into the surface of the monolithic organic porous material and inside the skeleton is not particularly limited, and known methods such as polymer reaction and graft polymerization can be used. For example, as a method for introducing a sulfonic acid group, if the organic porous material is a styrene-divinylbenzene copolymer or the like, a method of sulfonation using chlorosulfuric acid, concentrated sulfuric acid or fuming sulfuric acid; surface of the organic porous material And a method of grafting polymerization of sodium styrene sulfonate or acrylamide-2-methylpropane sulfonic acid by introducing a radical initiating group or chain transfer group into the skeleton; similarly, graft polymerization of glycidyl methacrylate followed by functional group conversion to sulfonic acid Examples thereof include a method for introducing a group. Moreover, as a method of introducing a quaternary ammonium group, if the organic porous material is a styrene-divinylbenzene copolymer or the like, a method of introducing a chloromethyl group with chloromethyl methyl ether or the like and then reacting with a tertiary amine A method in which an organic porous material is produced by copolymerization of chloromethylstyrene and divinylbenzene and reacted with a tertiary amine; a radical initiating group or a chain transfer group is introduced into the surface of the organic porous material and inside the skeleton; A method of graft polymerization of N, N-trimethylammonium ethyl acrylate or N, N, N-trimethylammoniumpropylacrylamide; a method of grafting glycidyl methacrylate in the same manner and then introducing a quaternary ammonium group by functional group conversion, etc. It is done. Examples of the method for introducing betaine include a method in which a tertiary amine is introduced into an organic porous material and then introduced by reacting with monoiodoacetic acid. Among these methods, the method of introducing a sulfonic acid group includes a method of introducing a sulfonic acid group into a styrene-divinylbenzene copolymer using chlorosulfuric acid, and a method of introducing a quaternary ammonium group includes styrene. -An organic porous material is produced by introducing a chloromethyl group into a divinylbenzene copolymer with chloromethyl methyl ether and then reacting with a tertiary amine, or by copolymerizing chloromethylstyrene and divinylbenzene. Is preferable in that the ion exchange group can be uniformly and quantitatively introduced into the skeleton surface and inside the skeleton. The ion exchange groups to be introduced include cation exchange groups such as carboxylic acid groups, iminodiacetic acid groups, sulfonic acid groups, phosphoric acid groups, and phosphoric ester groups; quaternary ammonium groups, tertiary amino groups, and secondary amino groups. Groups, primary amino groups, polyethyleneimine groups, tertiary sulfonium groups, phosphonium groups and the like; and amphoteric ion exchange groups such as aminophosphate groups, betaines and sulfobetaines.

イオン交換容量の調整は、多孔質体と反応試薬の選択により適宜決定できる。例えば、0.2mg当量/gといったカチオン交換容量の多孔質体を製造する場合には、濃硫酸やクロロスルホン酸といったスルホン化試薬との反応性が低いジビニルベンゼンを主成分とする多孔質体をスルホン化することで達成できる。また、グラフト反応によりカチオン交換基を導入する場合は、多孔質体に導入するラジカル開始基や連鎖移動基の導入量をやや低く抑えることで、カチオン交換容量をやや低くすることができる。一方、カチオン交換容量を高くしたい場合には、スルホン化試薬との反応性が高いスチレンを主成分とする多孔質体をスルホン化する。また、グラフト反応を用いる場合には、多孔質体に導入するラジカル開始基や連鎖移動基の導入量を多くすればよい。また、アニオン交換容量や両性イオン交換容量の場合も、前記カチオン交換容量の場合と同じ方法で行うことができる。   The ion exchange capacity can be adjusted as appropriate by selecting the porous material and the reaction reagent. For example, when producing a porous body having a cation exchange capacity of 0.2 mg equivalent / g, a porous body mainly composed of divinylbenzene having a low reactivity with a sulfonation reagent such as concentrated sulfuric acid or chlorosulfonic acid is used. This can be achieved by sulfonation. Further, when the cation exchange group is introduced by a graft reaction, the cation exchange capacity can be slightly lowered by suppressing the introduction amount of the radical initiating group or chain transfer group introduced into the porous body to be slightly low. On the other hand, when it is desired to increase the cation exchange capacity, a porous material mainly composed of styrene having a high reactivity with the sulfonation reagent is sulfonated. Further, when a graft reaction is used, the amount of radical initiation group or chain transfer group introduced into the porous body may be increased. In addition, in the case of anion exchange capacity or amphoteric ion exchange capacity, the same method as in the case of the cation exchange capacity can be used.

次ぎに、第2の製造方法について説明する。I-B工程は、ビニルモノマー、一分子中に少なくとも2個のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる液状混合物を調製する工程である。   Next, the second manufacturing method will be described. Step IB consists of a vinyl monomer, a crosslinking agent having at least two vinyl groups in one molecule, an organic solvent that dissolves the vinyl monomer and crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer, and polymerization initiation. It is a step of preparing a liquid mixture comprising an agent.

I-B工程で用いられるビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性のモノマーであれば、特に制限はない。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド等のスチレン系モノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。I-B工程で好適に用いられるビニルモノマーは、スチレン、ビニルベンジルクロライド等のスチレン系モノマーである。   The vinyl monomer used in step IB is not particularly limited as long as it is a lipophilic monomer that contains a polymerizable vinyl group in the molecule and has high solubility in an organic solvent. Specific examples of these vinyl monomers include styrene monomers such as styrene, α-methylstyrene, vinyl toluene and vinyl benzyl chloride; α-olefins such as ethylene, propylene, 1-butene and isobutene; butadiene, isoprene and chloroprene. Diene monomers; Halogenated olefins such as vinyl chloride, vinyl bromide, vinylidene chloride and tetrafluoroethylene; Nitrile monomers such as acrylonitrile and methacrylonitrile; Vinyl esters such as vinyl acetate and vinyl propionate; Methyl acrylate and Acrylic Ethyl acetate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate , Benzyl methacrylate, and (meth) acrylic monomer of glycidyl methacrylate. These monomers can be used alone or in combination of two or more. The vinyl monomer suitably used in the step IB is a styrene monomer such as styrene or vinyl benzyl chloride.

I-B工程で用いられる架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。架橋剤は、ビニルモノマーと架橋剤の合計量に対して1〜5モル%、好ましくは1〜4モル%の割合で用いる。架橋剤の使用量は得られる粒子凝集型空孔構造に大きな影響を与え、架橋剤を5モル%を超えて用いると、骨格間に形成される連続空孔の大きさが小さくなってしまうため好ましくない。一方、架橋剤使用量が1モル%未満であると、多孔質体の機械的強度が不足し、通水時に大きく変形したり、多孔質体の破壊を招いたりするため好ましくない。   As the crosslinking agent used in the step IB, one having at least two polymerizable vinyl groups in the molecule and having high solubility in an organic solvent is preferably used. Specific examples of the crosslinking agent include divinylbenzene, divinylnaphthalene, divinylbiphenyl, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, butanediol diacrylate, and the like. These crosslinking agents can be used singly or in combination of two or more. Preferred cross-linking agents are aromatic polyvinyl compounds such as divinylbenzene, divinylnaphthalene and divinylbiphenyl because of their high mechanical strength and stability to hydrolysis. The crosslinking agent is used in a proportion of 1 to 5 mol%, preferably 1 to 4 mol%, based on the total amount of the vinyl monomer and the crosslinking agent. The amount of the crosslinking agent used greatly affects the resulting particle aggregation type pore structure, and if the crosslinking agent is used in excess of 5 mol%, the size of the continuous pores formed between the skeletons becomes small. It is not preferable. On the other hand, when the amount of the crosslinking agent used is less than 1 mol%, the mechanical strength of the porous body is insufficient, and it is not preferable because it deforms greatly during water passage or causes the porous body to break.

I-B工程で用いられる有機溶媒は、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、エチレングリコール、テトラメチレングリコール、グリセリン等のアルコール類;ジエチルエーテル、エチレングリコールジメチルエーテル等の鎖状エーテル類;ヘキサン、オクタン、デカン、ドデカン等の鎖状飽和炭化水素類等が挙げられる。これらのうち、アルコール類を有機溶媒として用いると、静置重合により粒子凝集構造が形成されやすくなると共に、三次元的に連続した空孔が大きくなるため好ましい。また、ベンゼンやトルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。   The organic solvent used in the step IB is an organic solvent that dissolves the vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer, in other words, a poor solvent for the polymer formed by polymerization of the vinyl monomer. It is. Since the organic solvent varies greatly depending on the type of vinyl monomer, it is difficult to list general specific examples. For example, when the vinyl monomer is styrene, the organic solvent includes methanol, ethanol, propanol, butanol, Hexanol, cyclohexanol, octanol, 2-ethylhexanol, decanol, dodecanol, alcohols such as ethylene glycol, tetramethylene glycol, and glycerine; chain ethers such as diethyl ether and ethylene glycol dimethyl ether; hexane, octane, decane, dodecane, etc. And the like. Among these, it is preferable to use alcohols as the organic solvent because a particle aggregation structure is easily formed by static polymerization and pores continuous in three dimensions are increased. Moreover, even if it is a good solvent of polystyrene like benzene and toluene, when it is used with the said poor solvent and the usage-amount is small, it can be used as an organic solvent.

I-B工程で用いられる重合開始剤としては、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は油溶性であるほうが好ましい。本発明で用いられる重合開始剤の具体例としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド等が挙げられる。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、ビニルモノマーと架橋剤の合計量に対して、約0.01〜5%の範囲で使用することができる。また、液状混合物中には、重合終了後の有機ポリマーと針の離型性を高めるために離型剤を配合することができる。離型剤としては、シリコンオイル、界面活性剤などが挙げられる   As the polymerization initiator used in the step IB, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator is preferably oil-soluble. Specific examples of the polymerization initiator used in the present invention include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis (4-cyanovaleric acid) 1,1′-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, tetramethylthiuram disulfide and the like. The amount of the polymerization initiator used varies greatly depending on the type of monomer, polymerization temperature, etc., but can be used in a range of about 0.01 to 5% with respect to the total amount of vinyl monomer and crosslinking agent. Moreover, a release agent can be blended in the liquid mixture in order to improve the release property between the organic polymer after completion of polymerization and the needle. Examples of mold release agents include silicone oil and surfactants.

II-B工程は、容器内のビニルモノマー、架橋剤、有機溶媒及び重合開始剤を含む液状混合物中に多数の針を設置し、静置下重合する工程である。II-B工程は、II-A工程において、油中水滴型エマルジョンに代えて、液状混合物と読み替えればよいため、詳細な記載は省略する。なお、II-B工程の重合条件において、有機溶媒に溶解したビニルモノマーの重合が早く進む条件で行なえば、半径0.5μmに近い有機ポリマー粒子が沈降し凝集して三次元的に連続した骨格部分を形成させることができる。ビニルモノマーの重合が早く進む条件とは、ビニルモノマー、架橋剤、重合開始剤及び重合温度などにより異なり一概には決定できないものの、架橋剤を増やす、モノマー濃度を高くする、温度を高くするなどである。このような重合条件を加味して、半径0.5〜25μmの有機ポリマー粒子を凝集させる重合条件を適宜決定すればよい。また、その骨格間に空孔半径が10〜50μmの三次元的に連続した空孔を形成するには、架橋剤をビニルモノマーと架橋剤の合計量に対して1〜5モル%とすればよい。また、多孔質体の全細孔容積を2〜29ml/gとするには、ビニルモノマー、架橋剤、重合開始剤及び重合温度などにより異なり一概には決定できないものの、概ね有機溶媒、モノマー、架橋剤の合計使用量に対する有機溶媒使用量が、30〜80%、好適には40〜70%のような条件で重合すればよい。   Step II-B is a step in which a number of needles are placed in a liquid mixture containing a vinyl monomer, a cross-linking agent, an organic solvent and a polymerization initiator in a container and polymerized while standing. Since the II-B process may be read as a liquid mixture instead of the water-in-oil emulsion in the II-A process, detailed description is omitted. If the polymerization of the II-B process is performed under the condition that the polymerization of the vinyl monomer dissolved in the organic solvent proceeds quickly, the organic polymer particles having a radius of about 0.5 μm settle and aggregate to form a three-dimensional continuous skeleton. A portion can be formed. The conditions under which the polymerization of the vinyl monomer proceeds rapidly vary depending on the vinyl monomer, the crosslinking agent, the polymerization initiator, the polymerization temperature, etc., but cannot be determined unconditionally, but increase the crosslinking agent, increase the monomer concentration, increase the temperature, etc. is there. In consideration of such polymerization conditions, the polymerization conditions for aggregating organic polymer particles having a radius of 0.5 to 25 μm may be appropriately determined. In order to form three-dimensionally continuous pores having a pore radius of 10 to 50 μm between the skeletons, the crosslinking agent is 1 to 5 mol% with respect to the total amount of the vinyl monomer and the crosslinking agent. Good. Also, in order to make the total pore volume of the porous body 2 to 29 ml / g, although it varies depending on the vinyl monomer, the crosslinking agent, the polymerization initiator and the polymerization temperature and cannot be determined unconditionally, it is generally an organic solvent, a monomer, a crosslinking What is necessary is just to superpose | polymerize on the conditions that the usage-amount of the organic solvent with respect to the total usage-amount of an agent is 30-80%, Preferably it is 40-70%.

III-B工程は、重合体から多数の針を除去する工程である。III-B工程は、III-A工程と同様であり、その説明を省略する。IV-B工程は得られた有機多孔質体にイオン交換基を導入する工程である。IV-B工程は、IV-A工程と同様であり、その説明を省略する。   Step III-B is a step of removing a large number of needles from the polymer. Step III-B is the same as step III-A, and the description thereof is omitted. The IV-B step is a step of introducing an ion exchange group into the obtained organic porous material. The IV-B process is the same as the IV-A process, and the description thereof is omitted.

本発明のモノリスの使用方法を図3を参照して説明する。図3(A)は円柱状物を3つに輪切りした状態を示す図、(B)は輪切りにした小円柱状物を軸中心にそれぞれ所定角度回動した状態を示す図、(C)は(B)の3つの小円柱状物の平面図である。本発明の使用方法において、モノリス状有機多孔質イオン交換体20は円柱形状物であって、円柱形状物の切断方向が径方向となるように輪切りして3つの小円柱状物21、22、23を得る。なお、所定形状の貫通孔は、図では省略するが、貫通孔が軸方向となるように多数形成されている。次いで、隣接する小円柱状物同士21と22、22と23を軸中心としてそれぞれ所定角度α、(β−α)回動させて積層し、円筒容器に充填して使用する。小円柱状物同士をそれぞれ所定の角度回動させるのは、流体が流れる貫通孔同士の重なりを避けるためである。流体が流れる貫通孔同士の重なりがあると、貫通孔が主な通液経路となって、流体がショートパスし、イオン交換帯長さが長くなるため好ましくない。従って、小円柱状物同士をそれぞれ回動する所定の角度とは、流体が流れる貫通孔同士の重なりが実質的に無いような角度が好ましい。円形端面24における貫通孔の面積比率は0.5〜4%であること、貫通孔の半径は0.05〜0.25mmであることから、回動する角度は僅かでよく、例えば、1〜数度程度で十分である。このような積層方法とすることで、通水抵抗を低く抑えながら、イオン交換帯長さを短くできる。   A method of using the monolith of the present invention will be described with reference to FIG. FIG. 3A is a diagram showing a state in which a cylindrical object is cut into three rings, FIG. 3B is a diagram showing a state in which a small cylindrical object that has been cut into a circle is rotated by a predetermined angle, respectively, and FIG. It is a top view of three small cylindrical objects of (B). In the method of use of the present invention, the monolithic organic porous ion exchanger 20 is a cylindrical object, and is cut into three small cylindrical objects 21, 22 by cutting so that the cutting direction of the cylindrical object is the radial direction. 23 is obtained. Although the through holes having a predetermined shape are omitted in the drawing, a large number of through holes are formed so as to be in the axial direction. Next, adjacent small columnar objects 21 and 22, and 22 and 23 are rotated by a predetermined angle α and (β−α), respectively, and are stacked and used in a cylindrical container. The reason why the small cylindrical objects are rotated by a predetermined angle is to avoid overlapping of the through holes through which the fluid flows. If there is an overlap between the through holes through which the fluid flows, the through holes serve as a main liquid passing path, the fluid is short-passed, and the ion exchange zone length becomes long, which is not preferable. Therefore, the predetermined angle for rotating the small cylindrical objects is preferably an angle at which there is substantially no overlap between the through holes through which the fluid flows. Since the area ratio of the through hole in the circular end surface 24 is 0.5 to 4% and the radius of the through hole is 0.05 to 0.25 mm, the rotation angle may be small. A few degrees is sufficient. By setting it as such a lamination | stacking method, ion exchange zone length can be shortened, suppressing water flow resistance low.

また、前記実施の形態例は、円柱形状物を径方向に輪切りして3つの小円柱状物21、22、23を得るものであるが、本発明はこれに限定されず、例えば円柱形状物を径方向に輪切りして2つ又は4つ以上の小円柱状物を得、次いで、隣接する小円柱状物同士を軸中心としてそれぞれ所定角度回動させて積層物Aとしてもよい。また、本願発明の円柱形状物のモノリス状有機多孔質イオン交換体と三次元的に連続した有機ポリマーの骨格間に、三次元的に連続した空孔構造を有する厚みが5mm以上の貫通孔の無い連続空孔構造物との積層物Bであってもよい。貫通孔の無い連続空孔構造物は、本願発明の製造方法において、多数の針を使用することなく製造されたものである。   In the above embodiment, the cylindrical object is cut in the radial direction to obtain three small cylindrical objects 21, 22, and 23. However, the present invention is not limited to this. For example, the cylindrical object Is cut in the radial direction to obtain two or four or more small cylindrical objects, and then the adjacent small cylindrical objects are rotated by a predetermined angle around the axis center to form a laminate A. In addition, a through hole having a thickness of 5 mm or more having a three-dimensionally continuous pore structure between the skeleton of the monolithic organic porous ion exchanger of the cylindrical shape of the present invention and a three-dimensionally continuous organic polymer. It may be a laminate B with no continuous pore structure. The continuous hole structure without through holes is manufactured without using a large number of needles in the manufacturing method of the present invention.

また、該円柱形状物は、輪切りすることなく、別バッチで2つ以上を製造し、得られた2つ以上の円柱形状物の端面同士を当接させ、隣接する円柱状物同士を軸中心として所定角度回動させて積層物Dとしてもよい。この場合、同形状の鋳型を使用して、バッチ差を極力無くすことでショートパスの発生しない積層物とすることもできる。   In addition, two or more of the cylindrical objects are produced in separate batches without rounding, the end surfaces of the two or more obtained cylindrical objects are brought into contact with each other, and adjacent cylindrical objects are axially centered. It is good also as a laminated body D rotated by a predetermined angle. In this case, it is possible to obtain a laminate in which a short pass does not occur by using a mold having the same shape and minimizing batch differences.

本発明のモノリスの使用方法において、積層枚数は該イオン交換体の厚みおよび通水線速度にもよるが、厚さ5mm以上のイオン交換を2枚以上用い、少なくとも積層高さ6cm以上となるように積層するのが好ましい。6cm以下では該イオン交換体が本来有するイオン交換帯長さを確保できないため好ましくない。本発明の使用方法において、モノリスを1種類以上多段に積層することで、水中の不純物イオンの除去効果を高めるなどの効果が期待できる。例えば多孔質陽イオン交換体と多孔質陰イオン交換体を互いに積層することで、純水製造装置のモジュールへ応用できる。   In the method of using the monolith according to the present invention, the number of stacked layers depends on the thickness of the ion exchanger and the water passage speed, but at least a stacking height of 6 cm or more is used by using two or more ion exchanges having a thickness of 5 mm or more. It is preferable to laminate. If it is 6 cm or less, the ion exchange band length inherent to the ion exchanger cannot be secured, which is not preferable. In the method of use of the present invention, by stacking one or more types of monoliths in multiple stages, effects such as enhancing the effect of removing impurity ions in water can be expected. For example, a porous cation exchanger and a porous anion exchanger can be applied to a module of a pure water production apparatus by laminating each other.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

スチレン43.1g、ジビニルベンゼン2.3g、ソルビタンモノオレエート1.9g、水180g、アゾビスイソブチロニトリル0.26gを直径74mmのポリエチレン製容器内において均一混合し、油中水滴型エマルジョンを調製した(I-A工程)。所定領域3を円形領域とした以外は図1と同じ構造の剣山状の鋳型を用いて、容器中のエマルジョンに多数の剣山(針)を浸漬し、60℃、24時間静置重合した(II-A工程)。用いた剣山はシリコンオイルを塗布したものであった。なお、針は半径0.1mm、長さ70mmのものを用い、針の先端と容器の底とは2mm離れていた。重合終了後、台座から針を1本ずつ引き抜き、最後に脚部付き台座をはずした。図4は針を抜いた後の多孔質体の電子顕微鏡写真である。図4のモノリスは、連続空孔構造に直線状の孔が形成され、連続空孔構造の空孔と直線状の孔が互いに繋がって、流路を形成していることがわかる。続いて多孔質体をソックスレー抽出器にてアセトンで不純物を抽出した後、24時間真空条件下で乾燥させ、厚み3mmの底部を切り落として、貫通孔を有する有機多孔質体を得た(III-A工程)。   43.1 g of styrene, 2.3 g of divinylbenzene, 1.9 g of sorbitan monooleate, 180 g of water, and 0.26 g of azobisisobutyronitrile are uniformly mixed in a 74 mm diameter polyethylene container to form a water-in-oil emulsion. Prepared (Step IA). A number of swords (needles) were immersed in the emulsion in the container using a sword mountain-shaped mold having the same structure as that shown in FIG. -A process). The sword used was silicon oil coated. The needle used had a radius of 0.1 mm and a length of 70 mm, and the tip of the needle and the bottom of the container were 2 mm apart. After the polymerization was completed, the needles were pulled out one by one from the pedestal, and finally the pedestal with legs was removed. FIG. 4 is an electron micrograph of the porous body after the needle is removed. It can be seen that the monolith shown in FIG. 4 has linear holes formed in the continuous pore structure, and the pores of the continuous pore structure and the linear holes are connected to each other to form a flow path. Subsequently, the porous body was extracted with acetone in a Soxhlet extractor and then dried under vacuum conditions for 24 hours. The bottom of 3 mm thickness was cut off to obtain an organic porous body having a through hole (III- Step A).

続いてこの有機多孔質体を陽イオン交換型にするため、得られた有機多孔質体を切断して13.5gを分取し、ジクロロメタン900mlを加え35℃で60分加熱した後、室温まで冷却し、クロロ硫酸71.6gを徐々に加え、35℃で24時間反応させた(IV-A工程)。得られた陽イオン交換型モノリスの直径は114mmであった。   Subsequently, in order to make this organic porous body into a cation exchange type, the obtained organic porous body is cut, 13.5 g is taken, 900 ml of dichloromethane is added, heated at 35 ° C. for 60 minutes, and then brought to room temperature. After cooling, 71.6 g of chlorosulfuric acid was gradually added and reacted at 35 ° C. for 24 hours (step IV-A). The obtained cation exchange type monolith had a diameter of 114 mm.

得られたイオン交換体の水湿潤状態での体積当りのイオン交換容量は0.38当量/ml、マクロポアとマクロポアの重なりで形成される共通の開口の半径を有機多孔質体の細孔径と水湿潤状態のカチオン交換体の膨潤率から見積もったところ、8μmであった。また、水湿潤状態の有機多孔質イオン交換体の直線貫通孔の半径を、容器直径と水湿潤状態のカチオン交換体の直径をもとに見積もったところ、0.15mmであった。すなわち、針の引き抜き時、直径74mmの容器に半径0.1mmの直線貫通孔が開いており、イオン交換基付与後は、114mmに膨らんだため、0.1mm×(114mm/74mm)=0.15mmとなる。また、直線貫通孔の体積分率は6%であった。   The obtained ion exchanger has an ion exchange capacity per volume of 0.38 equivalent / ml in the water-wet state, and the common opening radius formed by the overlap of the macropore and the macropore is defined as the pore diameter of the organic porous body and the water. When estimated from the swelling ratio of the cation exchanger in a wet state, it was 8 μm. The radius of the straight through hole of the organic porous ion exchanger in the water wet state was estimated to be 0.15 mm based on the diameter of the container and the diameter of the cation exchanger in the water wet state. That is, when the needle is pulled out, a linear through hole with a radius of 0.1 mm is opened in a container with a diameter of 74 mm, and after the ion exchange group is imparted, it expands to 114 mm, so 0.1 mm × (114 mm / 74 mm) = 0. 15 mm. Moreover, the volume fraction of the linear through-hole was 6%.

なお、剣山状の鋳型を用いず、直線状の貫通孔を形成しない以外は実施例1と同様の方法で、有機多孔質イオン交換体を作製し、水銀圧入法により全細孔容積を求めた。すなわち、連続マクロポア構造における全細孔容積は4.3ml/gであった。   An organic porous ion exchanger was prepared in the same manner as in Example 1 except that a sword-shaped mold was not used and a straight through-hole was not formed, and the total pore volume was determined by mercury porosimetry. . That is, the total pore volume in the continuous macropore structure was 4.3 ml / g.

(通水試験)
外径12mm、内径10mmのPFAチューブに通水方向の長さ3cmの該有機多孔質陽イオン交換体を充填した。該交換体の純水通液時の流速と通水差圧の関係を測定し、図5中の直線の傾きから圧力損失係数を求めた。得られた圧力損失係数は0.029MPa/m・LVであった。イオン交換帯長さの測定においてはチューブに通水方向の長さ5cmの該有機多孔質陽イオン交換体を充填し、NaCl濃度4mNの被処理水を通水した。また、通水線速度10m/h、破過開始から終了までの時間116分におけるイオン交換帯長さは23cmであった。
(Water flow test)
A PFA tube having an outer diameter of 12 mm and an inner diameter of 10 mm was filled with the organic porous cation exchanger having a length of 3 cm in the direction of water flow. The relationship between the flow rate of the exchanger during passage of pure water and the differential pressure of water was measured, and the pressure loss coefficient was determined from the slope of the straight line in FIG. The obtained pressure loss coefficient was 0.029 MPa / m · LV. In the measurement of the ion exchange zone length, the tube was filled with the organic porous cation exchanger having a length of 5 cm in the direction of water flow, and the water to be treated having a NaCl concentration of 4 mN was passed through. Further, the ion exchange zone length at a water line speed of 10 m / h and a time of 116 minutes from the start to the end of breakthrough was 23 cm.

イオン交換帯長さは、次式;h=C×LV×Δt/(q+0.5×C)に従って求めたものである。なお式中、hはイオン交換帯長さ、Cはイオン濃度、LVは通水線速度、Δtは破過開始から終了までの時間、qはイオン交換容量を表す。なお本来測定にはイオン交換帯長さの2倍以上のイオン交換体の充填高さで測定することが好ましいが、本発明では針の長さが7cmであるため、20cm以上の高さの充填層を作製することが困難であり、上式で見積もらざるを得なかった。   The ion exchange zone length is determined according to the following formula: h = C × LV × Δt / (q + 0.5 × C). In the formula, h is the ion exchange zone length, C is the ion concentration, LV is the water passage speed, Δt is the time from the start to the end of breakthrough, and q is the ion exchange capacity. In addition, it is preferable for measurement to be performed with an ion exchanger filling height that is at least twice the ion exchange zone length. However, in the present invention, since the needle length is 7 cm, the filling height is 20 cm or more. It was difficult to produce the layer, and it was necessary to estimate it with the above formula.

半径0.1mmの針に代えて半径0.15mmの針としたこと、直線貫通孔の体積分率6%に代えて14%にしたこと以外は、実施例1と同様に行い、更に同様の通水試験を行った。   The same procedure as in Example 1 was performed except that a needle having a radius of 0.15 mm was used instead of the needle having a radius of 0.1 mm, and that the volume fraction of the linear through hole was changed to 14% instead of 6%. A water flow test was conducted.

その結果、得られたイオン交換体の水湿潤状態での体積当りのイオン交換容量は0.34mg当量/ml、マクロポアとマクロポアの重なりで形成される共通の開口の半径を有機多孔質体の細孔径と水湿潤状態のカチオン交換体の膨潤率から見積もったところ、8μmであった。水湿潤状態における有機多孔質イオン交換体の直線貫通孔の半径を、容器直径と水湿潤状態のカチオン交換体の直径をもとに見積もったところ、0.23mmであった。また、直線貫通孔の体積分率は14%であった。また、通水試験における圧力損失係数は0.020であった。通水線速度10m/h、破過開始から終了までの時間150分におけるイオン交換帯長さは32cmであった。   As a result, the ion exchange capacity per volume of the obtained ion exchanger in the wet state was 0.34 mg equivalent / ml, and the radius of the common opening formed by the overlap of the macropore and the macropore was reduced. It was 8 μm when estimated from the pore diameter and the swelling ratio of the cation exchanger in a water-wet state. The radius of the straight through hole of the organic porous ion exchanger in the water wet state was estimated based on the diameter of the container and the cation exchanger in the water wet state, and was 0.23 mm. Moreover, the volume fraction of the linear through hole was 14%. Moreover, the pressure loss coefficient in the water flow test was 0.020. The ion exchange zone length at a water line speed of 10 m / h and a time of 150 minutes from the start to the end of breakthrough was 32 cm.

実施例1で得られたモノリスを径方向に沿って切断(輪切り)し、同じ長さの小円筒状物を2個得た。次いで隣接する小円柱状物同士を軸中心として数度回動させて容器内に積層した。これにより、互いの貫通孔が実質的に重ならないものとなった。また、実施例1と同様に通水試験を行った。   The monolith obtained in Example 1 was cut (sliced) along the radial direction to obtain two small cylindrical objects having the same length. Next, the adjacent small cylinders were rotated several degrees around the axis and stacked in a container. Thereby, each through-hole became a thing which does not overlap substantially. Further, a water passage test was conducted in the same manner as in Example 1.

その結果、通水試験における圧力損失係数は0.030MPa/m・LV、通水線速度10m/h、破過開始から終了までの時間41分におけるイオン交換帯長さは8cmであった。   As a result, the pressure loss coefficient in the water flow test was 0.030 MPa / m · LV, the water flow speed was 10 m / h, and the ion exchange zone length in the time 41 minutes from the breakthrough start to the end was 8 cm.

実施例1で得られたモノリスと貫通孔の無いモノリスをそれぞれ同体積で2層積層物を容器内に得た。貫通孔の無いモノリスとは、剣山状の鋳型を使用しなかったこと以外は、実施例1と同様の方法により行い得られた有機多孔質イオン交換体である。2つのイオン交換体の水湿潤状態での体積当りの平均イオン交換容量は0.39mg当量/ml、直線貫通孔の体積分率は3%であった。また、実施例1と同様に通水試験を行った。   A monolith obtained in Example 1 and a monolith without a through-hole were obtained in the same volume, and a two-layer laminate was obtained in the container. A monolith without a through-hole is an organic porous ion exchanger obtained by the same method as in Example 1 except that no sword-mount mold was used. The average ion exchange capacity per volume of the two ion exchangers in a wet state with water was 0.39 mg equivalent / ml, and the volume fraction of the linear through holes was 3%. Further, a water passage test was conducted in the same manner as in Example 1.

その結果、通水試験における圧力損失係数は0.043、通水線速度10m/h、破過開始から終了までの時間35分におけるイオン交換帯長さは7cmであった。   As a result, the pressure loss coefficient in the water flow test was 0.043, the water flow rate was 10 m / h, and the ion exchange zone length in the time 35 minutes from the breakthrough start to the end was 7 cm.

比較例1
剣山状の鋳型を使用しない以外は実施例1と同じ方法で行った。また、実施例1と同様に通水試験を行った。該イオン交換体の水湿潤状態での体積当りの平均イオン交換容量は0.40mg当量/mlであった。その結果、圧力損失係数は0.058MPa/m・LVであった。通水線速度10m/h、破過開始から終了までの時間22分におけるイオン交換帯長さは4cmであった。
Comparative Example 1
The same method as in Example 1 was performed except that the sword-mount mold was not used. Further, a water passage test was conducted in the same manner as in Example 1. The average ion exchange capacity per volume of the ion exchanger in a water wet state was 0.40 mg equivalent / ml. As a result, the pressure loss coefficient was 0.058 MPa / m · LV. The ion exchange zone length at a water passage speed of 10 m / h and a time of 22 minutes from the start to the end of breakthrough was 4 cm.

スチレン38.8g、ジビニルベンゼン1.2g、1−ブタノール60gおよび2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.4gを混合し、均一に溶解させた(II-A工程)。スチレンとジビニルベンゼンの合計量に対して、ジビニルベンゼンは1.9モル%であった。次に当該スチレン/ジビニルベンゼン/1-ブタノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物を直径74mmのポリエチレン製円筒容器に入れ、これに多数の剣山(針)を浸漬し、窒素で3回パージした後密封し、静置下60℃で24時間重合させた(II−B工程)。剣山の針は半径0.1mm、長さ70mmのものを用い、針の先端と容器の底とは2mm離れていた。重合終了後、台座から針を一本ずつ引き抜き、最後に脚部付きの台座をはずした。得られたモノリスを電子顕微鏡観察したところ、半径5μmのほぼ粒揃いの有機ポリマー粒子が凝集して三次元的に連続した骨格部分を形成し、その骨格間に空孔半径が40μmの三次元的に連続した空孔を有する粒子凝集型空孔構造に、直線状の孔が形成され、粒子凝集型空孔構造の空孔と直線状の孔が互いに繋がって、流路を形成していることがわかった。続いてモノリス状の内容物を取り出し、アセトンで10時間ソックスレー抽出し、未反応モノマー、1-ブタノールを除去した後、85℃で一夜減圧乾燥した(III-B工程)。   38.8 g of styrene, 1.2 g of divinylbenzene, 60 g of 1-butanol and 0.4 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly (step II-A). Divinylbenzene was 1.9 mol% with respect to the total amount of styrene and divinylbenzene. Next, the styrene / divinylbenzene / 1-butanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture is placed in a 74 mm diameter polyethylene cylindrical container, and a large number of swords (needles) are immersed therein. After purging with nitrogen three times, the mixture was sealed and polymerized at 60 ° C. for 24 hours while standing (step II-B). The sword's needle had a radius of 0.1 mm and a length of 70 mm, and the tip of the needle and the bottom of the container were 2 mm apart. After the polymerization was completed, the needles were pulled out one by one from the pedestal, and finally the pedestal with legs was removed. When the obtained monolith was observed with an electron microscope, organic polymer particles having a substantially uniform particle size with a radius of 5 μm were aggregated to form a three-dimensionally continuous skeleton portion, and the pore radius between the skeleton was three-dimensionally with a pore radius of 40 μm. In the particle aggregation type pore structure having continuous pores, linear holes are formed, and the pores of the particle aggregation type pore structure and the linear holes are connected to each other to form a flow path. all right. Subsequently, the monolithic contents were taken out, extracted with Soxhlet for 10 hours with acetone to remove unreacted monomer and 1-butanol, and then dried under reduced pressure at 85 ° C. overnight (step III-B).

上記の方法で製造した有機多孔質体を、直線状の貫通孔が得られるように、厚み約15mmの円盤状に切断した。これにジクロロメタン900mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸113.5gを徐々に加え、昇温して35℃で24時間反応させた(IV-B工程)。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄して粒子凝集型モノリス状多孔質カチオン交換体を得た。   The organic porous body produced by the above method was cut into a disk shape having a thickness of about 15 mm so that a linear through hole was obtained. To this was added 900 ml of dichloromethane, heated at 35 ° C. for 1 hour, cooled to 10 ° C. or lower, gradually added 113.5 g of chlorosulfuric acid, heated up and reacted at 35 ° C. for 24 hours (step IV-B). ). Thereafter, methanol was added to quench the remaining chlorosulfuric acid, which was then washed with methanol to remove dichloromethane and further washed with pure water to obtain a particle-aggregated monolithic porous cation exchanger.

直線貫通孔の半径は0.14mm、直線貫通孔の体積分率は5%であった。得られたカチオン交換体の体積当りのイオン交換容量は、水湿潤状態で1.11mg当量/mlであった。水湿潤状態の有機多孔質イオン交換体の細孔径を、有機多孔質体の細孔径と水湿潤状態のカチオン交換体の膨潤率から見積もったところ、25μmであった。   The radius of the straight through hole was 0.14 mm, and the volume fraction of the straight through hole was 5%. The ion exchange capacity per volume of the obtained cation exchanger was 1.11 mg equivalent / ml in a wet state. When the pore diameter of the organic porous ion exchanger in the water wet state was estimated from the pore diameter of the organic porous body and the swelling ratio of the cation exchanger in the water wet state, it was 25 μm.

なお、剣山状の鋳型を用いず、直線状の貫通孔を形成しない以外は実施例5と同様の方法で、有機多孔質イオン交換体を作製し、水銀圧入法により全細孔容積を求めた。すなわち、粒子凝集型空孔構造における全細孔容積は2.5ml/gであった。   An organic porous ion exchanger was prepared in the same manner as in Example 5 except that a sword-shaped mold was not used and a linear through hole was not formed, and the total pore volume was determined by mercury porosimetry. . That is, the total pore volume in the particle aggregation type pore structure was 2.5 ml / g.

(通水試験)
外径12mm、内径10mmのPFAチューブに通水方向の長さ5cmの該有機多孔質陽イオン交換体を充填した。これにNaCl濃度4mNの被処理水を通水した。該交換体の純水通液時の流速と通水差圧の関係を測定し、得られた圧力損失係数は0.031MPa/m・LVであった。また、通水線速度50m/h、破過開始から終了までの時間85分におけるイオン交換帯長さは22cmであった。
(Water flow test)
A PFA tube having an outer diameter of 12 mm and an inner diameter of 10 mm was filled with the organic porous cation exchanger having a length of 5 cm in the direction of water flow. Water to be treated having a NaCl concentration of 4 mN was passed through this. The relationship between the flow rate of pure water passing through the exchanger and the differential pressure was measured, and the resulting pressure loss coefficient was 0.031 MPa / m · LV. In addition, the ion exchange zone length in a water passage speed of 50 m / h and a time of 85 minutes from the start to the end of breakthrough was 22 cm.

半径0.1mmの針に代えて半径0.15mmの針としたこと、直線貫通孔の体積分率6%に代えて12%にしたこと以外は、実施例5と同様に行い、更に同様の通水試験を行った。   The same procedure as in Example 5 was performed, except that a needle having a radius of 0.15 mm was used instead of the needle having a radius of 0.1 mm, and that the volume fraction of the linear through hole was changed to 12% instead of 6%. A water flow test was conducted.

その結果、得られたイオン交換体の水湿潤状態での体積当りのイオン交換容量は1.01mg当量/ml、水銀圧入法により求めた全細孔容積は2.5ml/g、マクロポアとマクロポアの重なりで形成される共通の開口の半径を有機多孔質体の細孔径と水湿潤状態のカチオン交換体の膨潤率から見積もったところ、9μmであった。また、通水試験における圧力損失係数は0.025MPa/m・LVであった。通水線速度50m/h、破過開始から終了までの時間120分におけるイオン交換帯長さは30cmであった。   As a result, the ion exchange capacity per volume of the obtained ion exchanger in a wet state of water was 1.01 mg equivalent / ml, the total pore volume determined by the mercury intrusion method was 2.5 ml / g, and the macropore and macropore The radius of the common opening formed by the overlap was estimated from the pore diameter of the organic porous material and the swelling ratio of the cation exchanger in a wet state of water, and found to be 9 μm. Moreover, the pressure loss coefficient in the water flow test was 0.025 MPa / m · LV. The ion exchange zone length was 30 cm at a water passage speed of 50 m / h and a time of 120 minutes from the start to the end of breakthrough.

実施例5で得られたモノリスを径方向に沿って切断(輪切り)し、同じ長さの小円筒状物を2個得た。次いで隣接する小円柱状物同士を軸中心として数度回動させて容器内に積層した。これにより、互いの貫通孔が実質的に重ならないものとなった。また、実施例1と同様に通水試験を行った。   The monolith obtained in Example 5 was cut (sliced) along the radial direction to obtain two small cylindrical objects having the same length. Next, the adjacent small cylinders were rotated several degrees around the axis and stacked in a container. Thereby, each through-hole became a thing which does not overlap substantially. Further, a water passage test was conducted in the same manner as in Example 1.

その結果、通水試験における圧力損失係数は0.034MPa/m・LV、通水線速度50m/h、破過開始から終了までの時間15分におけるイオン交換帯長さは4cmであった。   As a result, the pressure loss coefficient in the water flow test was 0.034 MPa / m · LV, the water flow speed was 50 m / h, and the ion exchange zone length in the time 15 minutes from the breakthrough start to the end was 4 cm.

実施例5で得られたモノリスと貫通孔の無いモノリスをそれぞれ同体積で2層積層物を容器内に得た。貫通孔の無いモノリスとは、剣山状の鋳型を使用しなかったこと以外は、実施例5と同様の方法により行い得られた有機多孔質イオン交換体である。2つのイオン交換体の水湿潤状態での体積当りの平均イオン交換容量は1.18mg当量/ml、直線貫通孔の体積分率は1.5%であった。また、実施例1と同様に通水試験を行った。   A monolith obtained in Example 5 and a monolith without a through-hole were obtained in the same volume, and a two-layer laminate was obtained in the container. The monolith without a through-hole is an organic porous ion exchanger obtained by the same method as in Example 5 except that no sword-mount mold was used. The average ion exchange capacity per volume of the two ion exchangers in a wet state with water was 1.18 mg equivalent / ml, and the volume fraction of the linear through-holes was 1.5%. Further, a water passage test was conducted in the same manner as in Example 1.

その結果、通水試験における圧力損失係数は0.051MPa/m・LV、通水線速度50m/h、破過開始から終了までの時間12分におけるイオン交換帯長さは3cmであった。   As a result, the pressure loss coefficient in the water flow test was 0.051 MPa / m · LV, the water flow rate was 50 m / h, and the length of the ion exchange zone in the time 12 minutes from the breakthrough start to the end was 3 cm.

比較例2
剣山状の鋳型を使用しない以外は実施例5と同じ方法で行った。また、実施例5と同様に通水試験を行った。該イオン交換体の水湿潤状態での体積当りの平均イオン交換容量は1.15mg当量/mlであった。その結果、圧力損失係数は0.060MPa/m・LVであった。通水線速度50m/h、破過開始から終了までの時間6分におけるイオン交換帯長さは1.5cmであった。
Comparative Example 2
The same method as in Example 5 was performed except that the sword-mount mold was not used. Further, a water flow test was conducted in the same manner as in Example 5. The average ion exchange capacity per volume of the ion exchanger in a water wet state was 1.15 mg equivalent / ml. As a result, the pressure loss coefficient was 0.060 MPa / m · LV. The length of the ion exchange zone at a water passage speed of 50 m / h and a time of 6 minutes from the start to the end of breakthrough was 1.5 cm.

本発明のモノリスは、連続空孔構造に多数の貫通孔が均一に混在したユニークな構造である。また、連続空孔構造は、有機ポリマー部の比率を高めたことから、イオン交換容量を高めることができると共に、水や気体などの流体を流した際圧力損失を低くでき、2床3塔式純水製造装置や電気式脱イオン水製造装置に充填して用いられるイオン交換体や固体酸/塩基触媒として有用であり、広範な用途分野に応用することができる。   The monolith of the present invention is a unique structure in which a large number of through holes are uniformly mixed in a continuous pore structure. In addition, the continuous pore structure increases the ratio of the organic polymer portion, so that the ion exchange capacity can be increased and the pressure loss can be lowered when a fluid such as water or gas is allowed to flow. It is useful as an ion exchanger or a solid acid / base catalyst used by being filled in a pure water production apparatus or an electric deionized water production apparatus, and can be applied to a wide range of application fields.

(A)は剣山状鋳型の平面図、(B)は剣山状鋳型の正面図である。(A) is a plan view of the sword mountain mold, (B) is a front view of the sword mountain mold. は台座への針の支持方法を説明する図である。These are the figures explaining the support method of the needle | hook to a base. 本発明のモノリスの使用方法を説明する図であり、(A)は円柱状物を3つに輪切りした状態を示す図、(B)は輪切りにした小円柱状物を軸中心にそれぞれ所定角度回動した状態を示す図、(C)は(B)の3つの小円柱状物の平面図である。It is a figure explaining the usage method of the monolith of this invention, (A) is a figure which shows the state which cut the circular object into three, (B) is a predetermined angle each about the small cylindrical object made into the circular cut about an axis center, respectively The figure which shows the state which rotated, (C) is a top view of three small cylindrical objects of (B). 本発明のモノリスの切断面の電子顕微鏡写真である。It is an electron micrograph of the cut surface of the monolith of this invention. 実施例1及び比較例1の線流速と通水差圧の関係を示す図である。It is a figure which shows the relationship between the linear flow velocity of Example 1 and Comparative Example 1, and water flow differential pressure | voltage.

符号の説明Explanation of symbols

1 脚部
2 台座
3 針が設置される所定領域
4 針
5 針が通る貫通穴
6 ストッパー部
7 針本体部
10 剣山状鋳型
20 円柱状物(モノリス)
21、22、23 小円柱状物
DESCRIPTION OF SYMBOLS 1 Leg part 2 Base 3 Predetermined area | region in which a needle is installed 4 Needle 5 The through-hole through which a needle passes 6 Stopper part 7 Needle main-body part 10 Sword mountain mold 20 Cylindrical thing (monolith)
21, 22, 23 Small cylindrical object

Claims (9)

三次元的に連続した有機ポリマーの骨格間に三次元的に連続した空孔を有する厚みが5mm以上の連続空孔構造の有機多孔質体に、厚み方向に延びる半径0.05〜0.30mmの直線状または螺旋状の貫通孔が厚み方向に直交する方向に多数形成されたものであり、且つイオン交換基が均一に導入されてなることを特徴とするモノリス状有機多孔質イオン交換体。   An organic porous body having a continuous pore structure having a thickness of 5 mm or more having a three-dimensionally continuous pore between three-dimensionally continuous organic polymer skeletons, and a radius of 0.05 to 0.30 mm extending in the thickness direction A monolithic organic porous ion exchanger characterized in that a large number of linear or spiral through-holes are formed in a direction perpendicular to the thickness direction, and ion-exchange groups are uniformly introduced. 前記モノリス状有機多孔質体の見かけの体積に対する前記貫通孔の体積比率が、0.5〜16%であることを特徴とする請求項1記載のモノリス状有機多孔質イオン交換体。   2. The monolithic organic porous ion exchanger according to claim 1, wherein a volume ratio of the through holes to an apparent volume of the monolithic organic porous body is 0.5 to 16%. 前記連続空孔構造が、互いに繋がっているマクロポアとマクロポアの該繋がり部分が半径0.01〜10μmの開口となり、且つ全細孔容積が2〜20ml/gの連続マクロポア構造であることを特徴とする請求項1又は2記載のモノリス状有機多孔質イオン交換体。   The continuous pore structure is a continuous macropore structure in which the macropores connected to each other have an opening having a radius of 0.01 to 10 μm and a total pore volume of 2 to 20 ml / g. The monolithic organic porous ion exchanger according to claim 1 or 2. 前記連続空孔構造が、架橋構造単位を有する半径0.5〜25μmの有機ポリマー粒子が凝集して三次元的に連続した骨格部分を形成し、その骨格間に空孔半径が10〜50μmの三次元的に連続した空孔を有する粒子凝集型空孔構造であることを特徴とする請求項1又は2記載のモノリス状有機多孔質イオン交換体。   In the continuous pore structure, organic polymer particles having a radius of 0.5 to 25 μm having a crosslinked structural unit aggregate to form a three-dimensionally continuous skeleton portion, and the pore radius is 10 to 50 μm between the skeletons. 3. The monolithic organic porous ion exchanger according to claim 1, wherein the monolithic organic porous ion exchanger has a particle aggregation type pore structure having three-dimensionally continuous pores. 前記粒子凝集型空孔構造の骨格部分は、該架橋構造単位が該有機ポリマー粒子を構成する全構成単位中、1〜5モル%であることを特徴とする請求項4記載のモノリス状有機多孔質イオン交換体。   5. The monolithic organic porous material according to claim 4, wherein the skeleton portion of the particle aggregation type pore structure is 1 to 5 mol% in the total structural units constituting the organic polymer particles. Quality ion exchanger. 請求項1〜5のいずれか1項に記載のモノリス状有機多孔質イオン交換体は円柱形状物であって、該円柱形状物を2つ以上として端面同士を当接させ、隣接する円柱状物同士を軸中心として所定角度回動させて積層し、容器に充填して使用することを特徴とするモノリス状有機多孔質イオン交換体の使用方法。   The monolithic organic porous ion exchanger according to any one of claims 1 to 5 is a cylindrical object, and the end surfaces are brought into contact with each other with two or more cylindrical objects, and adjacent cylindrical objects. A method of using a monolithic organic porous ion exchanger, characterized in that they are rotated by a predetermined angle around each other, stacked, filled into a container, and used. ビニルモノマー、界面活性剤、水及び必要に応じて重合開始剤や架橋剤を混合し、該混合物を撹拌して油中水滴型エマルジョンを調製する工程と、
容器内の該油中水滴型エマルジョン中に針の長手方向が厚み方向となるように多数の針を配置し、静置下重合する工程と、
重合体から該多数の針を外す工程と、
得られた有機多孔質体にイオン交換基を導入する工程とを有することを特徴とするモノリス状有機多孔質イオン交換体の製造方法。
Mixing a vinyl monomer, a surfactant, water and, if necessary, a polymerization initiator and a crosslinking agent, stirring the mixture to prepare a water-in-oil emulsion,
Placing a large number of needles in the water-in-oil emulsion in the container so that the longitudinal direction of the needles is the thickness direction, and polymerizing under standing;
Removing the multiple needles from the polymer;
And a step of introducing an ion exchange group into the obtained organic porous body. A method for producing a monolithic organic porous ion exchanger.
ビニルモノマー、一分子中に少なくとも2個のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる液状混合物を調製する工程と、
容器内の該液状混合物中に針の長手方向が厚み方向となるように多数の針を配置し、静置下重合する工程と、
該重合体から該多数の針を取り外す工程と、
得られた有機多孔質体にイオン交換基を導入する工程とを有することを特徴とするモノリス状有機多孔質イオン交換体の製造方法。
A liquid mixture comprising a vinyl monomer, a crosslinking agent having at least two vinyl groups in one molecule, an organic solvent that dissolves the vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer, and a polymerization initiator. A step of preparing;
Placing a large number of needles in the liquid mixture in the container so that the longitudinal direction of the needles is in the thickness direction, and polymerizing under standing;
Removing the plurality of needles from the polymer;
And a step of introducing an ion exchange group into the obtained organic porous body. A method for producing a monolithic organic porous ion exchanger.
請求項7及び請求項8の製造方法で用いる鋳型であって、脚部により所定の高さに保持される台座の所定領域に、半径0.05〜0.25mmの針が通る貫通穴を多数形成し、該貫通穴を通らない大きさのストッパー部を後端に形成した該針を、該針の先端から該貫通穴に通して吊り下げ状に支持したものであることを特徴とする鋳型。   A mold used in the manufacturing method according to claim 7 and claim 8, wherein a plurality of through holes through which a needle having a radius of 0.05 to 0.25 mm passes are provided in a predetermined region of the base held at a predetermined height by the legs. A mold formed by supporting the needle formed at the rear end with a stopper portion having a size that does not pass through the through hole from the tip of the needle through the through hole. .
JP2007202650A 2007-08-03 2007-08-03 Monolithic organic porous ion exchanger, method of using the same, method of production, and mold used for production Expired - Fee Related JP4931006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007202650A JP4931006B2 (en) 2007-08-03 2007-08-03 Monolithic organic porous ion exchanger, method of using the same, method of production, and mold used for production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007202650A JP4931006B2 (en) 2007-08-03 2007-08-03 Monolithic organic porous ion exchanger, method of using the same, method of production, and mold used for production

Publications (2)

Publication Number Publication Date
JP2009035668A true JP2009035668A (en) 2009-02-19
JP4931006B2 JP4931006B2 (en) 2012-05-16

Family

ID=40437868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007202650A Expired - Fee Related JP4931006B2 (en) 2007-08-03 2007-08-03 Monolithic organic porous ion exchanger, method of using the same, method of production, and mold used for production

Country Status (1)

Country Link
JP (1) JP4931006B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115569A (en) * 2008-11-11 2010-05-27 Japan Organo Co Ltd Monolithic organic porous anion exchanger and method for producing the same
WO2010104007A1 (en) * 2009-03-10 2010-09-16 オルガノ株式会社 Deionization module and electric device for producing deionized water
JP2010207733A (en) * 2009-03-10 2010-09-24 Japan Organo Co Ltd Electric deionized water manufacturing device and deionized water manufacturing method
JP2010234356A (en) * 2009-03-10 2010-10-21 Japan Organo Co Ltd Ultrapure water producing apparatus
JP2010234362A (en) * 2009-03-12 2010-10-21 Japan Organo Co Ltd Electric deionized water production apparatus and method of operating the same
JP2010234360A (en) * 2009-03-12 2010-10-21 Japan Organo Co Ltd Electric deionized water production apparatus
JP2010234357A (en) * 2009-03-10 2010-10-21 Japan Organo Co Ltd Ion adsorption module and method of treating water
JP2010234361A (en) * 2009-03-12 2010-10-21 Japan Organo Co Ltd Electric deionized water production apparatus
JP2010240638A (en) * 2009-03-18 2010-10-28 Japan Organo Co Ltd Electric deionized liquid producing apparatus
JP2010240642A (en) * 2009-03-18 2010-10-28 Japan Organo Co Ltd Method of manufacturing dissolved oxygen-removed water, apparatus for manufacturing dissolved oxygen-removed water, dissolved oxygen treatment tank, method of manufacturing ultrapure water, method of manufacturing hydrogen dissolved water, apparatus for manufacturing hydrogen dissolved water, and method of cleaning electronic components
JP2010264360A (en) * 2009-05-13 2010-11-25 Japan Organo Co Ltd Deionization module and electric deionized-water producing apparatus
JP2010264362A (en) * 2009-05-13 2010-11-25 Japan Organo Co Ltd Electric deionized-water producing apparatus
JP2010264361A (en) * 2009-05-13 2010-11-25 Japan Organo Co Ltd Electric deionized-water producing apparatus
JP2010264375A (en) * 2009-05-14 2010-11-25 Japan Organo Co Ltd Electric deionized-water producing apparatus
JP2012506799A (en) * 2008-10-31 2012-03-22 ビーエーエスエフ ソシエタス・ヨーロピア Ion exchanger molded product and method for producing the same
JP2012061455A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Platinum group metal-supported catalyst, method for producing the same, method for producing hydrogen peroxide-decomposed water, and method for producing dissolved oxygen-removed water

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03505784A (en) * 1989-01-13 1991-12-12 バイオ―ラッド ラボラトリーズ インコーポレイテッド Chromatography column and separation method using the same
JPH07501140A (en) * 1991-10-21 1995-02-02 コーネル・リサーチ・フアウンデーシヨン・インコーポレーテツド Column with macroporous polymer media
JP2002505428A (en) * 1998-02-27 2002-02-19 ビーアイエー セパレイションズ ディーオーオー New chromatography equipment
JP2006297244A (en) * 2005-04-19 2006-11-02 Japan Organo Co Ltd Pretreatment column for ion chromatography unit and its regeneration method, and ion chromatography unit
WO2007043485A1 (en) * 2005-10-07 2007-04-19 Kyoto University Process for producing organic porous material and organic porous column and organic porous material
JP2007154081A (en) * 2005-12-07 2007-06-21 Japan Organo Co Ltd Reaction column for introducing functional group, and device and method for introducing functional group
JP2009007550A (en) * 2007-05-28 2009-01-15 Japan Organo Co Ltd Particle-agglomerated type monolithic organic porous article, its manufacturing process, particle-agglomerated type monolithic organic porous ion exchanger and chemical filter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03505784A (en) * 1989-01-13 1991-12-12 バイオ―ラッド ラボラトリーズ インコーポレイテッド Chromatography column and separation method using the same
JPH07501140A (en) * 1991-10-21 1995-02-02 コーネル・リサーチ・フアウンデーシヨン・インコーポレーテツド Column with macroporous polymer media
JP2002505428A (en) * 1998-02-27 2002-02-19 ビーアイエー セパレイションズ ディーオーオー New chromatography equipment
JP2006297244A (en) * 2005-04-19 2006-11-02 Japan Organo Co Ltd Pretreatment column for ion chromatography unit and its regeneration method, and ion chromatography unit
WO2007043485A1 (en) * 2005-10-07 2007-04-19 Kyoto University Process for producing organic porous material and organic porous column and organic porous material
JP2007154081A (en) * 2005-12-07 2007-06-21 Japan Organo Co Ltd Reaction column for introducing functional group, and device and method for introducing functional group
JP2009007550A (en) * 2007-05-28 2009-01-15 Japan Organo Co Ltd Particle-agglomerated type monolithic organic porous article, its manufacturing process, particle-agglomerated type monolithic organic porous ion exchanger and chemical filter

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506799A (en) * 2008-10-31 2012-03-22 ビーエーエスエフ ソシエタス・ヨーロピア Ion exchanger molded product and method for producing the same
JP2010115569A (en) * 2008-11-11 2010-05-27 Japan Organo Co Ltd Monolithic organic porous anion exchanger and method for producing the same
WO2010104007A1 (en) * 2009-03-10 2010-09-16 オルガノ株式会社 Deionization module and electric device for producing deionized water
JP2010207733A (en) * 2009-03-10 2010-09-24 Japan Organo Co Ltd Electric deionized water manufacturing device and deionized water manufacturing method
JP2010234356A (en) * 2009-03-10 2010-10-21 Japan Organo Co Ltd Ultrapure water producing apparatus
JP2010234357A (en) * 2009-03-10 2010-10-21 Japan Organo Co Ltd Ion adsorption module and method of treating water
JP2014028370A (en) * 2009-03-10 2014-02-13 Japan Organo Co Ltd Ion adsorption module and water treatment method
JP2013255921A (en) * 2009-03-10 2013-12-26 Japan Organo Co Ltd Ultrapure water producing apparatus
JP2010234362A (en) * 2009-03-12 2010-10-21 Japan Organo Co Ltd Electric deionized water production apparatus and method of operating the same
JP2010234360A (en) * 2009-03-12 2010-10-21 Japan Organo Co Ltd Electric deionized water production apparatus
JP2010234361A (en) * 2009-03-12 2010-10-21 Japan Organo Co Ltd Electric deionized water production apparatus
JP2010240638A (en) * 2009-03-18 2010-10-28 Japan Organo Co Ltd Electric deionized liquid producing apparatus
JP2010240642A (en) * 2009-03-18 2010-10-28 Japan Organo Co Ltd Method of manufacturing dissolved oxygen-removed water, apparatus for manufacturing dissolved oxygen-removed water, dissolved oxygen treatment tank, method of manufacturing ultrapure water, method of manufacturing hydrogen dissolved water, apparatus for manufacturing hydrogen dissolved water, and method of cleaning electronic components
JP2010264361A (en) * 2009-05-13 2010-11-25 Japan Organo Co Ltd Electric deionized-water producing apparatus
JP2010264362A (en) * 2009-05-13 2010-11-25 Japan Organo Co Ltd Electric deionized-water producing apparatus
JP2010264360A (en) * 2009-05-13 2010-11-25 Japan Organo Co Ltd Deionization module and electric deionized-water producing apparatus
JP2010264375A (en) * 2009-05-14 2010-11-25 Japan Organo Co Ltd Electric deionized-water producing apparatus
JP2012061455A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Platinum group metal-supported catalyst, method for producing the same, method for producing hydrogen peroxide-decomposed water, and method for producing dissolved oxygen-removed water

Also Published As

Publication number Publication date
JP4931006B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP4931006B2 (en) Monolithic organic porous ion exchanger, method of using the same, method of production, and mold used for production
JP5131911B2 (en) Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
JP5290603B2 (en) Particle aggregation type monolithic organic porous body, method for producing the same, particle aggregation type monolithic organic porous ion exchanger, and chemical filter
JP5290604B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5208550B2 (en) Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter
WO2010070774A1 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, and process for producing the monolithic organic porous body and the monolithic organic porous ion exchanger
JP4428616B2 (en) Graft-modified organic porous material, process for producing the same, adsorbent, chromatographic filler and ion exchanger
JP5486162B2 (en) Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
JP5685632B2 (en) Ion adsorption module and water treatment method
WO2010104004A1 (en) Ion adsorption module and method of treating water
KR20180081569A (en) Method for purifying organic solvents
JP5116710B2 (en) Electric deionized water production apparatus and deionized water production method
JP5137896B2 (en) Electric deionized water production apparatus and deionized water production method
JP5283893B2 (en) Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
JP5525754B2 (en) Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP5431196B2 (en) Electric deionized water production apparatus and operation method thereof
JP5465463B2 (en) Ion adsorption module and water treatment method
JP5431197B2 (en) Electric deionized liquid production equipment
JP5586979B2 (en) Electric deionized water production apparatus and operation method thereof
JP5421688B2 (en) Solid acid catalyst
JP5143494B2 (en) Method for producing organic porous body
JP2010264375A (en) Electric deionized-water producing apparatus
JP5268722B2 (en) Solid acid catalyst
JP5642211B2 (en) Solid acid catalyst
JP2004131517A (en) Method for producing organic porous material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees