JP2010261432A - Rotor - Google Patents

Rotor Download PDF

Info

Publication number
JP2010261432A
JP2010261432A JP2009138664A JP2009138664A JP2010261432A JP 2010261432 A JP2010261432 A JP 2010261432A JP 2009138664 A JP2009138664 A JP 2009138664A JP 2009138664 A JP2009138664 A JP 2009138664A JP 2010261432 A JP2010261432 A JP 2010261432A
Authority
JP
Japan
Prior art keywords
rotor
present
wind
blade
view
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009138664A
Other languages
Japanese (ja)
Inventor
Hiroo Ichikawa
博夫 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009138664A priority Critical patent/JP2010261432A/en
Publication of JP2010261432A publication Critical patent/JP2010261432A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost rotor which shows high performance under a low and middle wind speed condition. <P>SOLUTION: The rotor A includes a plurality of blades (a) with radial direction strip groove and strip protrusion, has a repeated stepped shape in a circumference direction, and has spiral wing (b) which is supported at both ends thereof and which is provided by complex forming disposed along a center axis (d). The rotor A is disposed in a cylindrical air channel. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

低、中風速下において高性能かつ低価格なるロータ。Rotor with high performance and low price under low and medium wind speeds.

背景の技術Background technology

本発明と比較される従来例として、図31に示される低・中風速用のロータとして多翼式、サポニューム式、クロスフロー式などが知られているが、残念ながらいずれもパワー係数(揚力・プラス抗力・マイナス抗力の関数値)と風速比(ロータ円周速度/風速の対比)が低いために実用的な小型発電システムの主要部として適さない。よりくわしくは、それらのロータ形態上、比較的大きなプラス抗力が得られるものの、揚力のくみあげが不可能であるとともにマイナス抗力が小さくないと云う重大な欠点を余儀なくされている。あわせて、中、高風速下では大きなプラスとマイナスの両抗力が同時に仂くためロータが破損しやすく、さらに低い発電効率の割にはロータなどの製作費がかさむことを示摘されている。As a conventional example to be compared with the present invention, a multi-blade type, a support type, a cross flow type, etc. are known as low / medium wind speed rotors shown in FIG. The function value of plus drag and minus drag) and the wind speed ratio (rotor circumferential speed / wind speed contrast) are low, so it is not suitable as the main part of a practical small power generation system. More specifically, although a relatively large positive drag can be obtained due to their rotor configuration, there is a serious drawback that lift cannot be lifted and the negative drag is not small. At the same time, it has been shown that the rotor is susceptible to damage because both large and negative drags are generated simultaneously at medium and high wind speeds.

平板シートからトリミングされ山折れ、谷折れ両相当部1、2を略併行状として設けられたブランクcが折曲形成されてなる複数ブレードaを相互に連結又は連続して設けられ円周方向に繰り返えし段差状として複合形成されたスパイラルウィングbが中心軸dにそい配設されて得られるロータAを提供する。A plurality of blades a formed by bending a blank c, which is trimmed from a flat sheet and folds in a mountain, and has a valley crest corresponding to both portions 1 and 2 in a substantially parallel manner, are provided in a circumferential direction. There is provided a rotor A obtained by arranging spiral wings b which are repeatedly formed in a stepped shape along a central axis d.

発明の課題Problems of the Invention

低、中風速下でも、ロータAにもたらすプラス抗力を増強させるとともに、マイナス抗力を極力抑え、さらに小さくない揚力を新らたに発生させることが第一課題であり、中、強風速下においても充分に耐えうる剛性強度のロータ構造を提供することが第二課題であり、ロータAの製作費を充分に圧縮することが第三課題である。Even under low and medium wind speeds, the first challenge is to increase the positive drag that is brought to the rotor A, suppress negative drag as much as possible, and generate new lift that is not small. It is a second problem to provide a rotor structure with sufficient rigidity that can withstand, and a third problem is to sufficiently reduce the manufacturing cost of the rotor A.

課題を解決するための手段Means for solving the problem

半径方向に条溝又は条陵つきの複数ブレードaをして、円周方向に繰返し段差状として複合形成して設けられた両持型のスパイラルウイングbが中心軸dにそい配設されて得られたロータAを提供し、さらにそのロータAが円筒状の風洞内に設けられることである。
またそのスパイラルウイングbが、平坦状ブランクcの単純折曲により迅速かつ容易に加工されるとともに各方向の外力剛性を保證される実質的軸対称の連続立体構造(位相幾何学にうらずけられた折り紙構造)により形成されることである。
A plurality of blades a with grooves or ridges in the radial direction and a double-ended spiral wing b provided in a composite manner as a stepped shape in the circumferential direction is obtained along the central axis d. The rotor A is provided, and the rotor A is provided in a cylindrical wind tunnel.
In addition, the spiral wing b can be processed quickly and easily by simple bending of the flat blank c and has a substantially axisymmetric continuous three-dimensional structure in which external force rigidity in each direction is maintained (subject to topology). Or origami structure).

発明の効果The invention's effect

本発明の個有な形態構成によりより大きなパワー係数と風速比を可能とした本ロータAが採用された新発電システムは、低、中風速にかぎられず高風速によってもすぐれた発電効果を発揮し得た。さらに量産に適したロータAの加工方法により発電効果、耐久性/製作コストとした対比の著しい向上を実現し得た。なお図31の斜線囲み部分に本ロータ形のパワー特性に相当する範囲を示した。The new power generation system employing this rotor A, which enables a larger power coefficient and wind speed ratio by the unique configuration of the present invention, is not limited to low and medium wind speeds, and exhibits excellent power generation effects even at high wind speeds. Obtained. Furthermore, the processing method of the rotor A suitable for mass production could realize significant improvement in power generation effect and durability / production cost. The range corresponding to the power characteristics of the rotor type is shown in the shaded area in FIG.

発明を実施するための最適な形態Best Mode for Carrying Out the Invention

本発明と本発明にかかわる諸技術の実施例などを簡略に説明する
図1、2と図3、4は本発明の2種ロータAの模式立面、平面。
図5〜16は本発明に関わる各種ブレードaの短手方向の断面斜視図。
図17〜20は本発明に関わる各種ブレードaを複数複合形成した短手方向の断面斜視図。
図21、22と図23、24は本発明に関わる2種ブランクcの部分平面図とそれらによる2種ロータAの部分斜視図。
図25、26と図27、28は本発明の2種ロータAとそれらを組込んで得られ2種発電システムの斜視図、2方向断面模式図。
以下に本請求範囲及び本明細書で用いられる主要9用語をあらかじめ説明する。
1, 2, 3, and 4, which briefly describe embodiments of the present invention and various technologies related to the present invention, are schematic elevations and planes of a two-type rotor A of the present invention.
5 to 16 are cross-sectional perspective views of various blades a according to the present invention in the short direction.
17 to 20 are cross-sectional perspective views in the short direction in which a plurality of various blades a related to the present invention are formed in a composite manner.
21 and 22 and FIGS. 23 and 24 are a partial plan view of a two-type blank c according to the present invention and a partial perspective view of a two-type rotor A by them.
25 and 26 and FIGS. 27 and 28 are a perspective view and a two-way cross-sectional schematic view of a two-type power generation system obtained by incorporating the two-type rotor A of the present invention and them.
The nine main terms used in the claims and the specification will be explained below in advance.

<ブレードa> 参照 図5〜16、図17〜20、図21〜24
本発明のブレードaとはロータAの半径又は直径方向に設けられる略短冊状の単位部材であり、中心軸dをまたぐものと中心軸どまりの2種がある。
ブレードaの詳細形態としては、その短辺方向断面形が薄シート状と肉厚板状のものがあり、前者は直行状、折曲状、湾曲状などやそれらの適ギ組合せたもの、後者の代表的なものとしてプロペラ断面状とされることにより、長辺方向に各種条溝ないしは各種条陵が設けられることを特徴としている。またブレードaの構成形としては単独のものと複数ブレードが組合されてなるものがある。なお、ブレードaの平面中央又は端部に、中心軸用の開孔や各種固定仕口、付属部品があらかじめ設けられてもよい。
<Blade a> See FIGS. 5 to 16, FIGS. 17 to 20, and FIGS.
The blade a of the present invention is a substantially strip-shaped unit member provided in the radius or diameter direction of the rotor A, and there are two types of members that straddle the center axis d and the center axis stay.
As the detailed form of the blade a, there are a thin sheet shape and a thick plate shape in the short side direction cross section, the former being a straight shape, a bent shape, a curved shape, etc., or a suitable combination thereof, the latter As a typical example, the cross section of the propeller is used, so that various grooves or various ridges are provided in the long side direction. In addition, the configuration of the blade a includes a single blade and a combination of a plurality of blades. In addition, an opening for the central axis, various fixed joints, and accessory parts may be provided in advance at the center or end of the blade a.

<スパイラルウイングb> 参照 図1〜4、図17〜20、図23〜24
本発明に関わるスパイラルウイングbとは、複数ブレードaが複合形成されて中心軸dにそい配設されてなる、ロータAを構成する中間部材である。その複合形成方法として相互に分離配置される並列型と連結される合成型とあらかじめ連続して設けられる一体型との3種があり、よりくわしくは並列型とは各ブレートaが単位部材として切り離され、合成型とは単位部材としての複数ブレードaが何らかの手段で相互に固着され、そして一体型とは同一シート資材を同時加工により複数ブレードが単品として得られるものである。
スパイラルウイングbの全体形態は両翼型と片翼型とがあり、詳細形態の最大の特徴は中心軸dを支柱としてスパイラル状に配設された各ブレードaにより形成される旋回状傾斜面にある。その傾斜面の表裏両面又はいずれか片面が旋回方向に繰り返えし段差状つまり回りすべり台状でなく回り階段状として設けられることである。
このスパイラルウイングbの製法として大きく2種あり、平板シートを折曲加工により立体形成して得るものと平板シートを介すことなく直接立体形成するものである。前者はトリミングされた平板シートに山折れ、谷折れ両罫線が略併行状として設けられたブランクcをして折曲形成して複数ブレードの連続一体化されたスパイラルウイングbを得る方法である。後者はスパイラルウイングbの中間又は最終形態のネガ成形型を用いて樹脂、FRPなどの資材による射出成形、バキューム成形、プレス成形、RTM成形などの方法でスパイラルウイングb得られるものであり、最終製品脱型のためにオス・メス両成形型の一次方向移動を可能とする様にスパイラルウイングの形態設計がなされるとよい。
なお上記2種方法にかぎられないが、本スパイラルウイングbの材料としては樹脂、FRPの他に金属、紙、織物、不織布などやそれらの適ギ組合せたものも本発明に関わり有効である。
<Spiral Wing b> See FIGS. 1-4, 17-20, 23-24
The spiral wing b according to the present invention is an intermediate member constituting the rotor A, in which a plurality of blades a are formed in a composite manner and arranged along the central axis d. There are three types of composite forming methods: a parallel type separated from each other and a combined type connected to each other and an integrated type provided continuously in advance. More specifically, in the parallel type, each blade a is separated as a unit member. In the composite type, a plurality of blades a as unit members are fixed to each other by some means, and in the integrated type, a plurality of blades are obtained as a single product by simultaneously processing the same sheet material.
The overall form of the spiral wing b includes a double wing type and a single wing type, and the greatest feature of the detailed form is a swirling inclined surface formed by each blade a arranged in a spiral shape with the central axis d as a support. . Both the front and back surfaces of the inclined surface or any one surface thereof are repeatedly provided in the turning direction, and are provided as a stepped shape, not a stepped shape, that is, a rotating slide shape.
There are roughly two types of manufacturing methods for this spiral wing b. One is obtained by three-dimensionally forming a flat sheet by bending, and the other is directly forming three-dimensionally without using a flat sheet. The former is a method of obtaining a spiral wing b in which a plurality of blades are continuously integrated by bending a blank c in which a trimmed flat sheet is fold-folded and valley-folded and both ruled lines are provided in a substantially parallel shape. The latter can be obtained by using a negative mold in the middle or final form of the spiral wing b and by methods such as injection molding, vacuum molding, press molding, RTM molding, etc. with materials such as resin, FRP, etc. It is preferable that the spiral wing is designed so that the primary direction movement of both the male and female molds is possible for demolding.
Although not limited to the above two methods, the material of the spiral wing b is effective in connection with the present invention, in addition to resin, FRP, metal, paper, woven fabric, non-woven fabric, and the like and combinations thereof.

<ブランクc> 参照 図22、24
本発明に関わるブランクcとは、原則的に平坦シートを裁断機によりトリミングすることによりその輪郭が形成されるとともに山折れ、谷折れ両相当部1、2又はいずれ片方相当部が略併行状として設けられ、また中心軸d組込み用の開口部3や各種仕口用ビス穴が中央部に、風切音抑止用の小型連通部と円弧状切り落しを端部に設けられるとよい。上記山折れ、谷折れ相当部1、2とは一般的に裁断時の線状押し込み、同ハーフカット、同ミシンカットなどの手段による罫線を指し示すが、この他に罫線を設けずブレードa又はスパイラルウイングbの折曲形成用システム内において昇温用ワイヤなどによる上記相当部1、2の加工形成も可能である。ブランクcの材料としては紙、樹脂シート、金属シート各種FRPシートやそれらの適ギ組合せによるものも、本発明に関り有効である。
<Blank c> See FIGS.
With the blank c according to the present invention, the outline is formed by trimming a flat sheet with a cutting machine in principle, and the mountain fold, valley fold both equivalent parts 1, 2 or any one of the equivalent parts is substantially parallel. It is preferable that the opening 3 for incorporating the central shaft d and various joint screw holes are provided at the center, and a small communication portion for suppressing wind noise and an arc-shaped cut-off are provided at the end. The above-described mountain fold and valley fold equivalent portions 1 and 2 generally indicate a ruled line by means of linear pushing at the time of cutting, the same half cut, the same machine cut, etc. The corresponding portions 1 and 2 can be processed and formed with a heating wire or the like in the bend forming system of the wing b. As the material for the blank c, paper, resin sheets, metal sheets, various FRP sheets, and combinations thereof are also effective in the present invention.

<本発明のロータAとその全体形態2種の実施例>
図1、2において本発明のロータA立面の、図3、4には各S−S、S−S方向の平面図の実施例2種が模式風に示されている。片翼型スパイラルウイングbが中心軸dにより、両翼型スパイラルウイングbが中心軸dにより支えられているが、その詳細構成までは示されていない。
<Embodiment of rotor A according to the present invention and two types thereof>
1 and 2 of the rotor A elevation of the present invention, and FIGS. 3 and 4 schematically show two types of examples of plan views in the directions of S 1 -S 1 and S 2 -S 2 . The single-wing spiral wing b is supported by the central axis d, and the double-wing spiral wing b is supported by the central axis d, but the detailed configuration thereof is not shown.

<本発明のロータAに関わるブレードaとその各種断面の実施例>
図5〜15に示されるブレードaの巾方向断面にはシート材を加工形成したものが、図16には厚板材を加工形成したものが示される。図5〜10、13には折曲形成、図11、12、14、15には湾曲形成したものであり、この他に上記各断面を適ギ組合せたものや、これとは別に寸法、プロポーシヨンなどの詳細形態を自在に選択しうるものがあり、いずれも本発明に関わり有効なブレードaの形態単位である。
図17〜20には各種ブレードaを複合形成したものが示されており、図17、18は各ブレードaを連続とされた一体型であり、図19は各ブレードaを何らかの手段で連結させた合成型でありなお乱流空気の発生抑止材をかねたブレード自体の補強材5が点線表示されており、図20は各ブレードaを相互に分離した並列型である。
<Examples of blade a and various cross sections thereof related to rotor A of the present invention>
5 to 15 shows a cross-section of the blade a in which the sheet material is processed and FIG. 16 shows a thick plate material processed and formed. 5 to 10 and 13 are bent, and FIGS. 11, 12, 14, and 15 are curved. In addition to these, the above-mentioned cross-sections are appropriately combined, and dimensions and proportions are separately provided. There are some which can freely select a detailed form such as Chillon, and all of them are effective form units of the blade a in connection with the present invention.
17 to 20 show a combination of various blades a. FIGS. 17 and 18 show an integrated type in which the blades a are continuous, and FIG. 19 shows how the blades a are connected by some means. Further, the reinforcing member 5 of the blade itself, which also serves as a material for suppressing the generation of turbulent air, is indicated by a dotted line, and FIG. 20 is a parallel type in which the blades a are separated from each other.

<本発明のロータAを形成するためのブランクcの2種実施例>
図21、22には単一型ブレードaとそれを形成するためのブランクcが示されており、図23、24には一体型の複数ブレードaからなるスパイラルウイングbとそれを形成するためのブランクcが示されている。前者の図22のブランクcでは、短冊状にトリミングされ、2本の谷折れ罫線2が併行して設けられるとともに、両端部を円弧状とされ、中心軸用の開孔3が設けられる。なお図21の単一ブレードaには隣接して設けられるべき第二の単一ブレードが点線表示される。
後者の図24のブランクcでは、帯状シートにトリミングされ山折れ罫線1と谷折れ罫線2が交互に略併行状に設けられるとともに中心軸d用の開孔3が設けられており、なお空気抵抗の発生抑止材をかねる、最上部ブレード自体の補強材eがプロペラ形状の点線として表示される。
<Two examples of blank c for forming rotor A of the present invention>
FIGS. 21 and 22 show a single blade a and a blank c for forming the same, and FIGS. 23 and 24 show a spiral wing b composed of a plurality of integrated blades a and a method for forming the spiral wing b. A blank c is shown. In the former blank c in FIG. 22, it is trimmed into a strip shape, and two valley-creased ruled lines 2 are provided in parallel, and both ends are formed in an arc shape, and an opening 3 for the central axis is provided. Note that a second single blade to be provided adjacent to the single blade a in FIG. 21 is indicated by a dotted line.
The latter blank c in FIG. 24 is trimmed to a belt-like sheet, and the mountain crease ruled lines 1 and the valley crease ruled lines 2 are alternately provided substantially in parallel with each other, and the opening 3 for the central axis d is provided. The reinforcing material e of the uppermost blade itself, which also serves as a material for suppressing the occurrence of this, is displayed as a propeller-shaped dotted line.

<本発明のロータAを用いられた水平軸式発電システムの実施例>
図25、26、27に示される風力発電システムは、水平軸としたロータAを採用することを特徴としており、斜視図27において実線表示されるロータAが点線表示される集風用風洞B、主風洞B、排風用風洞B内に設置され、同じく点線表示される発電機、変速機などを納めるナセルCに連結されて設けられている。図25は、図27のS−S断面図であり、その太矢印としてロータAが設置された主風洞B内で大旋回と小旋回を同時にしつつ流下する2筋の風朿イが模式風に示されている。
図27のS−S断面である図には、中心軸dの周囲を大旋回と小旋回をしつつ流下する二筋の風朿イが模式風に示される。
図示されないが中風速前後をその運転適正範囲とする本ロータAとその発電システムにおいて高風速時対応として、通常時に中心軸dと軸方向に固定されるスパイラルウイングbが、瞬時に開放され、軸方向に一挙延伸しその破損回避を達成するための、特殊ジヨイントを中心軸周辺に採用するとよい。
なお図25、26、27はロータA、各風洞B、B、B、ナセルCなど各部材、部品相互の組立仕様がすべて省略されているが、本風力発電システムにおく本発明のロータAの効果を説明すべく、その主要な構成のみを重点表示した。以下に発電システム内における本ロータの特徴的な機能作用を開示すると、まづ集風用風洞Bに流れこんだ1筋の風朿は、主風洞Bにおいてスパイラルウィングbとの仂きで2本の捻れ半円筒状の流路内で

Figure 2010261432
その主風洞B内でスパイラルウィングbに作用する風朿イの外力は、第一にその表面への風速力であり、第二はその表面と裏面の風速差による揚力であり、裏面への逆風速力が第三である。よりくわしくは、図17、18に示される通り、同図の上方又は左上方から風朿イが、そのウイングbの表面を吹き下り、ウイングbの裏面にそい風朿イが左上方から吹き下りる。
ウイングbの表面には整流が、裏面には乱流が発生しやすいため表面から裏面に対して揚力が仂く。結果として表面に鉛直の風速力と、ウイングbの傾斜直交方向の下方に揚力がともにプラス成分として作用し、ウイングbの傾斜方向に逆風速力がマイナス成分として仂きウイングbは水平左方向に充分な推力をうることが出来た。
さらに主風洞B内を2筋の風朿がともに大・小旋回流として流下するために、風洞Bへ流入時の自然風速を維持又は増大させられることからウイングbに作用する風速力の向上に効果的となり、また大小両旋回流によりロータAのWAKE発生を抑制して、更らなる望ましい性能が得られた。<Example of Horizontal Axis Power Generation System Using Rotor A of the Present Invention>
The wind power generation system shown in FIGS. 25, 26 and 27 is characterized by adopting a rotor A having a horizontal axis, and a wind collecting wind tunnel B 2 in which the rotor A indicated by a solid line in the perspective view 27 is indicated by a dotted line. , Installed in the main wind tunnel B 1 and the exhaust wind tunnel B 3 , and connected to a nacelle C that houses a generator, a transmission, and the like that are also indicated by dotted lines. FIG. 25 is a cross-sectional view taken along line S 3 -S 3 of FIG. 27. As a thick arrow, two lines of wind storms flowing down while simultaneously making a large turn and a small turn in the main wind tunnel B 1 in which the rotor A is installed. Is shown schematically.
In the view of the S 4 -S 4 cross section in FIG. 27, a two-way wind storm that flows down around the central axis d while making a large turn and a small turn is shown in a schematic wind.
Although not shown in the drawing, the spiral wing b fixed in the axial direction to the central axis d during normal operation is instantaneously opened as a response to the high wind speed in the rotor A and the power generation system in which the proper operating range is around the middle wind speed. Special joints should be used around the central axis to stretch in the direction and achieve breakage avoidance.
25, 26, and 27, the rotor A, the wind tunnels B 1 , B 2 , B 3 , the nacelle C and other members and parts are all omitted from the assembly specifications. In order to explain the effect of the rotor A, only the main configuration is emphasized. Disclosed below is the characteristic function and action of the rotor in the power generation system. First, a single wind vortex that has flowed into the wind collecting wind tunnel B 2 is rolled with the spiral wing b in the main wind tunnel B 1 . In two twisted semi-cylindrical channels
Figure 2010261432
In the main wind tunnel B 1 , the external force of the wind kite acting on the spiral wing b is first the wind speed force on the surface, and the second is the lift force due to the difference in wind speed between the front surface and the back surface, The reverse wind speed is third. More specifically, as shown in FIGS. 17 and 18, the wind kite 1 blows down the surface of the wing b from the upper side or the upper left side of the drawing, and the wind kite 2 from the upper left side of the wing b. Blow down.
Rectification is likely to occur on the surface of the wing b, and turbulence is likely to occur on the back surface, so that lift is generated from the surface to the back surface. As a result, the wind speed force perpendicular to the surface and the lift force below the wing b in the direction perpendicular to the inclination act as plus components, and the reverse wind velocity force acts as a minus component in the inclination direction of the wing b, and the wing b is sufficient in the horizontal left direction. I was able to get a good thrust.
Furthermore the main air channel B 1 to Kaze朿two muscle flows down together as large and small swirling flow, the wind speed force acting on the wing b because it is caused to maintain or increase the natural wind velocity at the time flows into the air channel B 1 It became effective for improvement, and the WAKE generation of the rotor A was suppressed by both large and small swirling flows, and further desirable performance was obtained.

<本発明のロータAを用いられた垂直軸式発電システムの実施例>
図28、29、30に示される風力発電システムは垂直軸式としたロータAを採用することを特徴としており、斜視図29では、実線で示されたロータAが、点線表示される集風用風洞B、開閉自在・主風洞B′、排風用風洞B内に設置され、さらに点線表示のナセルCに連結する。
図30は斜視図29のS−S断面図であり、太矢印はロータAが設置された主風洞B′内を旋回する2筋の風朿イが、そしてやや細矢印は風向き選択可能とする主風洞B′のたて長開口部から水平流入する風朿口が模式風に示されている。同じく模式風な図28は斜視図29のS−S断面図であり、当初に水平流入はじめた風朿口が主風洞B′の仂きでウイングbにプラス風速力のみを選択的に作用させることが出来て、ロータAが始動可能となる。ロータAの回転速度がレベルに達すると主風洞B′内を上昇する旋回風朿イが発生し、結果として本発電システムは下方から上方に安定的な風朿イを得てロータAを強力回転させることが可能として得られた。また強風下では、開閉自在な風洞B′のヒンジを作動させシステム破損を回避することが出来た。また開閉式とせず、固定式案内羽根とした主風洞も有効である。
図28、29、30は、システムの主要な構成とその作用を重点開示するために、ロータA、風洞B、ナセルCなどの組立て用部材、部品が省略されている。前記図25、26、27の実施例において主風洞B内を旋回する風朿イとその作用・効果が開示されたので本実施例ではふれない。
<Example of Vertical Axis Power Generation System Using Rotor A of the Present Invention>
The wind power generation system shown in FIGS. 28, 29, and 30 is characterized by employing a vertical axis type rotor A. In the perspective view 29, the rotor A indicated by a solid line is used for wind collection in which a dotted line is displayed. Installed in the wind tunnel B 2 , the openable / closable / main wind tunnel B 1 ′, and the exhaust wind tunnel B 3 , and further connected to the nacelle C indicated by the dotted line.
FIG. 30 is a cross-sectional view taken along the line S 5 -S 5 in the perspective view 29. The thick arrows indicate the two winds turning in the main wind tunnel B 1 ′ where the rotor A is installed, and the slightly thin arrows indicate the wind direction. A wind inlet that horizontally flows in from a vertically long opening of the main wind tunnel B 1 ′ is shown in a schematic wind. Similarly schematic air diagram 28 is S 6 -S 6 cross-sectional view of the perspective view 29, selectively wind朿口began horizontal flows initially only positive wind force wing b in-out仂main air channel B 1 ' The rotor A can be started. When the rotational speed of the rotor A reaches the level, a swirling wind noise rising in the main wind tunnel B 1 ′ is generated. As a result, the power generation system obtains a stable wind noise from the lower side to the upper side to strengthen the rotor A. Obtained as possible to rotate. Also, under strong winds, the hinge of wind tunnel B 1 ′ that can be freely opened and closed was operated to avoid system damage. In addition, a main wind tunnel using fixed guide vanes instead of an openable type is also effective.
In FIGS. 28, 29 and 30, assembly members and parts such as the rotor A, the wind tunnel B, and the nacelle C are omitted in order to emphasize the main configuration of the system and its operation. Kaze朿I and its operation and effect of turning the main air channel B 1 is not touched in this embodiment since it was disclosed in the embodiment of FIG 25, 26, 27.

<本発明のロータAを用いた発電システムの他の実施例について>
いずれも図示されないが、まづ本発明のロータAを何ら風洞を設けず、ナセルCと直結して設けた発電システムがあり、次に図27又は図29に示した様なシステムを用いて逆向き2組ロータAを組合せた二重反転方式の発電システム(軸心を一致させたものと軸心を並行させたもの)があり、さらに図27の様なシステムを用いて、逆方向風朿イでも機能する固定型システムがあり、いずれも本発明にかかわり有効である。
<Another Example of Power Generation System Using Rotor A of the Present Invention>
Although neither is shown, there is a power generation system in which the rotor A of the present invention is not directly provided with a wind tunnel and is directly connected to the nacelle C, and then reversed using a system as shown in FIG. 27 or FIG. There is a counter-rotating power generation system (with the axis aligned and the axis aligned in parallel) in which two sets of rotors A are combined, and using a system such as that shown in FIG. There are fixed systems that function even in the case of (b), all of which are effective in connection with the present invention.

<本発明のロータAにおいてスパイラルウイングbと中心軸の各種ジヨイント部品、部材について>
スパイラルウイングbと中心軸dの設置固定方法として、ナットや穴あきクサビなどがスペーサを兼ねて有効である。その中心軸dとしては全長にねじ切り加工したもの、両端部のみにねじ切としたものがある。クサビとしては中心軸d周辺のみに設けられるものとスパイラルウイングbの両端部まで延長したものがある。いずれも本発明に関り有効である。
<About the various joint parts and members of the spiral wing b and the central axis in the rotor A of the present invention>
As an installation and fixing method of the spiral wing b and the central axis d, nuts, perforated wedges and the like are also effective as spacers. As the central axis d, there are those that are threaded to the full length and those that are threaded only at both ends. There are wedges that are provided only around the central axis d and those that extend to both ends of the spiral wing b. Both are effective in connection with the present invention.

本発明のロータAを採用した風力発電システムとしては小規模のものにかぎらず中、大規模のものにも有効であり、又水平、垂直軸式のものが戸建住宅、集合住宅のベランダ、屋上に、中高層

Figure 2010261432
槁梁に、地下鉄、地下道の排気孔に、送電タワー、電柱に、原野、河川敷、丘陵、斜面に、山間部谷合、里山、農道、休耕田に、海岸、海上にさらに船舶に設置可能である。
また水力発電システムとして急流小河川、農地水路、中流、河口河川の水中に設置可能である。その他本ロータAを用いた高速、高圧な産業用流体、粉粒体ポンプなどして利用可能であり、低騒音の空気ファンとしても有効である。The wind power generation system adopting the rotor A of the present invention is effective not only for a small scale but also for a medium or large scale, and a horizontal and vertical axis type is a detached house, an apartment veranda, Middle and high rise on the roof
Figure 2010261432
It can be installed on the bridge, subway, underground passage exhaust, power transmission tower, power pole, wilderness, riverbed, hills, slopes, mountainous valleys, satoyama, farm roads, fallow fields, coasts and seas.
It can also be installed as a hydroelectric power generation system in rapid stream small rivers, farmland waterways, midstream and estuary rivers. In addition, it can be used as a high-speed, high-pressure industrial fluid using this rotor A, a particulate pump, and the like, and is also effective as a low noise air fan.

本発明のロータAの立面図Elevated view of rotor A of the present invention 本発明のロータAの平面図Plan view of rotor A of the present invention 本発明のロータAの立面図Elevated view of rotor A of the present invention 本発明のロータAの平面図Plan view of rotor A of the present invention 本発明に関るブレードaの断面斜視図Cross-sectional perspective view of blade a according to the present invention 本発明に関るブレードaの断面斜視図Cross-sectional perspective view of blade a according to the present invention 本発明に関るブレードaの断面斜視図Cross-sectional perspective view of blade a according to the present invention 本発明に関るブレードaの断面斜視図Cross-sectional perspective view of blade a according to the present invention 本発明に関るブレードaの断面斜視図Cross-sectional perspective view of blade a according to the present invention 本発明に関るブレードaの断面斜視図Cross-sectional perspective view of blade a according to the present invention 本発明に関るブレードaの断面斜視図Cross-sectional perspective view of blade a according to the present invention 本発明に関るブレードaの断面斜視図Cross-sectional perspective view of blade a according to the present invention 本発明に関るブレードaの断面斜視図Cross-sectional perspective view of blade a according to the present invention 本発明に関るブレードaの断面斜視図Cross-sectional perspective view of blade a according to the present invention 本発明に関るブレードaの断面斜視図Cross-sectional perspective view of blade a according to the present invention 本発明に関るブレードaの断面斜視図Cross-sectional perspective view of blade a according to the present invention 本発明に関るブレードaの断面斜視図Cross-sectional perspective view of blade a according to the present invention 本発明に関るブレードaの断面斜視図Cross-sectional perspective view of blade a according to the present invention 本発明に関るブレードaの断面斜視図Cross-sectional perspective view of blade a according to the present invention 本発明に関るブレードaの断面斜視図Cross-sectional perspective view of blade a according to the present invention 本発明のロータAの斜視図The perspective view of the rotor A of this invention 本発明に関るブランクcの平面図Plan view of blank c according to the present invention 本発明のロータAの斜視図The perspective view of the rotor A of this invention 本発明に関るブランクcの平面図Plan view of blank c according to the present invention 本発明に関る発電システムの平面模式図Schematic plan view of a power generation system according to the present invention 本発明に関る発電システムの断面模式図Schematic cross-sectional view of a power generation system according to the present invention 本発明に関る発電システムの斜視模式図The perspective schematic diagram of the electric power generation system concerning this invention 本発明に関る発電システムの断面模式図Schematic cross-sectional view of a power generation system according to the present invention 本発明に関る発電システムの斜視模式図The perspective schematic diagram of the electric power generation system concerning this invention 本発明に関る発電システムの平面模式図Schematic plan view of a power generation system according to the present invention 従来例と本発明システムのパワー特性図Power characteristics of conventional example and system of the present invention

a 本発明に関るブレード
b 本発明に関るスパイラルウイング
c 本発明に関るブランク
d 本発明に関る中心軸
e 本発明に関る上下端ブレードの補強材
f 本発明に関るブレード端部の補強材
A 本発明のロータ
本発明に関る主風洞
′本発明に関る開閉自在の主風洞
本発明に関る集風用風洞
本発明に関る排風用風洞
C 本発明に関るナセル
1. 本発明に関る山折れ相当部
2. 本発明に関る谷折れ相当部
3. 本発明に関るブレード中央の開孔
イ. 本発明に関る風朿(旋回流)
.本発明に関るスパイラルウイング表面の風朿
本発明に関るスパイラルウイング裏面の風朿
ロ 本発明に関る水平風朿
a blade b related to the present invention b spiral wing related to the present invention blank d related to the present invention d central axis related to the present invention e reinforcing material for upper and lower blades related to the present invention f blade end related to the present invention Reinforcing member A Rotor B of the present invention 1 Main wind tunnel B 1 related to the present invention 'Openable main wind tunnel B related to the present invention 2 Wind collecting wind tunnel B related to the present invention 3 Exhaust related to the present invention Wind tunnel C for nacelle according to the present invention 1. Mountain folding equivalent part according to the present invention 2. Valley-corresponding portion related to the present invention B. Opening of the center of the blade according to the present invention. Winds (swirl flow) according to the present invention
Lee 1. The wind of the surface of the spiral wing related to the present invention 2 The wind of the back of the spiral wing related to the present invention B The horizontal wind of the present invention

Claims (2)

半径方向に条溝又は条陵を設けられたブレードaの複数を相互に分離又は連結又は連続して設けられ、円周方向に繰返えし段差状として複合形成されたスパイラルウイングbが中心軸にそい配設されて得られるロータA。A plurality of blades a provided with grooves or ridges in the radial direction are separated from each other, connected or continuously provided, and a spiral wing b which is repeatedly formed in the circumferential direction and formed in a step shape is a central axis. Rotor A obtained by being arranged along the edge. トリミングされた平板シートに山折れ、谷折れ両相当部ないしはいずれか片方の相当部を略併行状として設けられたブランクcが折曲形成されてなることを特徴とした請求項1記載のブレードaに関する。2. The blade a according to claim 1, wherein the trimmed flat sheet is bent and formed with a blank c which is formed by folding a mountain and / or a valley into a substantially parallel shape. About.
JP2009138664A 2009-04-28 2009-04-28 Rotor Pending JP2010261432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009138664A JP2010261432A (en) 2009-04-28 2009-04-28 Rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009138664A JP2010261432A (en) 2009-04-28 2009-04-28 Rotor

Publications (1)

Publication Number Publication Date
JP2010261432A true JP2010261432A (en) 2010-11-18

Family

ID=43359723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009138664A Pending JP2010261432A (en) 2009-04-28 2009-04-28 Rotor

Country Status (1)

Country Link
JP (1) JP2010261432A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106089575A (en) * 2016-08-25 2016-11-09 江苏科技大学 There is the Anti-Typhoon ocean wind power generation platform of folding blade
JP2020008014A (en) * 2018-07-02 2020-01-16 明男 日詰 Folded plate general-purpose turbine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106089575A (en) * 2016-08-25 2016-11-09 江苏科技大学 There is the Anti-Typhoon ocean wind power generation platform of folding blade
JP2020008014A (en) * 2018-07-02 2020-01-16 明男 日詰 Folded plate general-purpose turbine
JP7013094B2 (en) 2018-07-02 2022-01-31 明男 日詰 Folded plate general purpose turbine

Similar Documents

Publication Publication Date Title
JP5963146B2 (en) Vertical axis water turbine generator using wind face opening and closing blade system
US20180038345A1 (en) Fluid turbine systems
US20110206526A1 (en) Vertical-axis wind turbine having logarithmic curved airfoils
CN101223355A (en) Water turbine with bi-symmetric airfoil
EP3613980A1 (en) Vertical-shaft turbine
US9816383B2 (en) Power generation apparatus
NZ567673A (en) Rotor for a low speed wind turbine
US8317480B2 (en) Turbine assembly and energy transfer method
CN103629050B (en) Pass through eddy flow aerogenerator
Golecha et al. Review on Savonius rotor for harnessing wind energy
JP2010261432A (en) Rotor
Kumar et al. Performance assessment of darrieus turbine with modified trailing edge airfoil for low wind speeds
Nishizawa An experimental study of the shapes of rotor for horizontal-axis small wind turbines
JP2011085127A (en) Rotor
CN103573531A (en) Ocean current energy power generation type bidirectional impeller of water turbine with flow guide cover
JP2018536806A (en) Blades that efficiently use low-speed fluids and their applications
JP3172493U (en) Spiral wind turbine generator
EP3643913B1 (en) Sail device
CN105545583B (en) Wind power generation blade and lee face go out to flow the determination method at tangent line inclination angle
TWM588736U (en) Auxiliary device for horizontal axis wind turbine blade
Gupta et al. Comparative study of the performances of twisted two-bladed and three-bladed airfoil shaped H-Darrieus turbines by computational and experimental methods
CN106032787A (en) A combined type wind wheel for a vertical axis wind turbine
JP5093629B1 (en) Fluid acceleration penetrating blade
JP2013083181A (en) Spiral type wind power generation system
Beri et al. Computational analysis of vertical axis wind turbine with open-able airfoil