JP2010257860A5 - - Google Patents

Download PDF

Info

Publication number
JP2010257860A5
JP2010257860A5 JP2009108725A JP2009108725A JP2010257860A5 JP 2010257860 A5 JP2010257860 A5 JP 2010257860A5 JP 2009108725 A JP2009108725 A JP 2009108725A JP 2009108725 A JP2009108725 A JP 2009108725A JP 2010257860 A5 JP2010257860 A5 JP 2010257860A5
Authority
JP
Japan
Prior art keywords
battery cell
graphene
battery
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009108725A
Other languages
Japanese (ja)
Other versions
JP5094783B2 (en
JP2010257860A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2009108725A priority Critical patent/JP5094783B2/en
Priority claimed from JP2009108725A external-priority patent/JP5094783B2/en
Publication of JP2010257860A publication Critical patent/JP2010257860A/en
Publication of JP2010257860A5 publication Critical patent/JP2010257860A5/ja
Application granted granted Critical
Publication of JP5094783B2 publication Critical patent/JP5094783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

高導電効率接続構造High conductivity connection structure

本発明は、溶接を使用せず、酸化し難い形態で、電池セル同士を高導電効率に接続可能な高導電効率接続構造に関するものである。 The present invention relates to a high conductivity connection structure that can connect battery cells to each other with high conductivity efficiency in a form that does not use welding and is not easily oxidized.

従来、高容量電池の構成方式は、金属製の連接片を介して複数の電池セルを、直列接続し、並列接続し、又は直列接続及び並列接続を混合に施すことにより、高容量電池を構成することが多い。前記電池セルの正極と負極との金属電極は、ニッケルを含有する金属で作製されることが一般的である。ニッケルを含有する金属を使用する原因は、ニッケルが酸化し難くて安定性が良いことにある。従来の複数の電池セルを電気的に連接する工程は、図1及び図2に示すように、直列接続にしても、並列接続にしても、金属製の連接片10が電気溶接によって電池セル11の金属電極12に電気的に連接され、連接片10と金属電極12の溶接点13が電気的に緊密に連結するので、連接片10と金属電極12の間の電気抵抗が低減される。 Conventionally, a high-capacity battery has a configuration method in which a plurality of battery cells are connected in series via metal connecting pieces, connected in parallel, or mixed in series and parallel. Often to do. The metal electrodes of the positive electrode and the negative electrode of the battery cell are generally made of a metal containing nickel. The reason for using nickel-containing metal is that nickel is difficult to oxidize and has good stability. As shown in FIG. 1 and FIG. 2, the process of electrically connecting a plurality of conventional battery cells may be performed in series connection or in parallel connection. Since the welding point 13 of the connecting piece 10 and the metal electrode 12 is electrically connected closely to each other, the electric resistance between the connecting piece 10 and the metal electrode 12 is reduced.

しかし、上記のような連接方法によれば、電池セル同士を電気的に連接することができるが、下記のような欠点があった。
(1)長期間に使用されると、連接片と溶接点とには、金属が酸化し、又は不純物が付着され、連接片の電気抵抗が増加する。
However, according to the above connection method, the battery cells can be electrically connected to each other, but there are the following drawbacks.
(1) When used for a long period of time, metal is oxidized or impurities are attached to the connecting piece and the welding point, and the electric resistance of the connecting piece increases.

(2)連接片と電池電極がスポット溶接によって電気的に連接するので、接触点の面積が小さくてインピーダンスが大きいので、電池を充放電しているときに、高インピーダンスにより電池電極と溶接部位での温度が上昇し、電力が無駄に消耗される。 (2) Since the connecting piece and the battery electrode are electrically connected by spot welding, the area of the contact point is small and the impedance is large. Therefore, when charging / discharging the battery, the battery electrode and the welded part are high impedance. The temperature rises and power is wasted.

(3)ニッケルを含有する金属片は、材料コストが高く、電気溶接加工には工数が掛かり、このような金属片の使用は経済的ではない。 (3) The metal piece containing nickel has a high material cost, and the electric welding process requires a lot of man-hours, and the use of such a metal piece is not economical.

本発明の主な目的は、グラフェン連接ブロックにより、電池セル同士を直列接続し、又は並列接続し、グラフェン連接ブロックが電池電極と直接に電気的に連接し、溶接工程を使用しないので、電池セル同士の間の導電効率が向上し、且つグラフェンの材料コストが低いため、生産コストを低減することができる高導電効率接続構造を提供することにある。 The main object of the present invention is to connect the battery cells in series or in parallel with the graphene connecting block, and the graphene connecting block is directly electrically connected to the battery electrode and does not use a welding process. An object of the present invention is to provide a highly conductive connection structure that can reduce the production cost because the conductive efficiency between them is improved and the material cost of graphene is low.

本発明の次の目的は、グラフェン連接ブロックにより、電池セル同士を直列接続し、又は並列接続し、グラフェン連接ブロックが酸化し難く、グラフェン連接ブロックがニッケルを含有する金属で作製された、電池正極電極と、電池負極電極とに接触すると、両方には溶解現象が発生され、すなわち、グラフェン連接ブロックの炭素微粒が電池正極電極及び電池負極電極の表面にある不純物を取り替えることにより、グラフェン連接ブロックの炭素微粒が電池正極電極及び電池負極電極の表面の窪みに位置し、炭素とニッケルが溶解して合金状態になり、そうすると、高インピーダンスによる大電流の放電ができない問題を解決可能である高導電効率接続構造を提供することにある。 The next object of the present invention is a battery positive electrode in which battery cells are connected in series or connected in parallel by a graphene connecting block, the graphene connecting block is hardly oxidized, and the graphene connecting block is made of a metal containing nickel. When the electrode contacts the battery negative electrode, a dissolution phenomenon occurs in both, that is, the carbon particles of the graphene connecting block replace impurities on the surface of the battery positive electrode and the battery negative electrode, thereby Carbon fine particles are located in the depressions on the surface of the battery positive electrode and battery negative electrode, and the carbon and nickel dissolve into an alloy state, which can solve the problem that large current cannot be discharged due to high impedance. It is to provide a connection structure.

本発明の請求項1に記載の高導電効率直列接続構造によると、グラフェンにより電池セル同士を高導電効率に直列接続し、第一電池セルと、少なくとも一つのグラフェン連接ブロックと、第二電池セルと、を含む高導電効率直列接続構造において、前記第一電池セルは、その外部には、ニッケルを含有する金属で作製された、正極電極と、負極電極と、が設けられ、前記正極電極と前記負極電極が前記第一電池セルの電力出力端とされ、前記グラフェン連接ブロックは、前記第一電池セルの前記負極電極に電気的に連接され、前記第二電池セルは、その外部には、ニッケルを含有する金属で作製された、正極電極と、負極電極と、が設けられ、前記正極電極と前記負極電極が前記第二電池セルの電力出力端とされ、前記第二電池セルの前記正極電極が前記グラフェン連接ブロックに電気的に連接され、これにより、前記第一電池セルと前記第二電池セルが直列接続するようになることを特徴とする高導電効率直列接続構造である。 According to the highly conductive efficiency series connection structure of claim 1 of the present invention, battery cells are connected in series with high conductivity efficiency by graphene, the first battery cell, at least one graphene connection block, and the second battery cell And the first battery cell is provided with a positive electrode and a negative electrode made of a metal containing nickel on the outside of the first battery cell, and the positive electrode The negative electrode is the power output terminal of the first battery cell, the graphene connection block is electrically connected to the negative electrode of the first battery cell, and the second battery cell A positive electrode and a negative electrode made of a metal containing nickel are provided, the positive electrode and the negative electrode are used as power output terminals of the second battery cell, and the positive electrode of the second battery cell is provided. Electrode electrically connected to the graphene connecting block, thereby, the first battery cell and the second battery cell is highly electrically efficient series-connection structure, characterized in that become connected in series.

本発明の請求項2に記載の高導電効率並列接続構造によると、グラフェンにより電池セル同士を高導電効率に並列接続し、第三電池セルと、少なくとも一つの第一グラフェン連接ブロックと、第四電池セルと、少なくとも一つの第二グラフェン連接ブロックと、を含む高導電効率並列接続構造において、前記第三電池セルは、その外部には、ニッケルを含有する金属で作製された、正極電極と、負極電極と、が設けられ、前記正極電極と前記負極電極が前記第三電池セルの電力出力端とされ、前記第一グラフェン連接ブロックは、前記第三電池セルの前記正極電極に電気的に連接され、前記第四電池セルは、その外部には、ニッケルを含有する金属で作製された、正極電極と、負極電極と、が設けられ、前記正極電極と前記負極電極が前記第四電池セルの電力出力端とされ、前記第四電池セルの前記正極電極が前記第一グラフェン連接ブロックに電気的に連接され、前記第二グラフェン連接ブロックは、前記第三電池セルの前記負極電極と、前記第四電池セルの前記負極電極と、に電気的に連接され、これにより、前記第三電池セルと前記第四電池セルが並列接続するようになることを特徴とする高導電効率並列接続構造である。 According to the high conductivity efficiency parallel connection structure of claim 2 of the present invention, battery cells are connected in parallel with high conductivity efficiency by graphene, a third battery cell, at least one first graphene connection block, and a fourth In a high conductivity efficiency parallel connection structure including a battery cell and at least one second graphene connecting block, the third battery cell is externally formed of a metal containing nickel, a positive electrode, A negative electrode, and the positive electrode and the negative electrode serve as a power output terminal of the third battery cell, and the first graphene connection block is electrically connected to the positive electrode of the third battery cell. The fourth battery cell is provided with a positive electrode and a negative electrode made of a metal containing nickel on the outside, and the positive electrode and the negative electrode are provided in the first battery cell. A power output terminal of the battery cell, the positive electrode of the fourth battery cell is electrically connected to the first graphene connection block, and the second graphene connection block is connected to the negative electrode of the third battery cell. The high-conductivity-efficient parallel connection, wherein the third battery cell and the fourth battery cell are electrically connected to the negative electrode of the fourth battery cell, whereby the third battery cell and the fourth battery cell are connected in parallel. Structure.

本発明の請求項3に記載の高導電効率直列接続構造によると、前記グラフェン連接ブロックは、純グラフェンでもいいし、合金グラフェンでもよい。 According to the highly conductive efficiency series connection structure according to claim 3 of the present invention, the graphene connecting block may be pure graphene or alloy graphene.

本発明の請求項4に記載の高導電効率直列接続構造によると、前記合金グラフェンは、銀炭素合金グラフェンでもいいし、銅炭素合金グラフェンでもよい。 According to the high conductivity efficiency series connection structure of claim 4 of the present invention, the alloy graphene may be silver carbon alloy graphene or copper carbon alloy graphene.

本発明の請求項5に記載の高導電効率直列接続構造によると、バネと押付板とに付勢されている前記グラフェン連接ブロックは、前記第一電池セルと前記第二電池セルとに緊密に接触する。 According to the highly conductive efficiency series connection structure according to claim 5 of the present invention, the graphene connecting block biased by the spring and the pressing plate is tightly connected to the first battery cell and the second battery cell. Contact.

本発明の請求項6に記載の高導電効率直列接続構造によると、前記第一電池セルの前記負極電極には、前記第一電池セルの電力最終出力端とするグラフェン端子が電気的に連接され、前記第二電池セルの前記正極電極には、前記第二電池セルの電力最終出力端とするグラフェン端子が電気的に連接され、電力出力リードとするリードは、成形プロセスにおいて、前記グラフェン端子に作り込まれる。 According to the high-conductivity-efficiency series connection structure according to claim 6 of the present invention, the negative electrode of the first battery cell is electrically connected to the graphene terminal serving as the power final output terminal of the first battery cell. The positive electrode of the second battery cell is electrically connected to a graphene terminal serving as a power final output terminal of the second battery cell, and the lead serving as a power output lead is connected to the graphene terminal in a molding process. Built.

本発明の高導電効率接続構造によれば、次のような効果がある。
(1)グラフェン連接ブロックにより、電池セル同士を直列接続し、又は並列接続し、グラフェン連接ブロックが電池電極と直接に電気的に連接し、溶接工程を使用しないので、電池セル同士の間の導電効率が向上し、且つグラフェンの材料コストが低いため、生産コストを低減することができる。
According to the high conductive efficiency connection structure of the present invention, there are the following effects.
(1) The battery cells are connected in series or connected in parallel by the graphene connection block, and the graphene connection block is electrically connected directly to the battery electrode, and the welding process is not used. Since the efficiency is improved and the material cost of graphene is low, the production cost can be reduced.

(2)グラフェン連接ブロックにより、電池セル同士を直列接続し、又は並列接続し、グラフェン連接ブロックが酸化せず、グラフェン連接ブロックがニッケルを含有する金属で作製された、電池正極電極と、電池負極電極とに接触すると、両方には溶解現象が発生され、すなわち、グラフェン連接ブロックの炭素微粒が電池正極電極及び電池負極電極の表面にある不純物を取り替ることにより、グラフェン連接ブロックの炭素微粒が電池正極電極及び電池負極電極の表面の窪みに位置し、炭素とニッケルが溶解して合金状態になり、そうすると、ハイインピーダンスによる大電流の放電ができない問題を解決可能である。 (2) Battery positive electrode and battery negative electrode in which battery cells are connected in series or connected in parallel by a graphene connecting block, the graphene connecting block is not oxidized, and the graphene connecting block is made of a metal containing nickel When in contact with the electrode, a dissolution phenomenon occurs in both, that is, the carbon particles in the graphene connecting block replace the impurities on the surface of the battery positive electrode and the battery negative electrode, so that the carbon particles in the graphene connecting block are in the battery. Positioned in the depressions on the surface of the positive electrode and the negative electrode of the battery, carbon and nickel are dissolved to be in an alloy state, which can solve the problem that high current cannot be discharged due to high impedance.

従来の電池セルがニッケルを含有する金属により直列接続された状態を示す模式図である。It is a schematic diagram which shows the state by which the conventional battery cell was connected in series by the metal containing nickel. 従来の電池セルがニッケルを含有する金属により並列接続された状態を示す模式図である。It is a schematic diagram which shows the state by which the conventional battery cell was connected in parallel by the metal containing nickel. 本発明に係る電池セルがグラフェン連接ブロックにより直列接続された状態を示す模式図である。It is a schematic diagram which shows the state by which the battery cell which concerns on this invention was connected in series by the graphene connection block. 本発明に係る電池セルがグラフェン連接ブロックにより並列接続された状態を示す模式図である。It is a schematic diagram which shows the state by which the battery cell which concerns on this invention was connected in parallel by the graphene connection block. 電池の金属電極の表面に不純物が付着している状態を示す模式図である。It is a schematic diagram which shows the state which the impurity has adhered to the surface of the metal electrode of a battery. 本発明に係るグラフェン連接ブロックが金属電極の表面と接触した後、不純物が炭素微粒に取り替えられた状態を示す模式図である。It is a schematic diagram which shows the state by which the impurity was replaced by the carbon particle after the graphene connection block which concerns on this invention contacted the surface of a metal electrode. 本発明に係る電池セルがグラフェン連接ブロックにより並列接続および直列接続が施されて電池ユニットを構成する状態を示す模式図である。It is a schematic diagram which shows the state in which the battery cell which concerns on this invention is connected in parallel and series by the graphene connection block, and comprises a battery unit.

以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、図3を参照する。図3は本発明に係る第一電池セルと第二電池セルとが少なくとも一つのグラフェン連接ブロックにより直列接続された状態を示す模式図であり、そうすると、第一電池セルと第二電池セルの間の導電効率が増加する。 First, referring to FIG. FIG. 3 is a schematic view showing a state in which the first battery cell and the second battery cell according to the present invention are connected in series by at least one graphene connecting block, and then, between the first battery cell and the second battery cell. The conduction efficiency increases.

前記第一電池セル20は、円筒形状を呈し、その外部の両端には、ニッケルを含有する金属で作製された、正極電極21と、負極電極22と、がそれぞれ設けられ、正極電極21と負極電極22が第一電池セル20の電力出力端とされる。 The first battery cell 20 has a cylindrical shape, and a positive electrode 21 and a negative electrode 22 made of a metal containing nickel are provided at both ends of the first battery cell 20, respectively. The positive electrode 21 and the negative electrode The electrode 22 is the power output terminal of the first battery cell 20.

前記グラフェン連接ブロック30は、純グラフェンでもいいし、合金グラフェンでもよく、合金グラフェンは、例えば銀グラフェン(銀炭素合金)でもいいし、銅グラフェン(銅炭素合金)でもよく、グラフェン連接ブロック30が第一電池セル20の負極電極22に電気的に連接される。 The graphene connecting block 30 may be pure graphene, may be alloy graphene, and the alloy graphene may be, for example, silver graphene (silver carbon alloy) or copper graphene (copper carbon alloy). The battery cell 20 is electrically connected to the negative electrode 22.

前記第二電池セル40は、その外部には、ニッケルを含有する金属で作製された、正極電極41と、負極電極42と、が設けられ、正極電極41と負極電極42が第二電池セル40の電力出力端とされ、第二電池セル40の正極電極41がグラフェン連接ブロック30に電気的に連接され、バネ50と押付板51とに付勢されているグラフェン連接ブロック30は、第一電池セル20と第二電池セル40とに緊密に接触し、これにより、第一電池セル20と第二電池セル40が直列接続するようになる。 The second battery cell 40 is provided with a positive electrode 41 and a negative electrode 42 made of a metal containing nickel on the outside, and the positive electrode 41 and the negative electrode 42 are the second battery cell 40. The graphene connection block 30, which is electrically connected to the graphene connection block 30 and is biased by the spring 50 and the pressing plate 51, is connected to the first battery. The cell 20 and the second battery cell 40 are in close contact with each other, whereby the first battery cell 20 and the second battery cell 40 are connected in series.

また、第一電池セル20の負極電極22と、第二電池セル40の正極電極41とには、第一電池セル20の電力最終出力端とするグラフェン端子401と、第二電池セル40の電力最終出力端とするグラフェン端子402と、をそれぞれ設けてもよく、グラフェン端子401、402には、成形プロセスにおいて、電力出力リードとするリード403、404がそれぞれ作り込まれる。 Further, the negative electrode 22 of the first battery cell 20 and the positive electrode 41 of the second battery cell 40 include a graphene terminal 401 serving as a power final output terminal of the first battery cell 20 and the power of the second battery cell 40. A graphene terminal 402 serving as a final output end may be provided, and leads 403 and 404 serving as power output leads are respectively formed in the graphene terminals 401 and 402 in the molding process.

また、図4に示すように、二つの電池セルを並列接続する場合には、第三電池セルと第四電池セルの間には、少なくとも一つの第一グラフェン連接ブロックと、少なくとも一つの第二グラフェン連接ブロックとを設けると、第三電池セルと第四電池セルが高導電効率に並列接続するようになる。 Further, as shown in FIG. 4, when two battery cells are connected in parallel, at least one first graphene connecting block and at least one second battery cell are interposed between the third battery cell and the fourth battery cell. When the graphene connecting block is provided, the third battery cell and the fourth battery cell are connected in parallel with high conductivity efficiency.

前記第三電池セル60は、円筒形状を呈し、その外部の両端には、ニッケルを含有する金属で作製された、正極電極61と、負極電極62と、がそれぞれ設けられ、正極電極61と負極電極62が第三電池セル60の電力出力端とされる。 The third battery cell 60 has a cylindrical shape, and is provided with a positive electrode 61 and a negative electrode 62 made of a metal containing nickel at both ends of the third battery cell 60, respectively. The electrode 62 is the power output terminal of the third battery cell 60.

前記第一グラフェン連接ブロック70は、第三電池セル60の正極電極61に電気的に連接される。 The first graphene connection block 70 is electrically connected to the positive electrode 61 of the third battery cell 60.

前記第四電池セル80は、円筒形状を呈し、その外部の両端には、ニッケルを含有する金属で作製された、正極電極81と、負極電極82と、がそれぞれ設けられ、正極電極81と負極電極82が第四電池セル80の電力出力端とされ、第四電池セル80の正極電極81が第一グラフェン連接ブロック70に電気的に連接される。 The fourth battery cell 80 has a cylindrical shape, and a positive electrode 81 and a negative electrode 82 made of a metal containing nickel are provided at both ends of the fourth battery cell 80, respectively. The positive electrode 81 and the negative electrode The electrode 82 is the power output terminal of the fourth battery cell 80, and the positive electrode 81 of the fourth battery cell 80 is electrically connected to the first graphene connection block 70.

前記第二グラフェン連接ブロック90は、第三電池セル60の負極電極62と、前記第四電池セル80の負極電極82とに電気的に連接され、バネ50a及び押付板51aにより、第一グラフェン連接ブロック70が押付けられて第三電池セル60と電気的に連接し、なお、バネ50b及び押付板51bにより、第二グラフェン連接ブロック90が押付けられて第四電池セル80と電気的に連接し、そうすると、第三電池セル60と第四電池セル80が並列接続するようになる。 The second graphene connection block 90 is electrically connected to the negative electrode 62 of the third battery cell 60 and the negative electrode 82 of the fourth battery cell 80, and is connected to the first graphene connection by the spring 50a and the pressing plate 51a. The block 70 is pressed and electrically connected to the third battery cell 60, and the second graphene connecting block 90 is pressed and electrically connected to the fourth battery cell 80 by the spring 50b and the pressing plate 51b. Then, the third battery cell 60 and the fourth battery cell 80 are connected in parallel.

また、第一グラフェン連接ブロック70には、成形プロセスにおいて、第三電池セル60の電力出力リードとするリード405が作り込まれ、且つ第二グラフェン連接ブロック90には、成形プロセスにおいて、第四電池セル80の電力出力リードとするリード406が作り込まれる。 The first graphene connecting block 70 is formed with a lead 405 serving as a power output lead of the third battery cell 60 in the molding process, and the second graphene connecting block 90 has a fourth battery in the molding process. A lead 406 is formed as the power output lead of the cell 80.

本発明に係る高導電効率接続構造によれば、グラフェン連接ブロックが電池セルと直接に接触し連接するので、溶接工程を省略することができ、そしてグラフェン連接ブロックと電池セルの間にはインピーダンスが小さいので、導電効率が極めて高い。 According to the high conductive efficiency connection structure according to the present invention, since the graphene connection block is in direct contact with and connected to the battery cell, the welding process can be omitted, and there is an impedance between the graphene connection block and the battery cell. Since it is small, the conductive efficiency is extremely high.

特に、第一、二電池セル20、40の外部にある正、負極電極41、22がニッケルを含有する金属で作製されたので、図5Aに示すように、正、負極電極41、22の表面には不純物500又は酸化物が付着し、不純物500又は酸化物により第一、二電池セル20、40の放電時のインピーダンスが増加し、放電効率が悪化し、また、図3及び図5-2に示すのは本発明に係る高導電効率接続構造であり、このような高導電効率接続構造によれば、グラフェン連接ブロック30が第一、二電池セル20、40の外部にある正、負極電極41、22と電気的に連接し、グラフェン連接ブロック30が酸化し難く、且つグラフェン連接ブロック30がニッケルを含有する金属で作製された、電池正極電極41と、電池負極電極22とに接触すると、両方には溶解現象が発生され、すなわち、グラフェン連接ブロック30の炭素微粒600が電池正極電極41及び電池負極電極22の表面にある不純物500又は酸化物を取り替えることにより、グラフェン連接ブロック30の炭素微粒600が電池正極電極41及び電池負極電極22の表面の窪みに位置し、炭素とニッケルが溶解して合金状態になり、そうすると、グラフェン連接ブロック30と第一、二電池セル20、40の間の導電効率が増加し、ハイインピーダンスによる大電流の放電ができない問題が解決される。 In particular, since the positive and negative electrodes 41 and 22 outside the first and second battery cells 20 and 40 are made of a metal containing nickel, as shown in FIG. 5A, the surfaces of the positive and negative electrodes 41 and 22 Impurities 500 or oxides adhere to the electrodes, and the impurities 500 or oxides increase the impedance at the time of discharge of the first and second battery cells 20 and 40, and the discharge efficiency deteriorates. Also, FIG. 3 and FIG. 1 shows a high-conductivity connection structure according to the present invention, and according to such a high-conductivity connection structure, the graphene connecting block 30 is located on the outside of the first and second battery cells 20, 40. 41 and 22 are electrically connected, the graphene connecting block 30 is not easily oxidized, and the graphene connecting block 30 is in contact with the battery positive electrode 41 and the battery negative electrode 22 made of a metal containing nickel. In both cases, a dissolution phenomenon occurs, that is, the carbon particles 600 of the graphene connection block 30 replace the impurities 500 or oxides on the surfaces of the battery positive electrode 41 and the battery negative electrode 22, thereby forming the graphene connection block 30. The carbon fine particles 600 are located in the depressions on the surfaces of the battery positive electrode 41 and the battery negative electrode 22, and the carbon and nickel are dissolved to be in an alloy state. Then, the graphene connecting block 30 and the first and second battery cells 20, 40 In this way, the problem of inability to discharge a large current due to high impedance is solved.

本発明に係る高導電効率接続構造によれば、図6に示すように、本発明に係る複数のグラフェン連接ブロック302により、複数の電池セル301を直列接続し、並列接続し、又は直列接続及び並列接続を混合に施すことにより、高容量な電池ユニット300を構成する場合には、グラフェン連接ブロック30がニッケルを含有する金属で作製された電池電極に接触すると、両方には溶解現象が発生され、これにより、各電池セル301の間の導電効率が増加し、本発明に係る高導電効率接続構造は、従来の連接片と電池電極がスポット溶接によって電気的に連接する方法に比べると、電池セルと外部の電気的な連接によるインピーダンスが減少し、電池セル301とグラフェン連接ブロック302の間の電気抵抗が減少するので、電池セルの充放電による電力ロスが減少し、ひいては電池ユニットは効率良く大電流を出力することができる。 According to the high conductive efficiency connection structure according to the present invention, as shown in FIG. 6, a plurality of battery cells 301 are connected in series, connected in parallel, or connected in series by a plurality of graphene connection blocks 302 according to the present invention. When a high capacity battery unit 300 is configured by performing parallel connection to the mixture, when the graphene connection block 30 contacts a battery electrode made of a metal containing nickel, a melting phenomenon occurs in both. As a result, the conductive efficiency between the battery cells 301 is increased, and the high conductive efficiency connection structure according to the present invention has a battery that is electrically connected to the conventional connecting piece and the battery electrode electrically connected by spot welding. Since the impedance due to the electrical connection between the cell and the outside is reduced, and the electrical resistance between the battery cell 301 and the graphene connection block 302 is reduced, the battery cell Power loss due to charging and discharging is decreased, and thus the battery unit can output efficiently large current.

本発明は、電池に適用することができる。 The present invention can be applied to a battery.

10 連接片
11 電池セル
12 金属電極
13 溶接点
20 第一電池セル
21 正極電極
22 負極電極
30 グラフェン連接ブロック
40 第二電池セル
41 正極電極
42 負極電極
50 バネ
50a バネ
50b バネ
51 押付板
51a 押付板
51b 押付板
60 第三電池セル
61 正極電極
62 負極電極
70 第一グラフェン連接ブロック
80 第四電池セル
81 正極電極
82 負極電極
90 第二グラフェン連接ブロック
200 酸化物
300 電池セルユニット
301 電池セル
302 グラフェン連接ブロック
401 グラフェン端子
402 グラフェン端子
403 リード
404 リード
405 リード
406 リード
500 不純物
600 炭素微粒
DESCRIPTION OF SYMBOLS 10 Connection piece 11 Battery cell 12 Metal electrode 13 Welding point 20 First battery cell 21 Positive electrode 22 Negative electrode 30 Graphene connection block 40 Second battery cell 41 Positive electrode 42 Negative electrode 50 Spring 50a Spring 50b Spring 51 Pressing plate 51a Pressing plate 51b Pressing plate 60 Third battery cell 61 Positive electrode 62 Negative electrode 70 First graphene connection block 80 Fourth battery cell 81 Positive electrode 82 Negative electrode 90 Second graphene connection block 200 Oxide 300 Battery cell unit 301 Battery cell 302 Graphene connection Block 401 Graphene terminal 402 Graphene terminal 403 Lead 404 Lead 405 Lead 406 Lead 500 Impurity 600 Carbon fine particles

JP2009108725A 2009-04-28 2009-04-28 High conductivity connection structure Active JP5094783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009108725A JP5094783B2 (en) 2009-04-28 2009-04-28 High conductivity connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009108725A JP5094783B2 (en) 2009-04-28 2009-04-28 High conductivity connection structure

Publications (3)

Publication Number Publication Date
JP2010257860A JP2010257860A (en) 2010-11-11
JP2010257860A5 true JP2010257860A5 (en) 2011-02-17
JP5094783B2 JP5094783B2 (en) 2012-12-12

Family

ID=43318545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009108725A Active JP5094783B2 (en) 2009-04-28 2009-04-28 High conductivity connection structure

Country Status (1)

Country Link
JP (1) JP5094783B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5113224B2 (en) * 2010-07-15 2013-01-09 エネルギー コントロール リミテッド Structure that can achieve high conductivity connection between the battery and the outside with two graphites
KR102157377B1 (en) * 2017-05-25 2020-09-17 주식회사 엘지화학 Battery module and battery pack including the same and manufacturing method for battery module

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137460A (en) * 1990-09-28 1992-05-12 Seiko Electronic Components Ltd Can for lithium cell
JP3882267B2 (en) * 1997-05-29 2007-02-14 新神戸電機株式会社 Battery power supply
JPH1186832A (en) * 1997-09-04 1999-03-30 Harness Sogo Gijutsu Kenkyusho:Kk Connecting structure of battery
JP4242953B2 (en) * 1998-09-21 2009-03-25 三洋電機株式会社 Manufacturing method of battery pack
JP2001283797A (en) * 2000-03-29 2001-10-12 Kyocera Corp Lithium battery
JP2001279490A (en) * 2000-03-30 2001-10-10 Nisshin Steel Co Ltd ONE SIDE Ni PLATED STEEL SHEET HAVING HIGH LUSTER AND REDUCED CONTACT RESISTANCE FOR NEGATIVE AND POSITIVE POLE CANS OF LITHIUM BUTTON CELL
JP2004185985A (en) * 2002-12-03 2004-07-02 Toyota Motor Corp Electric conduction wire
JP2005100926A (en) * 2003-05-14 2005-04-14 Nec Tokin Corp Electrochemical cell laminate
JP4794138B2 (en) * 2004-04-27 2011-10-19 三洋電機株式会社 Assembled battery
JP2007122927A (en) * 2005-10-25 2007-05-17 Bussan Nanotech Research Institute Inc Conductive sheet
JP5005220B2 (en) * 2006-01-10 2012-08-22 三桜工業株式会社 Method for welding connection plate in battery pack
JP4586008B2 (en) * 2006-11-10 2010-11-24 日立ビークルエナジー株式会社 Battery pack and manufacturing method thereof
US8202817B2 (en) * 2007-01-31 2012-06-19 Nec Corporation Nanocarbon aggregate and method for manufacturing the same
WO2009015287A2 (en) * 2007-07-25 2009-01-29 California Institute Of Technology Functional anchors connecting graphene-like carbon to metal

Similar Documents

Publication Publication Date Title
KR101439316B1 (en) Battery having Cell Tab Connecting Structure with Identical Parts
CN110050361A (en) Battery module, the battery pack including battery module and the method for manufacturing battery module
KR101140757B1 (en) Connecting structure for exteriorly connecting battery cells
JP5094783B2 (en) High conductivity connection structure
CN201320665Y (en) Novel welding pin for welding bottoms of cylindrical lithium ion batteries
JP2010257860A5 (en)
CN207353369U (en) A kind of battery module
GB2469449A (en) Connecting Structure for exteriorly connecting battery cells
CN213584088U (en) Lithium ion storage battery
CN104157824A (en) Conduction band and battery employing same
CN111244377A (en) Battery conductive frame
TWM593663U (en) Conductive frame of batteries
CN209896159U (en) Lithium battery bus bar
JP3243217U (en) battery conductive holder
CN218334199U (en) Battery conductive frame
JP7068723B2 (en) Battery conductive frame
TWI732371B (en) Conductive frame of batteries
US20100255361A1 (en) Connecting Structure for Exteriorly Connecting Battery Cells
CA2708451C (en) Connecting structure for exteriorly connecting battery cells
KR101074992B1 (en) Battery cell electrode for storage battery
CN101847702B (en) Structure for high-conductivity connection outside batteries by using graphite
CN109659478B (en) Battery module
US20120009458A1 (en) Connecting structure for exteriorly connecting a battery cell and a load
CN102005785B (en) Structure for realizing single battery external high conductivity continuity by using double graphite blocks
US8740998B2 (en) Method for forming low-resistance electric connection points for a battery cell with two external nickel electrode terminals