JP2010257950A - Radiation curing resin composition for coating wire - Google Patents

Radiation curing resin composition for coating wire Download PDF

Info

Publication number
JP2010257950A
JP2010257950A JP2010063759A JP2010063759A JP2010257950A JP 2010257950 A JP2010257950 A JP 2010257950A JP 2010063759 A JP2010063759 A JP 2010063759A JP 2010063759 A JP2010063759 A JP 2010063759A JP 2010257950 A JP2010257950 A JP 2010257950A
Authority
JP
Japan
Prior art keywords
acrylate
meth
polyol
urethane
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010063759A
Other languages
Japanese (ja)
Inventor
Chuji Yamaguchi
宙志 山口
Osamu Kamo
理 加茂
Takahiko Kurosawa
孝彦 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
DSM IP Assets BV
Original Assignee
JSR Corp
DSM IP Assets BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp, DSM IP Assets BV filed Critical JSR Corp
Priority to JP2010063759A priority Critical patent/JP2010257950A/en
Publication of JP2010257950A publication Critical patent/JP2010257950A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiation curing resin composition for coating wires, producing satisfactory efficiency for manufacturing a coating layer, having sufficient strength and satisfactory adhesion to a center conductor. <P>SOLUTION: This radiation curing resin composition for coating wires contains the following components (A), (B), and (D); (A) a mixture of urethane (meta) acrylate having a structure derived from aliphatic polyol, urethane (metha) acrylate having a structure derived from cyclic polyol, and urethane (metha) acrylate not having a structure derived from polyol, (B) a compound having a cyclic structure and one ethylenic unsaturated group, (D) a compound expressed by the formula (4a). (In the formula (4a), R<SP>8</SP>is a univalent organic group which has an ethylenic unsaturated group, and R<SP>9</SP>is a univalent organic group which may have a hydrogen atom or an ethylenic unsaturated group). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電線、特に動力用電線、電話線、電子機器間又は電子機器内の接続用電線等の被覆用樹脂組成物に関する。   The present invention relates to a resin composition for coating such as electric wires, particularly power wires, telephone wires, connecting wires between electronic devices or in electronic devices.

動力用電線、電線、電話線ケーブル、電子機器間又は電子機器内の接続用電線、自動車用電線等は、絶縁体として電気特性、伝送特性に優れたポリエチレン(PE)とし、外側のシースにPEやポリ塩化ビニル(PVC)を用いたものが多い。テレビのリード線などにおいては、PE被覆、又はその外側シースにゴムを用いたものが使用されている。また、自動車用電線の被覆にはPVC、PET、架橋PE等が広く使用されている(特許文献1〜4)。また、電線被覆層に放射線硬化性樹脂を用いた例も開示されている(特許文献5)。   Power cables, cables, telephone cables, connecting cables between or within electronic devices, automotive cables, etc., are made of polyethylene (PE) with excellent electrical and transmission characteristics as insulators, and PE is used as the outer sheath. Many of them use polyvinyl chloride (PVC). In television lead wires, PE coating or rubber using outer sheath is used. Also, PVC, PET, cross-linked PE and the like are widely used for covering automobile wires (Patent Documents 1 to 4). Moreover, the example which used the radiation curable resin for the electric wire coating layer is also disclosed (patent document 5).

特開2001−312925号公報JP 2001-312925 A 特開2005−187595号公報JP 2005-187595 A 特開2006−348137号公報JP 2006-348137 A 特開2007−45952号公報JP 2007-45952 A 特開2008−251435号公報JP 2008-251435 A

しかしながら、従来の電線被覆材には、保護材としての強度が強く求められたものの、被覆層の製造効率や、中心導体に対する密着性が不十分な場合があった。
従って、本発明の目的は、被覆層の製造効率が良好で、十分な強度を有するとともに、中心導体に対する密着性が良好な電線被覆用樹脂組成物を提供することにある。
However, although the conventional wire coating material is strongly required to have a strong strength as a protective material, the production efficiency of the coating layer and the adhesion to the central conductor may be insufficient.
Accordingly, an object of the present invention is to provide a resin composition for coating an electric wire that has good production efficiency of a coating layer, has sufficient strength, and has good adhesion to a central conductor.

そこで本発明者らは、従来のPVCやPEに代わる電線被覆材を開発すべく、ウレタン(メタ)アクリレート系の放射線硬化性樹脂組成物に着目し、種々検討した結果、特定構造のウレタン(メタ)アクリレートと、環状構造と1個のエチレン性不飽和基を有する化合物と、リン酸エステル構造を有する特定の化合物とを組み合せて用いれば、被覆層の製造効率が良好で、十分な強度を有するにもかかわらず、中心導体に対する密着性が良好な電線被覆材が得られることを見出し、本発明を完成した。   Accordingly, the present inventors have focused on urethane (meth) acrylate radiation curable resin compositions to develop a wire covering material that can replace conventional PVC and PE, and as a result of various studies, have found that urethane (meta) having a specific structure. ) Use of a combination of an acrylate, a compound having a cyclic structure and one ethylenically unsaturated group, and a specific compound having a phosphate ester structure provides good coating layer production efficiency and sufficient strength. Nevertheless, the present inventors have found that an electric wire covering material having good adhesion to the central conductor can be obtained, and the present invention has been completed.

すなわち、本発明は、次の成分(A)、(B)ならびに(D);
(A)脂肪族系ポリオール由来の構造を有するウレタン(メタ)アクリレート、環式ポリオール由来の構造を有するウレタン(メタ)アクリレートおよびポリオール由来の構造を有しないウレタン(メタ)アクリレートの混合物、
(B)環状構造及び1個のエチレン性不飽和基を有する化合物、
(D)下記式(4a)で表される化合物
That is, the present invention includes the following components (A), (B) and (D);
(A) a mixture of urethane (meth) acrylate having a structure derived from an aliphatic polyol, urethane (meth) acrylate having a structure derived from a cyclic polyol, and urethane (meth) acrylate having no structure derived from a polyol,
(B) a compound having a cyclic structure and one ethylenically unsaturated group,
(D) Compound represented by the following formula (4a)

Figure 2010257950
Figure 2010257950

(式(4a)中、R8はエチレン性不飽和基を有する1価の有機基であり、R9は水素原子又はエチレン性不飽和基を有していてもよい1価の有機基である)
を含有する電線被覆用放射線硬化性樹脂組成物を提供するものである。
(In formula (4a), R 8 is a monovalent organic group having an ethylenically unsaturated group, and R 9 is a monovalent organic group optionally having a hydrogen atom or an ethylenically unsaturated group. )
The radiation curable resin composition for electric wire coating | cover containing is provided.

本発明において、電線被覆層(単に被覆層ということもある)とは、電線に用いられる樹脂被覆層であって、銅やアルミニウム等の金属線からなる中心導体の外側に設けられた樹脂製被覆層であれば特に限定されるものではなく、典型的には、中心導体を被覆する絶縁層を有する絶縁電線の絶縁層、単数又は複数の絶縁電線をシース層で被覆したケーブルのシース層、シールド層を有するケーブルのシールド層の外側に接して設けられるシース層等が含まれる。また、電線被覆材とは、電線被覆層の製造に用いられる樹脂組成物をいう。   In the present invention, the electric wire coating layer (sometimes simply referred to as a coating layer) is a resin coating layer used for electric wires, and is a resin coating provided outside a central conductor made of a metal wire such as copper or aluminum. There is no particular limitation as long as it is a layer, and typically, an insulation layer of an insulated wire having an insulation layer covering the central conductor, a sheath layer of a cable in which one or more insulated wires are covered with a sheath layer, and a shield The sheath layer provided in contact with the outer side of the shield layer of the cable having a layer is included. Moreover, an electric wire coating material means the resin composition used for manufacture of an electric wire coating layer.

本発明の組成物を用いれば、紫外線等の放射線照射により簡便にかつ均一に強度(特にヤング率及び破断伸びで表される強度)及び耐熱性に優れた電線被覆層が形成され、かつ当該保護層は中心導体に対する密着性が良好であり、電線被覆層を効率よく製造することができる。
本発明の放射線硬化性である電線被覆材を用いることにより、薄型の被覆層であっても十分な強度を有する電線を得ることができるため、動力用電線、例えばモーターコイルなど動力用電線に、特に好適に用いることができる。
By using the composition of the present invention, an electric wire coating layer having excellent strength (particularly strength represented by Young's modulus and elongation at break) and heat resistance can be easily and uniformly formed by irradiation with ultraviolet rays or the like, and the protection. The layer has good adhesion to the central conductor, and the wire coating layer can be produced efficiently.
By using the radiation-curing wire coating material of the present invention, it is possible to obtain a wire having sufficient strength even with a thin coating layer, so that a power wire, for example, a power wire such as a motor coil, It can be particularly preferably used.

以下、本発明の組成物を構成する各成分について説明する。
本発明の(A)成分であるウレタン(メタ)アクリレートは、(A1)脂肪族系ポリオール由来の構造を有するウレタン(メタ)アクリレート、(A2)環式ポリオール由来の構造を有するウレタン(メタ)アクリレートおよび(A3)ポリオール由来の構造を有しないウレタン(メタ)アクリレートの混合物である。
Hereafter, each component which comprises the composition of this invention is demonstrated.
The urethane (meth) acrylate which is the component (A) of the present invention includes (A1) urethane (meth) acrylate having a structure derived from an aliphatic polyol, and (A2) urethane (meth) acrylate having a structure derived from a cyclic polyol. And (A3) a mixture of urethane (meth) acrylates having no polyol-derived structure.

(A1)脂肪族系ポリオール由来の構造を有するウレタン(メタ)アクリレートは、脂肪族ポリオールに由来する比較的柔軟な構造を有しているため、硬化物のヤング率を低下させ、破断伸びを増大させて、例えば被覆電線等をボビンに巻き取る場合において加わる曲げ応力に対する耐性を向上させることができる。(A1)成分は、下記式で表される構造を有することが好ましい。
HA−(DI−aPOL−)m−DI−HA
[上記式において、aPOLは脂肪族系ポリオール由来の構造であり、DIはジイソシアネート由来の構造であり、HAは水酸基含有(メタ)アクリレート由来の構造である。mは1〜4であり、1が好ましい。]
(A1) Urethane (meth) acrylate having a structure derived from an aliphatic polyol has a relatively flexible structure derived from an aliphatic polyol, so the Young's modulus of the cured product is decreased and the elongation at break is increased. Thus, for example, resistance to bending stress applied when winding a covered electric wire or the like around a bobbin can be improved. The component (A1) preferably has a structure represented by the following formula.
HA- (DI-aPOL-) m -DI-HA
[In the above formula, aPOL is a structure derived from an aliphatic polyol, DI is a structure derived from diisocyanate, and HA is a structure derived from a hydroxyl group-containing (meth) acrylate. m is 1-4 and 1 is preferable. ]

(A2)環式ポリオール由来の構造を有するウレタン(メタ)アクリレートは、環状構造を有するポリオールに由来する比較的剛直な構造を有しているため、硬化物のヤング率を増大させ、破断伸びを低下させて、外部応力が加わった場合において中心導体を有効に保護することができる。(A2)成分は、下記式で表される構造を有することが好ましい。
HA−(DI−cPOL−)n−DI−HA
[上記式において、cPOLは環式ポリオール由来の構造であり、DIはジイソシアネート由来の構造であり、HAは水酸基含有(メタ)アクリレート由来の構造である。nは1〜4であり、1が好ましい。]
(A2) The urethane (meth) acrylate having a structure derived from a cyclic polyol has a relatively rigid structure derived from a polyol having a cyclic structure, so that the Young's modulus of the cured product is increased and the elongation at break is increased. The central conductor can be effectively protected when the external stress is applied. The component (A2) preferably has a structure represented by the following formula.
HA- (DI-cPOL-) n -DI-HA
[In the above formula, cPOL is a structure derived from a cyclic polyol, DI is a structure derived from a diisocyanate, and HA is a structure derived from a hydroxyl group-containing (meth) acrylate. n is 1-4 and 1 is preferable. ]

(A3)ポリオール由来の構造を有しないウレタン(メタ)アクリレートは、ポリオール由来の構造を有さず、分子量が比較的小さく剛直な構造を有している。また、(A3)成分は、分子量が小さいためウレタン結合の密度を上げることができ、硬化物中で形成される水素結合の密度を増大させて、外部応力に対する耐性に優れた電線被覆層を形成することができる。(A3)成分は、下記式で表される構造を有することが好ましい。
HA−DI−HA
[上記式において、DIはジイソシアネート由来の構造であり、HAは水酸基含有(メタ)アクリレート由来の構造である。]
(A3) A urethane (meth) acrylate having no polyol-derived structure does not have a polyol-derived structure, and has a relatively small molecular weight and a rigid structure. In addition, since the component (A3) has a low molecular weight, the density of urethane bonds can be increased, and the density of hydrogen bonds formed in the cured product is increased to form a wire coating layer with excellent resistance to external stress. can do. The component (A3) preferably has a structure represented by the following formula.
HA-DI-HA
[In the above formula, DI is a structure derived from diisocyanate, and HA is a structure derived from a hydroxyl group-containing (meth) acrylate. ]

これら(A)で表される特定構造のウレタン(メタ)アクリレートを用いることにより、耐熱性に優れ、中心導体に対する密着性が良好な電線被覆層を形成することができる。   By using urethane (meth) acrylate having a specific structure represented by (A), it is possible to form an electric wire coating layer having excellent heat resistance and good adhesion to the central conductor.

(A)成分であるウレタン(メタ)アクリレートは、(a1)脂肪族系ポリオール、(b)ポリイソシアネートおよび(c)水酸基含有(メタ)アクリレートを反応させて得られる脂肪族系ポリオール由来の構造を有するウレタン(メタ)アクリレート(A1)、(a2)環式ポリオール、(b)ポリイソシアネートおよび(c)水酸基含有(メタ)アクリレートを反応させて得られる環式ポリオール由来の構造を有するウレタン(メタ)アクリレート(A2)およびポリオールを用いずに(b)ポリイソシアネートおよび(c)水酸基含有(メタ)アクリレートを反応させて得られるポリオール由来の構造を有しないウレタン(メタ)アクリレート(A3)を混合して得ることができる。
また、(A)ウレタン(メタ)アクリレートは、(a1)脂肪族系ポリオール、(a2)環式ポリオール、(b)ポリイソシアネートおよび(c)水酸基含有(メタ)アクリレートを反応させて得ることもできる。この場合、合成原料である(a1)、(a2)、(b)及び(c)の使用量は、所望の(A1)、(A2)及び(A3)の質量比並びに各ウレタン(メタ)アクリレートの構造から理論上必要とされる各原料のモル比を計算して決定することが好ましい。
The urethane (meth) acrylate as the component (A) has a structure derived from an aliphatic polyol obtained by reacting (a1) an aliphatic polyol, (b) a polyisocyanate, and (c) a hydroxyl group-containing (meth) acrylate. Urethane (meth) having a structure derived from cyclic polyol obtained by reacting urethane (meth) acrylate (A1), (a2) cyclic polyol, (b) polyisocyanate and (c) hydroxyl group-containing (meth) acrylate Mixing urethane (meth) acrylate (A3) having no polyol-derived structure obtained by reacting (b) polyisocyanate and (c) hydroxyl group-containing (meth) acrylate without using acrylate (A2) and polyol Obtainable.
(A) Urethane (meth) acrylate can also be obtained by reacting (a1) aliphatic polyol, (a2) cyclic polyol, (b) polyisocyanate and (c) hydroxyl group-containing (meth) acrylate. . In this case, the amount of the synthetic raw materials (a1), (a2), (b) and (c) used is the desired mass ratio of (A1), (A2) and (A3) and each urethane (meth) acrylate. It is preferable to calculate and determine the molar ratio of each raw material that is theoretically required from the structure.

(a1)脂肪族系ポリオールは、脂肪族構造を有しており、かつ、芳香環構造や脂環構造等の環状構造を有しないポリオールであれば特に限定されないが、例えばポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリヘキサメチレングリコール、ポリヘプタメチレングリコール、ポリデカメチレングリコールあるいは二種以上のイオン重合性環状化合物を開環共重合させて得られる脂肪族ポリエーテルポリオール等が挙げられる。上記イオン重合性環状化合物としては、例えばエチレンオキシド、プロピレンオキシド、ブテン−1−オキシド、イソブテンオキシド、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチルテトラヒドロフラン等が挙げられる。上記二種以上のイオン重合性環状化合物の具体的な組み合わせとしては、例えばテトラヒドロフランとプロピレンオキシド、テトラヒドロフランと2−メチルテトラヒドロフラン、テトラヒドロフランと3−メチルテトラヒドロフラン、テトラヒドロフランとエチレンオキシド、プロピレンオキシドとエチレンオキシド、ブテン−1−オキシドとエチレンオキシド、テトラヒドロフラン、ブテン−1−オキシド、エチレンオキシドの3元重合体等を挙げることができる。これらの中では、ポリプロピレングリコール、ポリテトラメチレングリコールが好ましい。   (A1) The aliphatic polyol is not particularly limited as long as it has an aliphatic structure and does not have a cyclic structure such as an aromatic ring structure or an alicyclic structure. For example, polyethylene glycol, polypropylene glycol, Examples thereof include polytetramethylene glycol, polyhexamethylene glycol, polyheptamethylene glycol, polydecamethylene glycol, and aliphatic polyether polyols obtained by ring-opening copolymerization of two or more ion-polymerizable cyclic compounds. Examples of the ion polymerizable cyclic compound include ethylene oxide, propylene oxide, butene-1-oxide, isobutene oxide, tetrahydrofuran, 2-methyltetrahydrofuran, and 3-methyltetrahydrofuran. Specific combinations of the two or more ion-polymerizable cyclic compounds include, for example, tetrahydrofuran and propylene oxide, tetrahydrofuran and 2-methyltetrahydrofuran, tetrahydrofuran and 3-methyltetrahydrofuran, tetrahydrofuran and ethylene oxide, propylene oxide and ethylene oxide, butene-1 And terpolymers of -oxide and ethylene oxide, tetrahydrofuran, butene-1-oxide, ethylene oxide, and the like. Among these, polypropylene glycol and polytetramethylene glycol are preferable.

(A)ウレタン(メタ)アクリレートの合成に用いられる(a1)脂肪族系ポリオールの分子量は、ゲルパーミエーションクロマトグラフィー法により求められるポリスチレン換算数平均分子量として1,000〜4,000が好ましく、1,500〜2,500がさらに好ましい。(a1)ポリオールの分子量が上記範囲にあることにより、電線被覆層の力学特性、特に破断伸びを好ましい範囲とすることができる。   (A) The molecular weight of the (a1) aliphatic polyol used for the synthesis of urethane (meth) acrylate is preferably 1,000 to 4,000 as a polystyrene-equivalent number average molecular weight determined by gel permeation chromatography. , 500 to 2,500 are more preferable. (A1) When the molecular weight of the polyol is in the above range, the mechanical properties of the electric wire coating layer, particularly the elongation at break can be made a preferable range.

(a1)脂肪族系ポリオールの市販品としては、例えばPTMG650、PTMG1000、PTMG2000(以上、三菱化学製)、PPG−400、PPG1000、PPG2000、PPG3000、PPG4000、EXCENOL720、1020、2020(以上、旭硝子ウレタン製)、PEG1000、ユニセーフDC1100、DC1800(以上、日本油脂製)、PPTG2000、PPTG1000、PTG400、PTGL2000(以上、保土谷化学製)、Z−3001−4、Z−3001−5、PBG2000A、PBG2000B(以上、第一工業製薬製)等が挙げられ、これらの市販品の中から合成目的とするウレタン(メタ)アクリレートの種類に応じて好適な分子量の製品を選択して用いることができる。   (A1) Examples of commercially available aliphatic polyols include PTMG650, PTMG1000, PTMG2000 (manufactured by Mitsubishi Chemical), PPG-400, PPG1000, PPG2000, PPG3000, PPG4000, EXCENOL720, 1020, 2020 (and above, manufactured by Asahi Glass Urethane). ), PEG1000, Unisafe DC1100, DC1800 (above, manufactured by NOF Corporation), PPTG2000, PPTG1000, PTG400, PTGL2000 (above, manufactured by Hodogaya Chemical), Z-3001-4, Z-3001-5, PBG2000A, PBG2000B (above, Daiichi Kogyo Seiyaku Co., Ltd.) can be used, and products having a suitable molecular weight can be selected from these commercially available products according to the type of urethane (meth) acrylate to be synthesized.

(a2)環式ポリオールとしては、芳香環構造や脂環構造等の環状構造を有しているポリオールであれば特に限定されないが、例えばビスフェノールAのアルキレンオキサイド付加ポリオール、ビスフェノールFのアルキレンオキサイド付加ポリオール、水添ビスフェノールA、水添ビスフェノールF、水添ビスフェノールAのアルキレンオキサイド付加ポリオール、水添ビスフェノールFのアルキレンオキサイド付加ポリオール、ハイドロキノンのアルキレンオキサイド付加ポリオール、ナフトハイドロキノンのアルキレンオキサイド付加ポリオール、アントラハイドロキノンのアルキレンオキサイド付加ポリオール、1,4−シクロヘキサンポリオール及びそのアルキレンオキサイド付加ポリオール、トリシクロデカンポリオール、トリシクロデカンジメタノール、ペンタシクロペンタデカンポリオール、ペンタシクロペンタデカンジメタノール、キレンオキシド付加ポリオール、ビスフェノールFのアルキレノキシド付加ポリオール、1,4−シクロヘキサンポリオールのアルキレノキシド付加ポリオール等が挙げられる。これらの中で、ビスフェノールAのアルキレンオキサイド付加ポリオールが好ましい。   (A2) The cyclic polyol is not particularly limited as long as it is a polyol having a cyclic structure such as an aromatic ring structure or an alicyclic structure. For example, an alkylene oxide addition polyol of bisphenol A, an alkylene oxide addition polyol of bisphenol F , Hydrogenated bisphenol A, hydrogenated bisphenol F, alkylene oxide addition polyol of hydrogenated bisphenol A, alkylene oxide addition polyol of hydrogenated bisphenol F, alkylene oxide addition polyol of hydroquinone, alkylene oxide addition polyol of naphthohydroquinone, alkylene of anthrahydroquinone Oxide addition polyol, 1,4-cyclohexane polyol and its alkylene oxide addition polyol, tricyclodecane polyol, tri Black decanedimethanol, penta cyclopentadecane polyols, pentacyclopentadecanedimethanol, alkylene oxide addition polyol, alkylene oxide addition polyol of bisphenol F, alkylene oxide addition polyol of 1,4-cyclohexane polyol. Among these, an alkylene oxide addition polyol of bisphenol A is preferable.

(a2)環式ポリオールの好ましい分子量は、ゲルパーミエーションクロマトグラフィー法により求められるポリスチレン換算数平均分子量として300〜1,000が好ましく、300〜800がさらに好ましい。(a2)ポリオールの分子量が上記範囲にあることにより、電線被覆層の力学特性、特に破断伸びを好ましい範囲とすることができる。   (A2) The preferable molecular weight of the cyclic polyol is preferably from 300 to 1,000, more preferably from 300 to 800, as a polystyrene-equivalent number average molecular weight determined by gel permeation chromatography. (A2) When the molecular weight of the polyol is in the above range, the mechanical properties of the electric wire coating layer, particularly the elongation at break can be made a preferable range.

(a2)環式ポリオールとしては、例えばユニオールDA400、DA700、DA1000、DB400(以上、日本油脂製)、トリシクロデカンジメタノール(三菱化学製)等の市販品として入手することもできる。   As the (a2) cyclic polyol, for example, UNIOL DA400, DA700, DA1000, DB400 (manufactured by NOF Corporation), tricyclodecane dimethanol (manufactured by Mitsubishi Chemical Corporation) and the like can be obtained as commercial products.

なお、(a1)脂肪族系ポリオールや(a2)環式ポリオールとしては、上記ポリエーテルポリオールの他に、ポリエステルポリオール、ポリカーボネートポリオール、ポリカプロラクトンポリオール等を用いることもできる。   In addition, as the (a1) aliphatic polyol and (a2) cyclic polyol, polyester polyol, polycarbonate polyol, polycaprolactone polyol, and the like can be used in addition to the polyether polyol.

(b)ポリイソシアネート、特にジイソシアネートとしては、例えば、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、1,3−キシリレンジイソシアネート、1,4−キシリレンジイソシアネート、1,5−ナフタレンジイソシアネート、m−フェニレンジイソシアネート、p−フェニレンジイソシアネート、3,3’−ジメチル−4,4’−ジフェニルメタンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、3,3’−ジメチルフェニレンジイソシアネート、4,4’−ビフェニレンジイソシアネート、1,6−ヘキサンジイソシアネート、イソフォロンジイソシアネート、メチレンビス(4−シクロヘキシルイソシアネート)、2,2,4−トリメチルヘキサメチレンジイソシアネート、ビス(2−イソシアネートエチル)フマレート、6−イソプロピル−1,3−フェニルジイソシアネート、4−ジフェニルプロパンジイソシアネート、リジンジイソシアネート、水添ジフェニルメタンジイソシアネート、水添キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、2,5(又は2,6)−ビス(イソシアネートメチル)−ビシクロ[2.2.1]ヘプタン等が挙げられる。特に、2,4−トリレンジイソシアネート、イソフォロンジイソシアネート、キシリレンジイソシアネート、メチレンビス(4−シクロヘキシルイソシアネート)等が好ましい。これらのポリイソシアネートは、単独あるいは二種類以上を組み合わせて用いることができる。   (B) Polyisocyanate, particularly diisocyanate, for example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, 1,5-naphthalene Diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 3,3′-dimethyl-4,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, 3,3′-dimethylphenylene diisocyanate, 4,4′-biphenylene Diisocyanate, 1,6-hexane diisocyanate, isophorone diisocyanate, methylenebis (4-cyclohexylisocyanate), 2,2,4-trimethylhexamethylene diisocyanate, (2-isocyanatoethyl) fumarate, 6-isopropyl-1,3-phenyl diisocyanate, 4-diphenylpropane diisocyanate, lysine diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, tetramethylxylylene diisocyanate, 2,5 ( Alternatively, 2,6) -bis (isocyanatomethyl) -bicyclo [2.2.1] heptane and the like can be mentioned. In particular, 2,4-tolylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, methylene bis (4-cyclohexyl isocyanate) and the like are preferable. These polyisocyanates can be used alone or in combination of two or more.

(c)水酸基含有(メタ)アクリレートとしては、例えば2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェニルオキシプロピル(メタ)アクリレート、1,4−ブタンポリオールモノ(メタ)アクリレート、2−ヒドロキシアルキル(メタ)アクリロイルフォスフェート、4−ヒドロキシシクロヘキシル(メタ)アクリレート、1,6−ヘキサンポリオールモノ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールエタンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。また、アルキルグリシジルエーテル、アリルグリシジルエーテル、グリシジル(メタ)アクリレート等のグリシジル基含有化合物と、(メタ)アクリル酸との付加反応により得られる化合物を使用することもできる。これら水酸基含有(メタ)アクリレートのうち、特に、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート等が好ましい。これらの、水酸基含有(メタ)アクリレート化合物は、単独であるいは二種類以上組み合わせて用いることができる。   (C) Examples of the hydroxyl group-containing (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenyloxypropyl ( (Meth) acrylate, 1,4-butanepolyol mono (meth) acrylate, 2-hydroxyalkyl (meth) acryloyl phosphate, 4-hydroxycyclohexyl (meth) acrylate, 1,6-hexanepolyol mono (meth) acrylate, neopentyl Glycol mono (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolethane di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta Meth) acrylate. Moreover, the compound obtained by addition reaction with glycidyl group containing compounds, such as alkyl glycidyl ether, allyl glycidyl ether, and glycidyl (meth) acrylate, and (meth) acrylic acid can also be used. Of these hydroxyl group-containing (meth) acrylates, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and the like are particularly preferable. These hydroxyl group-containing (meth) acrylate compounds can be used alone or in combination of two or more.

これら(A)成分であるウレタン(メタ)アクリレートの合成反応においては、例えばナフテン酸銅、ナフテン酸コバルト、ナフテン酸亜鉛、ジブチル錫ジラウレート、トリエチルアミン、1,4−ジアザビシクロ[2.2.2]オクタン、2,6,7−トリメチル−1,4−ジアザビシクロ[2.2.2]オクタン等のウレタン化触媒を、反応物の総量100質量部に対して0.01〜1質量部用いるのが好ましい。また、反応温度は、通常10〜90℃、特に30〜80℃で行うのが好ましい。   In the synthesis reaction of the urethane (meth) acrylate as the component (A), for example, copper naphthenate, cobalt naphthenate, zinc naphthenate, dibutyltin dilaurate, triethylamine, 1,4-diazabicyclo [2.2.2] octane. , 2,6,7-trimethyl-1,4-diazabicyclo [2.2.2] octane is preferably used in an amount of 0.01 to 1 part by mass with respect to 100 parts by mass of the total amount of reactants. . The reaction temperature is usually 10 to 90 ° C, particularly preferably 30 to 80 ° C.

(A)ウレタン(メタ)アクリレートを合成するときの各原料の添加順序は、特に限定されないが、(b)ポリイソシアネートと(c)水酸基含有(メタ)アクリレートを添加した後に(a1)及び/又は(a2)ポリオールを添加することが好ましい。このような順序で各原料を添加することにより、ポリオールとポリイソシアネートを最初に添加した場合に較べて、ポリオールとポリイソシアネートが交互に結合したオリゴマーが生じにくく、目的とする(A1)、(A2)及び(A3)の混合物を得ることが容易になるためである。   (A) The order of addition of each raw material when synthesizing urethane (meth) acrylate is not particularly limited, but after (b) polyisocyanate and (c) hydroxyl group-containing (meth) acrylate are added, (a1) and / or (A2) It is preferable to add a polyol. By adding each raw material in such an order, compared to the case where the polyol and the polyisocyanate are added first, an oligomer in which the polyol and the polyisocyanate are alternately bonded is less likely to be generated, and the intended (A1), (A2) This is because it becomes easy to obtain a mixture of (A) and (A3).

(A)成分であるウレタン(メタ)アクリレートは、電線被覆層の力学強度、及び塗布性の点から、組成物の全量100質量%に対して、合計で、通常30〜80質量%配合され、特に40〜70質量%配合されるのが好ましい。
(A1)、(A2)及び(A3)の各成分の配合量は、目的とする電線被覆層の物性に対応して調整することができる。(A1)成分であるウレタン(メタ)アクリレートは、組成物の全量100質量%に対して、通常20〜50質量%配合されるが、好ましくは22〜40質量%配合される。(A2)成分であるウレタン(メタ)アクリレートは、組成物の全量100質量%に対して、通常1〜10質量%配合されるが、好ましくは2〜8質量%配合される。(A3)成分であるウレタン(メタ)アクリレートは、組成物の全量100質量%に対して、通常1〜29質量%配合されるが、好ましくは10〜25質量%配合される。
The urethane (meth) acrylate that is the component (A) is usually blended in an amount of 30 to 80% by mass in total with respect to 100% by mass of the total amount of the composition, from the viewpoint of the mechanical strength of the electric wire coating layer and the coating property. It is particularly preferable that 40 to 70% by mass is blended.
The blending amount of each component of (A1), (A2) and (A3) can be adjusted according to the physical properties of the target wire coating layer. The urethane (meth) acrylate as the component (A1) is usually blended in an amount of 20 to 50% by mass, preferably 22 to 40% by mass, based on 100% by mass of the total amount of the composition. The urethane (meth) acrylate as the component (A2) is usually blended in an amount of 1 to 10% by mass, preferably 2 to 8% by mass, based on 100% by mass of the total amount of the composition. The urethane (meth) acrylate as the component (A3) is usually blended in an amount of 1 to 29% by mass, preferably 10 to 25% by mass, based on 100% by mass of the total amount of the composition.

(B)成分である、環状構造及び1個のエチレン性不飽和基を有する化合物は、環状構造を有する重合性単官能化合物である。(B)成分として、この化合物を用いることにより、本発明組成物により得られる電線被覆層の機械的特性が調整され中心導体に対する密着性と機械強度の両立が図られる。ここで、環状構造としては、脂環式構造、窒素原子又は酸素原子を含む複素環構造、芳香族環等が挙げられ、このうち脂環式構造が特に好ましい。   The compound having a cyclic structure and one ethylenically unsaturated group as the component (B) is a polymerizable monofunctional compound having a cyclic structure. By using this compound as the component (B), the mechanical properties of the electric wire coating layer obtained from the composition of the present invention are adjusted, and both adhesion to the central conductor and mechanical strength can be achieved. Here, examples of the cyclic structure include an alicyclic structure, a heterocyclic structure containing a nitrogen atom or an oxygen atom, an aromatic ring, and the like, among which an alicyclic structure is particularly preferable.

このような、環状構造を有する重合性単官能性化合物(B)としては、例えばイソボルニル(メタ)アクリレート、ボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等の脂環式構造含有(メタ)アクリレート;ベンジル(メタ)アクリレート、4−ブチルシクロヘキシル(メタ)アクリレート、アクリロイルモルホリン、ビニルイミダゾール、ビニルピリジン等が挙げられる。さらに、下記式(1)〜(3)で表される化合物を挙げることができる。   Examples of such a polymerizable monofunctional compound (B) having a cyclic structure include isobornyl (meth) acrylate, bornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, and dicyclopentanyl (meth) acrylate. And alicyclic structure-containing (meth) acrylates such as benzyl (meth) acrylate, 4-butylcyclohexyl (meth) acrylate, acryloylmorpholine, vinylimidazole, and vinylpyridine. Furthermore, the compound represented by following formula (1)-(3) can be mentioned.

Figure 2010257950
Figure 2010257950

(式中、R1は水素原子又はメチル基を示し、R2は炭素数2〜8、好ましくは2〜5のアルキレン基を示し、R3は水素原子又はメチル基を示し、pは好ましくは1〜4の数を示す) Wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkylene group having 2 to 8 carbon atoms, preferably 2 to 5 carbon atoms, R 3 represents a hydrogen atom or a methyl group, and p is preferably 1 to 4)

Figure 2010257950
Figure 2010257950

(式中、R4、R5、R6及びR7は互いに独立で、水素原子又はメチル基を示し、qは1〜5の数を示す) (Wherein R 4 , R 5 , R 6 and R 7 are independent of each other and represent a hydrogen atom or a methyl group, and q represents a number of 1 to 5)

これら重合性単官能化合物(B)のうち、環状構造を有する化合物が好ましく、中でもイソボルニル(メタ)アクリレート等の架橋環状構造を有する化合物が好ましい。環状構造を有する(B)成分は剛直な構造を有するため、硬化物のヤング率が過小となることを防止して、電線被覆層として好適なヤング率と破断強度、破断伸びの物性のバランスをとることができる。   Of these polymerizable monofunctional compounds (B), compounds having a cyclic structure are preferred, and compounds having a crosslinked cyclic structure such as isobornyl (meth) acrylate are particularly preferred. Since the component (B) having a cyclic structure has a rigid structure, the Young's modulus of the cured product is prevented from becoming excessively low, and the balance between the Young's modulus suitable for the wire coating layer, the breaking strength, and the physical properties of breaking elongation is achieved. Can take.

これら重合性単官能化合物(B)の市販品としては、IBXA(大阪有機化学工業製)、アロニックスM−111、M−113、M114、M−117、TO−1210(以上、東亞合成製)を使用することができる。   As commercial products of these polymerizable monofunctional compounds (B), IBXA (manufactured by Osaka Organic Chemical Industry), Aronix M-111, M-113, M114, M-117, TO-1210 (above, manufactured by Toagosei Co., Ltd.) Can be used.

これら(B)成分である環状構造を有する単官能化合物は、電線被覆層の強度及び中心導体に対する密着性の点から、組成物の全量100質量%に対して、15〜60質量%、さらに25〜50質量%、特に30〜50質量%配合されるのが好ましい。ただし、(B)成分であっても、N−ビニルピロリドン、N−ビニルカプロラクタム等のビニル基含有ラクタムは、後述の(D)成分と共存すると組成物の保存安定性を低下させる場合があるため、組成物全量の5質量%以下とすることが好ましく、2質量%がさらに好ましく、全く配合しないことが最も好ましい。
また、(B)成分がイソボルニル(メタ)アクリレートを含むことが好ましく、イソボルニル(メタ)アクリレートの配合量が、(B)成分の全量100質量%に対して、50質量%以上であることがさらに好ましい。イソボルニル(メタ)アクリレートを用いることにより、機械的強度に優れた硬化物を得ることができる。
These monofunctional compounds having a cyclic structure as the component (B) are 15 to 60% by mass, and 25 in addition to the total amount of 100% by mass of the composition from the viewpoint of the strength of the wire coating layer and the adhesion to the central conductor. It is preferably blended in an amount of ˜50 mass%, particularly 30 to 50 mass%. However, even in the case of component (B), if a vinyl group-containing lactam such as N-vinylpyrrolidone or N-vinylcaprolactam coexists with the component (D) described later, the storage stability of the composition may be lowered. The total amount of the composition is preferably 5% by mass or less, more preferably 2% by mass, and most preferably not blended at all.
Moreover, it is preferable that (B) component contains isobornyl (meth) acrylate, and it is further that the compounding quantity of isobornyl (meth) acrylate is 50 mass% or more with respect to 100 mass% of whole quantity of (B) component. preferable. By using isobornyl (meth) acrylate, a cured product having excellent mechanical strength can be obtained.

本発明の組成物には、発明の効果を阻害しない程度において、(C)2個以上のエチレン性不飽和基を有する化合物を配合することができる。(C)2個以上のエチレン性不飽和基を有する化合物は、重合性多官能性化合物である。(C)成分の具体例としては、例えばトリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパントリオキシエチル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリシクロデカンジメチロールジアクリレート、1,4−ブタンポリオールジ(メタ)アクリレート、1,6−ヘキサンポリオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルの両末端(メタ)アクリル酸付加体、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ポリエステルジ(メタ)アクリレート、トリス(2−ヒドキシエチル)イソシアヌレートトリ(メタ)アクリレート、トリス(2−ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、トリシクロデカンジメチロールジアクリレート、ビスフェノールAのエチレンオキサイド又はプロピレンオキサイドの付加体のポリオールのジ(メタ)アクリレート、水添ビスフェノールAのエチレンオキサイド又はプロピレンオキサイドの付加体のポリオールのジ(メタ)アクリレート、ビスフェノールAのジグリシジルエーテルに(メタ)アクリレートを付加させたエポキシ(メタ)アクリレート、トリエチレングリコールジビニルエーテル等が挙げられる。   To the composition of the present invention, (C) a compound having two or more ethylenically unsaturated groups can be blended to the extent that the effects of the invention are not impaired. (C) The compound having two or more ethylenically unsaturated groups is a polymerizable polyfunctional compound. Specific examples of component (C) include, for example, trimethylolpropane tri (meth) acrylate, trimethylolpropane trioxyethyl (meth) acrylate, pentaerythritol tri (meth) acrylate, triethylene glycol diacrylate, tetraethylene glycol di ( (Meth) acrylate, tricyclodecane dimethylol diacrylate, 1,4-butane polyol di (meth) acrylate, 1,6-hexane polyol di (meth) acrylate, neopentyl glycol di (meth) acrylate, tripropylene glycol di ( (Meth) acrylate, neopentyl glycol di (meth) acrylate, bisphenol A diglycidyl ether end (meth) acrylic acid adduct, pentaerythritol tri (meth) acrylate , Pentaerythritol tetra (meth) acrylate, polyester di (meth) acrylate, tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate, tris (2-hydroxyethyl) isocyanurate di (meth) acrylate, tricyclodecandi Methylol diacrylate, di (meth) acrylate of polyol of ethylene oxide or propylene oxide adduct of bisphenol A, di (meth) acrylate of polyol of ethylene oxide or propylene oxide adduct of hydrogenated bisphenol A, di (meth) acrylate of bisphenol A Examples include epoxy (meth) acrylate obtained by adding (meth) acrylate to glycidyl ether, and triethylene glycol divinyl ether.

これらの(C)2個以上のエチレン性不飽和基を有する化合物は、組成物の全量100質量%に対して、0〜5質量%配合することができるが、より好ましくは0〜2質量%であり、全く配合しないことが最も好ましい。5質量%を超えて配合すると、電線被覆層が過度に剛直となって、機械的強度と中心導体に対する密着性が損なわれる場合がある。   These (C) compounds having two or more ethylenically unsaturated groups can be blended in an amount of 0 to 5% by mass, more preferably 0 to 2% by mass, based on 100% by mass of the total amount of the composition. Most preferably, it is not blended at all. When it exceeds 5 mass%, the wire coating layer becomes excessively rigid, and the mechanical strength and the adhesion to the center conductor may be impaired.

本発明の組成物に用いられる(D)成分は、下記式(4a)で表される化合物である。(D)成分を配合することにより、中心導体に対する密着性が改善される。(D)成分は、そのリン原子に結合した水酸基が中心導体を構成する金属原子に配位し、エチレン性不飽和基が樹脂マトリックスと結合することにより密着性を改善するものと推定される。このため、リン酸の有する全ての水酸基がエステル化された化合物の場合には水酸基を有しないため密着性の改善には効果的でない。また、(D)成分のリン酸エステルに代えてカルボン酸エステルとした場合には、密着性改善の効果が過小である。   (D) component used for the composition of this invention is a compound represented by following formula (4a). By blending the component (D), the adhesion to the central conductor is improved. It is presumed that the component (D) improves the adhesion when the hydroxyl group bonded to the phosphorus atom is coordinated to the metal atom constituting the central conductor and the ethylenically unsaturated group is bonded to the resin matrix. For this reason, in the case of the compound in which all the hydroxyl groups which phosphoric acid has are esterified, since it does not have a hydroxyl group, it is not effective in improving adhesiveness. Moreover, when it replaces with phosphate ester of (D) component and is used as carboxylic acid ester, the effect of adhesive improvement is too small.

Figure 2010257950
Figure 2010257950

(式(4a)中、R8はエチレン性不飽和基を有する1価の有機基であり、R9は水素原子又はエチレン性不飽和基を有していてもよい1価の有機基である)
(D)成分は、好ましくは下記式(4)で表される化合物である。
(In formula (4a), R 8 is a monovalent organic group having an ethylenically unsaturated group, and R 9 is a monovalent organic group optionally having a hydrogen atom or an ethylenically unsaturated group. )
The component (D) is preferably a compound represented by the following formula (4).

Figure 2010257950
Figure 2010257950

(式中、Rは水素原子又はメチル基を示し、nは0〜1である。jは1〜2であり、kは3−jである) (In the formula, R represents a hydrogen atom or a methyl group, n is 0 to 1, j is 1 to 2, and k is 3-j).

上記式(4)で表される化合物の市販品としては、KAYAMER PM−2、PM−21(日本化薬社製)等を挙げることができる。   Examples of commercially available compounds represented by the above formula (4) include KAYAMER PM-2 and PM-21 (manufactured by Nippon Kayaku Co., Ltd.).

(D)成分の配合量は、電線被覆層の中心導体に対する密着性及び強度の点から、組成物全量100質量%に対して、0.01〜1質量%、さらに0.05〜0.5質量%が好ましい。   (D) The compounding quantity of component is 0.01-1 mass% with respect to 100 mass% of composition whole quantity from the point of the adhesiveness with respect to the center conductor of an electric wire coating layer, and intensity | strength, Furthermore, 0.05-0.5 Mass% is preferred.

本発明の組成物には、さらに電線被覆層の中心導体に対する密着性及び耐候性の点から、(E)シリコーン化合物を配合することもできる。当該シリコーン化合物としては、ポリエーテル変性シリコーン、アルキル変性シリコーン、ウレタンアクリレート変性シリコーン、ウレタン変性シリコーン、メチルスチリル変性シリコーン、エポキシポリエーテル変性シリコーン、アルキルアラルキルポリエーテル変性シリコーン等が挙げられる。   (E) A silicone compound can also be mix | blended with the composition of this invention from the point of the adhesiveness with respect to the center conductor of an electric wire coating layer, and a weather resistance. Examples of the silicone compound include polyether-modified silicone, alkyl-modified silicone, urethane acrylate-modified silicone, urethane-modified silicone, methylstyryl-modified silicone, epoxy polyether-modified silicone, and alkylaralkyl polyether-modified silicone.

さらに、本発明の組成物には(F)重合開始剤を配合することができる。(F)重合開始剤としては、光開始剤が好ましい。ここで、光重合開始剤としては、例えば1−ヒドロキシシクロヘキシルフェニルケトン、2,2−ジメトキシ−2−フェニルアセトフェノン、キサントン、フルオレノン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、3−メチルアセトフェノン、4−クロロベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4,4’−ジアミノベンゾフェノン、ミヒラーケトン、ベンゾインプロピルエーテル、ベンゾインエチルエーテル、ベンジルジメチルケタール、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、チオキサントン、ジエチルチオキサントン、2−イソプロピルチオキサントン、2−クロロチオキサントン、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルホリノ−プロパン−1−オン、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス−(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルフォフフィンオキシド;IRGACURE184、369、651、500、907、CGI1700、CGI1750、CGI1850、CG24−61;Darocure1116、1173(以上、チバ・スペシャルティー・ケミカルズ製);LucirinTPO(BASF製);ユベクリルP36(UCB製)等が挙げられる。また、光増感剤としては、例えばトリエチルアミン、ジエチルアミン、N−メチルジエタノールアミン、エタノールアミン、4−ジメチルアミノ安息香酸、4−ジメチルアミノ安息香酸メチル、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸イソアミル;ユベクリルP102、103、104、105(以上、UCB社製)等が挙げられる。   Furthermore, (F) a polymerization initiator can be mix | blended with the composition of this invention. (F) As a polymerization initiator, a photoinitiator is preferable. Here, as the photopolymerization initiator, for example, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-2-phenylacetophenone, xanthone, fluorenone, benzaldehyde, fluorene, anthraquinone, triphenylamine, carbazole, 3-methylacetophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, 4,4'-diaminobenzophenone, Michler's ketone, benzoin propyl ether, benzoin ethyl ether, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2- Methylpropan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, thioxanthone, diethylthioxanthone, 2-isopropylthioxanthone, 2 Chlorothioxanthone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis- (2,6-dimethoxybenzoyl) ) -2,4,4-trimethylpentylphosphine oxide; IRGACURE 184, 369, 651, 500, 907, CGI 1700, CGI 1750, CGI 1850, CG 24-61; Darocur 1116, 1173 (above, manufactured by Ciba Specialty Chemicals); Examples include Lucirin TPO (manufactured by BASF); Ubekrill P36 (manufactured by UCB) and the like. Examples of the photosensitizer include triethylamine, diethylamine, N-methyldiethanolamine, ethanolamine, 4-dimethylaminobenzoic acid, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, 4-dimethylaminobenzoate. Isoamyl acid; Ubekryl P102, 103, 104, 105 (above, manufactured by UCB) and the like.

(F)重合開始剤は、組成物の全量100質量%に対して、0.1〜10質量%、特に0.3〜7質量%配合するのが好ましい。   (F) It is preferable to mix | blend a polymerization initiator 0.1-10 mass% with respect to 100 mass% of the whole quantity of a composition, especially 0.3-7 mass%.

本発明の組成物には、必要に応じて、本発明の特性を損なわない範囲で各種添加剤、例えば、酸化防止剤、着色剤、紫外線吸収剤、光安定剤、熱重合禁止剤、レベリング剤、界面活性剤、保存安定剤、可塑剤、滑剤、溶媒、フィラー、老化防止剤、濡れ性改良剤、塗面改良剤等を配合することができる。   In the composition of the present invention, various additives, for example, an antioxidant, a colorant, an ultraviolet absorber, a light stabilizer, a thermal polymerization inhibitor, and a leveling agent, as necessary, within a range not impairing the characteristics of the present invention. , Surfactants, storage stabilizers, plasticizers, lubricants, solvents, fillers, anti-aging agents, wettability improvers, coating surface improvers and the like can be blended.

なお、本発明の組成物は、放射線によって硬化されるが、ここで放射線とは、赤外線、可視光線、紫外線、X線、電子線、α線、β線、γ線等をいい、典型的には紫外線である。   The composition of the present invention is cured by radiation. Here, radiation refers to infrared rays, visible rays, ultraviolet rays, X-rays, electron beams, α rays, β rays, γ rays, etc. Is ultraviolet light.

本発明の組成物の粘度は、25℃において、0.5〜10Pa・sであることが好ましく、1〜5Pa・sであることがさらに好ましい。粘度がこの範囲内にあることによって、電線を製造する際に電線被覆材の塗布が容易となり、電線の製造効率を改善することができる。   The viscosity of the composition of the present invention is preferably 0.5 to 10 Pa · s, more preferably 1 to 5 Pa · s at 25 ° C. When the viscosity is within this range, it is easy to apply the wire covering material when manufacturing the electric wire, and the manufacturing efficiency of the electric wire can be improved.

本発明の組成物を硬化して得られる電線被覆層のヤング率は、電線被覆層の種類によって異なるが、被覆電線の絶縁層の場合には、300〜1,500MPaであることが好ましく、400〜1,200MPaであることがさらに好ましく、500〜1,000MPaであることが特に好ましい。ヤング率がこの範囲内にあることによって、外部応力に対して強固な電線被覆層を得ることができる。   The Young's modulus of the wire covering layer obtained by curing the composition of the present invention varies depending on the type of the wire covering layer, but in the case of the insulating layer of the covered wire, it is preferably 300 to 1,500 MPa, 400 More preferably, it is -1200 MPa, and it is especially preferable that it is 500-1,000 MPa. When the Young's modulus is within this range, a wire coating layer that is strong against external stress can be obtained.

本発明の組成物を硬化して得られる電線被覆層の破断強度と破断伸びは、電線被覆層の種類によって異なるが、被覆電線の絶縁層の場合には、破断強度が、20〜60MPaであることが好ましく、30〜50MPaであることがさらに好ましい。破断伸びは、80〜250%であることが好ましく、90〜200%であることがさらに好ましい。破断強度と破断伸びがこの範囲内にあることによって、外部応力に対する耐久性の高い電線を得ることができる。   The breaking strength and breaking elongation of the electric wire coating layer obtained by curing the composition of the present invention vary depending on the type of the electric wire coating layer, but in the case of the insulating layer of the coated electric wire, the breaking strength is 20 to 60 MPa. It is preferable and it is more preferable that it is 30-50 Mpa. The elongation at break is preferably 80 to 250%, more preferably 90 to 200%. When the breaking strength and breaking elongation are within this range, a highly durable electric wire against external stress can be obtained.

本発明組成物は、電線、特に動力用電線、電話線、自動車用電線等の被覆用放射線硬化性樹脂組成物として有用である。本発明の組成物を塗布して放射線を照射すれば、均一かつ強度に優れた電線被覆層が容易に形成できる。また、本発明により形成された電線被覆層は、優れた強度を有し、かつ中心導体に対する密着性が良好であることから、配線の操作性が良好である。   The composition of the present invention is useful as a radiation curable resin composition for coating electric wires, particularly power wires, telephone wires, and automobile wires. When the composition of the present invention is applied and irradiated with radiation, a uniform and excellent strength electric wire coating layer can be easily formed. Moreover, since the electric wire coating layer formed according to the present invention has excellent strength and good adhesion to the center conductor, the operability of the wiring is good.

次に実施例を挙げて本発明を詳細に説明するが、本発明は何らこれら実施例に限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these Examples at all.

[製造例1:(A)成分であるウレタン(メタ)アクリレートの合成]
撹拌機を備えた反応容器に、イソボロニルアクリレート15.38g、2,6−ジ−t−ブチル−p−クレゾール0.015g、トルエンジイソシアナート7.80g、ジブチル錫ジラウレート0.023gを仕込み、これらを撹拌しながら液温度が20℃〜15℃になるまで氷冷した。ヒドロキシエチルアクリレート6.00gを加え、液温が35℃以下になるように制御しながら2時間攪拌して反応させた。次に、上記の混合物に数平均分子量2000のポリテトラメチレングリコール28.34g、数平均分子量400のビスフェノールAのエチレンオキサイド付加ジオール1.79g、ジブチル錫ジラウレート0.022gを加え、1時間室温で攪拌後、油浴にて65℃で2時間拡販した。残留イソシアネートが0.1質量%以下になった時を反応終了とした。各原料の使用量は、下記式(5)で表される構造を有するウレタンアクリレートを5.0質量部、下記式(6)で表される構造を有するウレタンアクリレートを30.0質量部及び下記式(7)で表される構造を有するウレタンアクリレートを18.0質量部得るための使用量に相当する。得られた(A)ウレタンアクリレートを、UA−1とする。UA−1は、下記式(5)〜(7)で表される構造を有するウレタンアクリレートの混合物である。
[Production Example 1: Synthesis of urethane (meth) acrylate as component (A)]
A reaction vessel equipped with a stirrer is charged with 15.38 g of isobornyl acrylate, 0.015 g of 2,6-di-t-butyl-p-cresol, 7.80 g of toluene diisocyanate, and 0.023 g of dibutyltin dilaurate. The solution was ice-cooled while stirring until the liquid temperature reached 20 ° C to 15 ° C. Hydroxyethyl acrylate (6.00 g) was added, and the reaction was performed by stirring for 2 hours while controlling the liquid temperature to be 35 ° C or lower. Next, 28.34 g of polytetramethylene glycol having a number average molecular weight of 2000, 1.79 g of ethylene oxide addition diol of bisphenol A having a number average molecular weight of 400, and 0.022 g of dibutyltin dilaurate are added to the above mixture, and the mixture is stirred for 1 hour at room temperature. After that, it was expanded in an oil bath at 65 ° C. for 2 hours. The reaction was terminated when the residual isocyanate was 0.1% by mass or less. The amount of each raw material used is 5.0 parts by mass of urethane acrylate having a structure represented by the following formula (5), 30.0 parts by mass of urethane acrylate having a structure represented by the following formula (6), and the following: This corresponds to the amount used to obtain 18.0 parts by mass of urethane acrylate having the structure represented by formula (7). Let the obtained (A) urethane acrylate be UA-1. UA-1 is a mixture of urethane acrylates having a structure represented by the following formulas (5) to (7).

HEA−TDI−DA400−TDI−HEA (5)
HEA−TDI−PTMG2000−TDI−HEA (6)
HEA−TDI−HEA (7)
[式(5)〜(7)中で、HEAは、ヒドロキシエチルアクリレート由来の構造を示し、TDIは、トルエンジイソシアナート由来の構造を示し、DA400は、数平均分子量400のビスフェノールAのエチレンオキサイド付加ジオール由来の構造を示し、PTMG2000は、数平均分子量2000のポリテトラメチレングリコール由来の構造を示す]
HEA-TDI-DA400-TDI-HEA (5)
HEA-TDI-PTMG2000-TDI-HEA (6)
HEA-TDI-HEA (7)
[In the formulas (5) to (7), HEA represents a structure derived from hydroxyethyl acrylate, TDI represents a structure derived from toluene diisocyanate, and DA400 represents ethylene oxide of bisphenol A having a number average molecular weight of 400. The structure derived from addition diol is shown, and PTMG2000 shows the structure derived from polytetramethylene glycol having a number average molecular weight of 2000]

[比較製造例1:(A)成分に該当しないウレタン(メタ)アクリレートの合成]
撹拌機を備えた反応容器に、2,6−ジ−t−ブチル−p−クレゾール0.024g、トルエンジイソシアナート13.46g、ジブチル錫ジラウレート0.024gを仕込み、これらを撹拌しながら液温度が20℃〜15℃になるまで氷冷した。ヒドロキシエチルアクリレート8.98gを加え、液温が35℃以下になるように制御しながら2時間攪拌して反応させた。次に、上記の混合物に数平均分子量2000のポリテトラメチレングリコール77.46g加え、1時間室温で攪拌後、油浴にて65℃で2時間拡販した。残留イソシアネートが0.1質量%以下になった時を反応終了とした。得られたウレタンアクリレートを、UA−2とする。UA−2は、前記式(6)で表される構造を有するウレタンアクリレートである。
[Comparative Production Example 1: Synthesis of urethane (meth) acrylate not corresponding to component (A)]
A reaction vessel equipped with a stirrer was charged with 0.024 g of 2,6-di-t-butyl-p-cresol, 13.46 g of toluene diisocyanate, and 0.024 g of dibutyltin dilaurate, and the liquid temperature was maintained while stirring them. The solution was ice-cooled until the temperature reached 20 ° C to 15 ° C. 8.98 g of hydroxyethyl acrylate was added, and the reaction was performed by stirring for 2 hours while controlling the liquid temperature to be 35 ° C. or lower. Next, 77.46 g of polytetramethylene glycol having a number average molecular weight of 2000 was added to the above mixture, and the mixture was stirred at room temperature for 1 hour and then expanded in an oil bath at 65 ° C. for 2 hours. The reaction was terminated when the residual isocyanate was 0.1% by mass or less. Let the obtained urethane acrylate be UA-2. UA-2 is a urethane acrylate having a structure represented by the formula (6).

[比較製造例2:(A)成分に該当しないウレタン(メタ)アクリレートの合成]
撹拌機を備えた反応容器に、イソボロニルアクリレートアクリレート36.92g、2,6−ジ−t−ブチル−p−クレゾール0.015g、トルエンジイソシアナート11.54g、ジブチル錫ジラウレート0.025gを仕込み、これらを撹拌しながら液温度が20℃〜15℃になるまで氷冷した。ヒドロキシエチルアクリレート7.70gを加え、液温が35℃以下になるように制御しながら2時間攪拌して反応させた。次に、上記の混合物に数平均分子量2000のポリテトラメチレングリコール38.15g、数平均分子量400のビスフェノールAのエチレンオキサイド付加ジオール5.63g、ジブチル錫ジラウレート0.025gを加え、1時間室温で攪拌後、油浴にて65℃で2時間拡販した。残留イソシアネートが0.1質量%以下になった時を反応終了とした。各原料の使用量は、前記式(5)で表される構造を有するウレタンアクリレートを11.2質量部、前記式(6)で表される構造を有するウレタンアクリレートを40.0質量部得るための使用量に相当する。得られたウレタン(メタ)アクリレートを、UA−3とする。UA−3は、前記式(5)〜(6)で表される構造を有するウレタン(メタ)アクリレートの混合物である。
[Comparative Production Example 2: Synthesis of urethane (meth) acrylate not corresponding to component (A)]
In a reaction vessel equipped with a stirrer, 36.92 g of isobornyl acrylate acrylate, 0.015 g of 2,6-di-t-butyl-p-cresol, 11.54 g of toluene diisocyanate, 0.025 g of dibutyltin dilaurate were added. The mixture was stirred and cooled with ice until the liquid temperature reached 20 ° C to 15 ° C while stirring. 7.70 g of hydroxyethyl acrylate was added, and the reaction was performed by stirring for 2 hours while controlling the liquid temperature to be 35 ° C. or lower. Next, 38.15 g of polytetramethylene glycol having a number average molecular weight of 2000, 5.63 g of ethylene oxide-added diol of bisphenol A having a number average molecular weight of 400, and 0.025 g of dibutyltin dilaurate are added to the above mixture, followed by stirring at room temperature for 1 hour. After that, it was expanded in an oil bath at 65 ° C. for 2 hours. The reaction was terminated when the residual isocyanate was 0.1% by mass or less. The amount of each raw material used is to obtain 11.2 parts by mass of the urethane acrylate having the structure represented by the formula (5) and 40.0 parts by mass of the urethane acrylate having the structure represented by the formula (6). It corresponds to the amount of use. Let the obtained urethane (meth) acrylate be UA-3. UA-3 is a mixture of urethane (meth) acrylates having a structure represented by the above formulas (5) to (6).

実施例1〜3及び比較例1〜5
表1に示す組成の各成分を、攪拌機を備えた反応容器に仕込み、液温度を50℃に制御しながら1時間攪拌し、液状硬化性樹脂組成物を得た。
Examples 1-3 and Comparative Examples 1-5
Each component having the composition shown in Table 1 was charged into a reaction vessel equipped with a stirrer and stirred for 1 hour while controlling the liquid temperature at 50 ° C. to obtain a liquid curable resin composition.

試験例
前記実施例及び比較例で得た液状硬化性樹脂組成物を、以下のような方法で硬化させて試験片を作製し、下記の各評価を行った。結果を表1に併せて示す。
Test Examples The liquid curable resin compositions obtained in the examples and comparative examples were cured by the following method to prepare test pieces, and the following evaluations were performed. The results are also shown in Table 1.

1.ヤング率:
250μm厚のアプリケーターバーを用いてガラス板上に液状硬化性樹脂組成物を塗布し、これを空気下で1J/cm2のエネルギーの紫外線で照射して硬化させ、ヤング率測定用フィルムを得た。このフィルムから、延伸部が幅6mm、長さ25mmとなるよう短冊状サンプルを作成し、温度23℃、湿度50%で引っ張り試験を行った。引っ張り速度は1mm/minで2.5%歪みでの抗張力からヤング率を求めた。
1. Young's modulus:
A liquid curable resin composition was applied on a glass plate using an applicator bar having a thickness of 250 μm, and this was cured by irradiation with ultraviolet rays having an energy of 1 J / cm 2 under air to obtain a film for measuring Young's modulus. . A strip-shaped sample was prepared from this film so that the stretched portion had a width of 6 mm and a length of 25 mm, and a tensile test was performed at a temperature of 23 ° C. and a humidity of 50%. The Young's modulus was determined from the tensile strength at 2.5% strain at a pulling speed of 1 mm / min.

2.破断強度および破断伸び:
引張試験器(島津製作所社製、AGS−50G)を用い、試験片の破断強度および破断伸びを下記測定条件にて測定した。
引張速度 :50mm/分
標線間距離(測定距離):25mm
測定温度 :23℃
相対湿度 :50%RH
2. Breaking strength and breaking elongation:
Using a tensile tester (manufactured by Shimadzu Corporation, AGS-50G), the breaking strength and breaking elongation of the test piece were measured under the following measurement conditions.
Tensile speed: 50 mm / distance between marked lines (measurement distance): 25 mm
Measurement temperature: 23 ° C
Relative humidity: 50% RH

3.ガラス転移温度(Tg):
樹脂液をガラス板上にアプリケーターを用いて200μm厚になるよう塗布し、1.0J/cm2の照射量で光硬化させ、硬化フィルムを得た。このフィルムから3mm×35mmの試験片を切り出し、ORIENTEC社製RHEOVIBRON DDV−01FPにて動的粘弾性を測定した。振動周波数3.5Hzの損失正接(tanδ)の最大値を示す温度をガラス転移温度と定義し、ガラス転移温度を評価した。
3. Glass transition temperature (Tg):
The resin liquid was applied on a glass plate so as to have a thickness of 200 μm using an applicator, and photocured at a dose of 1.0 J / cm 2 to obtain a cured film. A test piece of 3 mm × 35 mm was cut out from this film, and the dynamic viscoelasticity was measured with RHEOVIBRON DDV-01FP manufactured by ORIENTEC. The temperature showing the maximum value of the loss tangent (tan δ) at the vibration frequency of 3.5 Hz was defined as the glass transition temperature, and the glass transition temperature was evaluated.

4.銅及びアルミに対する密着性:
実施例および比較例で得られた組成物に関し、その硬化物の密着力を測定した。
液状組成物を190μm厚のアプリケーターを用いて銅板上に塗布し、窒素雰囲気下で0.5J/cm2の紫外線を照射し、厚さ約130μmの硬化フィルムを得た。このサンプルを温度23℃、湿度50%下に24時間静置した。その後、この硬化フィルムから幅10mmとなるように短冊状サンプルを銅版上で作成した。このサンプルを引っ張り試験機を用いてJIS Z0237に準拠して密着力試験を行った。引張速度は50mm/minでの抗張力から金属との密着力を求めた。また、銅板に替えてアルミ板を用いた場合の密着力も同様にして評価した。
4). Adhesion to copper and aluminum:
Regarding the compositions obtained in Examples and Comparative Examples, the adhesion of the cured products was measured.
The liquid composition was applied onto a copper plate using an applicator having a thickness of 190 μm, and irradiated with ultraviolet rays of 0.5 J / cm 2 under a nitrogen atmosphere to obtain a cured film having a thickness of about 130 μm. This sample was allowed to stand at a temperature of 23 ° C. and a humidity of 50% for 24 hours. Thereafter, a strip-shaped sample was prepared on the copper plate so as to have a width of 10 mm from the cured film. This sample was subjected to an adhesion test in accordance with JIS Z0237 using a tensile tester. The adhesion force with the metal was determined from the tensile strength at a tensile speed of 50 mm / min. Further, the adhesion force when an aluminum plate was used instead of the copper plate was evaluated in the same manner.

Figure 2010257950
Figure 2010257950

表1において、
イソボルニルアクリレート:IBXA(大阪有機合成社製)
アクリロイルモルホリン:ACMO(興人社製)
ルシリンTPO:2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド(BASFジャパン社製)
Irgacure 184:1-ヒドロキシシクロヘキシルフェニルケトン(チバスペシャルティケミカルズ社製)
Igranox 254:トリエチレングリコ−ルビス[3(3−T−ブチル,4−ヒドロキシ,5−メチルフェニル)プロピオネ−ト](チバスペシャルティケミカルズ社製)
PM−21:前記式(4)で、R=メチル基、n=1、j=2、k=1である化合物(KAYAMER PM−21、日本化薬社製)
In Table 1,
Isobornyl acrylate: IBXA (Osaka Organic Synthesis Co., Ltd.)
Acryloylmorpholine: ACMO (manufactured by Kojinsha)
Lucillin TPO: 2,4,6-trimethylbenzoyldiphenylphosphine oxide (BASF Japan)
Irgacure 184: 1-hydroxycyclohexyl phenyl ketone (Ciba Specialty Chemicals)
Igranox 254: Triethylene glycol bis [3 (3-T-butyl, 4-hydroxy, 5-methylphenyl) propionate] (manufactured by Ciba Specialty Chemicals)
PM-21: a compound in which R = methyl group, n = 1, j = 2, k = 1 in the above formula (4) (KAYAMER PM-21, manufactured by Nippon Kayaku Co., Ltd.)

表1から明らかなように、成分(A)、(B)及び(D)を含有する本発明の樹脂組成物で形成された硬化物は、電線被覆材として良好な性質を有し、かつ中心導体に対する密着性が良好であることから電線被覆用組成物として有用である。
(A)成分に替えて(A)成分に該当しないウレタンアクリレートを含有する比較例1では、UA−2が柔軟な構造を有しているためヤング率が過小となった。同じく(A)成分を含まない比較例2では、UA−3が(A3)成分を含まないために(A)成分よりも柔軟であり、ヤング率が過小となった。UA−3は、UA−2よりは剛直な構造であるため、比較例2は比較例1よりも高いヤング率の値を有していた。(D)成分を含まない比較例3は、アルミ板や銅板に対する密着力が低下した。(D)成分に替えてアクリル酸を配合した比較例4においても、アルミ板や銅板に対する密着力は低く、アクリル酸は(D)成分を代替できないことが確認された。(B)成分に替えて(B)成分に該当しない2−エチルヘキシルアクリレートを配合した比較例5は、ヤング率が低下した。
As is clear from Table 1, the cured product formed of the resin composition of the present invention containing components (A), (B) and (D) has good properties as a wire coating material and is Since the adhesiveness to the conductor is good, it is useful as a wire coating composition.
In Comparative Example 1 containing urethane acrylate not corresponding to component (A) in place of component (A), Young's modulus was too low because UA-2 had a flexible structure. Similarly, in Comparative Example 2 that does not include the component (A), UA-3 does not include the component (A3), and thus is more flexible than the component (A), and the Young's modulus is too low. Since UA-3 has a more rigid structure than UA-2, Comparative Example 2 had a higher Young's modulus value than Comparative Example 1. In Comparative Example 3 not including the component (D), the adhesion to the aluminum plate or the copper plate was reduced. In Comparative Example 4 in which acrylic acid was blended in place of the component (D), the adhesion to the aluminum plate and the copper plate was low, and it was confirmed that acrylic acid could not substitute for the component (D). In Comparative Example 5 in which 2-ethylhexyl acrylate not corresponding to the component (B) was blended in place of the component (B), the Young's modulus decreased.

Claims (8)

次の成分(A)、(B)ならびに(D);
(A)脂肪族系ポリオール由来の構造を有するウレタン(メタ)アクリレート、環式ポリオール由来の構造を有するウレタン(メタ)アクリレートおよびポリオール由来の構造を有しないウレタン(メタ)アクリレートの混合物、
(B)環状構造及び1個のエチレン性不飽和基を有する化合物、
(D)下記式(4a)で表される化合物
Figure 2010257950
(式(4a)中、R8はエチレン性不飽和基を有する1価の有機基であり、R9は水素原子又はエチレン性不飽和基を有していてもよい1価の有機基である)
を含有する電線被覆用放射線硬化性樹脂組成物。
The following components (A), (B) and (D);
(A) a mixture of urethane (meth) acrylate having a structure derived from an aliphatic polyol, urethane (meth) acrylate having a structure derived from a cyclic polyol, and urethane (meth) acrylate having no structure derived from a polyol,
(B) a compound having a cyclic structure and one ethylenically unsaturated group,
(D) Compound represented by the following formula (4a)
Figure 2010257950
(In formula (4a), R 8 is a monovalent organic group having an ethylenically unsaturated group, and R 9 is a monovalent organic group optionally having a hydrogen atom or an ethylenically unsaturated group. )
A radiation curable resin composition for covering electric wires, comprising:
成分(B)中にイソボルニル(メタ)アクリレートを含み、その含有量が成分(B)中の50質量%以上である請求項1に記載の電線被覆用放射線硬化性樹脂組成物。   The radiation curable resin composition for wire coating according to claim 1, wherein the component (B) contains isobornyl (meth) acrylate, and the content thereof is 50% by mass or more in the component (B). (D)成分が、下記式(4)で表される化合物である、請求項1又は2に記載の電線被覆用放射線硬化性樹脂組成物。
Figure 2010257950
(式中、Rは水素原子又はメチル基を示し、nは0〜1である。jは1〜2であり、kは3−jである)
The radiation curable resin composition for electric wire coating | cover of Claim 1 or 2 whose (D) component is a compound represented by following formula (4).
Figure 2010257950
(In the formula, R represents a hydrogen atom or a methyl group, n is 0 to 1, j is 1 to 2, and k is 3-j).
N−ビニル基含有ラクタム化合物の含有量が、組成物全体の5質量%以下である、請求項1〜3のいずれか一に記載の電線被覆用放射線硬化性樹脂組成物。   The radiation curable resin composition for electric wire coating | cover as described in any one of Claims 1-3 whose content of an N-vinyl group containing lactam compound is 5 mass% or less of the whole composition. (C)2個以上のエチレン性不飽和基を有する化合物の含有量が、組成物全体の5質量%以下である、請求項1〜4のいずれか一に記載の電線被覆用放射線硬化性樹脂組成物。   (C) The radiation curable resin for electric wire coating according to any one of claims 1 to 4, wherein the content of the compound having two or more ethylenically unsaturated groups is 5% by mass or less of the entire composition. Composition. 絶縁電線の絶縁層用である、請求項1〜5のいずれか一に記載の電線被覆用放射線硬化性樹脂組成物。   The radiation curable resin composition for electric wire coating | cover as described in any one of Claims 1-5 which is an object for insulation layers of an insulated wire. 請求項1〜6のいずれか1項記載の組成物を硬化させて得られる電線被覆層。   The electric wire coating layer obtained by hardening the composition of any one of Claims 1-6. 請求項7記載の被覆層を有する電線。   An electric wire having the coating layer according to claim 7.
JP2010063759A 2009-03-31 2010-03-19 Radiation curing resin composition for coating wire Pending JP2010257950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010063759A JP2010257950A (en) 2009-03-31 2010-03-19 Radiation curing resin composition for coating wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009086314 2009-03-31
JP2010063759A JP2010257950A (en) 2009-03-31 2010-03-19 Radiation curing resin composition for coating wire

Publications (1)

Publication Number Publication Date
JP2010257950A true JP2010257950A (en) 2010-11-11

Family

ID=43318610

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010063761A Pending JP2010257951A (en) 2009-03-31 2010-03-19 Radiation curing resin composition for coating wire
JP2010063759A Pending JP2010257950A (en) 2009-03-31 2010-03-19 Radiation curing resin composition for coating wire

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010063761A Pending JP2010257951A (en) 2009-03-31 2010-03-19 Radiation curing resin composition for coating wire

Country Status (1)

Country Link
JP (2) JP2010257951A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257951A (en) * 2009-03-31 2010-11-11 Jsr Corp Radiation curing resin composition for coating wire
WO2016047634A1 (en) * 2014-09-24 2016-03-31 矢崎総業株式会社 Busbar and method for manufacturing busbar

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168417A (en) * 1986-12-27 1988-07-12 デソト,インコ−ポレ−テツド Liquid curable resin composition
JPH07282638A (en) * 1994-04-07 1995-10-27 Hitachi Cable Ltd Ultraviolet cured enameled wire
JP2002513987A (en) * 1998-05-07 2002-05-14 デー エス エム エヌ.ヴェー. Dielectric radiation curable coating composition
JP2007334231A (en) * 2006-06-19 2007-12-27 Jsr Corp Radiation curable resin composition for optical member, and cured film thereof
JP2008277262A (en) * 2007-03-30 2008-11-13 Jsr Corp Electric wire coating radiation curable resin composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251436A (en) * 2007-03-30 2008-10-16 Jsr Corp Radiation curing resin composition for covering electric wire
JP2010257952A (en) * 2009-03-31 2010-11-11 Jsr Corp Radiation curing resin composition for coating wire
JP2010257951A (en) * 2009-03-31 2010-11-11 Jsr Corp Radiation curing resin composition for coating wire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168417A (en) * 1986-12-27 1988-07-12 デソト,インコ−ポレ−テツド Liquid curable resin composition
JPH07282638A (en) * 1994-04-07 1995-10-27 Hitachi Cable Ltd Ultraviolet cured enameled wire
JP2002513987A (en) * 1998-05-07 2002-05-14 デー エス エム エヌ.ヴェー. Dielectric radiation curable coating composition
JP2007334231A (en) * 2006-06-19 2007-12-27 Jsr Corp Radiation curable resin composition for optical member, and cured film thereof
JP2008277262A (en) * 2007-03-30 2008-11-13 Jsr Corp Electric wire coating radiation curable resin composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257951A (en) * 2009-03-31 2010-11-11 Jsr Corp Radiation curing resin composition for coating wire
WO2016047634A1 (en) * 2014-09-24 2016-03-31 矢崎総業株式会社 Busbar and method for manufacturing busbar
JP2016066435A (en) * 2014-09-24 2016-04-28 矢崎総業株式会社 Bus bar and method for manufacturing bus bar
US20170163020A1 (en) * 2014-09-24 2017-06-08 Yazaki Corporation Busbar and method of manufacturing the same
US10020646B2 (en) 2014-09-24 2018-07-10 Yazaki Corporation Busbar and method of manufacturing the same

Also Published As

Publication number Publication date
JP2010257951A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP2010254966A (en) Radiation-curable resin composition for coating electric wire
JP6308058B2 (en) Sealing material for coated wire
JP2014116295A (en) Radiation-curable resin composition for forming wire coating layer
JP2006119559A (en) Hardening liquid resin composition for upjacket of optical fiber
JP2011158581A (en) Liquid curable resin composition for forming optical fiber tape layer, and optical fiber ribbon
WO2014077688A1 (en) D1531 radiation-curable resin composition for wire coating layer formation
JP2012056823A (en) Curable liquid resin composition for covering outermost layer of optical fiber line, and optical fiber line
JP2014114444A (en) Radiation-curable resin composition for forming wire coating layer
JP2006065193A (en) Liquid curable resin composition for optical fiber up-jacket
JP2012038500A (en) Radiation curable resin composition for wire coating layer formation
WO2008120982A1 (en) Radiation curable resin compositions for electric wire coatings
JP2010257950A (en) Radiation curing resin composition for coating wire
JP2008251436A (en) Radiation curing resin composition for covering electric wire
JP5192714B2 (en) Radiation curable resin composition for wire coating
US20100071928A1 (en) Radiation curable resin compositions for electric wire coatings
JP2012038499A (en) Radiation curable resin composition for wire coating layer formation
WO2008120983A2 (en) Ribbon matrix material for optical fiber with excellent bending resistance
JP2011158580A (en) Liquid curable resin composition for forming optical fiber tape layer, and optical fiber ribbon
JP2009168865A (en) Liquid curable resin composition for optical-fiber upjacket
JP2009168864A (en) Liquid curable resin composition for optical-fiber upjacket
JP2013249373A (en) Radiation-curable resin composition for wire coating
JP2013249372A (en) Radiation-curable resin composition for wire coating
JP2010073617A (en) Radiation curable resin composition for coating wire
JP5202995B2 (en) Radiation curable resin composition for wire coating
JP2008277262A (en) Electric wire coating radiation curable resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140430

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140729