JP2010258089A - Method of operating vacuum processing apparatus - Google Patents

Method of operating vacuum processing apparatus Download PDF

Info

Publication number
JP2010258089A
JP2010258089A JP2009104201A JP2009104201A JP2010258089A JP 2010258089 A JP2010258089 A JP 2010258089A JP 2009104201 A JP2009104201 A JP 2009104201A JP 2009104201 A JP2009104201 A JP 2009104201A JP 2010258089 A JP2010258089 A JP 2010258089A
Authority
JP
Japan
Prior art keywords
gas
sample
vacuum
supply
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009104201A
Other languages
Japanese (ja)
Other versions
JP5280928B2 (en
Inventor
Atsushi Suyama
淳 須山
Eiji Matsumoto
英治 松本
Yasukiyo Morioka
泰清 森岡
Kota Tanaka
項太 田中
Toru Ueno
透 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009104201A priority Critical patent/JP5280928B2/en
Publication of JP2010258089A publication Critical patent/JP2010258089A/en
Application granted granted Critical
Publication of JP5280928B2 publication Critical patent/JP5280928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of operating a vacuum processing apparatus that can reduce foreign matters adhering to a sample and that can improve the throughput of the apparatus as a whole. <P>SOLUTION: A variable valve is released at specified opening to reduce pressure in a vacuum processing chamber; and when the reduction of pressure is completed, the output value of a pressure sensor is corrected at zero point for resetting. Then a sample transfer gas is supplied by a gas supply mechanism; and a gate valve is released, while the gas is being supplied so as to carry in the sample; after the sample is carried in, a gas for processing a sample is supplied, while the gate valve is closed and the sample transfer gas is being supplied; the supply of the sample transfer gas is stopped, and plasma treatment is applied; and after the plasma treatment is completed, the sample transfer gas is supplied, prior to the stoppage of supply of the gas for processing a sample. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、真空処理装置の運転方法に係り、特に試料上への異物の付着を抑制することのできる運転方法に関する。   The present invention relates to an operation method of a vacuum processing apparatus, and more particularly to an operation method capable of suppressing adhesion of foreign matter on a sample.

近年の半導体デバイス製造工程においては、製造歩留まり低下の要因である異物の低減が重要となっている。また、デバイスの高集積化に伴う素子の微細化に伴って、歩留まり低下を引き起こす異物の粒径も小さくなり、異物低減の要求は益々増加している。   In recent semiconductor device manufacturing processes, it is important to reduce foreign substances that are a cause of a decrease in manufacturing yield. In addition, with the miniaturization of elements accompanying higher integration of devices, the particle size of foreign matter that causes a decrease in yield is also reduced, and the demand for foreign matter reduction is increasing.

プラズマ処理装置において試料に付着する異物を低減する技術として、例えば、特許文献1には、真空処理装置を処理室、搬送室およびこれらを連結する通路と、該通路を開閉するゲートバルブで構成し、試料を搬送・処理する真空処理装置において、処理室と搬送室間で処理対象の試料を搬送する際に真空容器内の下方にある圧力調整用の可変バルブを所定の開度として真空容器内を減圧し、その後圧力調整用可変バルブの開度を変えない状態で真空容器内に導入孔からArガスを流してガスの流れを形成し、その状態でゲートバルブを開放して試料の搬送を行い、試料搬送後にゲートバルブを閉じ、その後Arガスの導入を止めることにより、試料上に付着する異物を低減し、試料処理の歩留まりを向上させることが示されている。   As a technique for reducing foreign matter adhering to a sample in a plasma processing apparatus, for example, in Patent Document 1, a vacuum processing apparatus is configured with a processing chamber, a transfer chamber, a passage connecting them, and a gate valve for opening and closing the passage. In a vacuum processing apparatus for transporting and processing a sample, when a sample to be processed is transported between the processing chamber and the transport chamber, the pressure adjusting variable valve located below the vacuum container is set to a predetermined opening degree in the vacuum container. After that, the gas flow is formed by flowing Ar gas from the introduction hole into the vacuum vessel without changing the opening of the pressure adjusting variable valve, and in that state, the gate valve is opened to transport the sample. It is shown that the foreign matter adhering to the sample can be reduced and the yield of the sample processing can be improved by closing the gate valve after the sample transport and then stopping the introduction of Ar gas.

また、試料に付着する異物量を低減する技術として、特許文献2に、搬送室と処理室間で試料を搬送する際に、処理室内に供給する搬送用ガスの供給を処理ガスの供給と重複(ラップ)するまで継続する手法が示されている。   Further, as a technique for reducing the amount of foreign matter adhering to a sample, Patent Document 2 discloses that the supply of a transfer gas supplied into the processing chamber overlaps with the supply of the processing gas when the sample is transferred between the transfer chamber and the processing chamber. It shows how to continue until you wrap.

また、特許文献3には、試料への異物付着を抑制するため、真空搬送室と該真空処理室とゲート弁を介して接続された処理室との間で試料を搬送する際、真空搬送室と処理室に試料搬送用ガスを供給するとともに、試料の搬送前、または搬送後の処理室内での試料搬送用ガスと処理ガスとの切替えタイミングを重複(ラップ)させることが示されている。   Further, in Patent Document 3, in order to suppress the adhesion of foreign matter to a sample, a vacuum transfer chamber is provided when a sample is transferred between a vacuum transfer chamber and a processing chamber connected to the vacuum processing chamber via a gate valve. It is shown that the sample transfer gas is supplied to the processing chamber and the switching timing of the sample transfer gas and the processing gas in the processing chamber before or after transfer of the sample is overlapped (wrapped).

特開2008−172044号公報JP 2008-172044 A 特開2006−216710号公報JP 2006-216710 A 特願2008−303807号Japanese Patent Application No. 2008-303807

特許文献1に示される技術は、異物低減ならびにスループットの向上について十分に配慮した技術ではない。すなわち、試料搬入後にゲートバルブを閉じて、その後試料搬送用ガスであるArガスの導入を止めて、処理室内を一旦減圧し、次いで処理のためのエッチング処理用ガスを供給している。   The technique disclosed in Patent Document 1 is not a technique that sufficiently considers foreign matter reduction and throughput improvement. That is, after the sample is loaded, the gate valve is closed, and then the introduction of Ar gas, which is the sample transport gas, is stopped, the processing chamber is once depressurized, and then the etching gas for processing is supplied.

図6は、この処理を表すシーケンス図である。図6の例では、真空処理室102に試料を搬入する前に、真空処理室102内を減圧し、可変バルブ121の開度を変えない状態で試料搬送用ガスであるArガスを200ml/min以上の流量で供給し(図6の時点a1)、この状態でゲート弁107を開いて、試料を真空処理室102内に搬入する(図6の時点c1)。その後、ゲート弁107を閉じ(図6の時点b2)Arガスの供給を停止して(図6の時点a2)、真空処理室102内を再度減圧し、エッチング処理のためのエッチング処理用ガスを供給(図6の時点d1)している。   FIG. 6 is a sequence diagram showing this processing. In the example of FIG. 6, before the sample is carried into the vacuum processing chamber 102, the inside of the vacuum processing chamber 102 is decompressed, and Ar gas that is a sample transporting gas is 200 ml / min without changing the opening of the variable valve 121. Supplying at the above flow rate (time point a1 in FIG. 6), the gate valve 107 is opened in this state, and the sample is carried into the vacuum processing chamber 102 (time point c1 in FIG. 6). Thereafter, the gate valve 107 is closed (time point b2 in FIG. 6), the supply of Ar gas is stopped (time point a2 in FIG. 6), the inside of the vacuum processing chamber 102 is decompressed again, and an etching process gas for the etching process is supplied. Supplying (time point d1 in FIG. 6).

このシーケンスの場合、試料搬送用ガスであるArガス停止からエッチング処理用ガス供給までの間に空き時間が生じてしまう。この空き時間は、エッチング開始までの間に処理室内におけるガスの流れが無くなる期間である。そして、その後、エッチング処理ガスが供給されることになり、このとき処理室内に付着していた異物が浮遊して試料に付着することが考えられる。なお、試料搬送用ガス(Arガス)停止からエッチング処理用ガス供給までの間は、高真空排気の期間(圧力センサの零点補正が可能な期間)である(なお、図6の各時点を表す符号は後述する図3と同じである)。   In the case of this sequence, an idle time occurs between the stop of the Ar gas that is the sample transport gas and the supply of the etching process gas. This idle time is a period during which there is no gas flow in the processing chamber before the etching starts. Then, after that, the etching process gas is supplied, and it is considered that the foreign matter adhering to the processing chamber at this time floats and adheres to the sample. Note that the period from the stop of the sample transport gas (Ar gas) to the supply of the etching process gas is a period of high vacuum evacuation (a period during which the zero point correction of the pressure sensor can be performed) (note that each time point in FIG. 6 is represented). The reference numerals are the same as those in FIG.

このように、エッチング開始までの間に、Arガスの供給停止による処理室内のガス流れが無くなる期間が生じ、その後、エッチング処理ガスが供給されると、処理室内に付着していた異物が浮遊して試料に付着するとともに、Arガスの供給を止めてからエッチング処理ガスを供給して処理室内を所定圧力に制御するに時間を要し、このため、装置全体でのスループットが低下する。   As described above, there is a period in which the gas flow in the processing chamber disappears due to the stop of the Ar gas supply until the start of etching. After that, when the etching processing gas is supplied, the foreign matter attached to the processing chamber floats. In addition to adhering to the sample, it takes time to stop the supply of Ar gas and then supply the etching process gas to control the inside of the processing chamber to a predetermined pressure, which reduces the throughput of the entire apparatus.

特許文献2には、異物低減のため、処理ガスが供給されるまで搬送ガスの流れを継続すること示されている。しかし、圧力センサの零点補正あるいは試料処理後の搬送シーケンスについては記載されておらず、シーケンス的な実用面での配慮がなされていない。   Patent Document 2 shows that the flow of the carrier gas is continued until the processing gas is supplied in order to reduce foreign matter. However, the zero point correction of the pressure sensor or the conveyance sequence after the sample processing is not described, and no consideration is given to the practical use in terms of sequence.

また、特許文献3には、試料への異物付着を抑制するため、真空搬送室と該真空処理室とゲート弁を介して接続された処理室との間で試料を搬送する際、真空搬送室と処理室に試料搬送用ガスを供給するとともに、試料の搬送前、または搬送後の処理室内での試料搬送用ガスと処理ガスとの切替えタイミングを重複(ラップ)させることが示されている。しかし、スループットの向上に関しての配慮はなされていない。   Further, in Patent Document 3, in order to suppress the adhesion of foreign matter to a sample, a vacuum transfer chamber is provided when a sample is transferred between a vacuum transfer chamber and a processing chamber connected to the vacuum processing chamber via a gate valve. It is shown that the sample transfer gas is supplied to the processing chamber and the switching timing of the sample transfer gas and the processing gas in the processing chamber before or after transfer of the sample is overlapped (wrapped). However, no consideration is given to improving the throughput.

本発明は、これらの問題点に鑑みてなされたもので、試料に付着する異物の低減を図るとともに装置全体のスループットを向上させることのできる真空処理装置の運転方法を提供することにある。   The present invention has been made in view of these problems, and it is an object of the present invention to provide a method of operating a vacuum processing apparatus capable of reducing foreign matter adhering to a sample and improving the throughput of the entire apparatus.

本発明は上記課題を解決するため、次のような手段を採用した。   In order to solve the above problems, the present invention employs the following means.

試料処理用のガスおよび試料搬送用のガスを供給するガス供給機構を備えた真空処理室と、該真空容処理室内に高周波エネルギを供給してプラズマを生成するプラズマ生成手段と、 その一方端をロック室に接続し、その他方端を前記真空処理室にゲート弁を介して接続した真空搬送室と、 前記真空搬送室内のガスを排気する排気手段および真空処理室内のガスを可変バルブを介して排気する排気手段と、前記真空処理室内の圧力を測定する圧力センサを備え、カセット内の試料を、前記ロック室および真空搬送室を介して前記真空処理室に搬入し、前記真空処理室で真空処理された処理済の試料を前記真空搬送室およびロック室を介して搬出する真空処理装置の運転方法において、前記可変バルブを所定の開度に解放して真空処理室内を減圧するとともに減圧が完了した時点で前記圧力センサの出力値をリセットする零点補正を行い、その後、前記ガス供給機構を介して試料搬送用ガスを供給し、供給した状態で前記ゲート弁を解放して試料の搬入を行い、試料の搬入完了後にゲート弁を閉じた状態で、かつ試料搬送用ガスの供給を継続した状態で試料処理用のガスを供給し、その後、試料搬送用ガスの供給を停止した後、プラズマ処理を施し、プラズマ処理の終了後は、試料処理用ガスの供給停止に先立って試料搬送用ガスを供給する。   A vacuum processing chamber having a gas supply mechanism for supplying a gas for sample processing and a gas for transporting a sample; plasma generating means for generating plasma by supplying high-frequency energy into the vacuum volume processing chamber; A vacuum transfer chamber connected to the lock chamber and having the other end connected to the vacuum processing chamber via a gate valve; exhaust means for exhausting gas in the vacuum transfer chamber; and gas in the vacuum processing chamber via a variable valve An exhaust means for exhausting and a pressure sensor for measuring the pressure in the vacuum processing chamber are provided, and the sample in the cassette is carried into the vacuum processing chamber via the lock chamber and the vacuum transfer chamber, and is vacuumed in the vacuum processing chamber. In the operation method of the vacuum processing apparatus for carrying out the processed sample after being processed through the vacuum transfer chamber and the lock chamber, the variable valve is released to a predetermined opening to reduce the vacuum processing chamber. When the decompression is completed, zero point correction is performed to reset the output value of the pressure sensor. After that, the sample transport gas is supplied through the gas supply mechanism, and the gate valve is released in the supplied state. Sample is loaded, sample processing gas is supplied with the gate valve closed after sample loading is completed and sample transport gas is continuously supplied, and then the sample transport gas supply is stopped. Then, plasma processing is performed, and after completion of the plasma processing, sample transport gas is supplied prior to stopping supply of the sample processing gas.

本発明は、以上の構成を備えるため、試料に付着する異物の低減を図るとともに装置全体のスループットを向上させることができる。   Since the present invention has the above-described configuration, it is possible to reduce foreign substances adhering to the sample and improve the throughput of the entire apparatus.

プラズマエッチング装置を説明する図である。It is a figure explaining a plasma etching apparatus. プラズマエッチング装置の変形例を示す図である。It is a figure which shows the modification of a plasma etching apparatus. プラズマエッチング装置の運転方法を説明する図である。It is a figure explaining the operating method of a plasma etching apparatus. プラズマエッチング装置の運転方法を説明する図である。It is a figure explaining the operating method of a plasma etching apparatus. プラズマエッチング装置の運転方法を説明する図である。It is a figure explaining the operating method of a plasma etching apparatus. プラズマエッチング装置の従来の運転方法を説明する図である。It is a figure explaining the conventional operating method of a plasma etching apparatus.

以下、実施形態を添付図面を参照しながら説明する。図1は、本発明の実施形態にかかる真空処理装置、この例の場合、プラズマエッチング装置を説明する図である。   Hereinafter, embodiments will be described with reference to the accompanying drawings. FIG. 1 is a diagram illustrating a vacuum processing apparatus according to an embodiment of the present invention, and in this example, a plasma etching apparatus.

プラズマエッチング装置は、図示しないロック室から試料が搬入される真空搬送室101、真空搬送室101にゲート弁107を介して接続した真空処理室102を備える。真空搬送室101には、試料搬送用ガスである不活性ガスを導入するため、不活性ガスの導入路118がその下部に接続されている。不活性導入路118は不活性ガス源116と連通されており、途中に不活性ガスの流量を調節するマスフローコントローラ117および導入バルブ119を備える。また、真空搬送室101下部には、真空搬送室101内の圧力を所望の圧力に調整するためのターボ分子ポンプ120を備える。   The plasma etching apparatus includes a vacuum transfer chamber 101 into which a sample is transferred from a lock chamber (not shown), and a vacuum processing chamber 102 connected to the vacuum transfer chamber 101 via a gate valve 107. An inert gas introduction path 118 is connected to the lower portion of the vacuum transfer chamber 101 in order to introduce an inert gas that is a sample transfer gas. The inert introduction path 118 is in communication with the inert gas source 116 and includes a mass flow controller 117 and an introduction valve 119 that adjust the flow rate of the inert gas. In addition, a turbo molecular pump 120 for adjusting the pressure in the vacuum transfer chamber 101 to a desired pressure is provided below the vacuum transfer chamber 101.

真空処理室102の下部には試料台108が設けてあり、試料台108に対向する上部にはプラズマ生成部が形成されている。プラズマ生成部の上部には真空処理室102を構成する蓋部材106が設けられ、蓋部材106を介して真空処理室102の外側にアンテナ105が配置される。アンテナ105は同軸ケーブル等の導波手段104を介して高周波電源103に接続されている。   A sample stage 108 is provided at the lower part of the vacuum processing chamber 102, and a plasma generation unit is formed at the upper part facing the sample stage 108. A lid member 106 constituting the vacuum processing chamber 102 is provided above the plasma generation unit, and an antenna 105 is disposed outside the vacuum processing chamber 102 via the lid member 106. The antenna 105 is connected to a high-frequency power source 103 through a waveguide means 104 such as a coaxial cable.

真空処理室102のプラズマ生成部には処理ガス供給路115が接続されており、処理ガス供給路115は処理ガス源110および不活性ガス源111に繋がり、その途中には流量調節器であるマスフローコントローラ112および導入バルブ113が設けられている。処理ガス源110および不活性ガス源111が接続された処理ガス導入路は、この場合、集合配管部114によって一つに纏められている。なお、不活性ガスを処理ガスとは別の位置で供給する方が良い場合は、ガス導入路を分けても良い。   A processing gas supply path 115 is connected to the plasma generation unit of the vacuum processing chamber 102, and the processing gas supply path 115 is connected to the processing gas source 110 and the inert gas source 111. A controller 112 and an introduction valve 113 are provided. In this case, the processing gas introduction path to which the processing gas source 110 and the inert gas source 111 are connected is combined into one by the collective piping unit 114. In addition, when it is better to supply the inert gas at a position different from the processing gas, the gas introduction path may be divided.

処理ガスの供給系については1組で図示したが、処理ガス源110、マスフローコントローラ112、導入バルブ113については、複数のガスを独立して流量を制御しながら導入できるように複数の経路で構成することができる。また、真空処理室102の下部には真空排気系が接続されており、この例の場合、可変バルブ121、ターボ分子ポンプ122、ドライポンプ123が順次接続してある。   Although the processing gas supply system is illustrated as one set, the processing gas source 110, the mass flow controller 112, and the introduction valve 113 are configured by a plurality of paths so that a plurality of gases can be introduced independently while controlling the flow rate. can do. A vacuum exhaust system is connected to the lower part of the vacuum processing chamber 102. In this example, a variable valve 121, a turbo molecular pump 122, and a dry pump 123 are sequentially connected.

また、プラズマエッチング装置は制御装置124を有し、制御装置124は真空処理室102に取り付けた圧力センサ109の信号が入力され、真空搬送室101、真空処理室102に関連して設けられた導入バルブ113,119、マスフローコントローラ112、117、可変バルブ121等を制御する。   Further, the plasma etching apparatus has a control device 124, and the control device 124 receives a signal from a pressure sensor 109 attached to the vacuum processing chamber 102, and is introduced in association with the vacuum transfer chamber 101 and the vacuum processing chamber 102. The valves 113 and 119, the mass flow controllers 112 and 117, the variable valve 121 and the like are controlled.

図3は、図1に示すプラズマエッチング装置の運転方法(第1の実施例)を説明する図である。所定圧力の不活性ガス雰囲気に減圧排気されている真空搬送室101内に、図示しないロードロック室を介して試料を搬入する。前述したように真空処理室102内は、ターボ分子ポンプ123により減圧排気されており、この状態、すなわち真空処理室102が減圧排気されかつ処理室102内に試料が無い状態で真空処理室102に設けた圧力センサ109の出力値をリセットする零点補正を行う(図3の時点f1)。なお、圧力センサ109を真空処理室102から切り離した状態で個別に減圧排気を行い、零点補正を行うこともできる(図2参照)。   FIG. 3 is a diagram for explaining an operation method (first embodiment) of the plasma etching apparatus shown in FIG. A sample is carried into a vacuum transfer chamber 101 evacuated to an inert gas atmosphere of a predetermined pressure via a load lock chamber (not shown). As described above, the vacuum processing chamber 102 is evacuated by the turbo molecular pump 123, and in this state, that is, the vacuum processing chamber 102 is evacuated and there is no sample in the processing chamber 102. Zero point correction for resetting the output value of the provided pressure sensor 109 is performed (time point f1 in FIG. 3). Note that it is also possible to perform zero pressure correction individually by evacuating the pressure sensor 109 with the pressure sensor 109 disconnected from the vacuum processing chamber 102 (see FIG. 2).

その後、真空処理室102内に不活性ガス供給源110から集合配管部114を介して試料搬送用ガスである不活性ガスを供給する(図3の時点a1)。このとき、可変バルブ121を所定の開度に変更し(図3の時点e1)、ゲート弁107を開く(図3の時点b1)。 ゲート弁107を開くことにより、真空処理室102には圧力を高く維持された真空搬送室101内の不活性ガスが流入するが、真空処理室102内の排気量が大きいため真空処理室102内圧力はさほど上昇しない。   Thereafter, an inert gas, which is a sample transporting gas, is supplied from the inert gas supply source 110 into the vacuum processing chamber 102 via the collecting pipe 114 (time point a1 in FIG. 3). At this time, the variable valve 121 is changed to a predetermined opening (time point e1 in FIG. 3), and the gate valve 107 is opened (time point b1 in FIG. 3). By opening the gate valve 107, the inert gas in the vacuum transfer chamber 101 maintained at a high pressure flows into the vacuum processing chamber 102. However, since the exhaust amount in the vacuum processing chamber 102 is large, the inside of the vacuum processing chamber 102 The pressure does not rise so much.

その後、試料台108に試料を搬送し(図3の時点c1)し、ゲート弁107を閉じる(図3の時点b2)、真空処理室102に試料用搬送ガスを流した状態でエッチング処理ガスを供給する(図3時点d1)。このとき、試料搬送用ガスはエッチング処理ガスを供給した後、所定のラップ時間を設けてから停止する(図3の時点a2)。このとき処理室内の圧力は所定のエッチング処理開始圧力に調整し、エッチング処理を開始する。   Thereafter, the sample is transferred to the sample stage 108 (time point c1 in FIG. 3), the gate valve 107 is closed (time point b2 in FIG. 3), and the etching process gas is supplied in a state where the sample transfer gas is allowed to flow into the vacuum processing chamber 102. Supply (time point d1 in FIG. 3). At this time, the sample transport gas stops after providing a predetermined lap time after supplying the etching gas (time point a2 in FIG. 3). At this time, the pressure in the processing chamber is adjusted to a predetermined etching processing start pressure, and the etching processing is started.

エッチング処理が終了し、試料を搬出する際には、上述と逆の手順で実行される。すなわち、エッチング処理終了後、エッチング処理ガスを流したままの状態で可変バルブを所定の開度に変更し(図3の時点e2)、エッチング処理ガスを停止する前に試料搬送用ガスを供給して(図3の時点a3)、所定のラップ時間を設けてからエッチング処理ガスを停止する(図3の時点d2)。   When the etching process is finished and the sample is carried out, the procedure is executed in the reverse order. That is, after the etching process is completed, the variable valve is changed to a predetermined opening degree while the etching process gas is kept flowing (time point e2 in FIG. 3), and the sample transfer gas is supplied before the etching process gas is stopped. (Time point a3 in FIG. 3), the etching process gas is stopped after a predetermined lap time (time point d2 in FIG. 3).

その後、真空処理室102内が試料搬送用ガス雰囲気になったら(例えば、所定時間が経過したら)ゲート弁107を開き(図3の時点b3)、試料を真空処理室102から搬出する(図3の時点c2)。試料搬送後、ゲート弁107を閉じ(図3の時点b4)、試料搬送用ガスを停止する前にクリーニング用ガスの供給を開始する(図3の時点d3)。 その後、所定のラップ時間を設けて試料搬送用ガスを停止し(図3の時点a4)し、クリーニング処理を行う。クリーニング処理が終了するとクリーニング用ガスの供給が停止され(図3の時点d4)、可変バルブ121を全開にし(図3の時点e3)、高真空排気を行う。この後、次に処理する試料のための圧力センサ109の零点補正を行う(図3の時点f2)。   After that, when the inside of the vacuum processing chamber 102 is in a sample transfer gas atmosphere (for example, when a predetermined time has elapsed), the gate valve 107 is opened (time point b3 in FIG. 3), and the sample is carried out of the vacuum processing chamber 102 (FIG. 3). C2). After the sample transport, the gate valve 107 is closed (time point b4 in FIG. 3), and the supply of the cleaning gas is started before the sample transport gas is stopped (time point d3 in FIG. 3). Thereafter, a predetermined lapping time is provided to stop the sample transport gas (time point a4 in FIG. 3), and a cleaning process is performed. When the cleaning process ends, the supply of the cleaning gas is stopped (time d4 in FIG. 3), the variable valve 121 is fully opened (time e3 in FIG. 3), and high vacuum evacuation is performed. Thereafter, the zero point correction of the pressure sensor 109 for the sample to be processed next is performed (time point f2 in FIG. 3).

このように、図3に示すシーケンスでは、真空処理室102内に試料を搬入する前に行う真空処理室102の減圧時に圧力センサ109の零点補正(図3の時点f1)を行う。その後、可変バルブ121の開度を所定の開度に変更し(図3の時点e1)、試料搬送用ガスであるArガスを供給(図3の時点a1)する。   In this manner, in the sequence shown in FIG. 3, the zero point correction (time point f1 in FIG. 3) of the pressure sensor 109 is performed when the vacuum processing chamber 102 is depressurized before the sample is carried into the vacuum processing chamber 102. Thereafter, the opening degree of the variable valve 121 is changed to a predetermined opening degree (time point e1 in FIG. 3), and Ar gas that is a sample transporting gas is supplied (time point a1 in FIG. 3).

この後、図6に示す従来のシーケンスではゲート弁を開け(図6の時点b1)、試料を搬入し(図6の時点c1)、ゲート弁を閉じ(図6の時点b2)、試料搬送用ガスの供給を停止する(図6の時点a2)。しかし、本発明のシーケンスでは、試料搬送用ガスのArガスを供給し続け、高真空排気も行わずにエッチング処理用ガスを供給(図3の時点d1)する。   Thereafter, in the conventional sequence shown in FIG. 6, the gate valve is opened (time point b1 in FIG. 6), the sample is loaded (time point c1 in FIG. 6), the gate valve is closed (time point b2 in FIG. 6), The gas supply is stopped (time point a2 in FIG. 6). However, in the sequence of the present invention, the Ar gas as the sample transport gas is continuously supplied, and the etching processing gas is supplied without performing high vacuum evacuation (time point d1 in FIG. 3).

Arガスはエッチング処理用ガスを供給した後、ガス供給系の応答時間を考慮して、例えば0.2〜2秒程度ラップ時間を設けてから停止する(図3の時点a2)。このとき、処理室内の圧力は所定のエッチング処理開始圧力に調整する。   After supplying the etching gas, the Ar gas is stopped after providing a lap time of, for example, about 0.2 to 2 seconds in consideration of the response time of the gas supply system (time point a2 in FIG. 3). At this time, the pressure in the processing chamber is adjusted to a predetermined etching processing start pressure.

その後、試料を従来のシーケンスと同様に処理し、前記と逆の手順で試料を搬出する。この結果、発生した異物数は粒径0.13μm以上で9個、1.0μm以上で1個であった。  Thereafter, the sample is processed in the same manner as in the conventional sequence, and the sample is carried out in the reverse procedure. As a result, the number of generated foreign matters was 9 when the particle size was 0.13 μm or more and 1 when the particle size was 1.0 μm or more.

なお、従来シーケンスの場合、発生した異物数は粒径0.13μm以上で20個、1.0μm以上で5個であった。なお、前記試料搬送用ガスと処理用ガスのラップ時間については、供給するガス種や流量により変更することが望ましい。 In the case of the conventional sequence, the number of generated foreign matters was 20 when the particle size was 0.13 μm or more and 5 when the particle size was 1.0 μm or more. Note that it is desirable to change the lap time between the sample transport gas and the processing gas depending on the type of gas to be supplied and the flow rate.

このように、試料処理前における高真空排気と圧力センサ109の零点補正動作を削除し、さらにエッチング処理用ガスの供給開始後まで試料搬送用ガスを供給してガス流れを継続して形成する手法を用いることにより、発生する異物数を低減することができる。また、試料を真空搬送室101と真空処理室102との間で搬入出する際のゲート弁107の開閉動作に伴い、真空搬送室101内で加圧されている試料搬送用ガスが真空処理室102に流入することにより発生する異物を低減することができると共に、スループットを向上することができる
なお、第1の実施例では試料搬送用ガスとしてArガスを用いたが、N2ガス等を用いても良い。
As described above, the method of eliminating the high vacuum exhaust before the sample processing and the zero point correction operation of the pressure sensor 109 and further supplying the sample carrying gas until the start of the supply of the etching processing gas and continuously forming the gas flow. By using, the number of generated foreign matters can be reduced. In addition, the sample transfer gas pressurized in the vacuum transfer chamber 101 in accordance with the opening / closing operation of the gate valve 107 when the sample is carried in / out between the vacuum transfer chamber 101 and the vacuum processing chamber 102 is supplied to the vacuum processing chamber. The foreign matter generated by flowing into the gas can be reduced and the throughput can be improved. In the first embodiment, Ar gas is used as the sample transport gas, but N2 gas or the like is used. Also good.

第1の実施例では、エッチング処理ガスが供給されるまでガス流れを継続させるため、真空処理室102の高真空排気と圧力センサ109の0点補正動作を試料が真空処理室102内に搬入される前に行うように従来例を変更している。この変更により、インサイチュークリーニングおよび試料のエッチング処理を含むシーケンス時間が約15s短縮されることが分かった。   In the first embodiment, since the gas flow is continued until the etching process gas is supplied, the high-pressure evacuation of the vacuum processing chamber 102 and the zero point correction operation of the pressure sensor 109 are carried into the vacuum processing chamber 102. The conventional example has been changed to be performed before This change has been found to reduce the sequence time, including in-situ cleaning and sample etching, by approximately 15 seconds.

そこで、従来のシーケンスと本実施例によるシーケンスで、どの程度スループットに差が現れるかを確認するために連続処理での比較評価を行った。なお、スループット測定方法としては、最初の試料がカセットから搬出された時点をスタートとし、その後真空搬送室101を介して真空処理室102に搬送され、エッチング処理を行った後、再度真空搬送室101を介して最終の試料がカセットに搬入されるまでの時間とした。また、処理方法としては実際の製品処理を模擬した形とし、1チャンバを用いたパラレル方式で行った。その結果、本実施例のシーケンスを適用することで従来シーケンスよりウエハ1枚あたり約17秒の時間短縮を図ることができた。   Therefore, in order to confirm to what extent the difference appears in the throughput between the conventional sequence and the sequence according to the present embodiment, comparative evaluation was performed in continuous processing. Note that the throughput measurement method starts when the first sample is unloaded from the cassette, and is then transferred to the vacuum processing chamber 102 via the vacuum transfer chamber 101, and after performing the etching process, the vacuum transfer chamber 101 again. The time taken for the final sample to be carried into the cassette via Further, as a processing method, an actual product processing was simulated, and a parallel method using one chamber was performed. As a result, by applying the sequence of this embodiment, it was possible to shorten the time by about 17 seconds per wafer from the conventional sequence.

以上の結果より、本実施例によれば異物低減およびスループット向上を図ることがでいることが分かった。   From the above results, it was found that according to the present embodiment, foreign matter reduction and throughput improvement can be achieved.

以上の例は、真空処理室102内に試料が無い状態でのインサイチュークリーニングを含んだシーケンスであるが、試料有りでのインサチュークリーニング、あるいはインサイチュークリーニングを実施せず、試料を連続処理する手法を用いた場合、毎試料処理前に行うべき圧力センサ109の零点補正を行うタイミングがなくなることが考えられる。   The above example is a sequence including in-situ cleaning with no sample in the vacuum processing chamber 102. However, in-situ cleaning with the sample or in-situ cleaning is not performed, and the sample is continuously processed. When the method is used, it is considered that there is no timing for performing zero point correction of the pressure sensor 109 to be performed before each sample processing.

このような場合おいては、図2に示すように、圧力センサ109下方に設けた開閉バルブ125を閉じて圧力センサ109を切り離した上で、ターボ分子ポンプ126上方に設けた開閉バルブ125を開けて圧力センサ109に至るラインのみを減圧して、零点補正を行うことができる。なお、図2において図1に示される部分と同一部分については同一符号を付してその説明を省略する。   In such a case, as shown in FIG. 2, the on-off valve 125 provided below the pressure sensor 109 is closed to disconnect the pressure sensor 109, and then the on-off valve 125 provided above the turbo molecular pump 126 is opened. Thus, only the line reaching the pressure sensor 109 can be decompressed to perform zero point correction. 2 that are the same as those shown in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted.

図4は、プラズマエッチング装置の運転方法(第2の実施例)を説明する図である。図4において、図3と同符号は同一の時点を示す。図3と異なる点は、試料搬送用ガスとエッチング処理ガスの供給および停止の際のガス切替えを段階的(図では2段階)に増加または減少させて行う点である。ここでは、ガスの段階的な切替えに際して、一方のガスの供給量を段階的の増加させるとともに他方のガスの供給量を段階的に減少させ、真空処理室102内の圧力が実質的に一定になるようにしてある。   FIG. 4 is a diagram for explaining a method of operating the plasma etching apparatus (second embodiment). 4, the same reference numerals as those in FIG. 3 indicate the same time points. The difference from FIG. 3 is that gas switching at the time of supply and stop of the sample transport gas and the etching process gas is performed by increasing or decreasing in stages (two stages in the figure). Here, when the gas is switched stepwise, the supply amount of one gas is increased stepwise and the supply amount of the other gas is decreased stepwise so that the pressure in the vacuum processing chamber 102 becomes substantially constant. It is supposed to be.

この運転方法によれば、第1の実施例の場合と同様にガス切替え時間がラップしているので、空処理室102内のガス流れが途切れることがない。このため、第1の実施例と同様に異物付着抑制の効果が得られるとともに、ガス流量を段階的に変更することで真空処理室102内の圧力変動を抑えることができ、真空処理室102内の処理圧力制御が容易となる。   According to this operation method, since the gas switching time is overlapped as in the case of the first embodiment, the gas flow in the empty processing chamber 102 is not interrupted. For this reason, the effect of suppressing the adhesion of foreign matter can be obtained as in the first embodiment, and the pressure fluctuation in the vacuum processing chamber 102 can be suppressed by changing the gas flow rate stepwise, and the inside of the vacuum processing chamber 102 It becomes easy to control the processing pressure.

図5は、プラズマエッチング装置の運転方法(第3の実施例)を説明する図である。図5において、図3と同符号は同一の時点を示す。図3と異なる点は、ガス切替えをさらに連続的にした点である。本実施例によれば、前記第2の実施例と同様の効果があるとともに、さらにガス流量をスムーズに変更することができるので処理室内の圧力を実質的に一定に保ちながら処理用ガスと試料搬送ガスとの入れ替えを行うことができる。   FIG. 5 is a diagram for explaining a method of operating the plasma etching apparatus (third embodiment). In FIG. 5, the same reference numerals as those in FIG. 3 indicate the same time points. The difference from FIG. 3 is that the gas switching is made more continuous. According to this embodiment, the same effect as that of the second embodiment can be obtained, and the gas flow rate can be changed smoothly, so that the processing gas and the sample can be maintained while maintaining the pressure in the processing chamber substantially constant. Replacement with carrier gas can be performed.

以上説明したように、本実施形態によれば、試料搬送用ガスの雰囲気内で試料を搬送するとともに、試料の搬送前、または搬送後における処理室内での試料搬送用ガスと処理ガスとの切替えタイミングを重複(ラップ)させてガスを切り替え、更に真空処理室内圧力の零点補正をシーケンス内で行うものである。これにより、処理室内のガス流れを中断させることなくガスの切替えを行うことができる。このため、異物はガス流れに沿ってそのまま排気され試料に付着することを抑制することができる。また、零点補正をシーケンス内で行うことができるとともにガス切替え時間が短縮されてスループットを向上できる。   As described above, according to the present embodiment, the sample is transported in the atmosphere of the sample transport gas, and switching between the sample transport gas and the processing gas in the processing chamber before or after the transport of the sample is performed. The gas is switched by overlapping (wrapping) timing, and the zero point correction of the pressure in the vacuum processing chamber is performed in the sequence. Thereby, the gas can be switched without interrupting the gas flow in the processing chamber. For this reason, it can suppress that a foreign material is exhausted as it is along a gas flow, and adheres to a sample. Further, zero point correction can be performed in the sequence, and the gas switching time can be shortened to improve the throughput.

101 真空搬送室
102 真空処理室
103 高周波電源
104 導波手段
105 アンテナ
106 蓋部材
107 ゲート弁
108 試料台
109 圧力センサ
110、111 処理ガス源、不活性ガス源
112、117 マスフローコントローラ
113、119 導入バルブ
114 集合配管部
115 処理ガス供給路
116 不活性ガス源
118 不活性ガスガス導入路
120 ターボ分子ポンプ
121 可変バルブ
122 ターボ分子ポンプ
123 ドライポンプ
124 制御装置
125 開閉バルブ
126 ターボ分子ポンプ
101 Vacuum transfer chamber 102 Vacuum processing chamber
103 high frequency power supply
104 Waveguide means
105 Antenna 106 Lid member 107 Gate valve 108 Sample stage
109 Pressure sensor 110, 111 Processing gas source, inert gas source 112, 117 Mass flow controller 113, 119 Introduction valve 114 Collecting piping part 115 Processing gas supply path 116 Inert gas source 118 Inert gas gas introduction path 120 Turbo molecular pump 121 Variable Valve 122 Turbo molecular pump 123 Dry pump 124 Controller 125 Open / close valve 126 Turbo molecular pump

Claims (3)

試料処理用のガスおよび試料搬送用のガスを供給するガス供給機構を備えた真空処理室と、
該真空容処理室内に高周波エネルギを供給してプラズマを生成するプラズマ生成手段と、
その一方端をロック室に接続し、その他方端を前記真空処理室にゲート弁を介して接続した真空搬送室と、
前記真空搬送室内のガスを排気する排気手段および真空処理室内のガスを可変バルブを介して排気する排気手段と、
前記真空処理室内の圧力を測定する圧力センサを備え、
カセット内の試料を、前記ロック室および真空搬送室を介して前記真空処理室に搬入し、前記真空処理室で真空処理された処理済の試料を前記真空搬送室およびロック室を介して搬出する真空処理装置の運転方法において、
前記可変バルブを所定の開度に解放して真空処理室内を減圧するとともに減圧が完了した時点で前記圧力センサの出力値をリセットする零点補正を行い、
その後、前記ガス供給機構を介して試料搬送用ガスを供給し、供給した状態で前記ゲート弁を解放して試料の搬入を行い、試料の搬入完了後にゲート弁を閉じた状態で、かつ試料搬送用ガスの供給を継続した状態で試料処理用のガスを供給し、その後、試料搬送用ガスの供給を停止した後、プラズマ処理を施し、
プラズマ処理の終了後は、試料処理用ガスの供給停止に先立って試料搬送用ガスを供給することを特徴とするプラズマ処理装置の運転方法。
A vacuum processing chamber having a gas supply mechanism for supplying a gas for sample processing and a gas for sample transport;
Plasma generating means for supplying high frequency energy into the vacuum chamber and generating plasma;
A vacuum transfer chamber having one end connected to the lock chamber and the other end connected to the vacuum processing chamber via a gate valve;
Exhaust means for exhausting the gas in the vacuum transfer chamber and exhaust means for exhausting the gas in the vacuum processing chamber via a variable valve;
A pressure sensor for measuring the pressure in the vacuum processing chamber;
The sample in the cassette is carried into the vacuum processing chamber through the lock chamber and the vacuum transfer chamber, and the processed sample that has been vacuum processed in the vacuum processing chamber is carried out through the vacuum transfer chamber and the lock chamber. In the operation method of the vacuum processing apparatus,
Release the variable valve to a predetermined opening to reduce the pressure in the vacuum processing chamber and perform zero point correction to reset the output value of the pressure sensor when the pressure reduction is completed,
After that, the sample transport gas is supplied via the gas supply mechanism, the gate valve is released in the supplied state, the sample is loaded, and the sample is transported with the gate valve closed after the sample is loaded. The sample processing gas is supplied in a state in which the supply of the sample gas is continued, and then the supply of the sample transport gas is stopped, and then the plasma treatment is performed.
A method for operating a plasma processing apparatus, comprising: supplying a sample transporting gas after the plasma processing is completed and prior to stopping the supply of the sample processing gas.
請求項1記載のプラズマ処理装置の運転方法において、
前記試料搬送用ガスの供給を継続した状態で試料処理用のガスを供給し、その後、試料搬送用ガスの供給を停止する処理は、前記試料搬送用ガスの供給を徐々に減少させるとともに試料処理用のガスの供給を徐々に増加させ、試料搬送用ガスの供給を停止する処理であることを特徴とするプラズマ処理装置の運転方法。
In the operating method of the plasma processing apparatus of Claim 1,
The process of supplying the sample processing gas while continuing the supply of the sample transporting gas and then stopping the supply of the sample transporting gas gradually reduces the supply of the sample transporting gas and performs the sample processing. A method for operating a plasma processing apparatus, characterized in that the supply of a gas for use is gradually increased and the supply of a sample transport gas is stopped.
請求項1記載のプラズマ処理装置の運転方法において
プラズマ処理の終了後は、試料処理用ガスの供給停止に先立って試料搬送用ガスを供給する処理は、試料処理用ガスの供給を徐々に減少させるとともに試料搬送用ガスを徐々に増加させて供給する処理であることを特徴とするプラズマ処理装置の運転方法。
The operation method of the plasma processing apparatus according to claim 1, wherein after the plasma processing is finished, the processing for supplying the sample transporting gas prior to stopping the supply of the sample processing gas gradually decreases the supply of the sample processing gas. And a method for operating the plasma processing apparatus, characterized in that the sample transport gas is gradually increased and supplied.
JP2009104201A 2009-04-22 2009-04-22 Operation method of vacuum processing equipment Active JP5280928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009104201A JP5280928B2 (en) 2009-04-22 2009-04-22 Operation method of vacuum processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009104201A JP5280928B2 (en) 2009-04-22 2009-04-22 Operation method of vacuum processing equipment

Publications (2)

Publication Number Publication Date
JP2010258089A true JP2010258089A (en) 2010-11-11
JP5280928B2 JP5280928B2 (en) 2013-09-04

Family

ID=43318694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009104201A Active JP5280928B2 (en) 2009-04-22 2009-04-22 Operation method of vacuum processing equipment

Country Status (1)

Country Link
JP (1) JP5280928B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113439327A (en) * 2020-01-23 2021-09-24 株式会社日立高新技术 Plasma processing apparatus and method for operating plasma processing apparatus
JP7450494B2 (en) 2020-08-18 2024-03-15 東京エレクトロン株式会社 Substrate processing equipment and gas switching method for substrate processing equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257878A (en) * 2002-03-07 2003-09-12 Kawasaki Microelectronics Kk Semiconductor manufacturing apparatus and method for manufacturing semiconductor device using the same
JP2007027496A (en) * 2005-07-19 2007-02-01 Hitachi High-Technologies Corp Plasma etching device and fine particle removal method
JP2009064873A (en) * 2007-09-05 2009-03-26 Hitachi High-Technologies Corp Method of transferring processing object in semiconductor manufacturing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257878A (en) * 2002-03-07 2003-09-12 Kawasaki Microelectronics Kk Semiconductor manufacturing apparatus and method for manufacturing semiconductor device using the same
JP2007027496A (en) * 2005-07-19 2007-02-01 Hitachi High-Technologies Corp Plasma etching device and fine particle removal method
JP2009064873A (en) * 2007-09-05 2009-03-26 Hitachi High-Technologies Corp Method of transferring processing object in semiconductor manufacturing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113439327A (en) * 2020-01-23 2021-09-24 株式会社日立高新技术 Plasma processing apparatus and method for operating plasma processing apparatus
CN113439327B (en) * 2020-01-23 2023-07-25 株式会社日立高新技术 Plasma processing apparatus and method of operating the same
JP7450494B2 (en) 2020-08-18 2024-03-15 東京エレクトロン株式会社 Substrate processing equipment and gas switching method for substrate processing equipment

Also Published As

Publication number Publication date
JP5280928B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
US9340879B2 (en) Substrate processing apparatus, method for manufacturing semiconductor device and computer-readable recording medium
JP3403181B2 (en) Heat treatment apparatus and heat treatment method
TW201832289A (en) Substrate processing apparatus substrate processing method and storage medium
KR102186773B1 (en) Plasma processing apparatus and plasma processing method
JP4825689B2 (en) Vacuum processing equipment
KR102073070B1 (en) The plasma processing apparatus and plasma processing method
TWI555115B (en) Vacuum processing device and its operation method
JP2011061037A (en) Substrate processing apparatus, and method of manufacturing semiconductor device
JP2009252953A (en) Vacuum processing apparatus
US9269562B2 (en) In situ chamber clean with inert hydrogen helium mixture during wafer process
JP5280928B2 (en) Operation method of vacuum processing equipment
KR20230130596A (en) Substrate processing apparatus, method of manufacturing semiconductor device and program
JP2008226891A (en) Plasma processing method
JP2009123723A (en) Vacuum treatment apparatus or method for vacuum treatment
CN113508453B (en) Substrate processing apparatus, method for manufacturing semiconductor device, and computer-readable recording medium
JP2007027339A (en) Plasma processing device
JP2011155044A (en) Vacuum processing apparatus
JP2010177357A (en) Vacuum treatment device and vacuum treatment method
TWI797469B (en) Substrate processing apparatus, manufacturing method of semiconductor device, and substrate processing program
JP2008248395A (en) Plasma treating apparatus and pressure control method of plasma treating apparatus
JPH0387386A (en) Substrate treating device
JP2013236033A (en) Vacuum processing device and sample conveying method
JP2011102673A (en) Vacuum dryer
JP2001070781A (en) Vacuum treatment device
JP5598407B2 (en) Film forming apparatus and film forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5280928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350