JP2010255168A - Process for producing carbon fiber - Google Patents
Process for producing carbon fiber Download PDFInfo
- Publication number
- JP2010255168A JP2010255168A JP2010077074A JP2010077074A JP2010255168A JP 2010255168 A JP2010255168 A JP 2010255168A JP 2010077074 A JP2010077074 A JP 2010077074A JP 2010077074 A JP2010077074 A JP 2010077074A JP 2010255168 A JP2010255168 A JP 2010255168A
- Authority
- JP
- Japan
- Prior art keywords
- fiber bundle
- precursor
- precursor fiber
- bundle
- yarn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Inorganic Fibers (AREA)
Abstract
Description
本発明は、簡単な方法で糸繋ぎ接合部の蓄熱を低減し、焼成工程において糸繋ぎ接合部が蓄熱により破断することなく、高温を維持した状態で工程通過可能な糸繋ぎ接合部、およびその糸繋ぎ接合部を用いて繊維束を接合する連続的な炭素繊維の製造方法に関するものである。 The present invention reduces the heat storage of the yarn splicing joint by a simple method, and does not break the yarn splicing joint due to heat storage in the firing process, and the yarn splicing joint that can pass through the process while maintaining a high temperature, and its The present invention relates to a continuous carbon fiber manufacturing method in which fiber bundles are joined using a yarn joining joint.
一般に、炭素繊維の製造工程において、炭素繊維製造の前駆体繊維束は、ボビンなどに巻き上げられた形態、あるいは箱の中に折り畳み積層された形態によって焼成工程に供給されている。従って、これらの前駆体繊維束を連続的に焼成し、炭素繊維に転換していくためには、ボビンに巻き上げられた形態、あるいは箱体内に収容されている前駆体繊維束の始端部を、何らかの手段で焼成工程を通過中の前駆体繊維束の終端部に接合する必要がある。 In general, in a carbon fiber manufacturing process, a precursor fiber bundle for carbon fiber manufacturing is supplied to the firing process in a form wound up on a bobbin or the like, or in a form folded and laminated in a box. Therefore, in order to continuously fire these precursor fiber bundles and convert them into carbon fibers, the form wound up on the bobbin, or the start end portion of the precursor fiber bundle accommodated in the box, It is necessary to join to the terminal portion of the precursor fiber bundle that is passing through the firing process by some means.
この、前駆体繊維束の末端部同士を接合し、前駆体繊維束を連続的に炭素繊維の製造工程に供給して操業性を向上させる手段として、炭素繊維の前駆体繊維束の末端部同士を加圧流体により交絡させて接合する方法が知られている(特許文献1参照)。 As a means for joining the end portions of the precursor fiber bundles and continuously supplying the precursor fiber bundles to the carbon fiber manufacturing process to improve operability, the end portions of the carbon fiber precursor fiber bundles There is known a method of joining them by entangling them with a pressurized fluid (see Patent Document 1).
この方法により炭素繊維の前駆体繊維束の末端部同士を接合させることは可能であるが、形成された糸繋ぎ接合部では繊維束密度が高くなるため、耐炎化工程で前駆体繊維束自身の発熱により酸化反応が過度に進み、糸繋ぎ接合部が焼損してしまうという問題がある。蓄熱による糸繋ぎ接合部の糸切れを防止するためには、耐炎化炉工程の温度をその前駆体繊維束の糸切れする温度よりも低くさせなければならない。すなわち、耐炎化工程での熱処理温度を下げる分、生産速度も下げる必要があるため、連続化を図っても生産性向上には結びつきにくい。 Although it is possible to join the end portions of the precursor fiber bundle of carbon fiber by this method, the fiber bundle density becomes high in the formed yarn splicing joint, so that the precursor fiber bundle itself in the flameproofing process There is a problem that the oxidation reaction proceeds excessively due to heat generation, and the yarn joining portion is burned out. In order to prevent yarn breakage at the spliced joint due to heat storage, the temperature of the flameproofing furnace process must be lower than the temperature at which the precursor fiber bundle breaks. That is, since it is necessary to reduce the production rate by the amount of the heat treatment temperature in the flameproofing step, it is difficult to improve productivity even if continuous processing is attempted.
これらの対策として、例えば、前駆体繊維束と、接続媒体として非発熱性の耐炎化糸と接合させる方法が講じられてきた(特許文献2参照。)。しかしながら、この方法においても、蓄熱量を低減させる効果はあるものの、除熱が十分でないため前駆体繊維束密度が高くなる接合部では、依然として蓄熱などによる糸切れなどが発生しやすい。従って、糸繋ぎ接合部が耐炎化工程を通過する際には、耐炎化温度を低下し、低下した熱量を補うために生産速度を下げなければならなかった。また、耐炎化糸とポリアクリロニトリル系前駆体繊維束は、繊維束の捌け具合が異なるため、ポリアクリロニトリル系前駆体繊維束と耐炎化糸が十分に混繊しにくく、均一に交絡するという点で十分とは言いきれない。そのため、両者の繊維束同士が工程中の張力にて破断してしまい、生産効率を十分に改善できるものではなかった。 As measures against these, for example, a method of joining a precursor fiber bundle and a non-heat-generating flameproof yarn as a connection medium has been taken (see Patent Document 2). However, even in this method, although there is an effect of reducing the heat storage amount, yarn breakage due to heat storage or the like still tends to occur at the joint where the precursor fiber bundle density becomes high because heat removal is not sufficient. Therefore, when the yarn splicing joint passes through the flameproofing step, the flameproofing temperature must be lowered, and the production rate has to be reduced to compensate for the reduced heat quantity. In addition, the flameproof yarn and the polyacrylonitrile-based precursor fiber bundle are different in the degree of fiber bundle bundling, so that the polyacrylonitrile-based precursor fiber bundle and the flameproof yarn are not easily mixed and are entangled uniformly. It's not enough. Therefore, both fiber bundles are broken by the tension in the process, and the production efficiency cannot be sufficiently improved.
他にも、加圧流体により形成される交絡接合ではなく、末端部同士を分割し、編み込んで接合する方法も講じられているが(特許文献3参照。)、この場合、各接合部の結束強度がバラツキつくため、結束強度の弱い接続部には応力が集中し、結束強度の弱い接合部から順に破断してしまうという問題があった。 Other than the tangled joining formed by the pressurized fluid, a method in which the end portions are divided and knitted and joined is also employed (see Patent Document 3). Since the strength varies, there is a problem in that stress concentrates on a connection portion having a low binding strength, and breaks sequentially from a joint portion having a low binding strength.
また、前駆体繊維の末端を予め密度1.30g/cm3 以上の耐炎化繊維とし、その末端部同士を絡合一体化させてなる接合部を有する炭素繊維製造用のアクリル系繊維が提案されている(特許文献4参照)。この場合、接合部の蓄熱による糸切れに関しては改善される傾向があるものの、前駆体繊維の末端を耐炎化繊維とするのに専用の設備を必要とするため、同様に生産性の良い方法とは言いきれない。 In addition, an acrylic fiber for producing carbon fiber having a joint portion in which the end of the precursor fiber is made into a flame resistant fiber having a density of 1.30 g / cm 3 or more in advance and the end portions are entangled and integrated is proposed. (See Patent Document 4). In this case, although there is a tendency to improve the yarn breakage due to heat accumulation at the joint, a dedicated facility is required to make the end of the precursor fiber a flame-resistant fiber. I can not say.
そこで本発明の目的は、上述した問題点に鑑み、簡単な方法で糸繋ぎ接合部の蓄熱を低減し、焼成工程において糸繋ぎ接合部が蓄熱により破断することなく、高温を維持した状態で工程通過可能な糸繋ぎ接合部、およびその糸繋ぎ接合部を用いて繊維束を接合する連続的な炭素繊維の製造方法を提供することにある。 Therefore, in view of the above-described problems, the object of the present invention is to reduce the heat storage of the yarn splicing joint by a simple method, and in the firing step, the yarn splicing joint is not broken due to heat storage, and the process is maintained at a high temperature. An object of the present invention is to provide a thread-bonding joint that can pass, and a continuous carbon fiber manufacturing method that joins fiber bundles using the thread-joining joint.
本発明は、上記目的を達成せんとするものであって、本発明の炭素繊維の製造方法は、第1の前駆体繊維束の端部と、第2の前駆体繊維束の端部とを、第3の繊維束を介して連結してフィラメント数が3000本以上の炭素繊維を製造するに際して、第3の繊維束は、熱伝導率が3W/(m・K)以上700W/(m・K)以下であり、フィラメント数が3000本以上で、かつドレープ値が2cm以上15cm以下で、扁平度が20以上の炭素繊維束であることを特徴とするものである。 The present invention aims to achieve the above object, and the method for producing carbon fiber of the present invention comprises an end portion of a first precursor fiber bundle and an end portion of a second precursor fiber bundle. When producing carbon fibers having 3000 or more filaments by connecting via the third fiber bundle, the third fiber bundle has a thermal conductivity of 3 W / (m · K) or more and 700 W / (m · K) or less, a carbon fiber bundle having 3000 or more filaments, a drape value of 2 cm or more and 15 cm or less, and a flatness of 20 or more.
また、第3の繊維束の繊度が、第1および第2の前駆体繊維束の繊度に対して、0.2倍以上3.0倍以下の間にあることが好ましい。 The fineness of the third fiber bundle is preferably between 0.2 and 3.0 times the fineness of the first and second precursor fiber bundles.
さらに、第1の前駆体繊維束と第3の繊維束の連結部、および第2の前駆体繊維束と第3の繊維束の連結部は、連結される繊維束同士を引き揃え、重ねあわせた状態で加圧流体を噴射して交絡することにより形成される糸繋ぎ接合部であり、前記第1と第2の前駆体繊維束の間に第3の繊維束を挟んだその糸繋ぎ接合部の常温雰囲気中での引張強さが20g/tex以上で、各々の接合部が複数の絡合部からなっているものであることが好ましい。ここで、引張強さの断面積は、第1または第2の前駆体繊維束を基準としたものである。 Furthermore, the connection part of the 1st precursor fiber bundle and the 3rd fiber bundle, and the connection part of the 2nd precursor fiber bundle and the 3rd fiber bundle align and overlap the fiber bundles to be connected. A yarn splicing joint formed by injecting and entanglement with a pressurized fluid in a state where the third fiber bundle is sandwiched between the first and second precursor fiber bundles. It is preferable that the tensile strength in a normal temperature atmosphere is 20 g / tex or more, and each joint portion is composed of a plurality of intertwined portions. Here, the cross-sectional area of the tensile strength is based on the first or second precursor fiber bundle.
さらに、本発明の炭素繊維の製造方法は、第1の前駆体繊維束の端部と、第2の前駆体繊維束の端部とを、第3の繊維束を介して連結するに際して、該第1の前駆体繊維と第3の繊維束との重ね合わせ部、および第3の繊維束と第2の前駆体繊維との重ね合わせ部に、繊維束の幅方向に直列に複数の流体噴射孔の列が開口され、前記流体噴射孔の列が繊維束方向に間隔をあけ2列以上に配置された少なくとも1組の交絡処理手段により加圧流体を噴射して、前記第1の繊維束と前記第3の繊維束、および第2の繊維束と第3の繊維束の単繊維を同時又は逐次に互いに絡み合わせ、繊維束の幅方向に複数の部分絡合をもつ絡合部を備えた糸繋ぎ接合部を形成させることを特徴としている。 Furthermore, in the method for producing a carbon fiber according to the present invention, when the end portion of the first precursor fiber bundle and the end portion of the second precursor fiber bundle are connected via the third fiber bundle, A plurality of fluid jets in series in the width direction of the fiber bundle at the overlapping portion of the first precursor fiber and the third fiber bundle and the overlapping portion of the third fiber bundle and the second precursor fiber The first fiber bundle is formed by injecting pressurized fluid by at least one pair of entanglement processing means in which a row of holes is opened and the fluid injection hole rows are arranged in two or more rows at intervals in the fiber bundle direction. And the third fiber bundle, and the second fiber bundle and the single fiber of the third fiber bundle are entangled with each other simultaneously or sequentially, and an entangled portion having a plurality of partial entanglements in the width direction of the fiber bundle is provided. It is characterized by forming a spliced yarn joining portion.
本発明の炭素繊維の製造方法によれば、焼成工程中において、糸条からの発熱を除熱する高い効果を有しているため、蓄熱による破断がなく、さらには高い交絡を有すため張力による破断を抑制することが出来る。これにより、焼成工程における耐炎化炉内温度を低下させることなく接合部を最終工程である巻き取り工程まで通過させることができるため、高い生産条件を維持しつつ連続的に炭素繊維を製造することが可能となり、生産効率を大幅に向上させることが可能となる。 According to the method for producing carbon fiber of the present invention, during the firing process, since it has a high effect of removing heat generated from the yarn, there is no breakage due to heat storage, and further there is a high entanglement, so that there is a tension. Can be prevented from breaking. This allows the joint to pass through to the final winding process without lowering the temperature in the flameproofing furnace in the firing process, so that carbon fibers can be continuously produced while maintaining high production conditions. And production efficiency can be greatly improved.
まず、本発明にかかる炭素繊維製造工程の一実施形態について説明する。炭素繊維を製造する前駆体繊維として、ポリアクリロニトリル系繊維束やピッチ系繊維束、さらにはセルロース系の繊維束などを好適に用いることができるが、高い強度を発現しやすいため、ポリアクリロニトリル系繊維束であることが好ましい。この、前駆体繊維束を製造する工程の速度と焼成工程の速度は通常大幅に異なるため、前駆体繊維束はボビンに巻き上げられるか、もしくは箱体内に折りたたみ積層されて収容され、その後焼成工程に供給されることが一般的に用いられる。本発明にてこの前駆体繊維束のフィラメント数は3000本以上である。3000本未満では、繊維束が細いため第3の繊維束との間での有効な交絡を作成することが困難となり、工程中の高い張力により破断しやすいだけでなく、本発明での高い除熱効果を用いなくても耐炎化炉内を通過させる熱風にて十分除熱されることが多く、本発明に記載の技術を適用する必要性が低い。フィラメント数は高ければ高い方がより本発明の高い除熱効果による高温の耐炎化炉での通過性を活かせるため好ましいが、余り太くし過ぎると前駆体繊維束との交絡部が太くなり過ぎ、工程を通過中に隣接糸条間での混繊等の不具合を生じる可能性もあり好ましくないため、100000本以下であることが好ましい。 First, an embodiment of a carbon fiber manufacturing process according to the present invention will be described. As precursor fibers for producing carbon fibers, polyacrylonitrile fiber bundles, pitch fiber bundles, and cellulosic fiber bundles can be suitably used. However, since high strength is easily expressed, polyacrylonitrile fiber A bundle is preferred. Since the speed of the process for producing the precursor fiber bundle and the speed of the firing process are usually significantly different, the precursor fiber bundle is wound up on a bobbin or folded and stacked in a box, and is then stored in the firing process. It is generally used to be supplied. In the present invention, the number of filaments of the precursor fiber bundle is 3000 or more. If the number is less than 3000, the fiber bundle is thin, making it difficult to create an effective entanglement with the third fiber bundle. Not only is it easy to break due to high tension during the process, but also the high separation in the present invention. Even if the thermal effect is not used, the heat is often sufficiently removed by hot air passing through the flameproofing furnace, and the need to apply the technique described in the present invention is low. The higher the number of filaments, the better because it makes use of the high heat removal effect of the present invention in order to make use of the high temperature flameproofing furnace, but if it is too thick, the entangled part with the precursor fiber bundle becomes too thick. Since there is a possibility that problems such as fiber mixing between adjacent yarns may occur during passing through the process, the number is preferably 100,000 or less.
以下、焼成工程を通過している前駆体繊維束を第1の繊維束、次に焼成工程を通過させようとする前駆体繊維束を第2の繊維束とし、各繊維束がボビンに巻き上げられた形態で供給される場合の例について説明する。特に第1と第2の前駆体繊維束を区別する必要がない場合は、単に前駆体繊維束と表記する。 Hereinafter, the precursor fiber bundle passing through the firing process is referred to as a first fiber bundle, and then the precursor fiber bundle to be passed through the firing process is referred to as a second fiber bundle, and each fiber bundle is wound up on a bobbin. An example in the case of being supplied in the form will be described. In particular, when there is no need to distinguish the first and second precursor fiber bundles, they are simply referred to as precursor fiber bundles.
ボビンに巻き上げられた前駆体繊維束は、ボビンから引き出された後、焼成工程における耐炎化炉内にて耐炎化処理される。この耐炎化処理においては、第1の繊維束が酸化性雰囲気下に通常200〜300℃の温度で加熱処理され、耐炎化糸へと転換される。得られた耐炎化糸は、続いて炭化炉内で炭化処理され炭素繊維が得られる。この炭素繊維には、必要に応じて表面改質処理やサイジング剤付与等の表面処理が施され、巻取工程で巻き取られて炭素繊維の製品とされる。ボビンに巻き取られた第1の前駆体繊維束が終端部付近にくると、この第1の前駆体繊維束の終端部に、次のボビンとして巻き取られている第2の前駆体繊維束の始端部が接合される。すなわち、前駆体繊維束の末端部同士が接合され、接合された第2の前駆体繊維束が続けて焼成されることで連続的に炭素繊維が製造される。 The precursor fiber bundle wound up on the bobbin is drawn out from the bobbin and then subjected to a flameproofing treatment in a flameproofing furnace in the firing step. In this flameproofing treatment, the first fiber bundle is usually heat-treated at a temperature of 200 to 300 ° C. in an oxidizing atmosphere to be converted into flameproofing yarn. The obtained flame resistant yarn is subsequently carbonized in a carbonization furnace to obtain carbon fibers. The carbon fiber is subjected to surface treatment such as surface modification treatment or sizing agent application as necessary, and is taken up in a winding process to obtain a carbon fiber product. When the first precursor fiber bundle wound around the bobbin comes near the end portion, the second precursor fiber bundle wound as the next bobbin at the end portion of the first precursor fiber bundle The start ends of the are joined. That is, the end portions of the precursor fiber bundle are joined together, and the joined second precursor fiber bundle is continuously fired to continuously produce carbon fibers.
本発明は、上記の耐炎化工程通過中の糸繋ぎ接合部の蓄熱による糸切れ、さらには耐炎化工程だけでなくさらに高張力となることのある炭化工程を通過中の糸繋ぎ接合部の破断を防止するものであり、具体的には、第1の前駆体繊維束と第2の前駆体繊維束を、炭素繊維束からなる第3の繊維束を介して接合されてなる炭素繊維の製造方法である。 The present invention is a yarn breakage due to heat accumulation in the yarn splicing joint during passage of the above-mentioned flameproofing step, and also breakage of the yarn splicing joint during passage of not only the flameproofing step but also a carbonization step that may become higher tension. More specifically, the first precursor fiber bundle and the second precursor fiber bundle are joined via a third fiber bundle made of carbon fiber bundles. Is the method.
図1は、第1と第2の前駆体繊維束を、第3の繊維束を介して、1組の交絡処理手段により接合させた本発明の糸繋ぎ接合部を例示説明する概略側面図である。 FIG. 1 is a schematic side view illustrating an example of a yarn splicing joint of the present invention in which a first and second precursor fiber bundles are joined by a pair of entanglement processing means via a third fiber bundle. is there.
また、図2は、複数の位置で接合した場合の糸繋ぎ接合部を例示する概略側面図である。図2の例においては、第1の前駆体繊維束1と第3の繊維束3、さらには第3の繊維束と第2の前駆体繊維束2間をそれぞれ3カ所ずつ交絡処理した場合を示している。
FIG. 2 is a schematic side view illustrating a yarn splicing joint when joined at a plurality of positions. In the example of FIG. 2, the first precursor fiber bundle 1 and the
図1及び図2に示すように、第1の前駆体繊維束1と第2の前駆体繊維束2の間に第3の繊維束3を挟んでいるが、この第3の繊維束3として熱伝導率が3W/(m・K)以上700W/(m・K)以下であり、フィラメント数が3000以上で、そのドレープ値が2cm以上15cm以下、さらには扁平度が20以上である炭素繊維束を用い、本発明の糸繋ぎ接合部を形成することができる。この場合、例えば、第1の前駆体繊維束1の終端部と、第3の繊維束3とを重ね合わせ、あるいは、第3の繊維束3と第2の前駆体繊維束2の始端部とを重ね合わせて、交絡処理設備に設置する。このとき、第3の繊維束には炭素繊維が用いられる。以降、特に断わらずに、第3の繊維束を単に炭素繊維束と表記することがある。
As shown in FIGS. 1 and 2, the
前駆体繊維束と炭素繊維束の接合部において、前記第1の前駆体繊維束1と第3の繊維束3、第3の繊維束3と前記第2の前駆体繊維束2とを互いに絡み合わせた各部分に上記糸繋ぎ接合部Aが形成される。図1は、それぞれ1カ所の接合部であり、接合部の数は多ければ多いほど接合部全体の引張強さが安定する方向になるが、同時に複数の結合部を作成しようとすると設備が大型化するため設備面でのコストアップしてしまう。1カ所の接合部を作成する設備を複数回処理することでもなし得るが作業性回数が増えてしまうため、2カ所、あるいは図2に示すような3カ所、または4カ所程度が好ましい。また、前記第1の前駆体繊維束と第3の前駆体繊維束、および第3の繊維束と第2の前駆体繊維束とを互いに絡み合わせた接合部において、接続媒体である第3の繊維束の端部4、第1の前駆体繊維束の端部5及び第2の前駆体繊維束の端部6は、接合部端部から1cm〜5cm程度のところでカットすることが好ましい。前駆体繊維束は、耐炎化炉での熱処理により縮むことがあり、交絡部のほどけを防止するために1cm程度は残してカットすることが好ましい。しかし、5cmより多く残すと、隣接糸条への混繊等のトラブルを引き起こす可能性があるため好ましくない。
At the junction between the precursor fiber bundle and the carbon fiber bundle, the first precursor fiber bundle 1 and the
第3の繊維束は、熱伝導率が3W/(m・K)以上700W/(m・K)以下であり、フィラメント数が3000以上の炭素繊維束であって、そのドレープ値が2cm以上で15cm以下であり、さらには後述する扁平度が20以上であることが重要である。 The third fiber bundle is a carbon fiber bundle having a thermal conductivity of 3 W / (m · K) to 700 W / (m · K) and a filament number of 3000 or more, and a drape value of 2 cm or more. It is important that the thickness is 15 cm or less, and further, the flatness described later is 20 or more.
第3の繊維束のフィラメント数は、交絡結合する前駆体繊維束のフィラメント数に合わせて適宜選択することが出来るが、3000未満の場合、前駆体繊維束との交絡が十分に為されず工程中の張力にて破断することがある。このフィラメント数を増加させると、耐炎化炉内で前駆体繊維から発生する反応熱を効率的に除熱することも出来るが、余り太くし過ぎると前駆体繊維束との交絡部が太くなり過ぎ、工程を通過中に隣接糸条間での混繊等の不具合を生じる可能性もあり好ましくないため、100000本以下であることが好ましい。 The number of filaments of the third fiber bundle can be appropriately selected according to the number of filaments of the precursor fiber bundle to be entangled, but if it is less than 3000, the process is not sufficiently entangled with the precursor fiber bundle. May break due to medium tension. Increasing the number of filaments can efficiently remove the heat of reaction generated from the precursor fiber in the flameproofing furnace, but if it is too thick, the entangled part with the precursor fiber bundle becomes too thick. Since there is a possibility that problems such as fiber mixing between adjacent yarns may occur during passing through the process, the number is preferably 100,000 or less.
第3の繊維束の熱伝導率が3W/(m・K)未満の炭素繊維束であると、耐炎化時に糸繋ぎ接合部に発生する熱を十分に散逸できない、つまり除熱効果が低いため蓄熱による破断を引き起こすこととなる。また700W/(m・K)を越えると、繊維束の弾性率が高すぎて糸繋ぎ部分が良好に形成されないし、高い除熱の効果を相殺してしまう。熱伝導率は、7W/(m・K)以上50W/(m・K)以下であることが更に好ましい。 If the third fiber bundle is a carbon fiber bundle having a thermal conductivity of less than 3 W / (m · K), the heat generated in the spliced joint cannot be sufficiently dissipated when flame resistance is achieved, that is, the heat removal effect is low. It will cause breakage due to heat storage. On the other hand, if it exceeds 700 W / (m · K), the elastic modulus of the fiber bundle is so high that the yarn joining portion is not formed well, and the effect of high heat removal is offset. The thermal conductivity is more preferably 7 W / (m · K) or more and 50 W / (m · K) or less.
ここでいう熱伝導率は、以下に示す繊維束の熱拡散率、密度、比熱より、式(1)により算出したものである。
λ=αρCp (1)
λ :熱伝導率(W/(m・K))
α :熱拡散率(m2/s) 以下の文献に示される光交流法に従い算出した。
The thermal conductivity here is calculated from the following formula (1) from the thermal diffusivity, density, and specific heat of the fiber bundle.
λ = αρCp (1)
λ: Thermal conductivity (W / (m · K))
α: Thermal diffusivity (m 2 / s) Calculated according to the optical alternating current method shown in the following literature.
T.Yamane, S.Katayama, M.Todoki and I.Hatta : J.Appl.Phys., 80
(1996) 4385.
ρ :密度(kg/m3) 被測定物の空気中での重さW1(kg)、および、当該被測
定物を密度ρLの液体に沈めた際の液中での重さW2(kg)に基づき、次ぎに示す式(2)により算出した。
ρ=W1×ρL/(W1−W2) (2)
Cp:比熱(J/(kg・K)) JIS R1672を参考に、DSC(示差走査熱量計)で測定温度が25℃で測定した値である。DSCは、Perkin-Elmer社製DSC-7程度の機能を有するものであれば充分であり、標準資料としてサファイア(α-Al2O3)、アルミニウム容器を用いることも出来る。
なお、繊維束の熱拡散率、比熱は、それぞれn=2、密度はn=6で測定した平均値を用いる。
T. Yamane, S. Katayama, M. Todoki and I. Hatta: J. Appl. Phys., 80
(1996) 4385.
ρ: Density (kg / m 3 ) Weight W 1 (kg) of the object to be measured in air, and weight W 2 in the liquid when the object to be measured is submerged in a liquid of density ρ L Based on (kg), it was calculated by the following equation (2).
ρ = W 1 × ρ L / (W 1 −W 2 ) (2)
Cp: specific heat (J / (kg · K)) A value measured by DSC (differential scanning calorimeter) at 25 ° C. with reference to JIS R1672. The DSC is sufficient if it has a function equivalent to that of DSC-7 manufactured by Perkin-Elmer, and sapphire (α-Al 2 O 3) and an aluminum container can be used as standard materials.
In addition, the average value measured by n = 2 for the thermal diffusivity and specific heat of the fiber bundle and n = 6, respectively, is used.
また、第3の繊維束のドレープ値が15cmを越えると糸束が硬くなりすぎるため、エアなどの流体交絡処理時に糸束が捌けにくくなり、第1前駆体繊維束及び第2前駆体繊維束との交絡が均一にかからなくなる。このため、ドレープ値の好ましい範囲は10cm以下、更に好ましい範囲は8cm以下である。ドレープ値とは、糸束の硬さを表したものであり、その値が小さいほど柔らかく、形態保持性が小さいとも言える。このドレープ値の下限は、2cmである。すなわち、捌けやすく、比較的柔らかい糸束である程交絡がかかり易いが、2cm未満では、柔らかすぎて取り扱いが困難となる。また、糸束がさばけやすいため、前駆体繊維との接合時に、除熱に有効な各単糸が切れやすく、工程張力に耐えるための引張強度も低下するため2cm以上とすることが好ましい。ドレープ値をコントロールする手段として色々あるが、代表的には、その第3の繊維束に付与されるサイジング付着量で好適にコントロールすることが出来、サイジング付着量を上げればドレープ値は高くなり、下げれば低くなるので、所望の値に調整することが可能である。 Further, if the drape value of the third fiber bundle exceeds 15 cm, the yarn bundle becomes too hard, and therefore the yarn bundle is difficult to be broken during fluid entanglement processing such as air, and the first precursor fiber bundle and the second precursor fiber bundle The entanglement with is not evenly applied. For this reason, the preferable range of the drape value is 10 cm or less, and the more preferable range is 8 cm or less. The drape value represents the hardness of the yarn bundle, and it can be said that the smaller the value is, the softer the shape is and the less the shape retention is. The lower limit of this drape value is 2 cm. That is, it is easy to bend and the more soft the yarn bundle, the more likely it is to be entangled, but if it is less than 2 cm, it is too soft and difficult to handle. Further, since the yarn bundle is easily separated, each single yarn effective for heat removal is easily cut at the time of joining with the precursor fiber, and the tensile strength for withstanding the process tension is also reduced. There are various means for controlling the drape value, but typically, it can be suitably controlled by the sizing adhesion amount applied to the third fiber bundle, and if the sizing adhesion amount is increased, the drape value becomes higher, Since it becomes low if it lowers, it can be adjusted to a desired value.
ここでいうドレープ値について、図4を用いて説明する。図4(a)〜(c)は、本発明で用いるドレープ値の測定方法を示す概略側面図である。図4(a)で示すように、約50cmにカットされた繊維束を、温度23℃、湿度60%の雰囲気下で重りを0.0375g/texの張力でぶら下げ、30分以上放置する。それを30cmの長さに切断し、図4(b)で示すように、その一端部を四角柱7の上面に片持支持の状態で垂れ下がらないよう床面と平行になるよう固定する。このとき、繊維束が、四角柱7の側面に対して直角になるように、かつ、四角柱7の側面から、繊維束の先端までの長さが25cmになるように図(b)で示すように平板8で添えて固定した。そのあと、図4(c)に示すように、平板8だけを素早く取り除き、重力によって垂れ下がった繊維束の先端と四角柱7の側面とがなす最も近い距離X(cm)を測定する。このとき、平板8を取り外して繊維束が垂れ始めた1秒後の距離X(cm)をドレープ値とする。 The drape value here will be described with reference to FIG. 4A to 4C are schematic side views showing a method for measuring the drape value used in the present invention. As shown in FIG. 4 (a), a fiber bundle cut to about 50 cm is hung with a tension of 0.0375 g / tex in an atmosphere of a temperature of 23 ° C. and a humidity of 60%, and left for 30 minutes or more. It is cut into a length of 30 cm, and as shown in FIG. 4B, one end thereof is fixed to the upper surface of the rectangular column 7 so as to be parallel to the floor surface so as not to hang down in a cantilevered state. At this time, the fiber bundle is shown in FIG. 2B so that the fiber bundle is perpendicular to the side surface of the square column 7 and the length from the side surface of the square column 7 to the tip of the fiber bundle is 25 cm. As shown in FIG. Thereafter, as shown in FIG. 4C, only the flat plate 8 is quickly removed, and the closest distance X (cm) formed by the tip of the fiber bundle hanging down due to gravity and the side surface of the square column 7 is measured. At this time, the distance X (cm) one second after the flat plate 8 is removed and the fiber bundle starts to sag is defined as the drape value.
また、第1の前駆体繊維と第3の繊維束との重ね合わせ部、および第2の前駆体繊維と第3の繊維束との重ね合わせ部に関して、より流体交絡処理を均一にさせるために、この第3の炭素繊維束は、扁平度が20以上のものであることが重要である。扁平度が20未満であると、糸束が細いため、流体交絡処理時の捌け方が不均一になり易くなり、糸繋ぎ接合部の引張強さの低下や糸切れ温度の低下に繋がる。また、扁平度の上限は、200程度であり、200を越えると糸束が広くなりすぎるために第1の前駆体繊維束及び第2の前駆体繊維束との交絡に斑が発生し易く、繋ぎ接合部の引張強さの低下につながる。 Further, in order to make the fluid entanglement process more uniform with respect to the overlapping portion of the first precursor fiber and the third fiber bundle and the overlapping portion of the second precursor fiber and the third fiber bundle. It is important that the third carbon fiber bundle has a flatness of 20 or more. When the flatness is less than 20, since the yarn bundle is thin, the method of making a tangling process during fluid entanglement tends to be non-uniform, leading to a decrease in the tensile strength of the yarn splicing joint and a decrease in the yarn breakage temperature. In addition, the upper limit of the flatness is about 200, and if it exceeds 200, the yarn bundle becomes too wide, so that the entanglement between the first precursor fiber bundle and the second precursor fiber bundle is likely to occur, This leads to a decrease in the tensile strength of the joint.
ここでいう扁平度とは、以下に示す炭素繊維束の幅Wと炭素繊維束の厚みTからW/Tで求めることが出来る。ここで、炭素繊維束の幅Wとは、第3の炭素繊維束を静置した状態で測定した値であり、炭素繊維束の幅を定規にて直接測定したものである。 The flatness referred to here can be obtained by W / T from the width W of the carbon fiber bundle and the thickness T of the carbon fiber bundle shown below. Here, the width W of the carbon fiber bundle is a value measured in a state where the third carbon fiber bundle is allowed to stand, and is a value obtained by directly measuring the width of the carbon fiber bundle with a ruler.
また、接続繊維束の厚みT(mm)は、接続繊維束を形成している多数本のフィラメントにおける各フィラメントの単糸繊度Y(g/m)、密度ρ(kg/m3)、接続繊維束を形成しているフィラメントの数F、および、接続繊維束の幅W(mm)に基づき、次ぎに示す式(3)および式(4)から算出される値である。
D(mm)=√(4×Y×103/(π×ρ)) (3)
T(mm)=F×D2/W (4)
第3の繊維束の繊度は、第1の前駆体繊維束や第2の前駆体繊維束の繊度に対して、0.2倍以上3.0倍以下の間にあることが好ましい。0.2倍未満では、第1の前駆体繊維束及び第2の前駆体繊維束部分に第3の繊維束と絡合しない交絡不良部が発生し易くなるため好ましくない。また、3.0倍を越えると、今度は第3の繊維束に交絡不良が発生し易くなるため好ましくない。第3の繊維束の繊度は、第1前駆体繊維束及び第2前駆体繊維束の繊度に対して、0.3倍〜1.2倍がより好ましく、0.4〜0.8倍がさらに好ましい。第1と第2の両前駆体繊維束の繊度は同一の場合だけでなく異なる場合でも、上記範囲を守ることで生産性良く連続的に生産可能である。
Further, the thickness T (mm) of the connecting fiber bundle is such that the single yarn fineness Y (g / m), the density ρ (kg / m 3 ) of each filament in the multiple filaments forming the connecting fiber bundle, the connecting fiber Based on the number F of filaments forming the bundle and the width W (mm) of the connecting fiber bundle, the value is calculated from the following expressions (3) and (4).
D (mm) = √ (4 × Y × 10 3 / (π × ρ)) (3)
T (mm) = F × D 2 / W (4)
The fineness of the third fiber bundle is preferably between 0.2 and 3.0 times the fineness of the first precursor fiber bundle and the second precursor fiber bundle. If it is less than 0.2 times, an entanglement defect portion that does not entangle with the third fiber bundle tends to occur in the first precursor fiber bundle and the second precursor fiber bundle portion, which is not preferable. On the other hand, if it exceeds 3.0 times, it is not preferable because the confounding defect is likely to occur in the third fiber bundle. The fineness of the third fiber bundle is more preferably 0.3 to 1.2 times, and 0.4 to 0.8 times the fineness of the first precursor fiber bundle and the second precursor fiber bundle. Further preferred. Even when the fineness of both the first and second precursor fiber bundles is the same, it can be continuously produced with good productivity by keeping the above range.
本発明では、上記の前駆体繊維束の製造方法で得られた糸繋ぎ接合部を有する炭素繊維の前駆体繊維束を焼成することにより炭素繊維とすることができる。 In this invention, it can be set as carbon fiber by baking the precursor fiber bundle of the carbon fiber which has the yarn splicing junction obtained by the manufacturing method of said precursor fiber bundle.
また、前駆体繊維束と炭素繊維束間の接合部の常温雰囲気中での引張強さは、20g/tex以上であることが好ましい。ここで言う常温とは、前駆体繊維束と炭素繊維束を接合する作業雰囲気、つまり外気温程度をさし、具体的には20℃〜30℃であり、この温度領域の全ての温度で接合部の引張強さ20g/tex以上であることが好ましい。なお、本発明においては5℃程度から50℃の温度領域の全ての温度で接合部の引張強さ20g/tex以上であればより好ましい。かかる温度領域のいずれかの温度において20g/tex未満となった場合には、接合部が耐炎化等の各工程での張力に耐えられず破断するトラブルが発生することがあり好ましくない。この接合部の引張強さが高い方が工程上の通過性の観点では好ましいが、引張強さを上げるため交絡を強くしようとすると、逆に前駆体繊維束、さらには炭素繊維束の各単糸が破断してしまうため上げきらないことがある。50g/tex程度も有れば十分であることが多い。 Moreover, it is preferable that the tensile strength in the normal temperature atmosphere of the junction part between a precursor fiber bundle and a carbon fiber bundle is 20 g / tex or more. The normal temperature here refers to the working atmosphere for bonding the precursor fiber bundle and the carbon fiber bundle, that is, the outside air temperature, specifically 20 ° C. to 30 ° C., and bonded at all temperatures in this temperature range. The tensile strength of the part is preferably 20 g / tex or more. In the present invention, it is more preferable if the tensile strength of the joint is 20 g / tex or more at all temperatures in the temperature range of about 5 ° C. to 50 ° C. If the temperature is less than 20 g / tex at any temperature in such a temperature range, the joint may not be able to withstand the tension in each process such as flame resistance, which may cause a trouble that breaks. A higher tensile strength at the joint is preferable from the viewpoint of processability. However, in order to increase the entanglement in order to increase the tensile strength, on the contrary, each of the precursor fiber bundle and further the carbon fiber bundles. Since the yarn breaks, it may not be fully raised. It is often sufficient to have about 50 g / tex.
ここでいう引張強さとは、次のように測定して得られる値と定義する。ORIENTEC社製(型式:RTC−1225A)程度の能力を有する引っ張り試験機を用い、前駆体繊維束と炭素繊維束を接合した両端部間の引張強力を引張速度100mm/分で測定したときの最大値を、第1または第2の前駆体繊維束の内、破断した側の繊維束の繊度(tex)で割り、引張強さとする。同一の太さ、フィラメント数の前駆体繊維束間を第3の繊維束にて連結する場合は、第1および第2の前駆体繊維束とも同一の値となり本願請求項に記載の範囲を満たす必要がある。また、第1および第2の繊維束のフィラメント数等が異なる、つまり太さの異なる前駆体繊維束を、特定の第3の繊維束で連結する場合、第1の前駆体繊維束と第3の繊維束、さらには第3の繊維束と第2の前駆体繊維束間の接合部とも本願請求項に規定する範囲に有ることが必要となる。 The tensile strength here is defined as a value obtained by measurement as follows. Maximum when tensile strength between both ends where a precursor fiber bundle and a carbon fiber bundle are joined is measured at a tensile speed of 100 mm / min using a tensile tester having a capability of approximately ORIENTEC (model: RTC-1225A) The value is divided by the fineness (tex) of the fiber bundle on the broken side of the first or second precursor fiber bundle to obtain the tensile strength. When the precursor fiber bundles having the same thickness and the same number of filaments are connected by the third fiber bundle, the first and second precursor fiber bundles have the same value and satisfy the range described in the claims of the present application. There is a need. When precursor fiber bundles having different numbers of filaments of the first and second fiber bundles, that is, different thicknesses are connected by a specific third fiber bundle, the first precursor fiber bundle and the third fiber bundle It is necessary that both the fiber bundle and the joint between the third fiber bundle and the second precursor fiber bundle are within the range defined in the claims.
本発明で用いる第3の繊維束は、炭素繊維束は、熱伝導率が3W/(m・K)以上700W/(m・K)以下であり、フィラメント数が3000本以上で、かつドレープ値が2cm以上15cm以下で、扁平度が20以上であることをすべて満たすことで本発明の優れた効果を発揮するものである。熱伝導率が3W/(m・K)以上700W/(m・K)以下であり、フィラメント数が3000本以上である炭素繊維は、前駆体繊維の単繊維数や焼成条件による炭化または黒鉛化の度合を調整して得ることができる。次に、ドレープ値が2cm以上15cm以下で、扁平度が20以上とする好ましい製造方法の一例を以下に示す。前駆体繊維として、ポリアクリロニトリルを原料として紡糸したポリアクリロニトリル繊維束を一旦ボビン等に巻き上げたものを用い、かかるポリアクリロニトリル繊維束をボビンから引き出し、空気中230〜280℃で耐炎化処理を行い、次いで最高温度1900℃以下に管理された炭化炉にて炭素化して炭素繊維束とする。必要に応じて、得られた炭素繊維束を最高温度1900〜2600℃に加熱し黒鉛化繊維束とすることも可能である。このようにして得られた炭素繊維束ないしは黒鉛化繊維束を、1.5〜6.0g/tex、好ましくは2.0〜5.5g/texの張力下でサイジング剤を付与した後、100℃〜150℃程度に管理されたホットロールに押し付けて扁平化させつつ乾燥させて巻き取ることで、ドレープ値が2cm以上15cm以下で、扁平度が20以上の炭素繊維束が得られる。なお、付与するサイジング剤は、特に限定せずに用いることができ、ドレープ値を前記範囲に調節するために、その付着量や付着方法、さらには乾燥温度を適宜選択すればよい。 The third fiber bundle used in the present invention is a carbon fiber bundle having a thermal conductivity of 3 W / (m · K) or more and 700 W / (m · K) or less, a filament number of 3000 or more, and a drape value. Is 2 cm to 15 cm and the flatness is 20 or more, the excellent effect of the present invention is exhibited. Carbon fibers having a thermal conductivity of 3 W / (m · K) or more and 700 W / (m · K) or less and having a filament number of 3000 or more are carbonized or graphitized depending on the number of single fibers of the precursor fiber and firing conditions. It can be obtained by adjusting the degree of. Next, an example of a preferable production method in which the drape value is 2 cm or more and 15 cm or less and the flatness is 20 or more is shown below. As a precursor fiber, a polyacrylonitrile fiber bundle spun using polyacrylonitrile as a raw material is once wound up on a bobbin or the like, the polyacrylonitrile fiber bundle is drawn out from the bobbin, and subjected to a flame resistance treatment at 230 to 280 ° C. in air. Next, carbonization is performed in a carbonization furnace controlled to a maximum temperature of 1900 ° C. or less to obtain a carbon fiber bundle. If necessary, the obtained carbon fiber bundle can be heated to a maximum temperature of 1900 to 2600 ° C. to obtain a graphitized fiber bundle. The carbon fiber bundle or graphitized fiber bundle thus obtained is applied with a sizing agent under a tension of 1.5 to 6.0 g / tex, preferably 2.0 to 5.5 g / tex. A carbon fiber bundle having a drape value of 2 cm or more and 15 cm or less and a flatness of 20 or more can be obtained by pressing it onto a hot roll controlled to about 150 ° C. to 150 ° C. and drying it while flattening it. Note that the sizing agent to be applied can be used without any particular limitation, and in order to adjust the drape value to the above range, the adhesion amount, the adhesion method, and the drying temperature may be appropriately selected.
本発明では、前述の特性を有する炭素繊維束を接続媒体として介することで耐炎化炉での発熱を効率的に除熱し、生産性を大幅に改善するという優れた効果を奏するが、さらに本発明の優れた効果をより高めるため、前駆体繊維束と炭素繊維束間を接合するのに以下の方法を用いることが好ましく用いられる。本発明で使用する前駆体繊維束の連結には、繊維束の幅方向に直列に複数の流体噴射孔の列が開口され、前記流体噴射孔の列が繊維束方向に間隔をあけ2列以上に配置された少なくとも1組の交絡処理手段により加圧流体を噴射して、前記接合部を作成し、その接合部の束方向に複数の絡合部分をもつものが好ましい。好ましい噴射孔の配列の一例を図5に示す。図5では、噴射孔として2列の場合を示している。前記流体噴射孔の列が直列に単数では、前記絡合部が複数になり難く、その部分が蓄熱切れし易くなる。単数の場合、図5に示す孔の列が1つとなる場合である。孔の数は特に決まらないが、その都度、前駆体繊維束の繊度によって調整することが出来る。また、前記流体噴射孔の列が1列では、図3のXに示す放熱部が十分に取りにくくなり、接合部が蓄熱し糸切れし易くなるため好ましくない。しかし孔の列が多くなると加圧流体の使用量が多くなり、特別な装置を必要とすることもあり、2列有れば十分であることが多い。 In the present invention, through the use of the carbon fiber bundle having the above-mentioned characteristics as a connection medium, the heat generated in the flame-proofing furnace is efficiently removed, and the excellent effect of greatly improving productivity is achieved. In order to further enhance the excellent effect, it is preferable to use the following method for joining the precursor fiber bundle and the carbon fiber bundle. For connecting the precursor fiber bundles used in the present invention, a plurality of rows of fluid ejection holes are opened in series in the width direction of the fiber bundle, and the rows of the fluid ejection holes are spaced apart in the fiber bundle direction by two or more rows. It is preferable that pressurized fluid is ejected by at least one pair of entanglement processing means arranged in the above to create the joint, and the joint has a plurality of entangled portions in the bundle direction. An example of a preferable arrangement of the injection holes is shown in FIG. FIG. 5 shows the case of two rows as the injection holes. When the row of the fluid ejection holes is singular in series, the entangled portion is unlikely to be plural, and the portion easily loses heat storage. In the case of singular, this is the case where there is only one row of holes shown in FIG. The number of holes is not particularly determined, but can be adjusted according to the fineness of the precursor fiber bundle each time. Further, it is not preferable that the number of the fluid ejection holes is one because the heat dissipating part indicated by X in FIG. 3 is sufficiently difficult to be taken, and the joining part accumulates heat and easily breaks the yarn. However, as the number of holes increases, the amount of pressurized fluid used increases, and a special device may be required, and two lines are often sufficient.
この、加圧流体を噴射して得られる連結部の形態を図3を用いて説明する。 The form of the connecting portion obtained by injecting the pressurized fluid will be described with reference to FIG.
図3は本発明の糸繋ぎ接合部の概略平面図の一例であり、本発明の糸繋ぎ接合部Aでは、前駆体繊維束と炭素繊維束の両末端部同士を重ね合わせて形成される糸繋ぎ絡合部Aにおいて、両繊維束が開繊され、熱を外部に放出させることができる放熱部Bと、その放熱部Bの両端部に存在し、高い引張強度を発現するため繊維束の幅方向に複数の部分絡合Dをもつ絡合部Cを備えている。つまり、1組の加圧流体噴射手段を用いることで、1つの放熱部Bと2つの絡合部を有する形態となる。ここで、前駆体繊維束と炭素繊維束が放熱部Bを有する形態をとると、前駆体繊維束から発生する反応熱が炭素繊維束と単糸同士でふれあうこととなり炭素繊維による優れた除熱効果を活かせるだけでなく、通常耐炎化工程にて前駆体繊維束からの発熱を除熱する目的でも吹き込まれる熱風が通り易く、交絡部に存在する前駆体繊維束から発生する反応熱も含めて効率的に除熱することが可能になるものと考えられる。ここで、絡合束数とは、この部分絡合Dの1列あたりの束総数をいい、例えば図3での絡合束数は、4束となる。絡合束数は、2束以上が好ましく、さらに好ましくは3束以上である。通常、絡合束数の上限値としては、エア交絡処理設備の性能及び繊維束のトータルフィラメント数から10束程度である。絡合束は1束であると繊維束密度が高くなるため、耐炎化工程で前駆体繊維束自身の発熱により酸化反応が急激に起こり、糸繋ぎ接合部が焼損し易くなるため好ましくない。すなわち、糸繋ぎ絡合部は、絡合束数を多くして、1束当たりのフィラメント数を小さくすることにより、糸繋ぎ接合部の引張強さを損なわずに、前駆体繊維束自身の発熱をさらに効率的に除熱することが可能となる。 本発明では、上記の前駆体繊維束の製造方法で得られた糸繋ぎ接合部を有する炭素繊維の前駆体繊維束を焼成することにより炭素繊維とすることができる。 FIG. 3 is an example of a schematic plan view of the yarn splicing joint portion of the present invention. In the yarn splicing joint portion A of the present invention, a yarn formed by overlapping both end portions of the precursor fiber bundle and the carbon fiber bundle. In the connecting and entangled portion A, both fiber bundles are opened, and the heat dissipating part B that can release heat to the outside and the heat dissipating part B are present at both ends of the heat dissipating part B. An entangled portion C having a plurality of partial entanglements D in the width direction is provided. That is, by using one set of pressurized fluid ejecting means, a configuration having one heat radiating part B and two entangled parts is obtained. Here, if the precursor fiber bundle and the carbon fiber bundle have a heat dissipation part B, the reaction heat generated from the precursor fiber bundle will come into contact with the carbon fiber bundle and the single yarn, and excellent heat removal by the carbon fiber. Not only can the effect be utilized, but also the hot air that is blown in easily passes for the purpose of removing heat from the precursor fiber bundle in the normal flameproofing process, including the reaction heat generated from the precursor fiber bundle present in the entangled part Therefore, it is considered possible to remove heat efficiently. Here, the number of entangled bundles refers to the total number of bundles per row of the partial entangled D. For example, the number of entangled bundles in FIG. The number of entangled bundles is preferably 2 or more, more preferably 3 or more. Usually, the upper limit of the number of entangled bundles is about 10 bundles from the performance of the air entanglement processing equipment and the total number of filaments in the fiber bundle. When the number of entangled bundles is one, the density of the fiber bundle becomes high, so that the oxidation reaction occurs rapidly due to the heat generation of the precursor fiber bundle itself in the flameproofing process, and the yarn splicing joint tends to burn out, which is not preferable. In other words, the yarn entanglement portion increases the number of entanglement bundles and reduces the number of filaments per bundle, thereby reducing the heat generation of the precursor fiber bundle itself without impairing the tensile strength of the yarn connection portion. Can be further efficiently removed. In this invention, it can be set as carbon fiber by baking the precursor fiber bundle of the carbon fiber which has the yarn splicing junction obtained by the manufacturing method of said precursor fiber bundle.
以下、実施例をあげて本発明の効果を具体的に説明するが、本発明は、これらの実施例に限定されるものではない。 Hereinafter, the effects of the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
本発明の実施例では、先に炭素繊維の製造工程の一実施形態として説明した焼成製造工程を用いて、糸繋ぎ接合部を走行させた。 In the examples of the present invention, the yarn splicing joint was run using the firing manufacturing process described above as one embodiment of the carbon fiber manufacturing process.
耐炎化炉の条件は、炉内風速が前駆体繊維束の走行方向に対して鉛直方向に1.0m/秒になるように流し、工程中の走行糸条に加える張力は1.5g/texとなるように調整した。そして、この耐炎化炉における接合部の通過可能な上限温度を測定した。また、炭化工程の通過状況は、接合部を有さない耐炎化炉を通過可能な温度から耐炎化炉内の温度斑や測定器の誤差を考慮して10℃低下させた温度を基本的に設定して耐炎化処理し、さらには続く炭化工程での通過状況を測定した。 The conditions of the flameproofing furnace are such that the wind speed in the furnace is 1.0 m / sec in the vertical direction with respect to the traveling direction of the precursor fiber bundle, and the tension applied to the traveling yarn in the process is 1.5 g / tex. It adjusted so that it might become. And the upper limit temperature which can pass the junction part in this flameproofing furnace was measured. In addition, the passing state of the carbonization process is basically a temperature that is lowered by 10 ° C. from the temperature that can pass through the flame-proofing furnace having no joint in consideration of temperature spots in the flame-proofing furnace and errors in the measuring instrument. It was set and subjected to flameproofing treatment, and further the passing situation in the subsequent carbonization process was measured.
また、本発明の実施例において前駆体繊維束は、単繊維繊度が1.1dtexである実質的に撚りの無いフィラメント数が24,000本のポリアクリロニトリル系前駆体繊維束を使用した実施例と各比較例について、結果を一連表1にまとめた。 Further, in the examples of the present invention, the precursor fiber bundle is a polyacrylonitrile-based precursor fiber bundle having a single fiber fineness of 1.1 dtex and a polyacrylonitrile-based precursor fiber bundle having 24,000 filaments having substantially no twist. The results are summarized in Table 1 for each comparative example.
(実施例1)
第1と第2の前駆体繊維束の末端部に、それぞれフィラメント数48000本、24000本、12000本の第3の繊維束である炭素繊維束を重ね合わせ、3種類の接合サンプルを作成した。このとき、2列に配設された交絡処理手段を用い、第1ないしは第2の前駆体と第3の繊維束である炭素繊維束を合わせたうえで9.0%の弛緩量を付与した後、0.4MPaの圧縮空気を2秒間噴射した。これにより、形成された図3で示した形態の結合部Aが図2に示す様に3個ずつ作成した。
Example 1
Carbon fiber bundles, which are third fiber bundles having 48,000 filaments, 24000 filaments, and 12,000 filaments, were superposed on the end portions of the first and second precursor fiber bundles, respectively, to prepare three types of bonded samples. At this time, using the entanglement processing means arranged in two rows, the first or second precursor and the carbon fiber bundle as the third fiber bundle were combined, and a relaxation amount of 9.0% was given. Thereafter, 0.4 MPa of compressed air was injected for 2 seconds. As a result, three connecting portions A having the form shown in FIG. 3 were formed as shown in FIG.
その結果、表1に示すとおり、接続部がない連続原糸の参考例と比較して、各サンプルとも耐炎化炉通過可能な温度が0〜1℃低下する程度で、接合部が耐炎化炉を通過可能な温度低下幅は小さかった。また、(イ)から(ハ)の各接続部を耐炎化炉以降の各工程に走行させたが、耐炎化工程だけでなく、炭化工程も含めて、最終的にワインダーでボビンに巻き上げるまで蓄熱や工程中の張力による糸切れも見られず、生産条件を変更せずに糸繋ぎが可能となり、生産効率を大幅に向上することが出来た。 As a result, as shown in Table 1, the temperature at which each sample can pass through the flameproofing furnace is reduced by 0 to 1 ° C. as compared with the reference example of the continuous raw yarn having no connection part, and the joint part is flameproofing furnace. The temperature drop that can pass through was small. In addition, each connection part from (a) to (c) was moved to each process after the flameproofing furnace, but not only the flameproofing process but also the carbonization process, and finally the heat storage until it was wound up on the bobbin with a winder. No yarn breakage due to tension during the process was observed, and it was possible to connect the yarns without changing the production conditions, which greatly improved production efficiency.
(実施例2、3)
実施例2では、糸繋ぎ用炭素繊維を表1に示したものに変更し、実施例3では接合数を1とした以外は、実施例1と同様に実施した。その結果、耐炎化炉が通過可能な温度は参考例と比較して3〜4℃低下し、炭化工程でも張力による若干の糸切れが見られたが、十分に生産対応可能なレベルであった。
(Examples 2 and 3)
In Example 2, the carbon fiber for tying was changed to that shown in Table 1, and Example 3 was carried out in the same manner as Example 1 except that the number of joints was 1. As a result, the temperature at which the flameproofing furnace can pass was lowered by 3 to 4 ° C. compared to the reference example, and some yarn breakage due to the tension was observed even in the carbonization process, but it was at a level that could sufficiently handle production. .
(実施例4、5)
糸繋ぎ用炭素繊維を表に示したものとし、繊度比を3.09(実施例4)および0.15(実施例5)とした以外は、実施例1と同様に実施した。結果、耐炎化炉が通過可能な温度は参考例と比べてそれぞれ5℃低下し、炭化工程でも糸切れが見られたが、生産対応可能なレベルであった。
(Examples 4 and 5)
This was carried out in the same manner as in Example 1 except that the carbon fiber for yarn joining was shown in the table and the fineness ratio was set to 3.09 (Example 4) and 0.15 (Example 5). As a result, the temperature at which the flame-proofing furnace can pass was lowered by 5 ° C. compared to the reference example, and yarn breakage was observed even in the carbonization process, but it was at a level that could support production.
(実施例6)
使用する交絡処理手段として、1列に流体噴射孔が配設されたものを用いたこと以外は、実施例1と同様に実施した。第1の繊維束と第3の繊維束、さらには第3の繊維束と第2の繊維束のそれぞれの結合部(図3の結合部Aに該当)を目視観察すると、それぞれの繊維束を構成する単糸間の均一な交絡は見られたが、図3に示す部分交絡Dはハッキリとは観察されず、ほぼその中央部にておおよそ2分割されている程度であった。得られた結合部の耐炎化炉が通過可能な温度は参考例比7℃低下し、炭化工程通過率が低下も、生産対応可能なレベルであった。
(Example 6)
The same procedure as in Example 1 was carried out except that the entanglement treatment means used was one in which fluid ejection holes were arranged in one row. When the first fiber bundle and the third fiber bundle, and further the respective joint portions (corresponding to the joint portion A in FIG. 3) of the third fiber bundle and the second fiber bundle are visually observed, the respective fiber bundles are observed. Although uniform entanglement between the constituent single yarns was observed, the partial entanglement D shown in FIG. 3 was not observed clearly, but was roughly divided into two at the center. The temperature at which the obtained flame-proofing furnace of the joint portion can pass was reduced by 7 ° C. compared to the reference example, and the carbonization process passage rate was also reduced to a level capable of production.
(比較例1)
第1および第2の繊維束であるフィラメント数24000本の前駆体繊維束の末端部同士を、第3の繊維束である糸繋ぎ用の炭素繊維束を使用しないで、実施例1と同様の糸繋ぎ条件で接合した。結果、接合部の形態、引張強さ、接合数、部分絡合数は実施例1とほぼ同等なものであったが、接合部が前駆体繊維束同士であるために、耐炎化炉内での除熱が十分に行われず、耐炎化炉内で接合部が蓄熱・損傷しやすくなった結果、耐炎化通過可能な上限温度が250℃となり、ブランク及び実施例と比較して大幅に低下した。この接合部は、耐炎化炉は糸切れも見られず通過したが、炭化炉では接合部での糸切れが見られ、再度炉を通糸させる必要があり、作業負荷が大きくかかった。
(Comparative Example 1)
The end portions of the precursor fiber bundle having 24,000 filaments that are the first and second fiber bundles are the same as those in Example 1 without using the carbon fiber bundle for yarn joining that is the third fiber bundle. Joined under yarn splicing conditions. As a result, the form of the joint part, tensile strength, number of joints, and number of partial entanglements were almost the same as in Example 1, but the joint part is a bundle of precursor fibers, so in the flameproofing furnace As a result of the heat removal and heat-damaging of the joints in the flame-proofing furnace, the upper limit temperature at which flame-proofing can be passed is 250 ° C., which is significantly lower than the blank and examples. . The joint passed through the flameproofing furnace without any yarn breakage, but in the carbonization furnace, yarn breakage was seen at the joint, and it was necessary to pass the furnace again, which caused a heavy work load.
(比較例2)
糸繋ぎ用である第3の繊維束のドレープ値が20cmとしたこと以外は、実施例1と同じ糸繋ぎ条件で接合して測定した。その結果、第3の繊維束が硬すぎて拡がらないために、第1ないしは第2の繊維束と十分な交絡が得られないため、接合部の引っ張り強度も低く、前駆体繊維の発熱を効率的に除熱することが出来なくなった。第3の繊維束のドレープ値が20cmと高く、つまり繊維束が硬いため、前駆体繊維束と糸繋ぎ繊維束が均一に接合しないため、引張強さも低く、接合部が蓄熱・損傷しやくなり、耐炎化通過可能な上限温度も大幅に低く247℃となった。その結果、耐炎化工程を通過可能な温度は、実施例1のみならず、第3の繊維束を用いない比較例1よりも低くなってしまい、耐炎化炉に吹き込む熱風の温度よりも低下した。そのままの温度では耐炎化炉でも糸切れ発生するため、設定温度を落とさざるおえなくなった。結果として不足する熱処理量を補うため、炉全体の速度を落とす、つまり生産性を落とさざるおえなくなった。以降の比較例も含めて、耐炎化炉を通過可能な上限温度が250℃よりも下回るものについては、耐炎化炉を通過させるために、各例での耐炎化炉を通過可能な上限温度から10℃低下させた温度にて、温度低下分、速度を低下して炭化工程含めて以降の工程を通過させた。しかし、接合部の引っ張り強さが低いこのサンプルでは、炭化工程での通過時も前駆体繊維束と炭素繊維束間の交絡がほどけた様な形態で糸条が破断する状態が多数みられ、さらに生産性が低いものであった。
(Comparative Example 2)
Measurement was performed by joining under the same yarn joining conditions as in Example 1 except that the drape value of the third fiber bundle for yarn joining was 20 cm. As a result, since the third fiber bundle is too hard to expand, sufficient entanglement with the first or second fiber bundle cannot be obtained, so that the tensile strength of the joint portion is low, and the precursor fiber generates heat. It became impossible to remove heat efficiently. Since the drape value of the third fiber bundle is as high as 20 cm, that is, the fiber bundle is hard, the precursor fiber bundle and the spliced fiber bundle are not uniformly joined, so the tensile strength is also low, and the joined portion is susceptible to heat storage and damage. The upper limit temperature at which flameproofing can be performed was 247 ° C., which was significantly lower. As a result, the temperature that can pass through the flameproofing process is lower than that of Comparative Example 1 that does not use the third fiber bundle as well as Example 1, and is lower than the temperature of hot air blown into the flameproofing furnace. . At the same temperature, yarn breakage occurs even in a flameproofing furnace, so the set temperature has to be lowered. As a result, in order to compensate for the insufficient heat treatment amount, the entire furnace was slowed down, that is, productivity was unavoidable. For the cases where the upper limit temperature that can pass through the flameproofing furnace is lower than 250 ° C., including the subsequent comparative examples, from the upper limit temperature that can pass through the flameproofing furnace in each example in order to pass through the flameproofing furnace. At a temperature reduced by 10 ° C., the temperature reduction and the speed were reduced and the subsequent steps including the carbonization step were passed. However, in this sample where the tensile strength of the joint is low, there are many states in which the yarn breaks in such a form that the entanglement between the precursor fiber bundle and the carbon fiber bundle is unraveled even when passing in the carbonization process, Further, the productivity was low.
(比較例3)
糸繋ぎ用である第3の繊維束のドレープ値を1cmとした以外は、実施例と同じ糸繋ぎ条件で接合し、同じ条件で測定した。その結果、糸繋ぎ繊維束が捌け過ぎて取り扱い性が著しく悪化し、繋ぎ作業に要する時間が大幅増加してしまった。出来上がった糸繋ぎ部の形態は、炭素繊維束の単糸切れが多数見られたものの概ね良好であり、耐炎化通過可能な上限温度も252℃と低下の程度は小さかった。実施例1と同じ耐炎化炉への吹き込み温度で熱処理した際の糸切れは見られなかったが、単糸切れの影響で引張強度が大きく低下したため、炭化工程に連続して通したさいに糸条の破断が多発し通過率が低い結果となった。
(Comparative Example 3)
Except that the drape value of the third fiber bundle for yarn joining was set to 1 cm, bonding was performed under the same yarn joining conditions as in Examples, and measurement was performed under the same conditions. As a result, the yarn splicing fiber bundle is too profitable, the handling property is remarkably deteriorated, and the time required for the splicing work is greatly increased. The shape of the finished yarn splicing part was generally good although many single fiber breaks of the carbon fiber bundle were observed, and the upper limit temperature at which the flame resistance could pass was 252 ° C., and the degree of reduction was small. Although yarn breakage was not observed when heat treatment was performed at the same blowing temperature into the flameproofing furnace as in Example 1, the tensile strength was greatly reduced due to the single yarn breakage, so the yarn was passed through the carbonization process continuously. As a result, strip breakage occurred frequently and the passing rate was low.
(比較例4)
糸繋ぎ用繊維束の扁平度を14にした以外は、実施例と同じ糸繋ぎ条件で接合し、同じ条件で測定した。結果、比較例2同様に糸繋ぎ用繊維束が拡がりにくく、前駆体繊維束と糸繋ぎ繊維束の接合が不均一となったためと推定するが、耐炎化雰囲気中での接合部にかかる張力が不均一となり、耐炎化通過可能な上限温度も低下し、耐炎化炉の吹き込み温度と速度を落としたものの、低い引張強度の影響で炭化工程通過率が低かった。
(Comparative Example 4)
Except that the flatness of the fiber bundle for yarn joining was set to 14, the joining was performed under the same yarn joining conditions as in Examples, and measurement was performed under the same conditions. As a result, as in Comparative Example 2, it is presumed that the yarn-binding fiber bundle is difficult to spread and the joining between the precursor fiber bundle and the yarn-binding fiber bundle is non-uniform, but the tension applied to the joint in the flameproof atmosphere is high. Although it became non-uniform and the upper limit temperature at which flameproofing could pass was lowered and the blowing temperature and speed of the flameproofing furnace were reduced, the carbonization process passing rate was low due to the low tensile strength.
(比較例5)
第3の繊維束として、耐炎化工程を通過した連続繊維(耐炎化糸)を用いたことを除いて、実施例1と同じ条件で接合した。耐炎化糸の熱伝導率が1W/(m・K)であった。その結果、熱伝導率が低すぎるために、耐炎化雰囲気中での接合部の放熱が不十分なため、蓄熱による糸切れが発生しやすく、前駆体繊維速と耐炎化繊維束の集束性の差と推定するが、交絡部分の不均一な状態が確認され、耐炎化通過可能な温度は245℃と低く、炭化工程通過率も低かった。
(Comparative Example 5)
The third fiber bundle was joined under the same conditions as in Example 1 except that continuous fibers (flame-resistant yarn) that passed through the flame-proofing step were used. The thermal conductivity of the flame resistant yarn was 1 W / (m · K). As a result, since the thermal conductivity is too low, the heat dissipation of the joint in the flameproof atmosphere is insufficient, so yarn breakage due to heat storage is likely to occur, and the convergence speed of the precursor fiber speed and the flameproof fiber bundle is reduced. Although it was estimated that the difference was inconsistent, the temperature of the entangled portion was confirmed to be low, the temperature at which the flameproofing could pass was as low as 245 ° C., and the carbonization process passing rate was low.
(比較例6)
第3の繊維束として、炭素化時の温度を高めて熱伝導率が800W/(m・K)のものを用いた以外は、実施例と同じ糸繋ぎ条件で接合し、同じ条件で測定した。結果、糸が硬く脆いため、噴射した流体により第3の繊維束の各単糸の切断が多く、工程を通過させうる接合部を作成することが出来なかった。
(Comparative Example 6)
The third fiber bundle was joined under the same yarn splicing conditions as in the examples except that the carbon fiber temperature was increased and the thermal conductivity was 800 W / (m · K), and measurement was performed under the same conditions. . As a result, since the yarn was hard and brittle, the single fluid of the third fiber bundle was frequently cut by the jetted fluid, and it was not possible to create a joint that allowed the process to pass.
(比較例7)フィラメント数1000本の糸繋ぎ用繊維束と単繊維繊度が1.1dtexである、実質的に撚りの無いフィラメント数が3,000本第1、及び第2の前駆体繊維束を接合した以外は、実施例と同じ糸繋ぎ条件で接合し、同じ条件で測定した。結果、糸繋ぎ用繊維束が細すぎるために、第1、及び第2の前駆体繊維束とほとんど接合しないため、引張強さが著しく低く、引張強さや、耐炎化工程での通過可能な上限温度等も測定不可能であった。 (Comparative Example 7) First and second precursor fiber bundles having a filament number of 1000 filaments and a single fiber fineness of 1.1 dtex and a substantially 3,000 untwisted filament number of 3,000 Except for joining, joining was performed under the same yarn joining conditions as in the Examples, and measurement was performed under the same conditions. As a result, since the fiber bundle for yarn joining is too thin, it hardly joins with the first and second precursor fiber bundles, so the tensile strength is extremely low, and the tensile strength and the upper limit that can be passed in the flameproofing process. Temperature etc. could not be measured.
(比較例8)
フィラメント数を3000本の糸繋ぎ用繊維束と単繊維繊度が1.1dtexである、実質的に撚りの無いフィラメント数が1,000本のポリアクリロニトリル系前駆体繊維束である、第1、及び第2の前駆体繊維束を接合した以外は、実施例と同じ糸繋ぎ条件で接合し、同じ条件で測定した。結果、前駆体繊維束が細すぎるために、糸繋ぎ用繊維束と第1、及び第2の前駆体繊維束とほとんど接合しないため、引張強さが著しく低く、比較例7と同様に各評価は測定不可能であった。
(Comparative Example 8)
A polyacrylonitrile-based precursor fiber bundle having a number of filaments of 3000 and a single fiber fineness of 1.1 dtex, a polyacrylonitrile-based precursor fiber bundle of 1,000 filaments having substantially no twist; Except for joining the second precursor fiber bundle, joining was performed under the same yarn joining conditions as in Examples, and measurement was performed under the same conditions. As a result, since the precursor fiber bundle is too thin, the yarn-binding fiber bundle is hardly joined to the first and second precursor fiber bundles, so the tensile strength is remarkably low. Was not measurable.
上記の実施例及び比較例から、本発明にかかる前駆体繊維束の接続方法は、連続的炭素繊維を生産性良く工業的に製造する上で、特にその耐炎化処理に対して、極めて効果的であることが判る。 From the above examples and comparative examples, the method for connecting precursor fiber bundles according to the present invention is extremely effective for industrially producing continuous carbon fibers with high productivity, particularly for the flameproofing treatment. It turns out that it is.
A:糸繋ぎ接合部
B:放熱部
C:絡合部
D:部分絡合
X:放熱部の繊維束方向の長さ
Y:部分絡合の繊維束方向の長さ
1:第1の繊維束
2:第2の繊維束
3:第3の繊維束(糸繋ぎ用接続媒体)
4:第3の繊維束端部
5:第1の前駆体繊維束の端部
6:第2の前駆体繊維束の端部
A: Yarn splicing joint B: Heat dissipating part C: Entangling part D: Partial intertwining X: Length in the fiber bundle direction of the heat dissipating part Y: Length in the fiber bundle direction of the partial intertwining 1: First fiber bundle 2: Second fiber bundle 3: Third fiber bundle (connection medium for yarn connection)
4: Third fiber bundle end 5: End of first precursor fiber bundle 6: End of second precursor fiber bundle
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010077074A JP5515957B2 (en) | 2009-03-31 | 2010-03-30 | Carbon fiber manufacturing method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009085793 | 2009-03-31 | ||
JP2009085793 | 2009-03-31 | ||
JP2010077074A JP5515957B2 (en) | 2009-03-31 | 2010-03-30 | Carbon fiber manufacturing method |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2010255168A true JP2010255168A (en) | 2010-11-11 |
JP2010255168A5 JP2010255168A5 (en) | 2013-03-28 |
JP5515957B2 JP5515957B2 (en) | 2014-06-11 |
Family
ID=43316390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010077074A Expired - Fee Related JP5515957B2 (en) | 2009-03-31 | 2010-03-30 | Carbon fiber manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5515957B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017135265A1 (en) | 2016-02-03 | 2017-08-10 | 東邦テナックス株式会社 | Method for manufacturing and method for connecting carbon fiber |
CN114262956A (en) * | 2021-12-29 | 2022-04-01 | 吉林宝旌炭材料有限公司 | Carbonization filament connection method for large-tow carbon fiber precursors |
WO2022107563A1 (en) | 2020-11-18 | 2022-05-27 | 東レ株式会社 | Fiber-reinforced resin, and integrally molded product |
-
2010
- 2010-03-30 JP JP2010077074A patent/JP5515957B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017135265A1 (en) | 2016-02-03 | 2017-08-10 | 東邦テナックス株式会社 | Method for manufacturing and method for connecting carbon fiber |
KR20180103074A (en) | 2016-02-03 | 2018-09-18 | 도호 테낙구스 가부시키가이샤 | Method for manufacturing carbon fiber and method of connection |
US10988862B2 (en) | 2016-02-03 | 2021-04-27 | Toho Tenax Co., Ltd. | Method for manufacturing carbon fibers and fiber joining method |
WO2022107563A1 (en) | 2020-11-18 | 2022-05-27 | 東レ株式会社 | Fiber-reinforced resin, and integrally molded product |
CN114262956A (en) * | 2021-12-29 | 2022-04-01 | 吉林宝旌炭材料有限公司 | Carbonization filament connection method for large-tow carbon fiber precursors |
CN114262956B (en) * | 2021-12-29 | 2023-11-14 | 吉林宝旌炭材料有限公司 | Carbonization yarn splicing method for large-tow carbon fiber precursor |
Also Published As
Publication number | Publication date |
---|---|
JP5515957B2 (en) | 2014-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010053170A1 (en) | Fiber bundle with pieced part, process for producing same, and process for producing carbon fiber | |
JP3722323B2 (en) | Carbon fiber, manufacturing method and manufacturing apparatus thereof | |
JP3833654B2 (en) | Carbon fiber manufacturing apparatus and manufacturing method thereof | |
US9884740B2 (en) | Fiber bundle with pieced part, process for producing same, and process for producing carbon fiber | |
JP5515957B2 (en) | Carbon fiber manufacturing method | |
JPS5846122A (en) | Continuous process for producing carbon fiber | |
JP2010255168A5 (en) | ||
JP5515652B2 (en) | A method for producing a carbon fiber having a yarn splicing joint and a yarn splicing joint. | |
JP5541414B2 (en) | Carbon fiber precursor acrylic fiber bundle, part of the thermal oxidation treatment method, thermal oxidation treatment furnace, and method of producing carbon fiber bundle | |
JP3706754B2 (en) | Acrylic fiber yarn for producing carbon fiber and method for producing the same | |
JP5221162B2 (en) | Carbon fiber sheet and manufacturing method thereof | |
JP4669343B2 (en) | Method for producing flame resistant fiber | |
JP3890701B2 (en) | Continuous carbon fiber manufacturing process | |
JP5016890B2 (en) | Yarn splicing device and yarn splicing method | |
JP2008174846A (en) | Method for continuously producing carbon fiber | |
JPS58208420A (en) | Continuous production of carbon fiber | |
JP5274044B2 (en) | Carbon fiber sheet and manufacturing method thereof | |
JP2002038335A (en) | Method for continuous production of carbon fiber | |
JP2006001695A (en) | Fire resistant yarn package and manufacturing method thereof | |
JP2003321160A (en) | Fiber tow package, carbon fiber using the package, and manufacturing method for chopped fiber | |
JP2009191378A (en) | Carbon fiber sheet and method for producing the same | |
JP2008144307A (en) | Method for producing carbon fiber bundle | |
JPH11200159A (en) | Production of carbon fiber and device therefor | |
JPH0941254A (en) | Tape for press-winding of electric wire, its production and electric wire | |
JP2004076174A (en) | Method for producing carbon fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130213 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140304 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140317 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5515957 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |