JP2018536806A - Blades that efficiently use low-speed fluids and their applications - Google Patents

Blades that efficiently use low-speed fluids and their applications Download PDF

Info

Publication number
JP2018536806A
JP2018536806A JP2018529973A JP2018529973A JP2018536806A JP 2018536806 A JP2018536806 A JP 2018536806A JP 2018529973 A JP2018529973 A JP 2018529973A JP 2018529973 A JP2018529973 A JP 2018529973A JP 2018536806 A JP2018536806 A JP 2018536806A
Authority
JP
Japan
Prior art keywords
blade
sheet
wing member
wing
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018529973A
Other languages
Japanese (ja)
Other versions
JP6609705B2 (en
Inventor
亦博 李
亦博 李
鋒 李
鋒 李
逸翔 程
逸翔 程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Li yibo
Original Assignee
Li yibo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li yibo filed Critical Li yibo
Priority claimed from PCT/CN2016/109064 external-priority patent/WO2017097229A1/en
Publication of JP2018536806A publication Critical patent/JP2018536806A/en
Application granted granted Critical
Publication of JP6609705B2 publication Critical patent/JP6609705B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • F03D1/0641Rotors characterised by their aerodynamic shape of the blades of the section profile of the blades, i.e. aerofoil profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0025Producing blades or the like, e.g. blades for turbines, propellers, or wings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/145Means for influencing boundary layers or secondary circulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/121Blades, their form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/20Manufacture essentially without removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/221Rotors for wind turbines with horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/70Shape
    • F05B2250/71Shape curved
    • F05B2250/711Shape curved convex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/70Shape
    • F05B2250/71Shape curved
    • F05B2250/712Shape curved concave
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6003Composites; e.g. fibre-reinforced
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

外部輪郭が第一翼型を呈する流線形断面を有する主翼部材(A2、D2、K2)を備える低速流体を効率的に利用するブレードであって、ブレードは更に先端翼部材(C1)を備え、先端翼部材がシート状であり、先端翼部材の断面は片側が凸面で他側が凹面であるアーチ型であり、先端翼部材が主翼部材前縁点の斜め上側に設置され、先端翼部材の凹面が主翼部材に向かっており、先端翼部材と主翼部材との間に第一通気空間(T1)を有する。ブレードの翼部材構造を改良することにより、前記ブレードのCp値を平均風速2−13m/s条件下で単翼ブレードより大幅に大きくし、ブレード性能を確保でき、シート状部材で元のブレードを代替し、元のブレード翼型の成形をシート状部材の成形に変換することができ、このようにして製造金型を分散化し、金型の寸法、加工難度及びコストを低減させ、それによりブレードの製造コストを著しく低減させ、具体的に20−50%低減させることができる。A blade that efficiently utilizes a low-speed fluid comprising a main wing member (A2, D2, K2) having a streamlined cross-section with an outer contour exhibiting a first airfoil, the blade further comprising a tip wing member (C1), The tip wing member is sheet-like, and the cross section of the tip wing member is an arch type having a convex surface on one side and a concave surface on the other side, the tip wing member is installed obliquely above the leading edge of the main wing member, and the concave surface of the tip wing member Is directed to the main wing member, and has a first ventilation space (T1) between the tip wing member and the main wing member. By improving the blade member structure of the blade, the Cp value of the blade can be significantly larger than that of the single blade blade under an average wind speed of 2-13 m / s, and the blade performance can be ensured. Alternatively, the original blade airfoil molding can be converted into sheet-like member molding, thus decentralizing the production mold and reducing the size, processing difficulty and cost of the mold and thereby the blade Manufacturing costs can be significantly reduced, specifically by 20-50%.

Description

<関連出願>
本発明出願は2015年12月10日に出願された出願番号が201510907637.3であり、名称が“低速流体を効率的に利用するブレード及びその製造方法”である中国特許出願の優先権、及び2016年9月22日に出願された出願番号が201610842522.5であり、名称が“低速流体を効率的に利用するブレード及びその製造方法”である中国特許出願の優先権を主張し、その内容をここに援用する。
<Related applications>
The present invention application is filed on Dec. 10, 2015 with the application number 201510907767.3, the priority of the Chinese patent application whose name is “blade using low-speed fluid efficiently and its manufacturing method”, and Claimed the priority of the Chinese patent application whose application number filed on September 22, 2016 is 20161084252522.5 and whose name is “blade using low-speed fluid efficiently and its manufacturing method”. Is hereby incorporated by reference.

本発明は流体動力装置におけるブレードに関し、特に低速流体を効率的に利用するブレード及びその応用に関する。   The present invention relates to a blade in a fluid power device, and more particularly to a blade that efficiently uses a low-speed fluid and its application.

出願者によれば、ブレードの風力エネルギー利用率(Cpと示され、風力エネルギー利用効率とも称される)はその最も重要な性能パラメータであり、ブレードのCpは、空気がブレードを流れる時に生成した揚力/抵抗比率(揚抗比)に関連するが、揚抗比は翼型流線形を構成する形状によって決定され、そのためブレードのCp性能はそれが構成する翼型形状によって決定される。ブレードのCpを増加させることは高性能風力発電技術のうち最も根本的な技術である。   According to the applicant, the wind energy utilization rate of the blade (denoted as Cp, also referred to as wind energy utilization efficiency) is its most important performance parameter, which is generated when air flows through the blade. Although related to the lift / resistance ratio (lift-drag ratio), the lift-drag ratio is determined by the shape of the airfoil streamline, so the Cp performance of the blade is determined by the shape of the airfoil it constitutes. Increasing the blade Cp is the most fundamental of the high performance wind power technologies.

現在、市場で見られる揚力型風力発電製品のブレードはいずれも単ブレードで構成され、単翼ブレードの問題は低風速性能が悪いことであり、推力型(抵抗型とも称される)ブレードの問題はCpが低いことである。風力タービンの低風速性能を向上させることは風力発電コストを低減させる主な要因の1つである。   Currently, the blades of lift-type wind power generation products seen in the market are all composed of single blades, and the problem with single blades is that they have poor low wind speed performance, and there are problems with thrust type (also called resistance type) blades. Is that Cp is low. Improving the low wind speed performance of a wind turbine is one of the main factors that reduce wind power generation costs.

これに鑑みて、従来の風力発電製品のブレードは低風速で性能が悪いという問題に対して、低風速での風力エネルギー利用効率を向上させることができ、価格性能比が高いブレードを提供すると同時に、更に該ブレードの流体動力装置での応用を提供する必要がある。   In view of this, the blades of conventional wind power generation products can improve the efficiency of wind energy utilization at low wind speeds against the problem of poor performance at low wind speeds, and at the same time provide blades with a high price-performance ratio Furthermore, there is a need to provide applications for the blades in fluid power systems.

上記目的は下記技術的解決手段によって実現される。   The above object is achieved by the following technical solutions.

外部輪郭が第一翼型を呈する流線形断面を有する主翼部材を備える低速流体を効率的に利用するブレードであって、前記ブレードは更に先端翼部材を備え、前記先端翼部材がシート状であり、先端翼部材の断面は片側が凸面で他側が凹面であるアーチ型であり、前記先端翼部材が主翼部材前縁点の斜め上側に設置され、先端翼部材の凹面が主翼部材に向かっており、先端翼部材と主翼部材との間に第一通気空間を有する。   A blade that efficiently uses a low-speed fluid including a main wing member having a streamlined cross section with an outer contour exhibiting a first airfoil, the blade further including a tip wing member, and the tip wing member is in a sheet form The cross section of the tip wing member is an arch type with a convex surface on one side and a concave surface on the other side, the tip wing member is installed obliquely above the leading edge of the main wing member, and the concave surface of the tip wing member faces the main wing member. The first ventilation space is provided between the tip wing member and the main wing member.

一実施例において、前記先端翼部材の凸面、主翼部材の上輪郭の一部、後縁点及び下輪郭で取り囲んでなる外部輪郭が第二翼型を呈し、前記第二翼型の前縁点が先端翼部材の凸面輪郭に位置する。   In one embodiment, a convex surface of the tip wing member, a part of the upper contour of the main wing member, a rear edge point and an outer contour surrounded by a lower contour exhibit a second airfoil, and the front edge point of the second airfoil Is located at the convex contour of the tip wing member.

一実施例において、前記先端翼部材の主翼部材下輪郭寄り一端と主翼部材との間の隙間が前記第一通気空間の吸気口であり、前記先端翼部材の主翼部材上輪郭寄り一端と主翼部材との間の隙間が前記第一通気空間の排気口であり、前記第一通気空間の吸気口の幅が排気口の幅より大きい。   In one embodiment, a gap between one end of the tip wing member near the main wing member lower contour and the main wing member is an inlet of the first ventilation space, and one end of the tip wing member near the main wing member upper contour and the main wing member Is the exhaust port of the first ventilation space, and the width of the intake port of the first ventilation space is larger than the width of the exhaust port.

一実施例において、前記第一通気空間の排気口の排気方向が主翼部材上輪郭に対応する位置の接線方向に沿っている。   In one embodiment, the exhaust direction of the exhaust port of the first ventilation space is along the tangential direction of the position corresponding to the main wing member upper contour.

一実施例において、前記主翼部材は少なくとも1つの中央翼部材及び1つの末端翼部材を備え、前記中央翼部材が先端翼部材と末端翼部材との間に位置し、隣接する前記中央翼部材の間及びそれと末端翼部材との間にそれぞれ第二翼型上輪郭と下輪郭とを連通する第二通気空間が設置され、前記第二通気空間の第二翼型下輪郭寄り開口部が第二通気空間の吸気口であり、前記第二通気空間の第二翼型上輪郭寄り開口部が第二通気空間の排気口であり、前記第二通気空間の吸気口の幅が排気口の幅より大きい。   In one embodiment, the main wing member comprises at least one central wing member and one end wing member, the central wing member being located between the tip wing member and the end wing member, and adjacent to the central wing member. A second ventilation space that communicates the second airfoil upper contour and the lower contour, respectively, and an opening near the second airfoil lower contour of the second airflow space. The air inlet of the second air space is an air outlet of the second airfoil, and the width of the air inlet of the second air space is larger than the width of the air outlet. large.

一実施例において、前記第二通気空間の排気口の排気方向が隣接する中央翼部材又は末端翼部材上輪郭に対応する位置の接線方向に沿っている。   In one embodiment, the exhaust direction of the exhaust port of the second ventilation space is along the tangential direction of the position corresponding to the upper contour of the adjacent central blade member or terminal blade member.

一実施例において、少なくとも1つの前記中央翼部材がシート状部材を有し、少なくとも一部のシート状部材が第二翼型の上輪郭に沿って設置される。   In one embodiment, at least one of the central wing members has a sheet-like member, and at least some of the sheet-like members are installed along the upper contour of the second airfoil.

一実施例において、前記中央翼部材は第一シート状部材を備え、前記第一シート状部材の断面は片側が凸面で他側が凹面であるアーチ型であり、前記第一シート状部材のアーチ型凸面が先端翼部材に接近し、第一シート状部材の一端が第二翼型の下輪郭に接近し、他端が第二翼型の上輪郭に位置する。   In one embodiment, the central wing member includes a first sheet-like member, and the cross-section of the first sheet-like member is an arch shape having a convex surface on one side and a concave surface on the other side, and an arch shape of the first sheet-shaped member. The convex surface approaches the tip wing member, one end of the first sheet-like member approaches the lower contour of the second wing shape, and the other end is positioned on the upper contour of the second wing shape.

一実施例において、前記中央翼部材は更に第二シート状部材を備え、前記第二シート状部材の一端が第一シート状部材の第二翼型下輪郭寄り一端に接続され、第二シート状部材は第二翼型の下輪郭に沿って設置される下部を含む。   In one embodiment, the central wing member further includes a second sheet-like member, and one end of the second sheet-like member is connected to one end of the first sheet-like member near the second wing-shaped lower contour, The member includes a lower portion disposed along the lower profile of the second airfoil.

一実施例において、前記第二シート状部材の下部が先端翼部材に向かって延在し、前記中央翼部材が少なくとも2つあり、少なくとも2つの前記中央翼部材が順に先端翼部材と末端翼部材との間に配列され、前記第二シート状部材が末端翼部材寄り中央翼部材における第一シート状部材に接続される。   In one embodiment, a lower portion of the second sheet-like member extends toward the tip wing member, and there are at least two central wing members, and at least two of the central wing members are a tip wing member and a terminal wing member in order. The second sheet-like member is connected to the first sheet-like member in the central wing member closer to the terminal wing member.

一実施例において、前記第二シート状部材の下部が末端翼部材に向かって延在する。   In one embodiment, the lower portion of the second sheet-like member extends toward the end wing member.

一実施例において、前記第一シート状部材及びそれに接続される第二シート状部材が一体成形されて、第一シート状部材と第二シート状部材との交差部が円滑に移行する。   In one Example, the said 1st sheet-like member and the 2nd sheet-like member connected to it are integrally molded, and the cross | intersection part of a 1st sheet-like member and a 2nd sheet-like member transfers smoothly.

一実施例において、前記第二シート状部材は更に下部の一端に接続される中央部を含み、前記中央部が該第二シート状部材に接続される第一シート状部材に向かって曲げられる。   In one embodiment, the second sheet-like member further includes a central portion connected to one end of the lower portion, and the central portion is bent toward the first sheet-like member connected to the second sheet-like member.

一実施例において、前記第二シート状部材の下部と中央部との間の曲げ角度が鈍角である。   In one Example, the bending angle between the lower part and center part of said 2nd sheet-like member is an obtuse angle.

一実施例において、前記第二シート状部材は更に中央部の一端に接続される上部を含み、前記上部の他端が第一シート状部材の凹面に接続又は貼合される。   In one embodiment, the second sheet-like member further includes an upper portion connected to one end of the central portion, and the other end of the upper portion is connected or bonded to the concave surface of the first sheet-like member.

一実施例において、第二シート状部材の中央部と第一シート状部材の凹面との間に第一接続部材が設置される。   In one Example, a 1st connection member is installed between the center part of a 2nd sheet-like member, and the concave surface of a 1st sheet-like member.

一実施例において、前記第二シート状部材の中央部及び上部の断面が1つの連続的なアーチ型であり、第二シート状部材の中央部及び上部のアーチ型凸面が第一シート状部材の凹面に向かっている。   In one embodiment, the central and upper cross-sections of the second sheet-like member are one continuous arch shape, and the central and upper arch-shaped convex surfaces of the second sheet-like member are the first sheet-like member. Towards the concave surface.

一実施例において、前記第二シート状部材の下部が第二接続部材によって第一シート状部材に接続され、前記第二接続部材及び第二シート状部材と第一シート状部材との接続部が円滑に移行する。   In one embodiment, the lower part of the second sheet-like member is connected to the first sheet-like member by a second connecting member, and the connection portion between the second connecting member and the second sheet-like member and the first sheet-like member is Transition smoothly.

一実施例において、前記第一シート状部材と第二シート状部材との下部接続部が円滑に移行し、前記第一シート状部材と第二シート状部材との下部接続部の内側に第一補強材が設置される。   In one embodiment, the lower connecting portion between the first sheet-like member and the second sheet-like member smoothly transitions, and the first inside the lower connecting portion between the first sheet-like member and the second sheet-like member. Reinforcing material is installed.

一実施例において、前記第一シート状部材及びそれに接続される第二シート状部材が一体成形される。   In one embodiment, the first sheet-like member and the second sheet-like member connected thereto are integrally formed.

一実施例において、前記第一シート状部材が第二シート状部材に接続されることで密閉されたキャビティを形成し、前記密閉されたキャビティ内に充填体が設置される。   In one embodiment, the first sheet-like member is connected to the second sheet-like member to form a sealed cavity, and a filler is installed in the sealed cavity.

一実施例において、前記第一シート状部材、第二シート状部材及び充填体が一体成形されることで中実構造の中央翼部材を形成する。   In one embodiment, the first sheet-shaped member, the second sheet-shaped member, and the filler are integrally formed to form a central wing member having a solid structure.

一実施例において、前記中央翼部材は更に第三シート状部材を備え、前記第三シート状部材が第一シート状部材の凹面と末端翼部材との間に位置し、第三シート状部材は下部及び上部を含み、前記第三シート状部材の下部が第二翼型の下輪郭に沿って設置され、前記第三シート状部材の上部が下部の末端翼部材寄り一端に接続されて、第一シート状部材に向かって曲げられる。   In one embodiment, the central wing member further comprises a third sheet-like member, the third sheet-like member is located between the concave surface of the first sheet-like member and the terminal wing member, and the third sheet-like member is Including a lower part and an upper part, the lower part of the third sheet-like member is installed along the lower contour of the second airfoil, and the upper part of the third sheet-like member is connected to one end near the lower end wing member, It is bent toward one sheet-like member.

一実施例において、前記第三シート状部材の下部及び上部が一体成形されて、下部と上部との交差部が円滑に移行する。   In one embodiment, the lower part and the upper part of the third sheet-like member are integrally formed, and the intersection between the lower part and the upper part smoothly transitions.

一実施例において、前記中央翼部材は中実翼部材を備え、前記中実翼部材の断面が先端翼部材に接近する凸面、末端翼部材に接近する凹面及び第二翼型下輪郭に沿って設置される下側面を有し、前記下側面がそれぞれ中実翼部材の凸面及び凹面の下端に接続され、前記中実翼部材の凸面が凹面の上端に接続され、中実翼部材の凸面の少なくとも一部が第二翼型の上輪郭に沿って設置される。   In one embodiment, the central wing member comprises a solid wing member, and the cross section of the solid wing member is along a convex surface approaching the tip wing member, a concave surface approaching the end wing member, and a second airfoil lower profile. A lower side surface to be installed, the lower side surfaces are respectively connected to the convex surface of the solid wing member and the lower end of the concave surface, the convex surface of the solid wing member is connected to the upper end of the concave surface, the convex surface of the solid wing member At least a portion is installed along the upper profile of the second airfoil.

一実施例において、前記中実翼部材の下側面及び凸面と凹面との接続部が円滑に移行する。   In one embodiment, the lower side surface of the solid wing member and the connecting portion between the convex surface and the concave surface smoothly transition.

一実施例において、前記末端翼部材が流線形断面を有し、前記断面の外部輪郭が第三翼型を呈し、前記第三翼型の下輪郭の少なくとも一部が第二翼型の下輪郭に沿って設置され、前記第三翼型の上輪郭の少なくとも一部が第二翼型の上輪郭に沿って設置され、前記第三翼型の後縁点が第二翼型の後縁点と重なる。 In one embodiment, the end wing member has a streamlined cross section, the outer contour of the cross section exhibits a third airfoil, and at least a portion of the lower contour of the third airfoil is a lower contour of the second airfoil And at least part of the upper profile of the third airfoil is installed along the upper profile of the second airfoil, and the trailing edge of the third airfoil is the trailing edge of the second airfoil And overlap.

一実施例において、前記末端翼部材が中実構造である。   In one embodiment, the end wing member has a solid structure.

一実施例において、前記末端翼部材はその上輪郭に沿って設置される第四シート状部材及びその下輪郭に沿って設置される第五シート状部材を備え、前記第四シート状部材の両端がそれぞれ第五シート状部材の両端に接続される。   In one embodiment, the end wing member includes a fourth sheet-like member installed along an upper contour thereof and a fifth sheet-like member installed along a lower contour thereof, and both ends of the fourth sheet-like member. Are respectively connected to both ends of the fifth sheet-like member.

一実施例において、前記第四シート状部材の両端がそれぞれ第三接続部材及び第四接続部材によって第五シート状部材の両端に接続される。   In one embodiment, both ends of the fourth sheet-like member are connected to both ends of the fifth sheet-like member by a third connecting member and a fourth connecting member, respectively.

一実施例において、前記第四シート状部材と第五シート状部材との間に少なくとも1つの第二補強材が設置される。   In one embodiment, at least one second reinforcing member is installed between the fourth sheet-like member and the fifth sheet-like member.

一実施例において、前記第四シート状部材及び第五シート状部材が一体成形される。   In one embodiment, the fourth sheet-like member and the fifth sheet-like member are integrally formed.

一実施例において、前記第五シート状部材の先端翼部材寄り一端に延在部が接続され、前記延在部が第二翼型の下輪郭に沿って設置される。   In one embodiment, an extension portion is connected to one end of the fifth sheet-like member near the tip wing member, and the extension portion is installed along the lower contour of the second airfoil.

一実施例において、前記第四シート状部材の先端翼部材寄り一端に前記延在部に貼合される貼合部が接続される。   In one Example, the bonding part bonded to the said extension part is connected to the front-end | tip wing member near one end of the said 4th sheet-like member.

一実施例において、前記貼合部及び第四シート状部材が一体成形される。   In one Example, the said bonding part and a 4th sheet-like member are integrally molded.

一実施例において、前記延在部の先端翼部材寄り一端に第二翼型の上輪郭に向かって曲げられる曲げ部が接続される。   In one embodiment, a bent portion that is bent toward the upper contour of the second airfoil is connected to one end of the extending portion closer to the tip wing member.

一実施例において、前記曲げ部、延在部及び第五シート状部材が一体成形される。   In one embodiment, the bent portion, the extending portion, and the fifth sheet-like member are integrally formed.

一実施例において、前記第四シート状部材及び第五シート状部材が一体成形される。   In one embodiment, the fourth sheet-like member and the fifth sheet-like member are integrally formed.

流線形断面を有し、前記断面が前縁点、後縁点、並びに前縁点及び後縁点を接続する上輪郭及び下輪郭で取り囲まれてなり、前記ブレード上外縁輪郭面がブレードの吸引面であり、前記上輪郭が吸引面と断面との境界線であり、前記ブレード下外縁輪郭面がブレードの圧力面であり、前記下輪郭が圧力面と断面との境界線であり、該ブレードは一組の翼部材で構成され、隣接する翼部材の間に通気空間を保持する本発明に係る低速流体を効率的に利用するブレードであって、前記翼部材は1つの先端翼部材及び1つの末端翼部材を備え、又は1つの先端翼部材、少なくとも1つの中央翼部材及び1つの末端翼部材を備え、前記先端翼部材が前縁点に接近して、前縁点の斜め上側に位置し、前記末端翼部材が後縁点に接近し、前記中央翼部材が先端翼部材と末端翼部材との間に位置し、前記先端翼部材は片側が凸面で他側が凹面であるアーチ型シート状を呈し、前記先端翼部材の凸面が後縁点から離れ、前記ブレード断面の上輪郭は先端翼部材の凸面、及び末端翼部材の上部又は上部の一部で共同構成され、又は先端翼部材の凸面、並びに中央翼部材及び末端翼部材の上部又は上部の一部で共同構成され、前記ブレード断面の下輪郭は末端翼部材の下部又は下部の一部で構成され、又は中央翼部材及び末端翼部材下部又は下部の一部で共同構成される。   The blade has a streamlined cross section, and the cross section is surrounded by a leading edge point, a trailing edge point, and an upper contour and a lower contour connecting the leading edge point and the trailing edge point, and the blade upper outer edge contour surface is a suction surface of the blade The upper contour is a boundary line between the suction surface and the cross section, the blade lower outer edge contour surface is a pressure surface of the blade, and the lower contour is a boundary line between the pressure surface and the cross section. Is a blade which is composed of a pair of wing members and efficiently utilizes a low-speed fluid according to the present invention which holds a ventilation space between adjacent wing members, and the wing member includes one tip wing member and one wing member. One end wing member, or one tip wing member, at least one central wing member and one end wing member, the tip wing member approaching the leading edge point and located diagonally above the leading edge point The end wing member approaches the trailing edge, and the central wing member Located between the end wing member and the end wing member, the tip wing member has an arched sheet shape having a convex surface on one side and a concave surface on the other side, and the convex surface of the tip wing member is separated from a trailing edge point, and the blade The upper profile of the cross-section is co-configured with the convex surface of the tip wing member and the top or part of the top wing member, or with the convex surface of the tip wing member and the top or part of the top wing member and the top wing member. Co-configured, the lower profile of the blade cross-section is comprised of a lower or lower portion of the end wing member, or is co-configured of a central wing member and a lower or lower portion of the end wing member.

本発明は更に上記いずれか一項に記載の低速流体を効率的に利用するブレードの垂直軸風力タービンブレード、潮汐流を利用して発電する垂直軸水力タービンブレード、水平軸風力タービンブレード、水車ブレード、蒸気タービンブレード又はプロペラブレードとしての応用を提供する。   The present invention further relates to a vertical axis wind turbine blade of a blade that efficiently uses the low-speed fluid according to any one of the above, a vertical axis hydro turbine blade that generates power using a tidal current, a horizontal axis wind turbine blade, and a turbine blade Provide application as a steam turbine blade or propeller blade.

本発明の有益な効果は以下のとおりである。   The beneficial effects of the present invention are as follows.

本発明はブレードの翼部材構造を改良することにより、本発明におけるブレードのCp値を平均風速2−13m/s条件下で単翼ブレードより大幅に大きくして、同じ外部輪郭の多翼コレクタブレード以上にし、ブレード性能を確保でき、シート状部材で元のブレードを代替し、元のブレード翼型の成形をシート状部材の成形に変換することができ、このようにして製造金型を分散化し、金型の寸法、加工難度及びコストを低減させるだけでなく、更にロール成形、プレス成形、押し出し等の効率的成形製造プロセスを応用することもでき、それによりブレードの製造コストを著しく低減させ、具体的に20−50%低減させることができる(単一装置の容量が大きければ大きいほど低減幅が大きくなる)。さらに、本発明におけるブレードを別々に製造することができ、それにより風力タービン配置現場でブレードを組み立てることが可能となり、大中型ブレードの輸送コストを大幅に低減させる。   The present invention improves the blade member structure of the blade so that the Cp value of the blade in the present invention is significantly larger than that of a single blade under the condition of an average wind speed of 2-13 m / s, so As described above, blade performance can be ensured, the original blade can be replaced with a sheet-like member, and the original blade airfoil molding can be converted into the sheet-like member molding, thus dispersing the production mold In addition to reducing mold dimensions, processing difficulty and cost, it is also possible to apply efficient molding manufacturing processes such as roll molding, press molding, extrusion, etc., thereby significantly reducing blade manufacturing costs, Specifically, it can be reduced by 20-50% (the larger the capacity of a single device, the larger the reduction width). Furthermore, the blades in the present invention can be manufactured separately, which allows the blades to be assembled at the wind turbine installation site, greatly reducing the transportation costs of large and medium blades.

本発明における低速流体を効率的に利用するブレードの一組目の実施例の構造模式図である。It is a structural schematic diagram of the 1st Example of the braid | blade which utilizes the low-speed fluid efficiently in this invention. 図2は本発明における低速流体を効率的に利用するブレードの二組目の実施例の構造模式図である。FIG. 2 is a structural schematic diagram of a second embodiment of a blade that efficiently utilizes a low-speed fluid in the present invention. 本発明における低速流体を効率的に利用するブレードの三組目の実施例の構造模式図である。It is a structural schematic diagram of the Example of the 3rd set of the braid | blade which utilizes the low speed fluid efficiently in this invention. 図4は本発明における低速流体を効率的に利用するブレードの四組目の実施例の構造模式図である。FIG. 4 is a schematic view of the structure of the fourth embodiment of the blade for efficiently using the low-speed fluid in the present invention. 図5は本発明における低速流体を効率的に利用するブレードの五組目の実施例の構造模式図である。FIG. 5 is a structural schematic diagram of the fifth embodiment of the blade for efficiently using the low-speed fluid in the present invention. 本発明における低速流体を効率的に利用するブレードの六組目の実施例の構造模式図である。It is a structural schematic diagram of the 6th Example of the braid | blade which utilizes the low-speed fluid efficiently in this invention. 本発明における低速流体を効率的に利用するブレードの七組目の実施例の構造模式図である。It is a structure schematic diagram of the Example of the 7th set of the braid | blade which utilizes the low speed fluid efficiently in this invention. 本発明における低速流体を効率的に利用するブレードの八組目の実施例の構造模式図である。It is a structural schematic diagram of the 8th Example of the braid | blade which utilizes the low speed fluid efficiently in this invention. 図9は本発明における低速流体を効率的に利用するブレードの九組目の実施例の構造模式図である。FIG. 9 is a structural schematic diagram of a ninth embodiment of a blade that efficiently uses a low-speed fluid in the present invention. 本発明における低速流体を効率的に利用するブレードの十組目の実施例の構造模式図である。It is a structure schematic diagram of the 10th Example of the braid | blade which utilizes the low speed fluid efficiently in this invention. 図11は本発明における低速流体を効率的に利用するブレードの十二組目の実施例の構造模式図である。FIG. 11 is a structural schematic diagram of the twelfth embodiment of the blade that efficiently uses the low-speed fluid in the present invention. 図12は本発明における低速流体を効率的に利用するブレード断面における外部輪郭包絡線、吸引面Sup、圧力面Slowの模式図である。FIG. 12 is a schematic diagram of an outer contour envelope, a suction surface S up , and a pressure surface S low in a blade cross section that efficiently uses a low-speed fluid in the present invention. 図13は本発明における低速流体を効率的に利用するブレード断面における第一通気空間及び第二通気空間の模式図である。FIG. 13 is a schematic view of a first ventilation space and a second ventilation space in a blade cross section that efficiently uses a low-speed fluid in the present invention. 図14は本発明における低速流体を効率的に利用するブレードの4種の異なる構造のブレード断面における外部輪郭包絡線、吸引面Sup、圧力面Slowの模式図である。FIG. 14 is a schematic diagram of an outer contour envelope, a suction surface S up , and a pressure surface S low in a blade cross section of four different structures of a blade that efficiently uses a low-speed fluid in the present invention. 図3aに示す実施例におけるブレード断面においてX、Y翼型を基準として設計したブレードの外部輪郭の模式図である。FIG. 3B is a schematic diagram of the outer contour of the blade designed with reference to the X and Y airfoils in the blade cross section in the embodiment shown in FIG. 本発明における低速流体を効率的に利用するブレードの4つの実施例の立体模式図である。It is a three-dimensional schematic diagram of the four Example of the braid | blade which utilizes the low speed fluid efficiently in this invention. 図17は本発明における低速流体を効率的に利用するブレードの4種の応用方式の模式図である。FIG. 17 is a schematic diagram of four types of application methods of a blade that efficiently uses a low-speed fluid in the present invention. 図18は本発明の3種の実施例におけるブレード、1種の三翼コレクタブレード及び2種の単翼型ブレードの電力試験図である。FIG. 18 is a power test diagram of a blade, one three-wing collector blade, and two single blade blades in three embodiments of the present invention. 図19は図18に示す6種のブレードの電力比較模式図である。FIG. 19 is a power comparison schematic diagram of the six blades shown in FIG.

本発明の目的、技術的解決手段及び利点をより明らかにするために、以下、図面を参照しながら実施例によって本発明を更に詳しく説明する。理解すべきなのは、ここで説明された具体的な実施例は本発明を解釈するためのものであり、本発明を制限するためのものではない。   In order to make the objects, technical solutions and advantages of the present invention clearer, the present invention will be described in more detail with reference to the drawings. It should be understood that the specific embodiments described herein are for the purpose of interpreting the invention and are not intended to limit the invention.

具体的な実施形態を容易に説明するために、まず本発明におけるブレード番号の意味を説明し、それにより図示及びブレードを説明する複数の関連専門用語及びパラメータが本発明におけるブレードにおいてどのように体現及び計量するかを理解する。本発明におけるブレードは一般式FW(n+m)nmで示され、ここで、nがシート状を呈する翼部材数(アーチ型シート状を呈する先端翼部材と、アーチ型構造、二重片折角形構造、“S”形と類似する構造、“C”形と類似する構造を用いた中央翼部材と、を備える)を示し、mが曲面体又は中実ブロック状を呈する翼部材数(“σ”形と類似する構造、翼型と類似する構造を用いた中央翼部材と、翼型構造、“鴨嘴”構造、“浮き上がり鴨嘴”構造を用いた末端翼部材と、中実ブロック状を呈する中央/末端翼部材と、を備える)を示し、(n+m)がnとm値との合計である。なお、ブレードの外部輪郭に具体的な基準翼型があると示す場合、上記一般式の後に参照翼型を示すアルファベットを追加し、例えばFW(n+m)nmLは基準翼型がLF系翼型であると示し、FW(n+m)nmNは基準翼型がNACA系翼型であると示す。   In order to easily describe a specific embodiment, the meaning of the blade number in the present invention is first described, and how the related technical terms and parameters describing the blade are illustrated in the present invention. And understand what to weigh. The blade in the present invention is represented by the general formula FW (n + m) nm, where n is the number of wing members having a sheet shape (a tip wing member having an arched sheet shape, an arched structure, a double-folded square structure) , A central wing member using a structure similar to the “S” shape and a structure similar to the “C” shape), and m is the number of wing members (“σ”) having a curved or solid block shape. A central wing member using a structure similar to the shape, a structure similar to the airfoil, a terminal wing member using an airfoil structure, a “duck frog” structure, and a “flooded duck frog” structure, and a center / And (n + m) is the sum of n and m values. In addition, when it is shown that there is a specific reference airfoil in the outer contour of the blade, an alphabet indicating the reference airfoil is added after the above general formula. For example, FW (n + m) nmL is the reference airfoil is an LF airfoil FW (n + m) nmN indicates that the reference airfoil is a NACA airfoil.

本発明におけるブレードにおいて、いくつかのブレードの翼部材は構造的に論理的再帰関係があり、このようなブレードを3種に分けることができ、各種の特徴に対してその表示式は各種の特徴を示す必要があり、つまり、FW(n+m)nmにおいて、一種のブレードのm又はnが定数である時、(n+m)数からこの定数を引くと構造的に論理再帰がある部材の数を示すことができるが、具体的な値でn又はmを示す必要がない場合、1つのアルファベットでn又はmを原位置で代替して該種の部材は構造的に論理再帰があることを示すことができる。   In the blade according to the present invention, the blade members of some blades have a logical recursive relationship, and such blades can be divided into three types, and the display formulas for various features are various features. In other words, when m or n of a kind of blade is a constant in FW (n + m) nm, subtracting this constant from the (n + m) number indicates the number of members that have structural logical recursion. If there is no need to indicate n or m in a specific value, the n or m can be replaced in place with a single alphabet to indicate that such a member is structurally logically recursive Can do.

具体的には、FW(1+m)1Bで示すブレードは1つのシート状翼部材C1及びm個の曲面体翼部材Bで構成されて、中央翼部材が“σ”形と類似する構造の曲面体Bを用いて、構造的に論理再帰があり、図6a、図6b、図6d、図6h、図6l、図8aに示すFW31B、図5a、図6e、図6f、図6g、図6i、図6j、図6k、図6m、図6n、図6o、図8b、図8c、図8dに順に示すFW41B、FW51B及びFW61Bはこのようなブレードの実施例である。   Specifically, the blade indicated by FW (1 + m) 1B is composed of one sheet-like wing member C1 and m curved wing members B, and the central wing member has a structure similar to the “σ” shape. B is structurally logical recursion, and FW31B shown in FIGS. 6a, 6b, 6d, 6h, 6l, and 8a, FIG. 5a, FIG. 6e, FIG. 6f, FIG. 6g, FIG. FW41B, FW51B, and FW61B, which are sequentially shown in FIGS. 6j, 6k, 6m, 6n, 6o, 8b, 8c, and 8d, are examples of such blades.

FW(n+1)C1で示すブレードはn個のシート状翼部材C及び1つの曲面体翼部材Bで構成されて、中央翼部材が“C”形と類似する構造のシート状翼部材Cを用いて、構造的に論理再帰があり、図4aに示すFW4C1はこのようなブレードの実施例である。   The blade indicated by FW (n + 1) C1 is composed of n sheet-like blade members C and one curved blade member B, and the central blade member uses a sheet-like blade member C having a structure similar to the “C” shape. Thus, there is logical recursion structurally, and FW4C1 shown in FIG. 4a is an example of such a blade.

FW(n+1)S1で示すブレードはn個のシート状翼部材C及び1つの曲面体翼部材Bで構成されて、中央翼部材が“S”形と類似する構造のシート状翼部材Cを用いて、構造的に論理再帰があり、図3a及び図3bで順に示すFW4S1及びFW5S1はこのようなブレードの実施例である。   The blade indicated by FW (n + 1) S1 is composed of n sheet-like wing members C and one curved wing member B, and the central wing member uses a sheet-like wing member C having a structure similar to the “S” shape. Thus, there is logical recursion structurally, and FW4S1 and FW5S1 shown in order in FIGS. 3a and 3b are examples of such blades.

前記n及びmが対応して示す部材数によってブレードの応用容量を分類する場合、1≦n≦3、1≦m≦3のブレードが超小型、小型風力タービンに適用し、1≦n≦8、1≦m≦8のブレードが小型、中型風力タービンに適用し、1≦n≦18、1≦m≦18のブレードが中型、大型風力タービンに適用し、1≦n≦30、1≦m≦30のブレードが大型風力タービンに適用する。   When the applied capacity of the blade is classified according to the number of members corresponding to n and m, the blade of 1 ≦ n ≦ 3 and 1 ≦ m ≦ 3 is applied to a micro wind turbine and 1 ≦ n ≦ 8. 1 ≦ m ≦ 8 blades applied to small and medium wind turbines, 1 ≦ n ≦ 18, 1 ≦ m ≦ 18 blades applied to medium and large wind turbines, 1 ≦ n ≦ 30, 1 ≦ m ≦ 30 blades apply to large wind turbines.

図12に示す点線はブレードの外部輪郭の包絡線であり、それはブレードの前縁点a及び後縁点bを境界としてこのようなブレードの吸引面(上表面)Sup及び圧力面(下表面)Slowを形成して、図の上下部分に別々に対応して示し、aとbとの間の距離ξがブレードの翼弦の長さ(弦長と略称される)を示す。 Dotted lines shown in FIG. 12 is a envelope of the blade outer contour, which suction surface of such blade leading edge points a and Koenten b of the blade as a boundary (upper surface) S Stay up-and pressure surface (the lower surface ) S low is formed and shown separately corresponding to the upper and lower parts of the figure, and the distance ξ between a and b indicates the length of the blade chord (abbreviated as chord length).

図14には本発明におけるFW211、FW4S1、FW312、FW41Bブレードが前縁点a及び後縁点bを境界として点線で示す吸引面Sup及び圧力面Slowを形成する。 In FIG. 14, the FW 211, FW 4 S 1, FW 312, and FW 41 B blades in the present invention form a suction surface S up and a pressure surface S low indicated by dotted lines with the front edge point a and the rear edge point b as boundaries.

一組目の実施例   First set of examples

図1a−図1cに示すように、本発明における低速流体を効率的に利用するブレードは、主翼部材A2、D2、K2を備え、主翼部材が流線形断面を有し、断面の外部輪郭が第一翼型を呈し、ブレードは更に先端翼部材C1を備え、先端翼部材がシート状であり、先端翼部材の断面は片側が凸面で他側が凹面であるアーチ型であり、先端翼部材が主翼部材前縁点の斜め上側に設置され、先端翼部材の凹面が主翼部材に向かっており、先端翼部材と主翼部材との間に第一通気空間T1を有する。   As shown in FIGS. 1a to 1c, a blade that efficiently uses a low-speed fluid in the present invention includes main wing members A2, D2, and K2, the main wing member has a streamline cross section, and the outer contour of the cross section is the first. The blade is further provided with a tip wing member C1, the tip wing member is a sheet, the tip wing member has an arch shape with a convex surface on one side and a concave surface on the other side. It is installed diagonally above the front edge of the member, the concave surface of the tip wing member faces the main wing member, and a first ventilation space T1 is provided between the tip wing member and the main wing member.

先端翼部材の凸面、主翼部材の上輪郭の一部、後縁点及び下輪郭で取り囲んでなる外部輪郭が第二翼型を呈し、第二翼型の前縁点が先端翼部材の凸面輪郭に位置する。第二翼型上輪郭で形成された輪郭面がブレードの吸引面であり、下輪郭で形成された輪郭面がブレードの圧力面である。   The convex surface of the tip wing member, part of the upper contour of the main wing member, the outer contour surrounded by the trailing edge point and the lower contour presents the second airfoil, and the leading edge point of the second airfoil is the convex contour of the leading blade member Located in. The contour surface formed by the upper profile of the second airfoil is the suction surface of the blade, and the contour surface formed by the lower contour is the pressure surface of the blade.

更に、先端翼部材の主翼部材下輪郭寄り一端と主翼部材との間の隙間が第一通気空間の吸気口であり、先端翼部材の主翼部材上輪郭寄り一端と主翼部材との間の隙間が第一通気空間の排気口であり、第一通気空間の吸気口の幅が排気口の幅より大きい。   Furthermore, the gap between the main wing member lower end of the tip wing member and the main wing member is the inlet of the first ventilation space, and the gap between the main wing member upper end of the tip wing member and the main wing member is The exhaust port of the first ventilation space, and the width of the intake port of the first ventilation space is larger than the width of the exhaust port.

二組目の実施例   Second set of examples

本発明におけるブレードがより大きな容量の流体動力装置(風力タービン)に応用される時、単翼で形成された主翼部材はニーズを満たすことができず、主翼部材は更に少なくとも1つの中央翼部材及び1つの末端翼部材を備え、中央翼部材が先端翼部材と末端翼部材との間に位置し、隣接する中央翼部材の間及びそれと末端翼部材との間にそれぞれ第二翼型上輪郭と下輪郭とを連通する第二通気空間T2が設置され、第二通気空間の第二翼型下輪郭寄り開口部が第二通気空間の吸気口であり、第二通気空間の第二翼型上輪郭寄り開口部が第二通気空間の排気口である。   When the blade in the present invention is applied to a larger capacity fluid power plant (wind turbine), the main wing member formed of a single wing cannot meet the needs, and the wing member further includes at least one central wing member and One end wing member, wherein the central wing member is located between the tip wing member and the end wing member, and between the adjacent central wing member and between it and the end wing member, A second ventilation space T2 that communicates with the lower contour is installed, and the opening near the second airfoil lower contour of the second ventilation space is an inlet of the second ventilation space, and the second airfoil on the second airfoil The opening near the contour is an exhaust port of the second ventilation space.

図13に示すように、ブレードの断面において、第一通気空間及び第二通気空間の吸気口がブレードの第二翼型下輪郭の位置側に位置し、排気口がブレードの第二翼型上輪郭の位置側に位置して、吸気口の幅genが排気口の幅gexより大きい。第一通気空間及び第二通気空間の吸引面(第二翼型上輪郭)寄り部分が気流方向に沿って徐々に狭くなる。第一通気空間の排気口の排気方向が主翼部材上輪郭に対応する位置の接線方向に沿っている。第二通気空間の排気口の排気方向が隣接する中央翼部材又は末端翼部材上輪郭に対応する位置の接線方向に沿っている。 As shown in FIG. 13, in the cross section of the blade, the inlets of the first ventilation space and the second ventilation space are located on the position side of the lower profile of the second airfoil of the blade, and the exhaust port is above the second airfoil of the blade. located position side of the edge is greater than the width g ex width g en exhaust port of the inlet. The portions closer to the suction surface (second airfoil upper contour) of the first ventilation space and the second ventilation space are gradually narrowed along the airflow direction. The exhaust direction of the exhaust port of the first ventilation space is along the tangential direction of the position corresponding to the main wing member upper contour. The exhaust direction of the exhaust port of the second ventilation space is along the tangential direction at a position corresponding to the upper contour of the adjacent central blade member or terminal blade member.

好ましくは、少なくとも1つの中央翼部材がシート状部材を有し、少なくとも一部のシート状部材が第二翼型の上輪郭に沿って設置される。   Preferably, at least one central wing member has a sheet-like member, and at least a part of the sheet-like member is installed along the upper contour of the second airfoil.

図2aに示すように、中央翼部材C2は1つの第一シート状部材P1を備え、第一シート状部材の断面は片側が凸面で他側が凹面であるアーチ型であり、第一シート状部材のアーチ型凸面が先端翼部材に接近し、第一シート状部材の一端が第二翼型の下輪郭に接近し、他端が第二翼型の上輪郭に位置する。   As shown in FIG. 2a, the central wing member C2 includes one first sheet-like member P1, and the cross section of the first sheet-like member is an arch type having a convex surface on one side and a concave surface on the other side. The arch-shaped convex surface approaches the tip wing member, one end of the first sheet-like member approaches the lower contour of the second wing shape, and the other end is positioned on the upper contour of the second wing shape.

三組目の実施例   Example of the third set

三組目の実施例は二組目の実施例を基に変形して得られるものであり、図3a及び図3bに示すように、中央翼部材C3、C4は更に少なくとも1つの第二シート状部材を備え、第二シート状部材の一端が第一シート状部材の第二翼型下輪郭寄り一端に接続され、第二シート状部材は第二翼型の下輪郭に沿って設置される下部P2を含む。   The third set of embodiments is obtained by modifying the second set of embodiments. As shown in FIGS. 3a and 3b, the central wing members C3 and C4 are further provided with at least one second sheet shape. A lower portion provided with a member, wherein one end of the second sheet-like member is connected to one end of the first sheet-like member close to the second airfoil lower contour, and the second sheet-like member is installed along the lower contour of the second airfoil Includes P2.

具体的には、第二シート状部材の下部が先端翼部材に向かって延在し、“S”型と類似する中央翼部材を形成し、中央翼部材は少なくとも2つの第一シート状部材を備え、少なくとも2つの第一シート状部材が順に先端翼部材と末端翼部材との間に配列され、第二シート状部材が末端翼部材寄り第一シート状部材に接続される。   Specifically, the lower portion of the second sheet-like member extends toward the tip wing member to form a central wing member similar to the “S” shape, and the central wing member includes at least two first sheet-like members. And at least two first sheet-like members are sequentially arranged between the tip wing member and the end wing member, and the second sheet-like member is connected to the first sheet-like member closer to the end wing member.

四組目の実施例   Example of the fourth set

四組目の実施例は三組目の実施例と異なり、図4aに示すように、第二シート状部材の下部が末端翼部材に向かって延在し、“C”型と類似する中央翼部材を形成する。   The fourth set embodiment differs from the third set embodiment, as shown in FIG. 4a, in which the lower part of the second sheet-like member extends toward the end wing member and is similar to the "C" type central wing. Form a member.

加工しやすくするために、三組目の実施例及び四組目の実施例における第一シート状部材及びそれに接続される第二シート状部材が一体成形されて、第一シート状部材と第二シート状部材との交差部が円滑に移行する。   In order to facilitate processing, the first sheet-like member and the second sheet-like member connected thereto in the third and fourth embodiments are integrally formed, and the first sheet-like member and the second sheet-like member are integrally formed. The intersection with the sheet-like member smoothly transitions.

五組目の実施例   Example of the fifth set

五組目の実施例は四組目の実施例を基に更に変形して得られるものであり、図5に示すように、第二シート状部材は更に下部の一端に接続される中央部P3を含み、中央部が該第二シート状部材に接続される第一シート状部材に向かって曲げられ、第二シート状部材の下部と中央部との間の曲げ角度が鈍角である。   The fifth set embodiment is obtained by further modifying the fourth set embodiment, and as shown in FIG. 5, the second sheet-like member is further connected to the lower end of the central portion P3. The center part is bent toward the first sheet-like member connected to the second sheet-like member, and the bending angle between the lower part and the center part of the second sheet-like member is an obtuse angle.

六組目の実施例   Example of the sixth set

中央翼部材の強度を向上させるために、五組目の実施例を基に変形してから六組目の実施例を得ることができ、図6a〜図6oに示すように、第二シート状部材は更に中央部P3の一端に接続される上部P4を含み、上部の他端が第一シート状部材P1の凹面に接続又は貼合され、“σ”型と類似する中央翼部材を形成する。   In order to improve the strength of the central wing member, the sixth set of embodiments can be obtained after deformation based on the fifth set of embodiments, as shown in FIGS. The member further includes an upper portion P4 connected to one end of the central portion P3, and the other end of the upper portion is connected or bonded to the concave surface of the first sheet-like member P1 to form a central wing member similar to the “σ” type. .

中央翼部材の強度を更に向上させるために、図5及び図6hに示すように、更に第二シート状部材の中央部と第一シート状部材の凹面との間に第一接続部材N9、N11及びN13を設置することができる。   In order to further improve the strength of the central wing member, as shown in FIGS. 5 and 6h, the first connecting members N9, N11 are further provided between the central portion of the second sheet-like member and the concave surface of the first sheet-like member. And N13 can be installed.

好ましくは、図6b及び図6cに示すように、第二シート状部材の下部が第二接続部材L2によって第一シート状部材に接続され、第二接続部材及び第二シート状部材と第一シート状部材との接続部が円滑に移行する。   Preferably, as shown in FIG. 6b and FIG. 6c, the lower part of the second sheet-like member is connected to the first sheet-like member by the second connecting member L2, and the second connecting member, the second sheet-like member, and the first sheet The connecting portion with the member moves smoothly.

別の好適な解決手段として、図5a及び図6dに示すように、第一シート状部材と第二シート状部材との下部接続部が円滑に移行し、第一シート状部材と第二シート状部材との下部接続部の内側に第一補強材N8、N6が設置される。   As another preferable solution, as shown in FIGS. 5a and 6d, the lower connecting portion between the first sheet-like member and the second sheet-like member smoothly transitions, and the first sheet-like member and the second sheet-like member are transferred. The first reinforcing materials N8 and N6 are installed inside the lower connection portion with the member.

七組目の実施例   Seventh example

七組目の実施例は六組目の実施例と類似し、図7a〜図7cに示すように、第二シート状部材の中央部及び上部の断面が1つの連続的なアーチ型であり、第二シート状部材の中央部及び上部のアーチ型凸面が第一シート状部材の凹面に向かっており、翼型と類似する構造の中央翼部材を形成する。   The embodiment of the seventh set is similar to the embodiment of the sixth set, and as shown in FIGS. 7a to 7c, the central and upper cross sections of the second sheet-like member are one continuous arch type, The central and upper arch-shaped convex surfaces of the second sheet-shaped member are directed toward the concave surface of the first sheet-shaped member to form a central wing member having a structure similar to the airfoil.

容易に加工し、加工コストを低減させるために、第一シート状部材及びそれに接続される第二シート状部材を一体加工成形して、中空の中央翼部材を形成することができ、図6h〜図6o及び図7bに示すように、図6h〜図6k及び図7bに示す中央翼部材は押し出し成形方法で製造されてなり、図6l〜図6oに示す中央翼部材は板金プレス圧力成形方法で単一のシート状部材を加工してなる。   In order to process easily and reduce the processing cost, the first sheet-like member and the second sheet-like member connected to the first sheet-like member can be integrally formed to form a hollow central wing member. As shown in FIGS. 6o and 7b, the central wing member shown in FIGS. 6h to 6k and 7b is manufactured by an extrusion molding method, and the central wing member shown in FIGS. 6l to 6o is manufactured by a sheet metal press pressure molding method. A single sheet-like member is processed.

八組目の実施例   Example of the eighth set

八組目の実施例は七組目の実施例と異なり、八組目の実施例における中央翼部材が中実構造を用い、つまり第一シート状部材と第二シート状部材とを接続して形成した密閉されたキャビティ内に充填体が設置される。   The eighth set embodiment differs from the seventh set embodiment in that the central wing member in the eighth set embodiment uses a solid structure, that is, the first sheet-like member and the second sheet-like member are connected. The filler is placed in the formed sealed cavity.

図8a〜8dに示すように、第一シート状部材、第二シート状部材及び充填体が一体成形されることで中実構造の中央翼部材を形成する。   As shown in FIGS. 8a to 8d, the first sheet-shaped member, the second sheet-shaped member, and the filler are integrally formed to form a central wing member having a solid structure.

九組目の実施例   Example of the ninth group

九組目の実施例は二組目の実施例を基に変化してなり、図9に示すように、中央翼部材は更に第三シート状部材C3を備え、第三シート状部材が第一シート状部材C2の凹面と末端翼部材A4との間に位置し、第三シート状部材は下部Q1及び上部Q2を含み、第三シート状部材の下部が第二翼型の下輪郭に沿って設置され、第三シート状部材の上部が下部の末端翼部材寄り一端に接続されて、第一シート状部材に向かって曲げられ、“二重片折角形”構造の中央翼部材を形成する。   The ninth embodiment changes based on the second embodiment. As shown in FIG. 9, the central wing member further includes a third sheet-like member C3, and the third sheet-like member is the first. Located between the concave surface of the sheet-like member C2 and the terminal blade member A4, the third sheet-like member includes a lower part Q1 and an upper part Q2, and the lower part of the third sheet-like member is along the lower contour of the second airfoil. Installed, the upper part of the third sheet-like member is connected to one end near the lower end wing member and bent toward the first sheet-like member to form a central wing member with a “double piece folded” structure.

好ましくは、第三シート状部材の下部及び上部が一体成形されて、下部と上部との交差部が円滑に移行する。   Preferably, the lower part and the upper part of the third sheet-like member are integrally formed so that the intersection between the lower part and the upper part smoothly transitions.

十組目の実施例   Tenth Example

中央翼部材は上記複数組の実施例に開示されたシート状部材以外に、更に少なくとも1つの中実翼部材を備え、図10a〜図10cに示すように、中実翼部材の断面が先端翼部材に接近する凸面、末端翼部材に接近する凹面及び第二翼型下輪郭に沿って設置される下側面を有し、下側面がそれぞれ中実翼部材の凸面及び凹面の下端に接続され、中実翼部材の凸面が凹面の上端に接続され、中実翼部材の凸面の少なくとも一部が第二翼型の上輪郭に沿って設置される。   The central wing member includes at least one solid wing member in addition to the sheet-like members disclosed in the plurality of sets of embodiments, and the cross section of the solid wing member is a tip wing as shown in FIGS. 10a to 10c. A convex surface approaching the member, a concave surface approaching the end wing member, and a lower side surface installed along the second airfoil lower contour, and the lower side surface is connected to the convex surface of the solid wing member and the lower end of the concave surface, respectively. The convex surface of the solid blade member is connected to the upper end of the concave surface, and at least a part of the convex surface of the solid blade member is installed along the upper contour of the second airfoil.

好ましくは、中実翼部材の下側面及び凸面と凹面との接続部が円滑に移行する。   Preferably, the lower flank of the solid wing member and the connecting portion between the convex surface and the concave surface smoothly transition.

第十一組の実施例   Eleventh set of examples

主翼部材における末端翼部材も複数の形式を有し、末端翼部材が流線形断面を有し、断面の外部輪郭が第三翼型を呈し、第三翼型の下輪郭の少なくとも一部が第二翼型の下輪郭に沿って設置され、第三翼型の上輪郭の少なくとも一部が第二翼型の上輪郭に沿って設置され、第三翼型の後縁点が第二翼型の後縁点と重なる。   The end wing member in the main wing member also has a plurality of types, the end wing member has a streamlined cross section, the outer contour of the cross section exhibits a third wing shape, and at least a part of the lower contour of the third wing shape is the first. Installed along the lower profile of the two wings, at least part of the upper profile of the third wing is installed along the upper profile of the second wing, and the trailing edge of the third wing is the second profile Overlapping with the trailing edge point.

図1a、図2a、図6c、図8a〜図8d、図9、図10a〜図10cに示すように、末端翼部材が中実構造である。   As shown in FIGS. 1a, 2a, 6c, 8a to 8d, 9, and 10a to 10c, the end wing member has a solid structure.

図3a、図3b、図4a、図6e〜図6gに示すように、末端翼部材はその上輪郭に沿って設置される第四シート状部材及びその下輪郭に沿って設置される第五シート状部材を備え、第四シート状部材の両端がそれぞれ第五シート状部材の両端に接続される。   As shown in FIGS. 3a, 3b, 4a, and 6e to 6g, the end wing member has a fourth sheet-like member installed along its upper contour and a fifth sheet installed along its lower contour. And both ends of the fourth sheet-like member are respectively connected to both ends of the fifth sheet-like member.

図6bに示すように、第四シート状部材E6の両端がそれぞれ第三接続部材L5及び第四接続部材L8によって第五シート状部材E7の両端に接続される。   As shown in FIG. 6b, both ends of the fourth sheet-like member E6 are connected to both ends of the fifth sheet-like member E7 by the third connecting member L5 and the fourth connecting member L8, respectively.

図6a及び図6hに示すように、末端翼部材の強度を向上させるために、第四シート状部材と第五シート状部材との間に少なくとも1つの第二補強材N4、N5が設置され、図6hに示す末端翼部材における第二補強材N5が複数あり、末端翼部材の前中後部に配置される。   As shown in FIGS. 6a and 6h, in order to improve the strength of the end wing member, at least one second reinforcing material N4, N5 is installed between the fourth sheet-like member and the fifth sheet-like member, There are a plurality of second reinforcing members N5 in the end wing member shown in FIG. 6h, and they are arranged at the front, middle and rear portions of the end wing member.

十二組目の実施例   Twelfth set of examples

十二組目の実施例は第十一組の実施例を基に変化してなり、図11aに示すように、その相違点は第五シート状部材E4の先端翼部材寄り一端に延在部R1が接続され、延在部が第二翼型の下輪郭に沿って設置され、第四シート状部材E3の先端翼部材寄り一端に延在部に貼合される貼合部R2が接続され、“鴨嘴”型と類似する構造を形成することにある。   The twelfth embodiment is changed based on the eleventh embodiment, and as shown in FIG. 11a, the difference is that the fifth sheet-like member E4 extends to one end near the tip wing member. R1 is connected, the extending part is installed along the lower contour of the second wing shape, and the bonding part R2 bonded to the extending part is connected to the end of the fourth sheet-like member E3 closer to the leading wing member. It is to form a structure similar to the “Kamo-an” type.

好ましくは、貼合部及び第四シート状部材が一体成形される。   Preferably, the bonding part and the fourth sheet-like member are integrally formed.

図7a及び図7cに示すように、延在部の先端翼部材寄り一端に第二翼型の上輪郭に向かって曲げられる曲げ部R3が接続され、“浮き上がり鴨嘴”型と類似する構造を形成する。   As shown in FIGS. 7a and 7c, a bent portion R3 that is bent toward the upper contour of the second wing shape is connected to one end of the extending portion near the tip wing member to form a structure similar to the “floating duck” type To do.

図7bに示すように、曲げ部、延在部及び第五シート状部材が一体成形される。   As shown in FIG. 7b, the bent portion, the extended portion, and the fifth sheet-like member are integrally formed.

図1b、図1c、図5a、図6d、図6h〜図6o、図7b、図7cに示すように、第四シート状部材及び第五シート状部材が一体成形され、中央翼部材の加工方法と類似し、末端翼部材は押し出し成形又は板金プレス圧力成形方法で製造されてなってもよい。   As shown in FIGS. 1 b, 1 c, 5 a, 6 d, 6 h to 6 o, 7 b, and 7 c, the fourth sheet member and the fifth sheet member are integrally formed, and the method for processing the central wing member is performed. In the same manner as described above, the end blade member may be manufactured by an extrusion molding or a sheet metal press pressure molding method.

図15a及び図15bに示すように、本発明におけるブレードの第二翼型外部輪郭がそれぞれX翼型基準及びY翼型基準に従って設計してなり、ブレードと翼型との前縁点aが重なるが、両方の後縁点bが重ならず、その理由はブレードの後縁が実際に翼型のように尖っていない(必要がない)。   As shown in FIGS. 15a and 15b, the second airfoil outer contour of the blade in the present invention is designed according to the X airfoil standard and the Y airfoil standard, respectively, and the leading edge point a of the blade and the airfoil overlap. However, both trailing edge points b do not overlap because the trailing edge of the blade is not actually sharp (not necessary) like an airfoil.

図16a〜図16dは順に図3aにおけるFW4S1ブレード、図6fにおけるFW41Bブレード、図6eにおけるFW31Bブレード、図10aにおけるFW312ブレードの三次元模式図であり、本発明におけるブレードは外部フレーム(図示せず)によって先端翼部材、中央翼部材及び末端翼部材を相対的に固定して形成してもよい。   16a to 16d are three-dimensional schematic views of the FW4S1 blade in FIG. 3a, the FW41B blade in FIG. 6f, the FW31B blade in FIG. 6e, and the FW312 blade in FIG. 10a, and the blade in the present invention is an external frame (not shown). The tip wing member, the central wing member, and the end wing member may be relatively fixed.

図17に示すように、本実施例は3ブレード風力タービンを例として、4種の形式で風力タービンに本発明におけるブレードを応用してもよく、3種は垂直軸のH型、Φ型及び渦巻型であり、ブレードの弦長の延在方向が変えず、1種が水平軸であり、ブレードの弦長が風力タービンの半径に沿って外向きに徐々に小さくなり、Oが風力タービンの回転軸線を示す。   As shown in FIG. 17, in this embodiment, a three-blade wind turbine is taken as an example, and the blade according to the present invention may be applied to a wind turbine in four types. It is a spiral type, the extension direction of the chord length of the blade does not change, one type is a horizontal axis, the chord length of the blade gradually decreases outward along the radius of the wind turbine, and O is the wind turbine Indicates the axis of rotation.

その他に、本発明におけるブレードは更に水車ブレード、蒸気タービンブレード又はプロペラブレード、特に潮汐流を利用して発電する垂直軸水力タービンブレードとして使用されてもよい。   In addition, the blade in the present invention may be further used as a turbine blade, a steam turbine blade, or a propeller blade, particularly a vertical axis hydro turbine blade that generates power using a tidal current.

本発明における低速流体を効率的に利用するブレードの技術的効果を検証するために、それぞれ6種のブレードを垂直軸のH型風力タービンに取り付け、電力が風速に従って変化する値を測定して、電力曲線をフィッティングし、各ブレードの曲線図は図18に示され、図19は図18における各曲線図の比較図である。6種のブレードはそれぞれ1種のLF翼型をブレードの外部輪郭基準翼型として設計した3種の本発明におけるFW41BL、FW31BL、FW312Lブレード、1種の三翼コレクタブレードG3d2L、上記4種のブレードの外部輪郭基準翼型としてのLF翼型ブレード、上記LF翼型と同じである翼型パラメータc、x及びtを有するNACA翼型ブレードである。 In order to verify the technical effect of the blades that efficiently use the low-speed fluid in the present invention, each of six types of blades is attached to a vertical axis H-type wind turbine, and the value at which the power changes according to the wind speed is measured. The power curve is fitted, and a curve diagram of each blade is shown in FIG. 18, and FIG. 19 is a comparison diagram of each curve diagram in FIG. The six types of blades are each one of the three types of FW41BL, FW31BL, FW312L blades, one type of three-wing collector blade G3d2L, and the above four types of blades designed with one type of LF airfoil as the blade external contour reference airfoil LF airfoil blade as an outer contour reference airfoil, and a NACA airfoil blade having airfoil parameters c, xc and t which are the same as the LF airfoil.

図18に示す結果から分かるように、本発明におけるFW41BLブレードのカットイン風速Wiが1.5m/sであり、FW31BL、FW312L及びG3d2LブレードのWiが2m/sであるが、LFブレード及びNACAブレードのWiが順に3.5m/s及び4m/sである。   As can be seen from the results shown in FIG. 18, the cut-in wind speed Wi of the FW41BL blade in the present invention is 1.5 m / s, and the Wi of the FW31BL, FW312L and G3d2L blades is 2 m / s, but the LF blade and the NACA blade Wi are 3.5 m / s and 4 m / s in this order.

図19に示す比較結果から分かるように、降順で電力曲線は順にFW41BLブレード、G3d2Lブレード、FW312Lブレード、FW31BLブレード、LFブレード、NACAブレードである。   As can be seen from the comparison result shown in FIG. 19, the power curves are FW41BL blade, G3d2L blade, FW312L blade, FW31BL blade, LF blade, and NACA blade in descending order.

表1にはこの6種のブレードを同じ種類の効率的な風力タービンに取り付ける時に測定した風速Wi−13m/s範囲における風力エネルギー利用率Cpが風速に従って変化する平均値`Cp、カットイン風速Wi及びWi風速時の開始から平衡回転速度になるまでの加速時間Tを示す。   Table 1 shows the average value `Cp, the cut-in wind speed Wi, in which the wind energy utilization rate Cp in the range of wind speed Wi-13 m / s measured according to the wind speed measured when these six blades are mounted on the same type of efficient wind turbine. The acceleration time T from the start of Wi wind speed to the equilibrium rotational speed is shown.

表1、6種のブレードが同じ種類の効率的な風力タービンで測定したCpは風速に従って変化する平均値

Table 1, Cp measured with an efficient wind turbine of the same type with 6 blades, average value varying with wind speed

NACAブレード以外に、他の5種のブレードはいずれも類似する外形又は外部輪郭形状を有し、通気空間を有するブレードの性能がいずれもLFブレードより優れ、それにより通気空間の構造は性能を向上させる主な要因であり、それらの性能の相違は主に通気空間の数及び形状の違いに起因すると説明され、NACAブレードの性能が最も低いことは、飛翔体に対して設計した航空翼型が垂直軸風力タービンに適用しないことを説明する。   In addition to the NACA blade, the other five blades all have similar external shapes or external contours, and the performance of the blade with the ventilation space is superior to that of the LF blade, thereby improving the structure of the ventilation space. It is explained that the difference in the performance is mainly due to the difference in the number and shape of the ventilation spaces, and that the NACA blade has the lowest performance. Explain not to apply to vertical axis wind turbine.

要するに、本発明におけるブレードの`CpがG3d2Lブレード以上であるが、本発明におけるブレードのコストがG3d2Lのようなコレクタブレードより少なくとも20%低減し、価格性能比がより高い。   In short, `Cp of the blade in the present invention is more than G3d2L blade, but the cost of the blade in the present invention is at least 20% lower than the collector blade like G3d2L, and the price performance ratio is higher.

本発明における低速流体を効率的に利用するブレードの製造方法、一般的なプロセスは以下を含む。   A blade manufacturing method and a general process for efficiently using a low-speed fluid in the present invention include the following.

第一ステップ、加工原料を選択し、加工原料が延性を有する軽量金属シート(アルミニウム板、アルミニウム合金板を含むがそれらに限らない)、軽量合金非シート材料(アルミニウム合金、アルミニウムマグネシウム合金を含むがそれらに限らない)、高分子材料(ポリカーボネート、ポリウレタン、ABSを含むがそれらに限らない)、又は繊維強化複合材料(ガラス繊維、炭素繊維、カヴニク繊維複合材料を含むがそれらに限らない)である。   1st step, processing raw material is selected, lightweight metal sheet (including but not limited to aluminum plate and aluminum alloy plate), and light alloy non-sheet material (including aluminum alloy and aluminum magnesium alloy). But not limited to), polymeric materials (including but not limited to polycarbonate, polyurethane, ABS) or fiber reinforced composites (including but not limited to glass fibers, carbon fibers, kavnik fiber composites). .

第二ステップ、異なる加工原料に対して、曲面金型又はダイスを用いて成形し、又は曲面ロール成形によって加工原料を所定形状のシート状部材に製造し、曲面金型又はダイス成形はプレス成形、押し出し成形、射出圧力成形、圧力鋳造成形、フォーミングダイ又はインプリント成形を含む。   Second step, for different processing raw materials, using a curved mold or a die, or manufacturing a processing raw material into a sheet-shaped member of a predetermined shape by curved roll forming, the curved mold or die forming is press molding, Includes extrusion molding, injection pressure molding, pressure casting molding, forming die or imprint molding.

具体的には、加工原料が軽量金属シートである時、曲面ロール成形又はプレス成形を用い、加工原料が軽量合金非シート材料又は高分子材料である時、押し出し成形、射出圧力成形又は圧力鋳造成形を用い、加工原料が繊維強化複合材料である時、フォーミングダイ又はインプリント成形、圧力鋳造成形を用いる。   Specifically, when the processing raw material is a lightweight metal sheet, curved roll molding or press molding is used, and when the processing raw material is a lightweight alloy non-sheet material or polymer material, extrusion molding, injection pressure molding or pressure casting molding is used. When the processing raw material is a fiber reinforced composite material, a forming die or imprint molding or pressure casting molding is used.

第三ステップ、製造されたシート状部材で先端翼部材、中央翼部材又は末端翼部材を構成する。   In the third step, the tip wing member, the central wing member or the terminal wing member is constituted by the manufactured sheet-like member.

以上の実施例は本発明のいくつかの実施形態を説明し、その説明はより具体的且つ詳細であるが、本発明の特許範囲を制限するためのものではない。ただし、当業者であれば、本発明の趣旨を逸脱せずに、種々の変形や改良を行うことができ、これらはいずれも本発明の保護範囲に含まれる。このため、本発明特許の保護範囲は請求の範囲に準じるべきである。   The above examples illustrate some embodiments of the present invention, and the description is more specific and detailed, but is not intended to limit the patent scope of the present invention. However, those skilled in the art can make various modifications and improvements without departing from the spirit of the present invention, and these are all included in the protection scope of the present invention. For this reason, the protection scope of the patent of the present invention should conform to the scope of claims.

外部輪郭が第一翼型を呈する流線形断面を有する主翼部材を備える低速流体を効率的に利用するブレードであって、前記ブレードは更に先端翼部材を備え、前記先端翼部材がシート状であり、先端翼部材は片側が凸面で他側が凹面であるアーチ型であり、前記先端翼部材が主翼部材前縁点の斜め上側に設置され、先端翼部材の凹面が主翼部材に向かっており、先端翼部材と主翼部材との間に第一通気空間を有する。 A blade that efficiently uses a low-speed fluid including a main wing member having a streamlined cross section with an outer contour exhibiting a first airfoil, the blade further including a tip wing member, and the tip wing member is in a sheet form , the tip blade member on one side is an arched an other side concave convex surfaces, the tip blades member is disposed obliquely above the wing member leading edge point, and the concave surface of the tip blade member toward the wing member, A first ventilation space is provided between the tip wing member and the main wing member.

一実施例において、前記中央翼部材は第一シート状部材を備え、前記第一シート状部材は片側が凸面で他側が凹面であるアーチ型であり、前記第一シート状部材のアーチ型凸面が先端翼部材に接近し、第一シート状部材の一端が第二翼型の下輪郭に接近し、他端が第二翼型の上輪郭に位置する。 In one embodiment, the wing members includes a first sheet-like member, said first sheet-like member is arched the other side is concave on one side a convex, arched convex surface of the first sheet-like member Approaches the tip wing member, one end of the first sheet-like member approaches the lower contour of the second airfoil, and the other end is positioned on the upper contour of the second airfoil.

一実施例において、前記第二シート状部材の下部が先端翼部材に向かって延在し、前記第一シート状部材が少なくとも2つあり、少なくとも2つの前記第一シート状部材が順に先端翼部材と末端翼部材との間に配列され、前記第二シート状部材が末端翼部材寄り中央翼部材における第一シート状部材に接続される。 In one embodiment, the lower part of the second sheet-like member extends toward the tip wing member, the first sheet-like member is at least two, and at least two of the first sheet-like members are in turn the tip wing member. The second sheet-like member is connected to the first sheet-like member in the central wing member closer to the terminal wing member.

一実施例において、前記中央翼部材は中実翼部材を備え、前記中実翼部材先端翼部材に接近する凸面、末端翼部材に接近する凹面及び第二翼型下輪郭に沿って設置される下側面を有し、前記下側面がそれぞれ中実翼部材の凸面及び凹面の下端に接続され、前記中実翼部材の凸面が凹面の上端に接続され、中実翼部材の凸面の少なくとも一部が第二翼型の上輪郭に沿って設置される。 In one embodiment, the central wing member comprises a solid wing member, and the solid wing member is installed along a convex surface approaching the tip wing member, a concave surface approaching the end wing member, and a second airfoil lower contour. The lower surface is connected to the convex surface of the solid wing member and the lower end of the concave surface, respectively, the convex surface of the solid wing member is connected to the upper end of the concave surface, and at least one of the convex surfaces of the solid wing member The part is installed along the upper contour of the second airfoil.

FW(n+1)C1で示すブレードはn個のシート状翼部材C及び1つの曲面体翼部材Bで構成されて、中央翼部材が“C”形と類似する構造のシート状翼部材Cを用いて、構造的に論理再帰があり、図に示すFW4C1はこのようなブレードの実施例である。 The blade indicated by FW (n + 1) C1 is composed of n sheet-like blade members C and one curved blade member B, and the central blade member uses a sheet-like blade member C having a structure similar to the “C” shape. Thus, there is logical recursion structurally, and FW4C1 shown in FIG. 4 is an example of such a blade.

図1a−図1cに示すように、本発明における低速流体を効率的に利用するブレードは、主翼部材A2、D2、K2を備え、主翼部材が流線形断面を有し、断面の外部輪郭が第一翼型を呈し、ブレードは更に先端翼部材C1を備え、先端翼部材がシート状であり、先端翼部材は片側が凸面で他側が凹面であるアーチ型であり、先端翼部材が主翼部材前縁点の斜め上側に設置され、先端翼部材の凹面が主翼部材に向かっており、先端翼部材と主翼部材との間に第一通気空間T1を有する。 As shown in FIGS. 1a to 1c, a blade that efficiently uses a low-speed fluid in the present invention includes main wing members A2, D2, and K2, the main wing member has a streamline cross section, and the outer contour of the cross section is the first. It exhibits a part type, blade further comprises a tip blade member C1, a tip blade member is sheet-like, the tip blade member is arched the other side is concave on one side a convex tip wing members wing member It is installed diagonally above the front edge point, the concave surface of the tip wing member faces the main wing member, and there is a first ventilation space T1 between the tip wing member and the main wing member.

に示すように、中央翼部材C2は1つの第一シート状部材P1を備え、第一シート状部材は片側が凸面で他側が凹面であるアーチ型であり、第一シート状部材のアーチ型凸面が先端翼部材に接近し、第一シート状部材の一端が第二翼型の下輪郭に接近し、他端が第二翼型の上輪郭に位置する。 As shown in FIG. 2, the wing member C2 includes a first sheet-like member P1 of the one, the first sheet-like member the other side one side a convex is arched is concave, the first sheet-like member The arch-shaped convex surface approaches the tip wing member, one end of the first sheet-like member approaches the lower contour of the second wing shape, and the other end is positioned on the upper contour of the second wing shape.

四組目の実施例は三組目の実施例と異なり、図に示すように、第二シート状部材の下部が末端翼部材に向かって延在し、“C”型と類似する中央翼部材を形成する。 Example of four sets th unlike the embodiment of third set, as shown in FIG. 4, a central wing bottom of the second sheet-shaped member extending toward the distal wing member, similar to the "C" type Form a member.

別の好適な解決手段として、図及び図6dに示すように、第一シート状部材と第二シート状部材との下部接続部が円滑に移行し、第一シート状部材と第二シート状部材との下部接続部の内側に第一補強材N8、N6が設置される。 As another suitable solution, as shown in FIGS. 5 and 6d, the lower connecting portion between the first sheet-like member and the second sheet-like member smoothly transitions, and the first sheet-like member and the second sheet-like member The first reinforcing materials N8 and N6 are installed inside the lower connection portion with the member.

中央翼部材は上記複数組の実施例に開示されたシート状部材以外に、更に少なくとも1つの中実翼部材を備え、図10a〜図10cに示すように、中実翼部材が先端翼部材に接近する凸面、末端翼部材に接近する凹面及び第二翼型下輪郭に沿って設置される下側面を有し、下側面がそれぞれ中実翼部材の凸面及び凹面の下端に接続され、中実翼部材の凸面が凹面の上端に接続され、中実翼部材の凸面の少なくとも一部が第二翼型の上輪郭に沿って設置される。 Besides wing member sheet-like member disclosed in the above plurality of sets of embodiments, further comprising at least one solid wing member, as shown in FIG 10a~ Figure 10c, solid wings material tip wing member A convex surface approaching the end blade member, a concave surface approaching the end wing member, and a lower side surface installed along the lower profile of the second airfoil, the lower side surface being connected to the convex surface of the solid wing member and the lower end of the concave surface, respectively, The convex surface of the actual wing member is connected to the upper end of the concave surface, and at least a part of the convex surface of the solid wing member is installed along the upper contour of the second airfoil.

図1a、図、図6c、図8a〜図8d、図9、図10a〜図10cに示すように、末端翼部材が中実構造である。 As shown in FIGS. 1a, 2 , 6c, 8a to 8d, 9, and 10a to 10c, the end wing member has a solid structure.

図3a、図3b、図、図6e〜図6gに示すように、末端翼部材はその上輪郭に沿って設置される第四シート状部材及びその下輪郭に沿って設置される第五シート状部材を備え、第四シート状部材の両端がそれぞれ第五シート状部材の両端に接続される。 As shown in FIGS. 3a, 3b, 4 and 6e to 6g, the end wing member has a fourth sheet-like member installed along its upper contour and a fifth sheet installed along its lower contour. And both ends of the fourth sheet-like member are respectively connected to both ends of the fifth sheet-like member.

十二組目の実施例は第十一組の実施例を基に変化してなり、図11に示すように、その相違点は第五シート状部材E4の先端翼部材寄り一端に延在部R1が接続され、延在部が第二翼型の下輪郭に沿って設置され、第四シート状部材E3の先端翼部材寄り一端に延在部に貼合される貼合部R2が接続され、“鴨嘴”型と類似する構造を形成することにある。 The twelfth embodiment is changed based on the eleventh embodiment, and as shown in FIG. 11 , the difference is that the fifth sheet-like member E4 extends to one end near the tip wing member. R1 is connected, the extending part is installed along the lower contour of the second wing shape, and the bonding part R2 bonded to the extending part is connected to the end of the fourth sheet-like member E3 closer to the leading wing member. It is to form a structure similar to the “Kamo-an” type.

図1b、図1c、図、図6d、図6h〜図6o、図7b、図7cに示すように、第四シート状部材及び第五シート状部材が一体成形され、中央翼部材の加工方法と類似し、末端翼部材は押し出し成形又は板金プレス圧力成形方法で製造されてなってもよい。 As shown in FIGS. 1b, 1c, 5 , 6d, 6h to 6o, 7b, and 7c, the fourth sheet member and the fifth sheet member are integrally formed, and the method for processing the central wing member is performed. In the same manner as described above, the end blade member may be manufactured by an extrusion molding or a sheet metal press pressure molding method.

Claims (40)

外部輪郭が第一翼型を呈する流線形断面を有する主翼部材を備える低速流体を効率的に利用するブレードであって、
前記ブレードは更に先端翼部材を備え、前記先端翼部材がシート状であり、先端翼部材の断面は片側が凸面で他側が凹面であるアーチ型であり、前記先端翼部材が主翼部材前縁点の斜め上側に設置され、先端翼部材の凹面が主翼部材に向かっており、先端翼部材と主翼部材との間に第一通気空間を有することを特徴とする低速流体を効率的に利用するブレード。
A blade that efficiently utilizes a low-speed fluid comprising a main wing member having a streamlined cross-section with an outer contour exhibiting a first airfoil,
The blade further includes a tip wing member, the tip wing member has a sheet shape, and the cross-section of the tip wing member is an arch type in which one side is convex and the other side is concave, and the tip wing member is a leading edge point of the main wing member. A blade that efficiently uses a low-speed fluid, characterized in that the concave surface of the tip wing member is directed to the main wing member, and a first ventilation space is provided between the tip wing member and the main wing member. .
前記先端翼部材の凸面、主翼部材の上輪郭の一部、後縁点及び下輪郭で取り囲んでなる外部輪郭が第二翼型を呈し、前記第二翼型の前縁点が先端翼部材の凸面輪郭に位置することを特徴とする請求項1に記載の低速流体を効率的に利用するブレード。   The convex surface of the tip wing member, a part of the upper contour of the main wing member, the outer contour surrounded by the trailing edge point and the lower contour presents the second airfoil, and the leading edge point of the second airfoil is the tip blade member The blade using efficiently the low-speed fluid according to claim 1, wherein the blade is located at a convex contour. 前記先端翼部材の主翼部材下輪郭寄り一端と主翼部材との間の隙間が前記第一通気空間の吸気口であり、前記先端翼部材の主翼部材上輪郭寄り一端と主翼部材との間の隙間が前記第一通気空間の排気口であり、前記第一通気空間の吸気口の幅が排気口の幅より大きいことを特徴とする請求項2に記載の低速流体を効率的に利用するブレード。   A gap between one end of the tip wing member near the main wing member lower contour and the main wing member is an air inlet of the first ventilation space, and a gap between one end of the tip wing member near the main wing member upper contour and the main wing member The blade for efficiently using a low-speed fluid according to claim 2, wherein is an exhaust port of the first ventilation space, and the width of the intake port of the first ventilation space is larger than the width of the exhaust port. 前記第一通気空間の排気口の排気方向が主翼部材上輪郭に対応する位置の接線方向に沿っていることを特徴とする請求項3に記載の低速流体を効率的に利用するブレード。   The blade that efficiently uses low-speed fluid according to claim 3, wherein the exhaust direction of the exhaust port of the first ventilation space is along a tangential direction at a position corresponding to the upper contour of the main wing member. 前記主翼部材は少なくとも1つの中央翼部材及び1つの末端翼部材を備え、前記中央翼部材が先端翼部材と末端翼部材との間に位置し、隣接する前記中央翼部材の間及びそれと末端翼部材との間にそれぞれ第二翼型上輪郭と下輪郭とを連通する第二通気空間が設置され、前記第二通気空間の第二翼型下輪郭寄り開口部が第二通気空間の吸気口であり、前記第二通気空間の第二翼型上輪郭寄り開口部が第二通気空間の排気口であり、前記第二通気空間の吸気口の幅が排気口の幅より大きいことを特徴とする請求項2〜4のいずれか一項に記載の低速流体を効率的に利用するブレード。   The main wing member includes at least one central wing member and one end wing member, and the central wing member is located between the front wing member and the end wing member, and between the adjacent central wing members and the end wing member. A second ventilation space is provided between the member and the second airfoil upper contour and the lower contour, respectively, and an opening closer to the second airfoil lower contour of the second airflow space is an inlet of the second airflow space. The second wing-type upper contour opening of the second ventilation space is an exhaust port of the second ventilation space, and the width of the intake port of the second ventilation space is larger than the width of the exhaust port. A blade that efficiently utilizes the low-speed fluid according to any one of claims 2 to 4. 前記第二通気空間の排気口の排気方向が隣接する中央翼部材又は末端翼部材上輪郭に対応する位置の接線方向に沿っていることを特徴とする請求項5に記載の低速流体を効率的に利用するブレード。   The low-speed fluid according to claim 5, wherein the exhaust direction of the exhaust port of the second ventilation space is along a tangential direction of a position corresponding to the upper contour of the adjacent central blade member or terminal blade member. Blade to use for. 少なくとも1つの前記中央翼部材がシート状部材を有し、少なくとも一部のシート状部材が第二翼型の上輪郭に沿って設置されることを特徴とする請求項5に記載の低速流体を効率的に利用するブレード。   6. The low-speed fluid according to claim 5, wherein at least one of the central wing members has a sheet-like member, and at least a part of the sheet-like member is disposed along the upper contour of the second wing shape. Blades that are used efficiently. 前記中央翼部材は第一シート状部材を備え、前記第一シート状部材の断面は片側が凸面で他側が凹面であるアーチ型であり、前記第一シート状部材のアーチ型凸面が先端翼部材に接近し、第一シート状部材の一端が第二翼型の下輪郭に接近し、他端が第二翼型の上輪郭に位置することを特徴とする請求項7に記載の低速流体を効率的に利用するブレード。   The central wing member includes a first sheet-like member, and a cross-section of the first sheet-like member is an arch type having a convex surface on one side and a concave surface on the other side, and the arch-shaped convex surface of the first sheet-shaped member is a tip wing member The low-speed fluid according to claim 7, wherein one end of the first sheet-shaped member approaches the lower contour of the second airfoil, and the other end is positioned on the upper contour of the second airfoil. Blades that are used efficiently. 前記中央翼部材は更に第二シート状部材を備え、前記第二シート状部材の一端が第一シート状部材の第二翼型下輪郭寄り一端に接続され、第二シート状部材は第二翼型の下輪郭に沿って設置される下部を含むことを特徴とする請求項8に記載の低速流体を効率的に利用するブレード。   The central wing member further includes a second sheet-like member, one end of the second sheet-like member is connected to one end of the first sheet-like member near the second wing-shaped lower contour, and the second sheet-like member is a second wing member. The blade utilizing efficiently the low-speed fluid according to claim 8, comprising a lower portion installed along a lower contour of the mold. 前記第二シート状部材の下部が先端翼部材に向かって延在し、前記中央翼部材が少なくとも2つあり、少なくとも2つの前記中央翼部材が順に先端翼部材と末端翼部材との間に配列され、前記第二シート状部材が末端翼部材寄り中央翼部材における第一シート状部材に接続されることを特徴とする請求項9に記載の低速流体を効率的に利用するブレード。   The lower part of the second sheet-like member extends toward the tip wing member, there are at least two of the central wing members, and at least two of the central wing members are sequentially arranged between the tip wing member and the terminal wing member. The blade using the low-speed fluid efficiently according to claim 9, wherein the second sheet-like member is connected to the first sheet-like member in the central wing member near the end wing member. 前記第二シート状部材の下部が末端翼部材に向かって延在することを特徴とする請求項9に記載の低速流体を効率的に利用するブレード。   The blade using the low-speed fluid efficiently according to claim 9, wherein a lower portion of the second sheet-like member extends toward the end blade member. 前記第一シート状部材及びそれに接続される第二シート状部材が一体成形されて、第一シート状部材と第二シート状部材との交差部が円滑に移行することを特徴とする請求項10又は11に記載の低速流体を効率的に利用するブレード。   The said 1st sheet-like member and the 2nd sheet-like member connected to it are integrally molded, The cross | intersection part of a 1st sheet-like member and a 2nd sheet-like member transfers smoothly, It is characterized by the above-mentioned. Or a blade that efficiently utilizes the low-speed fluid according to 11; 前記第二シート状部材は更に下部の一端に接続される中央部を含み、前記中央部が該第二シート状部材に接続される第一シート状部材に向かって曲げられることを特徴とする請求項11に記載の低速流体を効率的に利用するブレード。   The second sheet-like member further includes a central portion connected to one end of the lower portion, and the central portion is bent toward the first sheet-like member connected to the second sheet-like member. Item 12. A blade that efficiently uses the low-speed fluid according to Item 11. 前記第二シート状部材の下部と中央部との間の曲げ角度が鈍角であることを特徴とする請求項13に記載の低速流体を効率的に利用するブレード。   The blade using the low-speed fluid efficiently according to claim 13, wherein a bending angle between a lower portion and a central portion of the second sheet-like member is an obtuse angle. 前記第二シート状部材は更に中央部の一端に接続される上部を含み、前記上部の他端が第一シート状部材の凹面に接続又は貼合されることを特徴とする請求項13に記載の低速流体を効率的に利用するブレード。   The second sheet-like member further includes an upper portion connected to one end of a central portion, and the other end of the upper portion is connected or bonded to the concave surface of the first sheet-like member. A blade that efficiently uses low-speed fluid. 第二シート状部材の中央部と第一シート状部材の凹面との間に第一接続部材が設置されることを特徴とする請求項14又は15に記載の低速流体を効率的に利用するブレード。   The blade for efficiently using a low-speed fluid according to claim 14 or 15, wherein a first connecting member is installed between a central portion of the second sheet-like member and a concave surface of the first sheet-like member. . 前記第二シート状部材の中央部及び上部の断面が1つの連続的なアーチ型であり、第二シート状部材の中央部及び上部のアーチ型凸面が第一シート状部材の凹面に向かっていることを特徴とする請求項15に記載の低速流体を効率的に利用するブレード。   The cross section of the central part and the upper part of the second sheet-like member is one continuous arch type, and the central and upper arched convex surfaces of the second sheet-like member are directed toward the concave surface of the first sheet-like member. The blade that efficiently uses the low-speed fluid according to claim 15. 前記第二シート状部材の下部が第二接続部材によって第一シート状部材に接続され、前記第二接続部材及び第二シート状部材と第一シート状部材との接続部が円滑に移行することを特徴とする請求項13〜15のいずれか一項に記載の低速流体を効率的に利用するブレード。   The lower part of the second sheet-like member is connected to the first sheet-like member by the second connecting member, and the connection portion between the second connecting member and the second sheet-like member and the first sheet-like member smoothly transitions. The blade that efficiently uses the low-speed fluid according to any one of claims 13 to 15. 前記第一シート状部材と第二シート状部材との下部接続部が円滑に移行し、前記第一シート状部材と第二シート状部材との下部接続部の内側に第一補強材が設置されることを特徴とする請求項13〜15のいずれか一項に記載の低速流体を効率的に利用するブレード。   The lower connecting portion between the first sheet-like member and the second sheet-like member smoothly transitions, and the first reinforcing material is installed inside the lower connecting portion between the first sheet-like member and the second sheet-like member. The blade that efficiently uses the low-speed fluid according to any one of claims 13 to 15. 前記第一シート状部材及びそれに接続される第二シート状部材が一体成形されることを特徴とする請求項13〜15又は17のいずれか一項に記載の低速流体を効率的に利用するブレード。   The blade using the low-speed fluid efficiently according to any one of claims 13 to 15 or 17, wherein the first sheet-like member and the second sheet-like member connected thereto are integrally formed. . 前記第一シート状部材が第二シート状部材に接続されることで密閉されたキャビティを形成し、前記密閉されたキャビティ内に充填体が設置されることを特徴とする請求項15に記載の低速流体を効率的に利用するブレード。   The first sheet-like member is connected to the second sheet-like member to form a sealed cavity, and a filler is installed in the sealed cavity. Blade that efficiently uses low-speed fluid. 前記第一シート状部材、第二シート状部材及び充填体が一体成形されることで中実構造の中央翼部材を形成することを特徴とする請求項21に記載の低速流体を効率的に利用するブレード。   The low-speed fluid according to claim 21, wherein the first sheet-shaped member, the second sheet-shaped member, and the filler are integrally formed to form a central wing member having a solid structure. Blade to be. 前記中央翼部材は更に第三シート状部材を備え、前記第三シート状部材が第一シート状部材の凹面と末端翼部材との間に位置し、第三シート状部材は下部及び上部を含み、前記第三シート状部材の下部が第二翼型の下輪郭に沿って設置され、前記第三シート状部材の上部が下部の末端翼部材寄り一端に接続されて、第一シート状部材に向かって曲げられることを特徴とする請求項8に記載の低速流体を効率的に利用するブレード。   The central wing member further includes a third sheet-like member, the third sheet-like member is located between the concave surface of the first sheet-like member and the terminal wing member, and the third sheet-like member includes a lower portion and an upper portion. The lower part of the third sheet-like member is installed along the lower profile of the second wing shape, and the upper part of the third sheet-like member is connected to one end of the lower end wing member, The blade that efficiently utilizes low-speed fluid according to claim 8, wherein the blade is bent toward the bottom. 前記第三シート状部材の下部及び上部が一体成形されて、下部と上部との交差部が円滑に移行することを特徴とする請求項23に記載の低速流体を効率的に利用するブレード。   24. The blade that efficiently uses a low-speed fluid according to claim 23, wherein a lower portion and an upper portion of the third sheet-like member are integrally formed so that a crossing portion between the lower portion and the upper portion smoothly transitions. 前記中央翼部材は中実翼部材を備え、前記中実翼部材の断面が先端翼部材に接近する凸面、末端翼部材に接近する凹面及び第二翼型下輪郭に沿って設置される下側面を有し、前記下側面がそれぞれ中実翼部材の凸面及び凹面の下端に接続され、前記中実翼部材の凸面が凹面の上端に接続され、中実翼部材の凸面の少なくとも一部が第二翼型の上輪郭に沿って設置されることを特徴とする請求項5に記載の低速流体を効率的に利用するブレード。   The central wing member includes a solid wing member, and a cross section of the solid wing member is a convex surface approaching the tip wing member, a concave surface approaching the end wing member, and a lower side surface installed along the second airfoil lower contour The lower surface is connected to the convex surface and the lower end of the concave surface of the solid wing member, the convex surface of the solid wing member is connected to the upper end of the concave surface, and at least a part of the convex surface of the solid wing member is the first The blade utilizing efficiently the low-speed fluid according to claim 5, wherein the blade is installed along the upper profile of the two-wing type. 前記中実翼部材の下側面及び凸面と凹面との接続部が円滑に移行することを特徴とする請求項25に記載の低速流体を効率的に利用するブレード。   26. The blade that efficiently uses a low-speed fluid according to claim 25, wherein a lower surface of the solid wing member and a connection portion between the convex surface and the concave surface smoothly transition. 前記末端翼部材が流線形断面を有し、前記断面の外部輪郭が第三翼型を呈し、前記第三翼型の下輪郭の少なくとも一部が第二翼型の下輪郭に沿って設置され、前記第三翼型の上輪郭の少なくとも一部が第二翼型の上輪郭に沿って設置され、前記第三翼型の後縁点が第二翼型の後縁点と重なることを特徴とする請求項5に記載の低速流体を効率的に利用するブレード。   The terminal wing member has a streamlined cross section, the outer contour of the cross section exhibits a third airfoil, and at least a part of the lower contour of the third airfoil is disposed along the lower contour of the second airfoil; , At least part of the upper contour of the third airfoil is installed along the upper contour of the second airfoil, and the trailing edge of the third airfoil overlaps the trailing edge of the second airfoil A blade that efficiently utilizes the low-speed fluid according to claim 5. 前記末端翼部材が中実構造であることを特徴とする請求項27に記載の低速流体を効率的に利用するブレード。   28. The blade that efficiently utilizes low-speed fluid according to claim 27, wherein the end blade member has a solid structure. 前記末端翼部材はその上輪郭に沿って設置される第四シート状部材及びその下輪郭に沿って設置される第五シート状部材を備え、前記第四シート状部材の両端がそれぞれ第五シート状部材の両端に接続されることを特徴とする請求項27に記載の低速流体を効率的に利用するブレード。   The terminal wing member includes a fourth sheet-like member installed along an upper contour thereof and a fifth sheet-like member installed along a lower contour thereof, and both ends of the fourth sheet-like member are fifth sheets, respectively. The blade using low-speed fluid efficiently according to claim 27, wherein the blade is connected to both ends of the member. 前記第四シート状部材の両端がそれぞれ第三接続部材及び第四接続部材によって第五シート状部材の両端に接続されることを特徴とする請求項29に記載の低速流体を効率的に利用するブレード。   30. The low-speed fluid according to claim 29, wherein both ends of the fourth sheet-like member are connected to both ends of the fifth sheet-like member by a third connecting member and a fourth connecting member, respectively. blade. 前記第四シート状部材と第五シート状部材との間に少なくとも1つの第二補強材が設置されることを特徴とする請求項29に記載の低速流体を効率的に利用するブレード。   30. The blade that efficiently utilizes low-speed fluid according to claim 29, wherein at least one second reinforcing member is disposed between the fourth sheet-like member and the fifth sheet-like member. 前記第四シート状部材及び第五シート状部材が一体成形されることを特徴とする請求項29に記載の低速流体を効率的に利用するブレード。   30. The blade that efficiently utilizes low-speed fluid according to claim 29, wherein the fourth sheet-like member and the fifth sheet-like member are integrally formed. 前記第五シート状部材の先端翼部材寄り一端に延在部が接続され、前記延在部が第二翼型の下輪郭に沿って設置されることを特徴とする請求項29に記載の低速流体を効率的に利用するブレード。   30. The low speed according to claim 29, wherein an extension portion is connected to one end of the fifth sheet-like member near the tip wing member, and the extension portion is installed along the lower contour of the second airfoil. Blade that uses fluid efficiently. 前記第四シート状部材の先端翼部材寄り一端に前記延在部に貼合される貼合部が接続されることを特徴とする請求項33に記載の低速流体を効率的に利用するブレード。   The blade that efficiently uses low-speed fluid according to claim 33, wherein a bonding portion bonded to the extending portion is connected to one end of the fourth sheet-shaped member near the tip wing member. 前記貼合部及び第四シート状部材が一体成形されることを特徴とする請求項34に記載の低速流体を効率的に利用するブレード。   The blade for efficiently using a low-speed fluid according to claim 34, wherein the bonding portion and the fourth sheet-like member are integrally formed. 前記延在部の先端翼部材寄り一端に第二翼型の上輪郭に向かって曲げられる曲げ部が接続されることを特徴とする請求項33に記載の低速流体を効率的に利用するブレード。   34. The blade that efficiently uses low-speed fluid according to claim 33, wherein a bent portion that is bent toward the upper contour of the second airfoil is connected to one end of the extending portion near the tip blade member. 前記曲げ部、延在部及び第五シート状部材が一体成形されることを特徴とする請求項36に記載の低速流体を効率的に利用するブレード。   The blade utilizing the low-speed fluid efficiently according to claim 36, wherein the bent portion, the extending portion, and the fifth sheet-like member are integrally formed. 前記第四シート状部材及び第五シート状部材が一体成形されることを特徴とする請求項37に記載の低速流体を効率的に利用するブレード。   38. The blade that efficiently utilizes low-speed fluid according to claim 37, wherein the fourth sheet-like member and the fifth sheet-like member are integrally formed. 流線形断面を有し、前記断面が前縁点、後縁点、並びに前縁点及び後縁点を接続する上輪郭及び下輪郭で取り囲まれてなり、ブレード上外縁輪郭面がブレードの吸引面であり、前記上輪郭が吸引面と断面との境界線であり、ブレード下外縁輪郭面がブレードの圧力面であり、前記下輪郭が圧力面と断面との境界線であり、該ブレードは一組の翼部材で構成され、隣接する翼部材の間に通気空間を保持する低速流体を効率的に利用するブレードであって、
前記翼部材は1つの先端翼部材及び1つの末端翼部材を備え、又は1つの先端翼部材、少なくとも1つの中央翼部材及び1つの末端翼部材を備え、前記先端翼部材が前縁点に接近して、前縁点の斜め上側に位置し、前記末端翼部材が後縁点に接近し、前記中央翼部材が先端翼部材と末端翼部材との間に位置し、前記先端翼部材は片側が凸面で他側が凹面であるアーチ型シート状を呈し、前記先端翼部材の凸面が後縁点から離れ、前記ブレード断面の上輪郭は先端翼部材の凸面、及び末端翼部材の上部又は上部の一部で共同構成され、又は先端翼部材の凸面、並びに中央翼部材及び末端翼部材の上部又は上部の一部で共同構成され、前記ブレード断面の下輪郭は末端翼部材の下部又は下部の一部で構成され、又は中央翼部材及び末端翼部材下部又は下部の一部で共同構成されることを特徴とする低速流体を効率的に利用するブレード。
The blade has a streamlined cross section, and the cross section is surrounded by a leading edge point, a trailing edge point, and upper and lower contours connecting the leading edge point and the trailing edge point, and the blade upper outer edge contour surface is a suction surface of the blade The upper contour is a boundary line between the suction surface and the cross section, the blade lower outer edge contour surface is a pressure surface of the blade, and the lower contour is a boundary line between the pressure surface and the cross section. A blade that is composed of a pair of wing members and efficiently uses a low-speed fluid that holds a ventilation space between adjacent wing members,
The wing member comprises one tip wing member and one end wing member, or comprises one tip wing member, at least one central wing member and one end wing member, the tip wing member approaching a leading edge point The distal wing member approaches the trailing edge point, the central wing member is located between the distal wing member and the distal wing member, and the distal wing member is located on one side. Presents an arched sheet shape having a convex surface and a concave surface on the other side, the convex surface of the tip blade member is separated from the trailing edge point, and the upper profile of the blade cross section is the convex surface of the tip blade member and the upper or upper portion of the end blade member. Co-configured in part, or co-configured in the convex surface of the tip wing member, and the upper or part of the upper or upper part of the central wing member and the end wing member, and the lower profile of the blade cross section is one of the lower part or the lower part of the end wing member Or the lower part of the central wing member and the lower end wing member Blade utilizing low speed fluid, characterized in that the joint consists of a part of the bottom efficiently.
請求項1〜39のいずれか一項に記載の低速流体を効率的に利用するブレードの垂直軸風力タービンブレード、潮汐流を利用して発電する垂直軸水力タービンブレード、水平軸風力タービンブレード、水車ブレード、蒸気タービンブレード又はプロペラブレードとしての応用。   A vertical axis wind turbine blade of a blade that efficiently uses a low-speed fluid according to any one of claims 1 to 39, a vertical axis hydro turbine blade that generates power using a tidal current, a horizontal axis wind turbine blade, and a water turbine Application as blade, steam turbine blade or propeller blade.
JP2018529973A 2015-12-10 2016-12-08 Blades that efficiently use low-speed fluid and their applications Expired - Fee Related JP6609705B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN201510907637 2015-12-10
CN201510907637.3 2015-12-10
CN201610842522.5 2016-09-22
CN201610842522.5A CN106870277A (en) 2015-12-10 2016-09-22 Efficiently using the blade and its manufacture method of low velocity fluid
PCT/CN2016/109064 WO2017097229A1 (en) 2015-12-10 2016-12-08 Blade capable of efficiently utilizing low velocity fluid, and application of blade

Publications (2)

Publication Number Publication Date
JP2018536806A true JP2018536806A (en) 2018-12-13
JP6609705B2 JP6609705B2 (en) 2019-11-20

Family

ID=59239466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018529973A Expired - Fee Related JP6609705B2 (en) 2015-12-10 2016-12-08 Blades that efficiently use low-speed fluid and their applications

Country Status (5)

Country Link
US (1) US10808678B2 (en)
EP (1) EP3388663B1 (en)
JP (1) JP6609705B2 (en)
KR (1) KR102056396B1 (en)
CN (2) CN106870277A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180363624A1 (en) * 2017-06-14 2018-12-20 Arken S.P.A. Wind turbine with pairs of blades to deflect airflow
EP3645872B1 (en) * 2017-06-30 2021-08-04 Arcelormittal Wind turbine mast section, wind turbine mast and assembly method
DE202017106237U1 (en) * 2017-10-16 2019-01-17 Georg Kunz Wind turbine for converting wind energy into mechanical and electrical energy and land or water vehicle with such a wind turbine as a drive

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3505489A1 (en) 1985-02-16 1986-08-21 Carl-Robert 2100 Hamburg Keding Vane for a wind power installation
GB8602007D0 (en) 1986-01-28 1986-03-05 Int Research & Dev Co Ltd Wind turbine
ITBA20030052A1 (en) * 2003-10-17 2005-04-18 Paolo Pietricola ROTORIC AND STATHIC POLES WITH MULTIPLE PROFILES
BRPI0600613B1 (en) * 2006-03-14 2015-08-11 Tecsis Tecnologia E Sist S Avançados S A Multi-element blade with aerodynamic profiles
JP2009074447A (en) 2007-09-20 2009-04-09 Yamaguchi Prefecture Vertical shaft type windmill
JP2009197700A (en) * 2008-02-22 2009-09-03 Takashi Hitai Vertical wind mill blade
US8011886B2 (en) 2009-06-30 2011-09-06 General Electric Company Method and apparatus for increasing lift on wind turbine blade
US8303250B2 (en) * 2009-12-30 2012-11-06 General Electric Company Method and apparatus for increasing lift on wind turbine blade
EP2383465A1 (en) 2010-04-27 2011-11-02 Lm Glasfiber A/S Wind turbine blade provided with a slat assembly
US8011887B2 (en) * 2010-07-21 2011-09-06 General Electric Company Rotor blade assembly
US20110142636A1 (en) * 2010-10-25 2011-06-16 General Electric Company Expansion assembly for a rotor blade of a wind turbine
CN202065123U (en) * 2011-06-03 2011-12-07 秦皇岛风日和科技有限公司 Combined efficient vertical axis wind driven generator
JP5734798B2 (en) * 2011-09-15 2015-06-17 株式会社東芝 Wind power generator
EP2628946B1 (en) 2012-02-20 2017-09-27 GE Renewable Technologies Aerodynamic blade and method of controlling the lift of such a blade
US9151270B2 (en) * 2012-04-03 2015-10-06 Siemens Aktiengesellschaft Flatback slat for wind turbine
CN102661239B (en) * 2012-05-17 2014-09-24 甘肃科惠特资源综合开发有限公司 Multi-wing collecting vane capable of utilizing wind power efficiently
FR3011285B1 (en) * 2013-09-30 2018-03-16 Electricfil Automotive ROTOR FOR WIND TURBINE IN PARTICULAR VERTICAL AXIS
US9919488B2 (en) * 2014-03-19 2018-03-20 General Electric Company Rotor blade components for a wind turbine and methods of manufacturing same
US20150322916A1 (en) * 2014-05-08 2015-11-12 Siemens Aktiengesellschaft Soiling shield for wind turbine blade

Also Published As

Publication number Publication date
EP3388663B1 (en) 2022-06-29
KR102056396B1 (en) 2019-12-16
EP3388663A1 (en) 2018-10-17
US20180340512A1 (en) 2018-11-29
CN108700025A (en) 2018-10-23
US10808678B2 (en) 2020-10-20
JP6609705B2 (en) 2019-11-20
CN106870277A (en) 2017-06-20
KR20180088892A (en) 2018-08-07
CN108700025B (en) 2020-12-25
EP3388663A4 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
US9303621B2 (en) Wind turbine blade with longitudinally extending flow guiding device having a plate-shaped element
JP6609705B2 (en) Blades that efficiently use low-speed fluid and their applications
US20070217917A1 (en) Rotary fluid dynamic utility structure
CN104364517A (en) Twisted blade root
CN203374428U (en) Family of wind-power airfoil profiles with large thickness and blunt trailing edges
CN101876291B (en) Wind turbine blade airfoil family
CN102444540B (en) Wind turbine blade aerofoil of horizontal axis wind turbine
CN102003332A (en) Blade airfoil family of wind turbine
CN102661239A (en) Multi-wing collecting vane capable of utilizing wind power efficiently
CN201884213U (en) Wind power generator with vertical shaft
CN104819106A (en) Wind turbine blade wing section group
CN103410657A (en) Ribbed and grooved type wind turbine blade
CN203515955U (en) Thickened high-aerodynamic-performance wind turbine blade
CN112065651B (en) Airfoil for wind turbine blade layer of wind generating set
WO2017097229A1 (en) Blade capable of efficiently utilizing low velocity fluid, and application of blade
CN102278272B (en) Prominent type Blades For Horizontal Axis Wind before a kind of
CN202348553U (en) Wind wheel vane wing profile of horizontal axis wind turbine
CN203515970U (en) Ribbing and groove forming type wind turbine blade
CN202209250U (en) Protrusion type horizontal axis wind turbine blade
CN208486977U (en) Vane airfoil profile and wind-driven generator
CN204663775U (en) A kind of wind turbine blade airfoil family
CN104696158A (en) Lift type blade airfoil for vertical-axis wind turbine generator system
CN203383989U (en) Large-thickness blunt trailing edge airfoil blade of large fan
CN203383988U (en) Large-thickness blunt trailing edge airfoil blade of large fan
CN213627850U (en) Bionic wind driven generator blade based on biological characteristics

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180802

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191028

R150 Certificate of patent or registration of utility model

Ref document number: 6609705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees