JPS58208420A - Continuous production of carbon fiber - Google Patents

Continuous production of carbon fiber

Info

Publication number
JPS58208420A
JPS58208420A JP8811782A JP8811782A JPS58208420A JP S58208420 A JPS58208420 A JP S58208420A JP 8811782 A JP8811782 A JP 8811782A JP 8811782 A JP8811782 A JP 8811782A JP S58208420 A JPS58208420 A JP S58208420A
Authority
JP
Japan
Prior art keywords
flame
yarn
yarns
resistant
retardant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8811782A
Other languages
Japanese (ja)
Inventor
Yukiyoshi Mori
森 幸由
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8811782A priority Critical patent/JPS58208420A/en
Publication of JPS58208420A publication Critical patent/JPS58208420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:A plurality of preoxidized yarns are arranged in parallel so that the joining parts may not be overlapped and made into a bundle, interlaced, then subjected to carbonization to produce carbon fibers of stabilized quality in high operability and productivity. CONSTITUTION:A plurality of preoxidized yarns of less than 5 denier in finess, which are obtained by preoxidation of precursors such as acrylic fibers, are arranged in parallel so that their joining parts may not be overlapped, and interlaced with high-speed fluid for integration.

Description

【発明の詳細な説明】 本発明は作業性がよく、生産性に優れた連続的炭素繊維
の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing continuous carbon fibers that is easy to work with and has excellent productivity.

炭素繊維の製造原料としては、アクリル系、ピッチ系、
セルロース系、ポリビニルアルコール系などの各種の繊
維糸条が用いられているが、これらの繊維原料、すなわ
ちプレカーサは通常、ボビンやスプールに巻き上げられ
たり、箱に折りたたみ積層されて供給される。したがっ
て連続的に焼成し炭素繊維に転換するには、上記巻き上
げられたり、折りたたみ積r−されているプレカーサの
繊維端部を何らかの手段で直接にまたは間接に別のプレ
カーサの端部と接続する必要がある。
Raw materials for manufacturing carbon fiber include acrylic, pitch,
Various types of fiber threads such as cellulose-based and polyvinyl alcohol-based fibers are used, and these fiber raw materials, ie, precursors, are usually wound onto bobbins or spools, or folded and stacked in boxes before being supplied. Therefore, in order to continuously fire and convert into carbon fiber, it is necessary to connect the fiber end of the rolled up or folded precursor to the end of another precursor by some means, directly or indirectly. There is.

この接続手段としては、プレカーサの両端部を結び自せ
て接続する方法が一般的であるが、この結び合せによっ
て形成された結び目には、焼成時、特に耐炎化(酸化)
工程において熱が蓄熱され易く、この蓄熱によって、該
接続部は相対的に強度低下が大きいため耐炎化工程およ
び次の炭化工程で糸切れの原因になることが多い。
A common method for this connection is to tie both ends of the precursor together, but the knot formed by this tying is particularly susceptible to flame resistance (oxidation) during firing.
Heat is likely to be accumulated during the process, and this heat accumulation causes a relatively large decrease in the strength of the joint, which often causes thread breakage during the flameproofing process and the subsequent carbonization process.

すなわち、この耐炎化工程を経た耐炎化糸条は、次いで
500℃以上の不活性ガス雰囲気下で連続的に炭化され
るが、炭化工程pcおける該接続部の破断強力は通常生
産条件における糸条の張力以下に低下し結び目より繊維
が破断する。繊維糸条が破断すると操業を中断して炉内
に通糸しなおすか、あるいはそのシリーズは欠糸したま
ま運転せねばならず、操業性、生産性の低ト等大きな問
題であった。
That is, the flame-resistant yarn that has gone through this flame-resistant process is then continuously carbonized in an inert gas atmosphere at 500°C or higher, but the breaking strength of the connection in the carbonization process pc is lower than that of the yarn under normal production conditions. When the tension decreases below , the fiber breaks at the knot. When a fiber yarn breaks, the operation must be interrupted and the yarn must be rethreaded into the furnace, or the series must be operated with the yarn missing, which poses major problems such as low operability and productivity.

、そこでこのような問題を回避し生産性を向1させる方
法と゛して、たとえば特公昭53−23411号公報に
は、ブレカーサを結び合せて耐炎化した俊、結び目を切
断除去し改めて結ひ直して炭化する方法が提案されてい
る。しかしながら、かかる方法は耐炎化糸条を結び直す
という手作業を必要とし、特に多数の耐炎化糸条を炭化
処理する際には作業性が悪く、しかも結び目の大・1 
    きさ“形状が不4i’H′ttrなり炭化1程
で糸切れを生ずる危険性がある。
Therefore, as a method to avoid such problems and improve productivity, for example, in Japanese Patent Publication No. 53-23411, there is a method for making flameproof by tying breakers together, cutting off the knots and retying them. A method of carbonizing the material has been proposed. However, this method requires manual labor to re-tie the flame-resistant yarns, and the workability is poor especially when carbonizing a large number of flame-resistant yarns.
If the shape of the thread is irregular, there is a risk of yarn breakage due to carbonization.

本発明者は、上記問題点のない連続的な炭素繊維の製造
法について鋭意検討を行ない本発明を見出すに至ったの
である。
The present inventor has conducted extensive research into a method for producing continuous carbon fibers that does not have the above-mentioned problems, and has discovered the present invention.

すなわち本発明の目的は、ブレカーサの接続部に起因す
る操業の中断を防止し、操業性ならびに生産性、特に多
数本の耐炎化糸条を接続(絡合処理)して大量の炭素繊
維を製造する際に有利な炭素繊維の連続的製造法を提供
するにあり、1也の目的は安定した品質を有する炭素繊
維の製造法を提供するにある。
In other words, the purpose of the present invention is to prevent interruption of operation due to the connection part of the breaker, improve operability and productivity, and in particular to improve the production of a large amount of carbon fiber by connecting (entangling) a large number of flame-resistant yarns. Kazuya's objective is to provide a continuous method for producing carbon fibers that is advantageous in the production of carbon fibers with stable quality.

このような本発明の目的は、前記特許請求の範囲に記数
したように、前駆体繊維糸条末端を接続して耐炎化し、
次いで連続的に炭化するに際して、複数本の耐炎化糸条
の各々の接続部が相醸に重なり合わないように引揃えて
集束し、該接続部を含む集束された糸条に絡合処理を施
す連続的炭素繊維の製造法によって達成することかでき
る。
The object of the present invention is, as stated in the claims, to connect the ends of the precursor fiber threads to make them flame resistant,
Next, during continuous carbonization, the plurality of flame-retardant yarns are aligned and bundled so that the connection parts do not overlap each other, and the bundled yarns including the connection parts are subjected to an entanglement treatment. This can be achieved by a continuous carbon fiber manufacturing method.

本発明の耐炎化糸条とはアクリル系、セルロース系、ポ
リビニルアルコール系およびピッチ系など各種ブレカー
サを出発原料とし、通常の方法により耐炎化工程を経た
耐炎化糸条が用いられる。
The flame-retardant yarn of the present invention is a flame-retardant yarn that uses various types of breaker such as acrylic, cellulose, polyvinyl alcohol, and pitch breaker as starting materials and undergoes a flame-retardant process by a conventional method.

特に有機系ブレカーサであるアクリル系、セルロース系
、ポリビニルアルコール系繊維すどは焼成工程、とりわ
け耐炎化工程で蓄熱し、接続部分の引張り強度低下や耐
屈曲性の低下か著しいので、耐炎化糸条に本発明の絡合
処理を適用し炭素繊維を製造することは非常に有効であ
る。
In particular, organic breaker fibers such as acrylic, cellulose, and polyvinyl alcohol fibers accumulate heat during the firing process, especially during the flame-retardant process, resulting in a significant drop in tensile strength and bending resistance at the joints. It is very effective to apply the entanglement treatment of the present invention to produce carbon fibers.

本発明における耐炎化糸条の゛単糸繊度および繊維本数
は後述する高速流体処理による絡合処理が可能なもので
あればよく、ブレカーサの繊度として5デニール(d)
以下、好ましくは0.1〜5d、繊維本数は少くとも3
00本、好ましくは500〜3力本の範囲のものが用い
られる。
The single filament fineness and number of fibers of the flame-resistant yarn in the present invention may be as long as they can be entangled by high-speed fluid treatment described below, and the fineness of the breaker is 5 denier (d).
or less, preferably 0.1 to 5 d, and the number of fibers is at least 3
00, preferably in the range of 500 to 3.

本発明の絡合処理は、複数本の耐炎化糸条をそれらの接
続部が相互に重ならないように該縁数本の耐炎化糸条を
引4M1iえ一体的に絡合処理す一−−一 るものであり、上記の接続部とは耐炎化処理前での接続
、すなわちブレカーサの段階で糸条末端を結び目および
/または流体によって絡合し接続することにより形成さ
れたもの々どが挙げられるか、耐炎化工程において蓄熱
の問題の少い流体結合処理により接続部を形成したもの
が好ましい。かかる接続部を含む耐炎化糸条は、接続部
同志が重ならないように複数本引揃えて集束し、それぞ
れの接続部を含む集束された糸条が絡合処理される。
The entanglement treatment of the present invention involves integrally entangling a plurality of flame resistant yarns by pulling several flame resistant yarns at their edges so that their connection parts do not overlap each other. The above-mentioned connections include connections made before flame-retardant treatment, that is, those formed by entangling and connecting yarn ends with knots and/or fluid at the breaker stage. It is preferable that the connection portion be formed by a fluid bonding process that causes less heat accumulation problems during the flameproofing process. A plurality of flame-retardant yarns including such connection portions are aligned and bundled so that the connection portions do not overlap each other, and the bundled yarns including the respective connection portions are subjected to an entanglement treatment.

この絡合処理V(用いられる流体はエア、水、蒸気など
が適用可能であるが、作業性、経済性の点でエアを用い
ることが好ましい。
This entanglement treatment V (air, water, steam, etc. can be used as the fluid, but it is preferable to use air in terms of workability and economy).

絡合処理する耐炎化糸条の引揃え数は通常2〜6糸条で
あり、6糸条をこえると絡合性が不十分となることがあ
り、また炭化工程を完了した後、結合処理部分以外の合
糸されている糸条を元の単糸条単位10分繊する際VC
分繊性が低耐炎化糸条は通常、炭化工程へ移行する間で
連続的に絡合処理されるか、耐炎化糸条を一旦ボビン等
に巻上げまたは容器に収納した後、炭化工程に供給する
方法、すなわち耐炎化、炭化を不連続処理する場合にも
適用してもよい。
The number of flame-retardant yarns to be entangled is usually 2 to 6 yarns, and if there are more than 6 yarns, the entanglement may be insufficient. VC when splitting yarns other than sections into 10 pieces of the original single yarn unit
Flame-resistant yarn with low splitting properties is usually subjected to continuous entanglement treatment during transition to the carbonization process, or the flame-resistant yarn is once wound up on a bobbin or stored in a container and then supplied to the carbonization process. It may also be applied to the case where flameproofing and carbonization are carried out discontinuously.

炭化工程において耐炎化糸条は、得られる炭素繊維の力
学的性質を向上させるために張カドに連続的VC炭化さ
れる。この場合に耐炎化工程を経た接続部を有する耐炎
化糸条の破断強力は、生産時の運転張力以下で破断する
ことがあるか、本発明を適用することにより、このよう
な運転張力による破断トラブルは解消され、円滑に炭化
処理を行なうことができる。
In the carbonization process, the flame-resistant yarn is continuously VC carbonized in a tensile manner to improve the mechanical properties of the resulting carbon fiber. In this case, the breaking strength of the flame-retardant yarn having a connection part that has gone through the flame-retardant process is that it may break at less than the operating tension during production, or by applying the present invention, it can be The trouble is resolved and the carbonization process can be carried out smoothly.

本発明の高速流体による絡合処理の範囲としては、集束
された耐炎化糸条の接続部を中心にして、たとえば前後
約1mの範囲全域を絡合、処理してもよいし、また同様
に接続部を中心にしてその前後約1mの範囲を間欠的に
複数ケ所、たとえば3ケ所以上節合処理してもよい。し
か1    [ながらドーター絡合部は、糸条構成本数
、焼成処理条件、絡合処理条件等によって適宜設矩すれ
ばよく特に限定されるものではない。
As for the range of the entanglement treatment using the high-speed fluid of the present invention, for example, the entire range of approximately 1 m from the front and back may be entangled and treated centering around the joint of the bundled flame-resistant yarns, or the same method may be used. The joint process may be performed intermittently at a plurality of locations, for example, at three or more locations, within a range of approximately 1 m in front and behind the connecting portion. [However, the daughter entangled portion is not particularly limited as long as it is appropriately designed depending on the number of yarns, firing treatment conditions, entangled treatment conditions, etc.

また、走行中の耐炎化糸条の絡合処理は、前述したよう
に複数本の糸条を引揃えて集束した後、高速流体噴出ノ
ズルを用いて繊維を絡合させる方法が採用される。
In addition, the method of entangling the flame-retardant threads while running is performed by aligning and converging a plurality of threads as described above, and then using a high-speed fluid ejection nozzle to entangle the fibers.

このような流体噴出ノズルとしては、公知の各種ノズル
を用いることができ、たとえば特公昭36−10511
号公報、特公昭37−1175号公報において各種構造
のノズルがある。その1例を第1〜5図に示す。
As such a fluid ejecting nozzle, various known nozzles can be used, for example, Japanese Patent Publication No. 36-10511
Nozzles of various structures are disclosed in Japanese Patent Publication No. 37-1175. One example is shown in FIGS. 1-5.

第1図は絡合処理装置の斜視図、第2図は従断面図、第
5図は側面図を示し、図におい12は処理空間、5は糸
条挿入口、4はエア噴出孔を示す。絡合すべき耐炎化糸
条(例えば3糸条の場合で1,1′、1″)は挿入口5
から処理空間2に挿入されエア噴出孔4から高速気流を
噴出させることによって一体的に絡合される。
Figure 1 is a perspective view of the entanglement processing device, Figure 2 is a cross-sectional view, and Figure 5 is a side view. In the figure, 12 is a processing space, 5 is a yarn insertion port, and 4 is an air jet hole. . The flame-resistant yarns to be entangled (for example, 1, 1', 1'' in the case of 3 yarns) are inserted into the insertion port 5.
They are inserted into the processing space 2 and entangled integrally by ejecting high-speed airflow from the air ejection holes 4.

処理空間は糸条の毛羽を生じない滑かな内面を有するも
ので、通常は方形状のものが用いられるか、方形状に限
るものではない。
The processing space has a smooth inner surface that does not cause yarn fuzz, and is usually rectangular, or is not limited to a rectangular shape.

またエア噴出口はその断面か円形でなく、例えばスリッ
ト状のような形でもよく、その数も1装置VC対して複
数ケ所を設けてもよい。エア噴出方向は糸条に対して直
角方向でなくともよく、例えば2種の噴出孔から対称的
に糸条軸しこ対して角度をもたせることもできる。糸条
挿入口は糸条の挿入を容易にするため、開口スリットの
角を削って円くすることは作業性tCとつ−C有効であ
る。
Further, the cross section of the air jet port is not circular, and may have a slit-like shape, for example, and a plurality of air jet ports may be provided for one device VC. The direction of air jetting does not have to be perpendicular to the yarn; for example, it can be symmetrically oriented at an angle to the yarn axis from two types of jetting holes. In order to facilitate the insertion of the yarn into the yarn insertion opening, it is effective to round off the corners of the opening slit to make it round.

次にエアノズルへ接続するエア圧は、単糸繊度、糸条構
成本数、耐炎化糸条を炭化工程に導入する際の張力、エ
ア処理ノズル形状などvCよって適正値は異なるが、ノ
ズルへの入口部において少くともゲージ圧2Kg/cr
I以上、好ましくFi5〜10 Kp/c+!の圧力と
するのがよい。
Next, the appropriate value for the air pressure connected to the air nozzle will vary depending on vC, such as the fineness of the single yarn, the number of yarns, the tension when introducing the flame-resistant yarn into the carbonization process, and the shape of the air treatment nozzle. Gauge pressure of at least 2Kg/cr in
I or more, preferably Fi5-10 Kp/c+! It is best to set the pressure to .

エア圧が低過ぎる場合は繊維の絡合が十分てなく、炭化
工程での糸切れ、それに伴う他の正常糸への巻きつきな
どトラブルを生じ易く、一方エア圧が高過ぎる場合には
繊維の絡合は十分であるがml耐炎化糸条単糸切れが多
くなり、絡合部の強力が低下する結果、炭化工程の運転
張力VC耐えることができなくなり破断する危険性があ
る。
If the air pressure is too low, the fibers will not be entangled enough, which may cause problems such as yarn breakage during the carbonization process and winding around other normal yarns. On the other hand, if the air pressure is too high, the fibers will not entangle properly. Although the entanglement is sufficient, the number of single filament breakages in the ml flame-resistant yarn increases, and as a result, the strength of the entangled portion decreases, resulting in the inability to withstand the operating tension VC of the carbonization process and the risk of breakage.

かくして得られる本発明方法の炭化糸は、心安に応じ公
知の黒鉛化繊維の製造法Vc準じてさらtCC湿温不活
性ガス雰囲気中で加熱して黒鉛化繊維に転換することが
できる。
The thus obtained carbonized yarn according to the method of the present invention can be converted into graphitized fiber by further heating in a humid temperature inert gas atmosphere for tCC according to the known graphitized fiber manufacturing method Vc.

また前述の耐炎化糸条を絡合するという方法は耐炎化糸
条の接続部が重なり合わないように引揃えて絡合処理す
ることのほかに、走行中の耐炎化糸条に、たとえばボビ
ンに巻上げられている耐炎化糸条の端部を重ねて絡合処
理をほどこし、次いで炭化工程で処理することもできる
In addition, the above-mentioned method of entangling the flame-retardant yarns involves not only aligning and entangling the connected parts of the flame-retardant yarns so that they do not overlap; It is also possible to overlap the ends of the flame-retardant threads that have been wound up and perform an entanglement treatment, followed by a carbonization process.

本発明によれば、手作業によらないで高速流体により絡
合処理するため、絡合部の形状が安定であり、炭化工程
における糸条通過性が向上する。
According to the present invention, since the entanglement process is performed using a high-speed fluid without manual work, the shape of the entangled portion is stable and the thread passageability in the carbonization process is improved.

また操業性ならびrC生産性を著しく向上さすことがで
きるとともに安定した品質の炭素繊維を製造することが
できる。
In addition, the operability and rC productivity can be significantly improved, and carbon fibers of stable quality can be produced.

以ド、実施例により本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1比較例1 中糸繊度1d/f、フィラメント数6000のアクリル
系長繊維糸条の終端と同条件で製造した別の糸条の始端
とを約1m重ね合わせ、その間を約2cmずつ3ケ所V
C工ア絡合処理をほどこ1接続した。
Example 1 Comparative Example 1 The terminal end of an acrylic long fiber yarn with a medium fineness of 1 d/f and the number of filaments of 6000 and the starting end of another yarn manufactured under the same conditions are overlapped by about 1 m, and the space between them is about 2 cm at a time. Kasho V
One connection was made after the C-wire intertwining process was performed.

また別に、異なる接続方法によるものとして′糸条の終
端と始端とを2重真結びにより接続した。
Separately, as a different connection method, the terminal end and starting end of the yarn were connected by a double true knot.

これらの接続部を含む糸条pcたいし1m当り10回の
撚りをかけながら、熱風が循環している耐炎化炉に1.
0 m/m inでフィードし、ローラ群pcよって反
転処理させながら90分間酸化処理をほどこした。得ら
れた耐炎化糸条を絡合ダを理するVCあた゛す、接続部
が重ならないように接続部を約1mずつずらせて3糸条
を引揃えて集束、、シ・接続部“そ1ぞ1約′・を加え
1長さ範囲を第1図に示すタイプのエア絡合装置を用い
連続絡合処理した。
While applying 10 twists per meter to the yarn pc including these connections, it was placed in a flameproofing furnace in which hot air was circulated.
The oxidation treatment was carried out for 90 minutes while being fed at a speed of 0 m/min and being reversed by a roller group PC. Apply the obtained flame-retardant threads to a VC that handles the entanglement, and bundle the three threads by shifting the joints by about 1 m so that the joints do not overlap. Approximately 1'· was added and one length range was continuously entangled using an air entangling device of the type shown in FIG.

満され、実質的加熱部が500〜1400℃の温度分布
を有する炭化炉に導入して、炭化処理を行い、糸条通過
率を測定した。
The fibers were introduced into a carbonization furnace whose substantial heating section had a temperature distribution of 500 to 1400°C, carbonization treatment was performed, and the yarn passage rate was measured.

なお比較例として、耐炎化糸条の絡合処理をほどこさな
かった以外は、実施例1と同様に実施した。
As a comparative example, the same procedure as in Example 1 was carried out except that the flame-retardant yarn was not entangled.

ここで炭化工程の糸条通過率は、次式により求めた。Here, the yarn passage rate in the carbonization process was determined by the following formula.

糸条通過率(イ)=−浬一邑ヱ二塵二宏ニー△」色J(
聾−uxlo。
Yarn passing rate (a)
Deaf-uxlo.

導入した接続部数 結果を第1表に示す。Number of connections introduced The results are shown in Table 1.

(以下余白) 第1表 実施例2.比較例2 単糸細度1 d/f、フィラメント数3000のアクリ
ル系長繊維糸条の終端と同条件で製造した男1]の糸条
の始端とを約1m重ね合わせ、その間を約2mずつ3ケ
所にエア絡合処理を+2どこし接続した。
(Left below) Table 1 Example 2. Comparative Example 2 The terminal end of an acrylic long fiber yarn with a single yarn fineness of 1 d/f and the number of filaments of 3000 and the starting end of the yarn of Man 1 produced under the same conditions were overlapped for about 1 m, and the space between them was approximately 2 m apart. Air entanglement treatment was connected to 3 locations +2 locations.

この接続部を含む糸条を実施例1と同様に酸化処理し、
耐炎化糸条を得た。
The yarn including this connection part was oxidized in the same manner as in Example 1,
A flame-resistant yarn was obtained.

ここe(得られた耐゛炎化糸条を用い、第2表11′C
示す種々の引揃え糸条数に変更し、第1図V(示すタイ
プのエア絡合装置により接続部にそレソれ約1me加え
た全域の長さにわたり、約20mおきに間欠的に絡合処
理をおこなった。
Here e (using the obtained flame-resistant yarn, Table 2 11'C
The yarn numbers were changed to the various numbers shown in Fig. 1V (Fig. Processed.

次に300y/3000フイラメントの炭化張力下で実
施例1と同様にして炭化処理した。
Next, carbonization treatment was carried out in the same manner as in Example 1 under a carbonization tension of 300y/3000 filament.

なお、比較例として、耐炎化糸条の絡合処理をほどこさ
なかった場合についてもテストヲ行なった。
As a comparative example, a test was also conducted in which the flame-retardant yarn was not subjected to the entanglement treatment.

結果を第2表に示す。The results are shown in Table 2.

第2表Table 2

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明実施の1例を示すもので、第1図は絡も処
理装置の斜視図、第2図は同処理装置の従断面図、第3
図は同処理装置の側面図を示す。 1.1’、1“・・・耐炎化糸条 2・・・・・・・絡合処理空間 3・・・・・・・耐炎化糸条挿入口 4・・・・・・・エア噴出孔
The drawings show one example of carrying out the present invention, and FIG. 1 is a perspective view of a thread treatment device, FIG. 2 is a cross-sectional view of the same treatment device, and FIG.
The figure shows a side view of the processing device. 1.1', 1"...Flame resistant yarn 2...Entanglement processing space 3...Flame resistant yarn insertion port 4...Air jet hole

Claims (1)

【特許請求の範囲】 (1)  前駆体繊維糸条末端を接続して耐炎化し、次
いで連続的に炭化するに際して、複数本の耐炎化糸条の
各々の接続部が相互に重なり合わないように引揃えて集
束し、該接続部を含む集束された糸条に絡合処理を施す
ことを特徴とする連続的炭素繊維の製造法。 (2、特許請求の範囲第1項において、該接続部を含む
集束された耐炎化糸条を高速流体によって絡合処理する
ことを特徴とする連続的炭素繊維の製造法。 (3)  特許請求の範囲第2項において、該集束され
た耐炎化糸条を走行状態下に高速流体によって結合処理
することを特徴とする連続的′炭素繊維の製造法。
[Claims] (1) When connecting the ends of the precursor fiber threads to make them flame-resistant and then carbonizing them continuously, the connection parts of the plurality of flame-resistant threads are prevented from overlapping each other. A method for producing continuous carbon fibers, which comprises aligning and bundling the fibers, and subjecting the bundled yarns including the connecting portions to an entanglement treatment. (2. A method for producing continuous carbon fibers according to claim 1, characterized in that the bundled flame-retardant yarn including the connection portion is subjected to an entangling treatment using a high-speed fluid. (3) Claims 2. A method for producing continuous carbon fibers according to item 2, characterized in that the bundled flame-retardant yarns are bonded by a high-speed fluid under running conditions.
JP8811782A 1982-05-26 1982-05-26 Continuous production of carbon fiber Pending JPS58208420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8811782A JPS58208420A (en) 1982-05-26 1982-05-26 Continuous production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8811782A JPS58208420A (en) 1982-05-26 1982-05-26 Continuous production of carbon fiber

Publications (1)

Publication Number Publication Date
JPS58208420A true JPS58208420A (en) 1983-12-05

Family

ID=13933946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8811782A Pending JPS58208420A (en) 1982-05-26 1982-05-26 Continuous production of carbon fiber

Country Status (1)

Country Link
JP (1) JPS58208420A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998036113A1 (en) * 1997-02-14 1998-08-20 Toray Industries, Inc. Precursor fiber bundle for manufacture of carbon fiber, manufacturing apparatus and method of manufacturing carbon fiber bundle
US10570536B1 (en) 2016-11-14 2020-02-25 CFA Mills, Inc. Filament count reduction for carbon fiber tow
CN114606603A (en) * 2022-03-10 2022-06-10 中国神华煤制油化工有限公司 Carbon fiber and continuous preparation method of carbon fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998036113A1 (en) * 1997-02-14 1998-08-20 Toray Industries, Inc. Precursor fiber bundle for manufacture of carbon fiber, manufacturing apparatus and method of manufacturing carbon fiber bundle
US6485592B1 (en) * 1997-02-14 2002-11-26 Toray Industries, Inc. Precursor fiber bundle for manufacture of carbon fiber, manufacturing apparatus and method of manufacturing carbon fiber bundle
US10570536B1 (en) 2016-11-14 2020-02-25 CFA Mills, Inc. Filament count reduction for carbon fiber tow
CN114606603A (en) * 2022-03-10 2022-06-10 中国神华煤制油化工有限公司 Carbon fiber and continuous preparation method of carbon fiber

Similar Documents

Publication Publication Date Title
JP3722323B2 (en) Carbon fiber, manufacturing method and manufacturing apparatus thereof
WO2010053170A1 (en) Fiber bundle with pieced part, process for producing same, and process for producing carbon fiber
WO2005078173A1 (en) Carbon fiber precursor fiber bundle, production method and production device therefor, and carbon fiber and production method therefor
JPS5846122A (en) Continuous process for producing carbon fiber
US4186179A (en) Process for producing oxidized or carbon fibers
US4335089A (en) Process for producing carbon fibers
US9884740B2 (en) Fiber bundle with pieced part, process for producing same, and process for producing carbon fiber
JPS58208420A (en) Continuous production of carbon fiber
JP4541583B2 (en) Yarn splicer and carbon fiber manufacturing method
JP5515957B2 (en) Carbon fiber manufacturing method
JP5515652B2 (en) A method for producing a carbon fiber having a yarn splicing joint and a yarn splicing joint.
US4152885A (en) Interlocked yarn and method of making same
JP3890701B2 (en) Continuous carbon fiber manufacturing process
JP4669343B2 (en) Method for producing flame resistant fiber
JP4592208B2 (en) Method for connecting fiber yarn and method for producing carbon fiber
JPS6021911A (en) Manufacture of carbon fiber product
JP2590620B2 (en) Carbon fiber production method
JP2008174846A (en) Method for continuously producing carbon fiber
JP2008144307A (en) Method for producing carbon fiber bundle
JP2003321160A (en) Fiber tow package, carbon fiber using the package, and manufacturing method for chopped fiber
JPH11200159A (en) Production of carbon fiber and device therefor
JP2006283230A (en) Method for producing polyester staple
JPS621009B2 (en)
JP2002038335A (en) Method for continuous production of carbon fiber
JPH0559618A (en) Production of carbon fiber