JP4541583B2 - Yarn splicer and carbon fiber manufacturing method - Google Patents

Yarn splicer and carbon fiber manufacturing method Download PDF

Info

Publication number
JP4541583B2
JP4541583B2 JP2001109585A JP2001109585A JP4541583B2 JP 4541583 B2 JP4541583 B2 JP 4541583B2 JP 2001109585 A JP2001109585 A JP 2001109585A JP 2001109585 A JP2001109585 A JP 2001109585A JP 4541583 B2 JP4541583 B2 JP 4541583B2
Authority
JP
Japan
Prior art keywords
yarn
carbon fiber
bobbin
traveling
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001109585A
Other languages
Japanese (ja)
Other versions
JP2002302341A (en
Inventor
篤志 川村
博司 稲垣
考彦 國澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2001109585A priority Critical patent/JP4541583B2/en
Publication of JP2002302341A publication Critical patent/JP2002302341A/en
Application granted granted Critical
Publication of JP4541583B2 publication Critical patent/JP4541583B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments
    • B65H2701/314Carbon fibres

Landscapes

  • Inorganic Fibers (AREA)
  • Spinning Or Twisting Of Yarns (AREA)

Description

【0001】
【本発明の属する技術分野】
本発明は、ボビンに巻かれ又は箱体に折畳み積層して収納された繊維糸条を各種糸条の処理装置に供給するに際し、先行糸条に後続糸条を接合して連続的に供給するための糸継ぎ機と、同糸継ぎ機が適用される炭素繊維の連続的な製造方法とに関する。
【0002】
【従来の技術】
従来から、アクリル系繊維糸条は炭素繊維を製造するための前駆体として広く利用されており、アクリル系繊維糸条を200〜300℃の酸化性雰囲気中で加熱処理する耐炎化工程によって耐炎化繊維にした後、引き続いて1000℃以上の不活性雰囲気中で加熱処理する炭素化工程によって炭素繊維にするのが一般的である。
【0003】
こうして得られた炭素繊維は種々の優れた物性を備えていることから、各種の繊維強化複合材料等の強化用繊維として広く利用されている。炭素繊維は従来の航空機やスポーツ用品への用途に加え、建築、土木、エネルギー関係の産業用途としても利用されており、急速にその需要が伸びている。この需要を更に拡大するためには、より低コストで炭素繊維を供給することが望まれている。
【0004】
一般に炭素繊維製造用のアクリル繊維糸条などの前駆体糸条は、ボビンなどに巻き上げられた形態、或いは箱体に折畳み積層した形態で供給されている。かかる収納形態の前駆体糸条が耐炎化工程や炭素化工程などの各種焼成工程へと供給される。炭素繊維の製造コストを下げるべく、焼成工程での操業性を上げるためには、これらの前駆体糸条を焼成工程に供給して炭素繊維を製造するにあたり、多数本の前駆体糸条を接合して連続的に焼成工程へと供給することが必要である。そのために、上述した収納形態にある前駆体糸条の後端を後続の前駆体糸条の先端と接合させる。
【0005】
従来は先行糸条の後端と後続糸条の先端とを結んで接合していた。しかしながら、耐炎化処理の工程で糸条は酸化し発熱するが、糸条の繊維が密に圧縮され放熱しにくい結び目において蓄熱され、それにより更に激しい酸化反応が起こり、焼成中に糸切れや焼損などの原因となる。また、炭素化処理の工程でも、結び目での酸素不足により糸切れの原因となる。
【0006】
そこで、特開昭54−50624号公報に開示されている炭素繊維の製造方法においては、前駆体糸条の結び目に、ジエステル油、シリコン油などの半流動状の耐熱性化合物を付着させ、結び目における酸化反応を抑制している。また特開昭56−37315号公報に開示されている炭素繊維の製造方法では、前駆体糸条の端部を予め熱処理した後に、連結ループ部と結び目部とが異なる位置に配されるように結び合わる特定の方法で接合している。
【0007】
これらの公報では結び目における蓄熱を低減させてはいるものの、依然として結び目が形成されているため、糸切れや焼損を完全に回避できるものではなく、これらトラブルが生じやすい。
【0008】
そこで、特公平1−12850号公報に開示されている炭素繊維の製造方法では、前駆体糸条の末端部分同士を重ね合わせ、その重ね合わせ部分を高速流体処理により絡合させて接合している。
【0009】
かかる絡合による接合では結び目による接合よりも接合部分での蓄熱は少なくなる。しかしながら、接合部分での繊維密度が他の部分よりも大きいため、絡合部の蓄熱や酸素不足に起因した糸切れ等のトラブルを完全に阻止することはできない。
【0010】
そこで、特開平4−214414号公報に開示されている炭素繊維の製造方法では、前駆体糸条の高速流体処理による絡合部分にホウ酸、スルファミン酸アンモン、亜硫酸ナトリウムや尿酸などの酸化反応抑制剤を付与している。
【0011】
また、特開平10−226918号公報に開示された炭素繊維の製造方法では、前駆体糸条の端部同士を、耐炎化糸などの非発熱性の接続媒体を介して、流体処理により絡合している。
【0012】
かかる公報では従来使用されている一般的な交絡装置を使用している。流体での絡合処理により糸条を接合する装置としては、例えば特開昭62−136483号公報に糸条の結合装置が開示されている。同公報に開示されている糸条の結合装置は、一対のクランプ手段により二本の糸条の重なり合った端部を挟持し、次いでクランプ手段を互いに近接させて糸条を弛緩させた状態で、交絡手段により圧縮空気を吹き付けて糸条の端部同士を絡合させ結合する。
【0013】
この結合装置では二本の糸条の重なり合った端部を挟持した状態で、一旦糸条の走行を停止し交絡処理を施して、二本の糸条の端部同士を接合させている。また、上述した特公平1−12850号公報、特開平4−214414号公報、又は特開平10−226918号公報に開示されている炭素繊維の製造方法において使用されるような、一般的な従来の絡合装置も停止状態にある二本の糸条の端部に流体を吹き付けて交絡させるものである。
【0014】
【発明が解決しようとする課題】
このように、糸条の走行を一時的に停止させた状態で糸条を接合する場合、続く処理工程での処理も一時的に停止させなければならず、作業効率が低下する。特に炭素繊維の焼成工程のように、焼成炉内にて所定の温度で所定の時間だけ加熱処理を施すような場合に、処理糸条の走行を停止すると、その停止時間に炉内に留まっている部位では過剰に焼成されてしまうため、糸条が切断して連続処理ができなくなる。
【0015】
そのため、従来は処理糸条の走行を停止している時間帯は炉内温度を下げて対処しているが、再び炉内温度を所定の温度まで上昇させる間にロスが生じ、また停止時間に炉内に留まっている糸条の部位やその近傍の部位では、その他の部位との焼成程度が異なってしまうことは否めない。そのため、糸条の物性が不均一となり製品としての価値が損なわれる。
【0016】
そこで、本発明は、糸条を所定の速度で走行させたまま、先行糸条の後端に後続糸条の先端を絡合により接合させることができる糸継ぎ機を提供すると共に、多数本の前駆体糸条を連続して焼成工程へと供給して焼成工程の操業性を向上させ低コスト化を図ることができる炭素繊維の製造方法を提供することを目的としている。
【0017】
【課題を解決するための手段】
上述した課題を解決するために、本件請求項1に係る発明は、糸条供給部と、同糸条供給部から引き出される糸条を一方向に連続走行させる糸条走行装置との間に配され、先行糸条の後端に後続糸条の先端を接続するための糸継ぎ機であって、前記先行糸条の後端部分と待機している後続糸条の先端部分とを引き揃えて重ねた状態で挟持する一対の糸条把持装置と、一対の前記糸条把持装置の間に配された流体交絡装置と、前記糸条把持装置と前記糸条走行装置との間の糸条走行路上に配された糸条張力保持機構であるダンサーロール又は動滑車と、を備えてなることを特徴としている。
【0018】
前記糸条供給部としては、例えばボビンやクリールへ糸条を巻き付けたものや、箱体に糸条を折り畳んで積層したものなどが挙げられる。繊維糸条はこれらボビンなどの糸条供給部から糸条走行装置により引き出され、織成工程や炭素繊維の焼成工程などの各種糸条の処理工程へと供給される。この糸条走行装置としては、ニップロールや、多数のロールに糸条を巻きつけて供給するゴデットロールなどが用いられる。なお本発明においては糸条走行装置の種類は何ら制約を受けるものではなく、従来の糸条走行装置を適宜選択すれば良い。
【0019】
繊維糸条は糸条供給部から供給された先行糸条は、前記糸条走行装置により一定の速度で走行して次工程である各種糸条の処理工程へと送られる。本発明の糸継ぎ機は、前記糸条供給部と糸条走行装置との間の先行糸条の糸条走行路に沿って配されている。先行糸条は、その走行中は前記糸継ぎ機の間を通され、自由な走行が保障されている。
【0020】
すなわち、先行糸条が走行している間、本発明の糸継ぎ機の一対の糸条把持装置は糸条を把持しておらず、同糸条把持装置間に配された流体交絡装置も不作動の状態にあり、先行糸条は糸条張力保持機構において所要の長さを貯留しながら、一定の張力を保持して糸条処理工程へと送られる。
【0021】
なおこのとき、糸条供給部には後続の繊維糸条のボビンが待機しており、後続糸条の先端部分が糸継ぎ機の一対の糸条把持装置の間に先行糸条と平行して配されている。
【0022】
先行糸条と後続糸条とを接合するときは、先行糸条の後端部分が前記糸条供給部から供給されて、糸条供給部と糸条走行装置との間に配された糸継ぎ機を通過する直前に、同糸継ぎ機の一対の糸条把持装置が作動して先行糸条の後端部分と後続糸条の先端部分とを引き揃えて重ね合せた状態で把持する。同時に流体交絡装置が作動し、一対の糸条把持装置間にある先行糸条の後端と後続糸条の先端とが交絡され接合される。その後、糸条把持装置による把持と流体交絡装置の作動が解除され、先行糸条に連続して後続糸条が続く各種糸処理工程へと連続供給される。
【0023】
この糸継ぎ機による接合時には、先行糸条の後端部分及び後続糸条の先端部分は糸条把持装置により把持されているため、同糸条把持装置よりも上流側にある糸条は走行が停止された状態にある。しかして、本発明の糸継ぎ機にあっては糸条把持装置の下流側に糸条張力保持機構を配しているため、糸条供給部からの糸条の供給が一時的に停止されても、糸条張力保持機構よりも下流側の走行糸条の張力は一定に保持されて、同糸条張力保持機構に貯留された糸条が続く糸条処理工程へと送られ続け、糸条処理工程へは常に一定の供給速度で糸条が供給されることになる。
【0024】
このように本発明の糸継ぎ機は、糸継ぎ時にも糸条の処理を停止することなく、常に一定の張力で次工程へと糸条を供給することができるため、次工程を停止させる必要はなく、次工程での作業効率が著しく向上する。
【0025】
なお、本発明の糸条把持装置とは、糸条を挟んで固定するニップ装置など、接合しようとする二本の繊維糸条を重ね合わせて把持できるものであれば、その種類は何ら制約を受けるものではない。また、糸条把持装置における把持部の形状も、繊維糸条のフィラメント数やデニール数に応じて適宜決定すれば良い。
【0026】
更に、これら一対の糸条把持装置により繊維糸条を把持した後、そのスパンを縮めるように、一対の把持装置を接近させる機構など、絡合する糸条部分に弛みを与える機構を備えることが、絡合による接合を効果的に行うことができるため好ましい。
【0027】
また、本発明における流体交絡装置としては、例えば、特公平1−12850号公報、特開平10−226918号公報、又は特開2000−144534号公報などに開示されている公知の交絡ノズルを使用することができる。
【0028】
この流体交絡装置には加圧流体を供給する配管の途中にバルブが設けられており、流体交絡装置の作動時、すなわち、糸条を接合させる際にのみ前記バルブを開いて加圧流体を供給する機構を備えている。
【0029】
さらに、本発明における糸条張力保持機構とは、同糸条張力保持機構の上流側では実質的に糸条の走行を停止しても、同機構の下流側での糸条の連続走行を確保して走行糸条の張力を一定に保持させる機構である。
【0030】
また上記発明によれば、前記糸条張力保持機構はダンサーロール又は動滑車である。このような振り子状に動作するダンサーロール方式や動滑車状に動作する方式などの可動ロール方式を採用することにより、容易に糸条張力を保持することができる。或いは、糸条張力保持機構として、走行する糸条を貯留するためのケーシングを配すると共に、同ケーシングと糸条走行装置との間に糸条張力を検出、調整するための張力調整装置を配して構成することもできる。
【0031】
本件請求項2に係る発明によれば、前記糸条供給部と前記糸条張力保持機構との間の糸条走行路上に糸端切断装置を備えてなることを特徴としている。前記糸端切断装置により、先行糸条から後続糸条へと供給が切り替わる際に、先行糸条の接合部から突出している糸端を、接合部の近傍で切断して突出する糸端を短くトリミングすることにより、続く工程における糸端のロールへの巻き付きなどを防止することができる。
【0032】
また待機している後続糸条の糸端についても同様に、この糸端が長いと続く工程でのロールへの糸端巻付きの原因になり易いため、糸端切断装置により糸端をなるべく短くトリミングすることが好ましい。
【0033】
前記糸端切断装置としては、切断歯などを備えた通常の切断に供される機構、例えばはさみ、シャーリングなどの装置や、回転刃を有する円板状の切断装置、固定刃が往復運動する装置、その他超音波カッターなど、繊維糸条の種類に応じて適宜選択され、特に制約を受けるものではない。
【0034】
本件請求項3に係る発明によれば、前記糸条供給部と前記糸条把持装置との間の糸条走行路に糸端の有無を検出する糸端検出器を備えている。前記糸条供給部と前記糸条把持装置との間の糸条走行路に前記検出器を設置し、走行している先行糸条の有無を検出することにより、先行糸条の後端が糸継ぎ機を通過するタイミングを正確に検知することができる。
【0035】
なお、この糸端の有無を検出する検出器としては、その種類は何ら制限を受けるものではないが、糸条に対して非接触である光電式の検出器を用いることが好ましい。この検出器により先行糸条が糸条走行路上に存在せず、糸端が通過したことを検知すると、その信号を糸継ぎ機の糸条把持装置及び流体交絡装置に送り、各装置を作動させて自動的に接合操作を行うことができる。
【0036】
或いは、ボビンへの糸条巻き量が予めわかっている場合には、供給速度から後端が糸継ぎ機を通過するタイミングを予測できるため、上記検出器を用いることなく、適宜接続操作を行うことも可能である。
【0037】
更に本件請求項4に係る発明は、炭素繊維製造用前駆体糸条の先行糸条の後端と後続糸条の先端とを接続しながら、前記糸条を一定張力を保持して連続走行させ、炭素繊維製造工程へと供給することを特徴とする炭素繊維の製造方法を主要な構成としている。
【0038】
前記炭素繊維製造用前駆体糸条としては、アクリル系、セルロース系、ピッチ系などの繊維糸条が挙げられる。アクリル系繊維糸条としては、アクリロニトリルを主成分として含有するアクリル繊維であれば特に限定されないが、アクリロニトリル95質量%以上と、アクリロニトリルと共重合可能なビニル系単量体5質量%とからなるアクリル繊維が好ましい。さらにこのビニル系単量体が、耐炎化反応を促進する作用を有するアクリル酸、メタクリル酸、イタコン酸、又はこれらのアルカリ金属塩、もしくはアンモニウム塩、及びアクリルアミド等の単量体群から選ばれる1種類以上の単量体であることが、耐炎化反応を促進する上で好ましい。
【0039】
このようなアクリル繊維糸条を前駆体として炭素繊維を製造する場合に、糸条供給部のボビンから巻き出したアクリル繊維糸条は、糸条走行装置により一定の走行速度で供給され、200〜300℃の酸化性雰囲気中で加熱処理する耐炎化工程によって耐炎化繊維にした後、引き続いて1000℃以上の不活性雰囲気中で加熱処理する炭素化工程によって炭素繊維にするのが一般的である。
【0040】
本発明の炭素繊維製造方法にあっては、炭素繊維製造用前駆体糸条の先行糸条の後端と後続糸条の先端とを接続しながら、前記糸条を一定張力を保持して連続走行させ、炭素繊維製造工程へと供給される。そのため、従来のように糸継ぎ時に、特に耐炎化工程での酸化性雰囲気中での加熱処理温度において糸条の走行が停止され、耐炎化反応が進行して遂には糸条の切断或いは暴走反応による発熱に起因する発火などに至ることはない。
【0041】
しかも、糸条は糸継ぎ時にも常に所定の張力、一定の速度で焼成工程へと供給されるため、耐炎化工程の反応装置の温度を下げる必要もなく、著しい時間的ロスがなくなり、更には、温度を下げた間に耐炎化工程を通過して、不均一な処理がなされることによる炭素繊維のロス部分もなくなるため、製造コストを更に下げることもできる。
【0042】
本件請求項5に係る発明によれば、 前記前駆体糸条の先端部分及び後端部分の少なくとも一方を、予め耐炎化することを含んでいる。
或いは、本件請求項6に係る発明によれば、前記前駆体糸条の先端に、予め一定長さの耐炎化糸条を絡合させることを含んでいる。
【0043】
このように前駆体糸条の先端部分及び後端部分の少なくとも一方を予め耐炎化し、或いは前駆体糸条の先端に予め一定長さの耐炎化糸条を絡合させることにより、耐炎化工程において接合部分が蓄熱して切断するのを効果的に防止することができる。
【0044】
前駆体糸条の端部を耐炎化処理する際に格別な制限は無く、例えば空気、オゾン、或いはその他の酸化性雰囲気で、200〜300℃の加熱処理を行うことにより耐炎化処理を行うことができる。かかる加熱処理を行う装置としては熱風循環炉や、電熱ヒーターを用いたドライヤーなどを用いることができる。
【0045】
ワインダーによりボビン巻きの形態とされるアクリル系繊維糸条の場合、その巻き終わりの端部、即ち、先端部分を容易に耐炎化することができる。すなわち、巻き取りが終了したらその巻き終わりの端部を上述した熱風循環炉などにより加熱処理すれば良い。
【0046】
これに対して、ボビンへの巻き始め端部、即ち後端部分を耐炎化するためには、巻き始め端部がワインダーで巻き取られるアクリル系繊維糸条の下に敷かれ、即ち巻き始め端部の上にアクリル系繊維糸条を重ねて巻き取ってしまうことにより、所定量のアクリル系繊維糸条の巻き取りが終了した後に、ボビンから巻き始め端部を引き出せなくなる状況を避けなければならない。そのため、巻き始めに際して、以降に巻かれてボビンを形成する経路から外れた位置で、後に巻き始め端部をほどいて熱風循環炉等で熱処理が可能な長さを巻き取った後、所定のボビンを形成すれば良い。
【0047】
或いは、前駆体糸条の先端に、予め一定長さの耐炎化糸条が絡合させる場合には、ボビンのアクリル繊維糸条の巻き終わり端部(先端)と前記耐炎化糸条とを重ね合わせて把持し、公知の流体交絡装置により加圧流体を供給して絡合による接合を行うことが好ましい。
【0048】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照して詳細に説明する。
図1は本発明の公的な実施形態による糸継ぎ機の概略図である。
【0049】
前記糸継ぎ機10は、糸条供給部20と糸条走行装置30との間に配されている。本実施形態にあっては、糸条供給部20には先行する繊維糸条Fのボビン21と、後続の繊維糸条fのスタンバイボビン22とが配されている。
【0050】
前記糸継ぎ機10は、前記先行糸条Fの糸条走行路に沿って配された一対の糸条把持装置11,12と、同糸条把持装置11,12の間に配された流体交絡装置13とを備えている。前記流体交絡装置13には電磁弁14が取り付けられており、流体を供給するバルブの開閉を制御している。
【0051】
更に、前記糸継ぎ機10は、下流側の前記糸条把持装置12と前記糸条走行装置30との間の糸条走行路上に、糸条張力保持機構であるダンサーロール15が、前記糸条供給部20と上流側の糸条把持装置11との間の、先行糸条F及び後続糸条fのそれぞれの糸条走行路上に、糸条の有無を検出するための検出器16,17が配されている。
【0052】
かかる糸継ぎ機10を用いて炭素繊維を製造する場合には、前記ボビン21から連続的にアクリル系繊維糸条などの先行糸条Fが繰り出され、糸条走行装置30により前記先行糸条Fはり一定の速度で走行し、下流側の耐炎化工程、炭素化工程などの焼成工程に連続的に供給される。
【0053】
この糸条供給部のボビン21と糸条走行装置30との間には糸継ぎ機10と糸条張力保持機構であるダンサーロール15とが配されており、先行糸条はそれらを通過する。
【0054】
先行糸条Fが走行している間は、前記糸継ぎ機10の一対の糸条把持装置11,12は糸条Fを把持しておらず、同糸条把持装置11,12間に配された流体交絡装置13も不作動の状態にあり、自由な走行が保障されている。また、ダンサーロール15では、糸条が複数のロールに掛け回されて所要の長さを貯留しながら、一定の張力が保持される。
【0055】
先行糸条Fが連続走行している間に、後続糸条fは先端部分が繰り出されて、糸条把持装置11,12間に先行糸条Fと平行してセットされている。
【0056】
ボビン21から繰り出される先行糸条Fの後端が、前記検出器16を通過して同検出器16により糸条が検出されなくなると、糸条を接合させるタイミングであるという信号が糸継ぎ機10の糸条把持装置11,12及び電磁弁14へと送られる。
【0057】
この信号により前記糸条把持装置11,12が作動し、走行している先行糸条Fの後端部分と待機している後続糸条fの先端部分とを引き揃えて重ねた状態で把持する。このとき、先行糸条Fは糸条把持装置11,12により把持されている部分(後端部分)では走行を停止する。
【0058】
次いで糸条把持装置11,12は相対的に接近して、把持している二本の糸条を弛ませる。この糸条が弛んだ状態で、流体交絡装置13に加圧流体を供給する電磁弁14が解放され、流体交絡装置13に加圧流体を供給し、二本の糸条を流体交絡させる。そして予め設定した交絡処理時間が経過した後、電磁弁14を閉じて加圧流体の供給を停止し、糸条把持装置11,12の把持を解除する。
【0059】
この糸条の接合時に、糸条把持装置11,12の上流側では糸条F,fの走行が停止しており、即ち、糸条の供給が停止する。しかしながら、糸条把持装置11,12の下流側では糸条走行装置30の走行により、先行糸条Fが依然として一定の速度で走行を続けようとする。
【0060】
本実施形態の糸継ぎ機10にあっては、糸条把持装置11,12と糸条走行装置30との間にダンサーロール15を備えているため、糸継ぎ時にはこのダンサーロール15に貯留されている先行糸条Fが送り出され、糸条の張力を一定に保持する。そのため、糸継ぎ時にも、糸条走行装置30による糸条Fの走行を停止する必要はなく、常に一定の張力及び走行速度で糸条Fを次工程へと供給することができる。
【0061】
なお、本実施形態では糸条張力保持機構としてダンサーロールを使用しているが、動滑車状に動作する機構を採用することもでき、接続に要する所要時間と炭素繊維の製造工程への供給速度などから、その可動量を適宜設定すれば良い。
【0062】
糸条把持装置11,12による把持を解除すると、先行糸条の後端に接合された後続糸条が連続して供給され、続く焼成工程へ、ボビンに巻かれた後続のアクリル系繊維糸条を工程を停止することなく連続的に供給することができる。
【0063】
空になった前記先行糸条Fのボビン21に、新たな後続糸条のボビンをセットすれば、同様に、更なる糸条を接合させることができる。この操作を繰り返すことにより、焼成工程にアクリル系前駆体糸条繊維を連続的に供給することができる。
【0064】
更に、前記糸条供給部20と糸条張力保持機構であるダンサーロール15との間の糸条走行路上に糸端を切断してトリミングするための切断装置を設置することが好ましい。この場合には、先行糸条から後続糸条へと供給が切り替わる際に、先行糸条の接合部から突出している糸端を、接合部の近傍で切断して突出する糸端を短くトリミングすることにより、続く工程における糸端のロールへの巻き付きなどを防止することができる。
【0065】
なお、炭素繊維を製造する場合には、接合部分の蓄熱による糸条の切断を防止するために、先行糸条の後端または後続糸条の先端を予め耐炎化するか、或いは後続糸条の先端に予め所定長さの耐炎化糸条を絡合接続させておくことが好ましい。
【0066】
また、上述した実施態様では検出器16,17を用いて糸継ぎのタイミングを検知しているが、ボビンへの糸条巻き量が予めわかっている場合には、糸条の供給速度との関係から、後端が糸継ぎ機10を通過するタイミングを予測できるため、前記検出器16,17を用いることなく、適宜接合操作を行うことも可能である。
【0067】
後続糸条のボビンの巻き終わり端部(先端)部分を予め熱処理しておくことは容易であり、その場合には、走行している先行糸条のどの部分にも接合ができるため、検出器により先行糸条の後端が糸継ぎ機10を通過するタイミングを検知しなくても、任意の位置、任意のタイミングで先行糸条を切断して後続糸条と接続することが可能となる。この場合、先行糸条Fをその接合部位、即ち上流側の糸条把持装置11よりもボビン21に寄った側で切断する必要がある。従って、必要に応じてその位置に切断機構を備えることも可能である。
【0068】
以下、本発明について具体的な実施例を挙げて説明する。
なお、以下の実施例にて説明する工程通過率とは、接合部を有するアクリル系繊維糸条を耐炎化工程及び炭素化工程に通して炭素繊維にしたときに、それぞれの工程で切断すること無しに通過した接合部の数を、試験した糸条の全接合部に対する百分率(%)により表したものである。
また、工程張力(mN/Tex)とは、接合部を有するアクリル系繊維糸条による炭素繊維の製造を行った際の、耐炎化工程及び炭素化工程でのアクリル系繊維糸条の張力を単位繊度当たりに換算した数値である。
【0069】
(実施例1)
単糸繊度が1.2dTex/フィラメント、フィラメント数が12000のアクリル系繊維糸条の、ボビンへの巻き始め端部(後端)と巻き終り端部(先端)を、240℃の熱風が循環している炉中で5mN/texの張力下にて70分間の耐炎化処理を施すことにより、密度1.36g/cm3 に耐炎化したボビンAと、同様にして両端部を耐炎化処理したボビンBとの2つのボビンを用意した。
【0070】
巻き始め端部(後端)は同糸条の紡糸工程においてワインダーを用いてボビンに巻き取る際に、以降に巻き取られてボビンを形成する範囲、即ちトラバース範囲外で10mほど巻き取った後に、紡糸工程より供給されるアクリル系繊維糸条をトラバースガイドにセットして通常通り巻取りを行った。巻き始め端部に耐炎化処理を施す際はトラバース範囲外に巻き取られた部分のアクリル繊維糸条をほどいて上述した熱風循環炉中に導入して処理を行った。この時、密度1.36g/cm3 に耐炎化された長さは1mであった。
【0071】
初めにボビンAのアクリル繊維糸条を230〜270℃の熱風が循環している耐炎化炉中にて、工程張力14mN/Texにてアクリル繊維糸条の収縮を制限しながら、30分間の耐炎化処理に付し、続いて300〜1300℃の温度分布を有する窒素雰囲気中からなる炭素化炉中にて、同じく工程張力7mN/Texにして、同アクリル繊維糸条の収縮を制限しながら2分間の炭素化処理に付すことにより、炭素繊維を製造した。
【0072】
図1に示す装置において、糸条把持装置11,12のスパンを300mmとし、流体交絡装置13の絡合ノズルは全長60mm、糸条走行路の形状寸法はφ5mm、エア吹込み口は中心部に糸条走行路に対して直角に1ヵ所、φ2.5mmとしたものを用いた。この絡合ノズルの本体は糸条走行路を二分割できる構造としており、ボビンAの走行糸条と後続の待機しているボビンBの糸条の先端部分を糸条走行路にセットした後、ノズルを閉じた。
【0073】
このようにして、ボビンAのアクリル繊維糸条を炭素繊維製造工程に供給し、その耐炎化処理された巻き始め端部(後端)がボビンAより解序され、一対の糸条把持装置11,12のスパンを占める位置に来た時に糸条把持装置11,12を作動させた。本実施例においては検出装置を使わずに目視にて糸条把持装置11,12を作動させた。
【0074】
糸条把持装置11,12にて絡合接続する先行糸条の後端部分と後続糸条の先端部分とを引き揃えてニップした後、ニップスパンを20mm短縮して糸条に弛みを付与した。また、糸条のニップに伴い、ボビンAの走行糸条の走行が停止するため、図1に示すダンサーロール15を動作し、このダンサーロール15に貯留されていた先行糸条を供給して、糸継ぎ時における次工程での先行糸条の張力を保持し、所定速度での走行を確保した。本実施例においては、糸継ぎに要する糸条把持装置11,12による把持時間は1分間とした。
【0075】
エアーによる絡合に用いた供給エアの圧力は2kg/cm2 (196N/cm2 )、エアの噴射時間は5秒とした。エアの噴射による絡合が終了した後、糸条把持装置11,12のニップを開放し、接続操作を終了した。なお本実施例においては接続操作を終了した後、糸端をはさみで切断した。
【0076】
同様な接続操作を繰り返し、炭素繊維を製造した際の炭素繊維製造工程中の耐炎化工程及び及び炭素化工程での接続部の工程通過確率は表1に示す通り100%であった。
【0077】
(実施例2)
単糸繊度が1.2dTex/フィラメント、フィラメント数が50000のアクリル系繊維糸条の巻き始め端部と巻き終り端部を240℃の熱風が循環している炉中で5mN/texの張力下に70分間の耐炎化処理を施すことによって密度1.36g/cm3 の耐炎化末端部にしてある巻き取りボビンCと、同様にして両端部を耐炎化処理したボビンDの2つのボビンを用意した。
【0078】
巻き始め端部は実施例1と同様に、アクリル繊維糸条の紡糸工程においてワインダーを用いてボビンに巻き取る際に、以降に巻き取られてボビンを形成する範囲、即ちトラバース範囲外で10m巻き取った後に、紡糸工程より供給されるアクリル系繊維糸条をトラバースガイドにセットして通常通り巻取りを行った。巻き始め端部に耐炎化処理を施す際は、トラバース範囲外に巻き取られた部分のアクリル繊維糸条をほどいて上述した熱風循環炉中に導入して処理を行った。この時、密度1.36g/cm3 に耐炎化された長さは1mであった。
【0079】
初めにボビンCのアクリル繊維糸条を230〜270℃の熱風が循環している耐炎化炉中にて、工程張力14mN/Texにてアクリル繊維糸条の収縮を制限しながら、60分間の耐炎化処理に付し、続いて300〜1300℃の温度分布を有する窒素雰囲気中からなる炭素化炉中にて、同じく工程張力7mN/Texにして該アクリル繊維糸条の収縮を制限しながら1分間の炭素化処理に付すことにより、炭素繊維を製造した。
【0080】
図1に示す装置において、糸条把持装置11,12のスパンは300mm、流体交絡装置における絡合ノズルは、全長60mm、糸条走行路の形状寸法はφ5mm、エア吹き込み口は中心部に糸条走行路に対して垂直に1ヵ所、φ2.5mmとしたものを用いた。絡合ノズル本体は糸条走行路を二分割できる構造としており、ボビンCの走行する先行糸条と接合しようとする待機しているボビンDの後続糸条の先端部分を糸条走行路にセットした後、ノズルを閉じた。
【0081】
このようにして、ボビンCのアクリル繊維糸条を炭素繊維製造工程に供給し、耐炎化処理された巻き始め端部(後端)がボビンCより解序されて一対の糸条把持装置11,12のスパンを占める位置に来た時に、糸条把持装置11,12を作動させた。この動作により、先行糸条の後端部分と後続糸条の先端部分とが引き揃えられ重ね合わされた状態で糸条把持装置にてニップされる。続けて糸条把持装置11,12によるニップスパンを20mm短縮して、二本の糸条に弛みを付与した。
【0082】
また、糸条のニップに伴い、ボビンCの先行糸条の走行が停止するため、図1に示すダンサーロール15を動作させ、接続に要する時間、このダンサーロール15に貯留されていた先行糸条を供給し、糸継ぎに要する時間の先行糸条の次工程での張力を保持し、所定速度での走行を確保した。本実施例においては、接続に要する把持時間を1分間とした。エアーによる絡合に用いた供給エアの圧力は2kg/cm2 (196N/cm2 )、エアの噴射時間は5秒とした。
【0083】
エアの噴射による絡合が終了した後、糸条把持装置のニップを開放し、接続操作を終了した。なお本実施例においては接続操作を終了した後、糸条の端部をはさみで切断した。
【0084】
同様な接続操作を繰り返し、炭素繊維を製造した際の炭素繊維製造工程中の耐炎化工程及び及び炭素化工程での接続部の工程通過確率は表1に示す通り、100%である。
【0085】
(実施例3)
単糸繊度が1.2dTex/フィラメント、フィラメント数が12000のアクリル系繊維糸条の巻き終り端部(先端)を240℃の熱風が循環している炉中で5mN/texの張力下に70分間の耐炎化処理を施すことによって密度1.36g/cm3 の耐炎化した巻き取りボビンEと、同様にして巻き終り端部(先端)を耐炎化処理したボビンFの2つのボビンを用意した。
【0086】
初めにボビンEのアクリル繊維糸条を230〜270℃の熱風が循環している耐炎化炉中にて、工程張力14mN/Texにてアクリル繊維糸条の収縮を制限しながら、30分間の耐炎化処理に付し、続いて300〜1300℃の温度分布を有する窒素雰囲気中からなる炭素化炉中にて、同じく工程張力7mN/Texにして該アクリル繊維糸条の収縮を制限しながら2分間の炭素化処理に付すことにより、炭素繊維を製造した。
【0087】
図1に示す装置において、糸条把持装置11,12のスパンは300mm、流体交絡装置における絡合ノズルは、全長が60mm、糸条走行路の形状寸法がφ5mm、エア吹き込み口が中心部に糸条走行路に対して垂直に1ヵ所、φ2.5mmとしたものを用いた。絡合ノズル本体は糸条走行路を二分割できる構造としており、ボビンEの先行する走行糸条と、待機しているボビンFの後続糸条の先端部分を糸条走行路にセットした後、ノズルを閉じた。
【0088】
このようにして、ボビンEのアクリル繊維糸条を炭素繊維製造工程に供給し、その巻き始め端部、即ちボビンEのアクリル系繊維糸条の後端が同ボビンEより解序された瞬間に糸条把持装置11,12を動作させた。この糸条把持装置11,12の動作は、光電式スイッチにより糸条走行路上の糸条の有無を検出して行った。
【0089】
糸条把持装置11,12にて絡合接続する二本の糸条をニップした後、ニップスパンを20mm短縮して糸条に弛みを付与した。また、糸条のニップに伴い、ボビンEの走行糸条の走行が停止するため、図1に示すダンサーロール15を動作して、同ロール15に貯留されている先行糸条を供給し、次工程での糸条の張力を保持すると共に走行速度を確保した。本実施例においては、糸継ぎ時間を1分間とした。
【0090】
エアーによる絡合に用いた供給エアの圧力は2kg/cm2 (196N/cm2 )、エアの噴射時間は5秒とした。またエアの噴射も光電式スイッチにより糸条の有無を検出して糸条把持装置11,12を動作させた後、供給エア配管に設けられた電磁弁14を動作させて行った。
【0091】
エアの噴射による絡合が終了した後、端子のトリミングのため、絡合ノズルの両端でスズキ(株)製ウルトラソニックカッターSUW−30CMHにより糸端の切断を行った。この際使用した刃形式はH4で、糸条を刃に密着させるため刃の両面から0.3mmの距離をおいて、刃先と30度の角度をなすステンレス製の治具を装着したものを用い、刃と治具の傾斜面の間に糸条が位置するようにカッターを挿入して糸端の切断を行った。糸端の切断後、糸条把持装置のニップを開放し、接続操作を終了した。
【0092】
同様な接続操作を繰り返し、炭素繊維を製造した際の炭素繊維製造工程中の耐炎化工程及び及び炭素化工程での接続部の工程通過確率は表1に示す通り、100%である。
【0093】
(実施例4)
単糸繊度が1.2dTex/フィラメント、フィラメント数が12000のアクリル系繊維糸条のボビンGを準備した。一方、他のアクリル繊維糸条を230〜270℃の熱風が循環している耐炎化炉中にて、工程張力14mN/Texにてアクリル繊維糸条の収縮を制限しながら、30分間の耐炎化処理に付し、密度1.36g/cm2 の耐炎化糸を得た。この耐炎化糸を更に他のアクリル繊維糸条のアクリル繊維糸条の先端に絡合接続させて、ボビンHとした。
【0094】
前記耐炎化糸とアクリル繊維糸条との接続は、図1に示す接続装置のうち一対の糸条把持装置11,12と、加圧流体による絡合ノズル、同ノズルに加圧流体を供給するための配管、及び加圧流体の供給と停止を行うバルブから構成される流体交絡装置とによって、糸条把持装置11,12のスパンは300mm、絡合ノズルは、全長が60mm、糸条走行路の形状寸法がφ5mm、エア吹き込み口が中心部に糸条走行路に対し垂直に1ヵ所、φ2.5mmとしたものを用い、供給エアの圧力は2kg/cm2 (19.6N/cm2 )、エアの噴射時間は5秒として絡合接続を行った。
【0095】
初めにボビンGのアクリル繊維糸条を230〜270℃の熱風が循環している耐炎化炉中にて、工程張力14mN/Texにてアクリル繊維糸条の収縮を制限しながら、30分間の耐炎化処理に付し、続いて300〜1300℃の温度分布を有する窒素雰囲気中からなる炭素化炉中にて、同じく工程張力7mN/Texにして同アクリル繊維糸条の収縮を制限しながら2分間の炭素化処理に付すことにより、炭素繊維を製造した。
【0096】
図1に示す装置において、糸条把持装置11,12のスパンは300mm、絡合ノズルは、全長が60mm、糸条走行路の形状寸法がφ5mm、エア吹き込み口が中心部に糸条走行路に対し垂直に1ヵ所、φ2.5mmとしたものを用いた。絡合ノズル本体は糸条走行路を二分割できる構造としており、ボビンGの走行糸条と、待機しているボビンHの後続糸条の、耐炎化糸が接続された先端部分とを糸条走行路にセットした後ノズルを閉じた。
【0097】
このようにして、ボビンGのアクリル繊維糸条を炭素繊維製造工程に供給し、その巻き始め端部、即ちボビンGの先行糸条の終端が同ボビンGより解序された瞬間に糸条把持装置11,12を動作させた。糸条把持装置の動作は、光電式スイッチにより糸条走行路上の糸条の有無を検出して行った。糸条把持装置にて絡合接続する二本の糸条を引き揃えて重ね合わせ、ニップした後、ニップスパンを20mm短縮して糸条に弛みを付与した。
【0098】
また、糸条のニップに伴い、ボビンGの走行糸条の走行が停止するため、図1に示すダンサーロール15を動作し、接続に要する時間、同ロール15に貯留されている糸条を供給し、次工程での糸条の所定の張力及び走行速度を確保した。本実施例においては、把持時間を1分間とした。
【0099】
エアーによる絡合に用いた供給エアの圧力は2kg/cm2 (19.6N/cm2 )、エアの噴射時間は5秒とした。またエアの噴射も光電式スイッチにより糸条の有無を検出して糸条把持装置11,12を動作させた後、供給エア配管に設けられた電磁弁14を動作させて行った。
【0100】
エアの噴射による絡合が終了した後、糸条端部のトリミングのため、絡合ノズルの両端でスズキ(株)製ウルトラソニックカッターSUW−30CMHにより糸端の切断を行った。この際使用した刃形式はH4で、糸条を刃に密着させるため刃の両面から0.3mmの距離をおいて、刃先と30度の角度をなすステンレス製の治具を装着したものを用い、刃と治具の傾斜面の間に糸条が位置するようにカッターを挿入し糸端の切断を行った。糸端の切断後、糸条把持装置のニップを開放し、接続操作を終了した。
【0101】
同様な接続操作を繰り返し、炭素繊維を製造した際の炭素繊維製造工程中の耐炎化工程及び及び炭素化工程での接続部の工程通過確率は、表1に示す通り100%である。
【0102】
(実施例5)
単糸繊度が1.2dTex/フィラメント、フィラメント数が50000のアクリル系繊維糸条の巻き終り端部(先端部分)を240℃の熱風が循環している炉中で5mN/texの張力下に50分間の耐炎化処理を施し密度1.31g/cm3 の耐炎化末端部にした巻き取りボビンIと、同様にして巻き終り端部(先端部分)を耐炎化処理したボビンJの2つのボビンを用意した。
【0103】
初めにボビンGのアクリル繊維糸条を230〜270℃の熱風が循環している耐炎化炉中にて、工程張力14mN/Texにてアクリル繊維糸条の収縮を制限しながら、60分間の耐炎化処理に付し、続いて300〜1300℃の温度分布を有する窒素雰囲気中からなる炭素化炉中にて、同じく工程張力7mN/Texにして同アクリル繊維糸条の収縮を制限しながら2分間の炭素化処理に付すことにより、炭素繊維を製造した。
【0104】
図1に示す装置において、糸条把持装置のスパンは300mm、絡合ノズルは、全長が100mm、糸条走行路の形状寸法がφ10mm、エア吹き込み口が中心部に糸条走行路に対し垂直に1ヵ所、φ5mmとしたものを用いた。絡合ノズル本体は糸条走行路を二分割できる構造としており、ボビンIの走行糸条と、待機しているボビンJの後続糸条の先端部分とを糸条走行路にセットした後ノズルを閉じた。
【0105】
このようにして、ボビンIのアクリル繊維糸条を炭素繊維製造工程に供給し、その巻き始め端部、即ちボビンIのアクリル系繊維糸条の後端がボビンより解序された瞬間に糸条把持装置を動作させた。糸条把持装置にて絡合接続する二本の糸条をニップした後、ニップスパンを20mm短縮して糸条に弛みを付与した。また、糸条のニップに伴い、ボビンIの走行糸条の走行が停止するため、図1に示すダンサーロール15を動作し、同ロール15に貯留されている先行糸条を供給して、次工程での糸条の張力を保持し、所定速度での走行を確保した。本実施例においては、把持時間を1分間とした。
【0106】
エアーによる絡合に用いた供給エアの圧力は2kg/cm2 (19.6N/cm2 )、エアの噴射時間は5秒とした。エアの噴射による絡合が終了した後、端子のトリミングのため、絡合ノズルの両端でスズキ(株)製ウルトラソニックカッターSUW−30CMHにより糸端の切断を行った。この際使用した刃形式はH4で、糸条を刃に密着させるため刃の両面から0.3mmの距離をおいて、刃先と30度の角度をなすステンレス製の治具を装着したものを用い、刃と治具の傾斜面の間に糸条が位置するようにカッターを挿入し糸端の切断を行った。糸端の切断後ニップ装置のニップを開放し、接続操作を終了した。
【0107】
同様な接続操作を繰り返し、炭素繊維を製造した際の炭素繊維製造工程中の耐炎化工程及び及び炭素化工程での接続部の工程通過確率は、表1に示す通り100%である。
【0108】
【表1】

Figure 0004541583
【0109】
以上、説明したように、例えばボビンに巻かれた炭素繊維維製造用のアクリル系繊維糸条を連続して炭素繊維製造工程(焼成工程)に供給するに際し、先行糸条に後続糸条を流体交絡により接合する場合に、その接合処理時にも次工程への糸条の供給速度を低下させることなく常に一定の張力を保持できる。そのため、連続的な焼成が可能となり、炭素繊維製造工程の操業性を著しく向上させ、製造のコストダウンが図れる。
【図面の簡単な説明】
【図1】本発明の好適な実施形態による糸継ぎ機の概略図である。
【符号の説明】
10 糸継ぎ機
11 糸条把持装置
12 糸条把持装置
13 流体交絡装置
14 電磁弁
15 ダンサーロール
16 検出器
17 検出器
20 糸条供給部
21 ボビン
22 スタンバイボビン
30 糸条走行装置
F 先行糸条
f 後続糸条[0001]
[Technical field to which the present invention pertains]
In the present invention, when supplying a fiber yarn wound around a bobbin or folded and stacked in a box to a various yarn processing device, the subsequent yarn is continuously supplied by joining the preceding yarn. The present invention relates to a yarn splicing machine and a continuous production method of carbon fibers to which the splicing machine is applied.
[0002]
[Prior art]
Conventionally, acrylic fiber yarn has been widely used as a precursor for producing carbon fiber, and is made flame-resistant by a flameproofing process in which acrylic fiber yarn is heat-treated in an oxidizing atmosphere at 200 to 300 ° C. After forming into a fiber, it is common to make it into a carbon fiber by a carbonization step in which heat treatment is subsequently performed in an inert atmosphere at 1000 ° C. or higher.
[0003]
Since the carbon fiber thus obtained has various excellent physical properties, it is widely used as a reinforcing fiber for various fiber-reinforced composite materials. Carbon fiber is used for industrial applications related to construction, civil engineering and energy in addition to conventional applications for aircraft and sporting goods, and its demand is growing rapidly. In order to further expand this demand, it is desired to supply carbon fiber at a lower cost.
[0004]
In general, precursor yarns such as acrylic fiber yarns for producing carbon fibers are supplied in a form wound on a bobbin or the like, or folded and laminated on a box. The precursor yarn in such a storage form is supplied to various firing processes such as a flameproofing process and a carbonization process. In order to increase the operability in the firing process in order to reduce the production cost of carbon fibers, when these precursor yarns are supplied to the firing process and carbon fibers are produced, many precursor yarns are joined. Therefore, it is necessary to continuously supply to the firing step. For this purpose, the trailing end of the precursor yarn in the above-described storage form is joined to the leading end of the subsequent precursor yarn.
[0005]
Conventionally, the rear end of the preceding yarn and the front end of the subsequent yarn are connected and joined. However, the yarn oxidizes and generates heat in the flameproofing process, but the yarn fibers are densely compressed and stored in knots that are difficult to dissipate heat, which causes a more intense oxidation reaction, causing yarn breakage and damage during firing. Cause. Further, even in the carbonization process, thread shortage may occur due to lack of oxygen at the knot.
[0006]
Therefore, in the method for producing carbon fiber disclosed in Japanese Patent Application Laid-Open No. 54-50624, a semi-fluid heat-resistant compound such as diester oil or silicon oil is attached to the knot of the precursor yarn, and the knot. Oxidation reaction is suppressed. Moreover, in the carbon fiber manufacturing method disclosed in Japanese Patent Laid-Open No. 56-37315, the end portions of the precursor yarns are heat-treated in advance so that the connecting loop portions and the knot portions are arranged at different positions. They are joined together in a specific way.
[0007]
In these publications, although heat storage at the knot is reduced, the knot is still formed. Therefore, yarn breakage and burnout cannot be completely avoided, and these troubles are likely to occur.
[0008]
Therefore, in the carbon fiber manufacturing method disclosed in Japanese Patent Publication No. 1-12850, the end portions of the precursor yarns are overlapped with each other, and the overlapped portions are entangled and joined by high-speed fluid processing. .
[0009]
In the joining by such an entanglement, the heat storage at the joining portion is less than the joining by the knot. However, since the fiber density at the joined portion is larger than that at the other portions, troubles such as yarn breakage due to heat storage at the entangled portion and lack of oxygen cannot be completely prevented.
[0010]
Therefore, in the carbon fiber production method disclosed in Japanese Patent Laid-Open No. 4-214414, an oxidation reaction such as boric acid, ammonium sulfamate, sodium sulfite or uric acid is suppressed at the entangled portion of the precursor yarn by high-speed fluid treatment. An agent is given.
[0011]
Further, in the carbon fiber manufacturing method disclosed in JP-A-10-226918, the ends of the precursor yarns are entangled with each other by a fluid treatment via a non-heat-generating connection medium such as a flameproof yarn. is doing.
[0012]
In this publication, a general entanglement device that has been conventionally used is used. As an apparatus for joining yarns by entanglement treatment with a fluid, for example, Japanese Laid-Open Patent Publication No. 62-136483 discloses a yarn joining device. In the yarn coupling device disclosed in the publication, the overlapping ends of the two yarns are clamped by a pair of clamping means, and then the clamping means are brought close to each other to relax the yarn, Compressed air is blown by the entanglement means so that the ends of the yarn are intertwined and joined.
[0013]
In this coupling device, the ends of the two yarns are joined to each other by temporarily stopping the running of the yarns and performing the entanglement process while holding the overlapping ends of the two yarns. In addition, a general conventional technique such as that used in the above-described carbon fiber manufacturing method disclosed in Japanese Patent Publication No. 1-12850, JP-A-4-214414, or JP-A-10-226918 is disclosed. The entanglement device is also entangled by spraying a fluid to the ends of the two yarns in a stopped state.
[0014]
[Problems to be solved by the invention]
As described above, when the yarn is joined in a state in which the traveling of the yarn is temporarily stopped, the processing in the subsequent processing step must be temporarily stopped, and the working efficiency is lowered. In particular, when the heat treatment is performed for a predetermined time at a predetermined temperature in the baking furnace as in the carbon fiber baking step, if the running of the treated yarn is stopped, the heat stays in the furnace at the stop time. Since the portion is fired excessively, the yarn is cut and continuous processing cannot be performed.
[0015]
Therefore, in the past, during the time period when the running of the treated yarn was stopped, the furnace temperature was lowered to cope with it, but a loss occurred while the furnace temperature was raised again to the predetermined temperature, and the stop time It cannot be denied that the degree of firing differs from the other parts in the part of the yarn remaining in the furnace and in the vicinity thereof. Therefore, the physical properties of the yarn become non-uniform and the value as a product is impaired.
[0016]
Therefore, the present invention provides a yarn splicer that can join the tip of the succeeding yarn to the rear end of the preceding yarn by entanglement with the yarn traveling at a predetermined speed, and a large number of yarn splicers. It aims at providing the manufacturing method of the carbon fiber which can supply a precursor thread | yarn continuously to a baking process, can improve the operativity of a baking process, and can aim at cost reduction.
[0017]
[Means for Solving the Problems]
In order to solve the above-described problem, the invention according to claim 1 of the present invention includes a yarn supply unit and a yarn drawn from the yarn supply unit. Continuous in one direction A yarn splicer that is arranged between a traveling device for traveling yarns and connects the leading end of the succeeding yarn to the trailing end of the preceding yarn, and is on standby with the trailing end portion of the preceding yarn Align the tip of the succeeding yarn In a stacked state A pair of yarn gripping devices to be sandwiched, a fluid entanglement device disposed between the pair of yarn gripping devices, and a yarn traveling path between the yarn gripping device and the yarn traveling device. Yarn tension Retention mechanism Is a dancer roll or moving pulley It is characterized by comprising.
[0018]
Examples of the yarn supply unit include one in which a yarn is wound around a bobbin or creel, and one in which a yarn is folded and stacked on a box. The fiber yarn is drawn from the bobbin or other yarn supply unit by a yarn traveling device and supplied to various yarn processing steps such as a weaving step and a carbon fiber firing step. As the yarn traveling device, a nip roll, a godet roll for supplying a yarn wound around a large number of rolls, or the like is used. In the present invention, the type of the yarn traveling device is not limited at all, and a conventional yarn traveling device may be appropriately selected.
[0019]
As for the fiber yarn, the preceding yarn supplied from the yarn supply unit travels at a constant speed by the yarn traveling device and is sent to the processing step of various yarns as the next step. The yarn splicer according to the present invention is disposed along a yarn traveling path of a preceding yarn between the yarn supply unit and the yarn traveling device. The preceding yarn is passed between the yarn splicers during the travel, so that free travel is guaranteed.
[0020]
That is, while the preceding yarn is traveling, the pair of yarn gripping devices of the yarn splicing machine of the present invention does not grip the yarn, and the fluid entanglement device disposed between the yarn gripping devices is also ineffective. In the operating state, the preceding yarn is sent to the yarn processing step while maintaining a certain tension while storing a required length in the yarn tension holding mechanism.
[0021]
At this time, the bobbin of the succeeding fiber yarn is waiting in the yarn supplying section, and the leading end portion of the succeeding yarn is parallel to the preceding yarn between the pair of yarn gripping devices of the yarn splicer. It is arranged.
[0022]
When joining the preceding yarn and the succeeding yarn, the rear end portion of the preceding yarn is supplied from the yarn supplying unit, and the yarn splicing is arranged between the yarn supplying unit and the yarn traveling device. Immediately before passing through the machine, the pair of yarn gripping devices of the yarn splicer is actuated to grip the rear end portion of the preceding yarn and the front end portion of the subsequent yarn in a state of being aligned and superposed. At the same time, the fluid entanglement device is actuated, and the rear end of the preceding yarn and the front end of the subsequent yarn between the pair of yarn gripping devices are entangled and joined. Thereafter, the gripping by the yarn gripping device and the operation of the fluid entanglement device are released, and the yarn is continuously supplied to various yarn processing steps in which the succeeding yarn follows the preceding yarn.
[0023]
At the time of joining by this yarn splicer, the trailing end portion of the preceding yarn and the leading end portion of the succeeding yarn are gripped by the yarn gripping device, so that the yarn on the upstream side of the yarn gripping device travels. It is in a stopped state. Thus, in the yarn splicer of the present invention, the yarn tension holding mechanism is arranged on the downstream side of the yarn gripping device, so that the supply of the yarn from the yarn supply unit is temporarily stopped. However, the tension of the traveling yarn downstream of the yarn tension holding mechanism is kept constant, and the yarn stored in the yarn tension holding mechanism is continuously sent to the yarn processing process, The yarn is always supplied to the processing step at a constant supply speed.
[0024]
As described above, the yarn splicer of the present invention can always supply the yarn to the next step with a constant tension without stopping the yarn processing even at the time of yarn joining, so it is necessary to stop the next step. The work efficiency in the next process is significantly improved.
[0025]
The yarn gripping device of the present invention is not limited to any kind as long as the two fiber yarns to be joined can be stacked and gripped, such as a nip device that holds and fixes the yarn. It is not something to receive. In addition, the shape of the gripping portion in the yarn gripping device may be appropriately determined according to the number of filaments and the number of deniers of the fiber yarn.
[0026]
Furthermore, after gripping the fiber yarn by the pair of yarn gripping devices, a mechanism for slackening the intertwined yarn portions, such as a mechanism for bringing the pair of gripping devices closer so as to shorten the span, is provided. It is preferable because joining by entanglement can be effectively performed.
[0027]
Moreover, as a fluid entanglement apparatus in this invention, the well-known entanglement nozzle currently disclosed by Japanese Patent Publication No. 1-128050, Unexamined-Japanese-Patent No. 10-226918, or Unexamined-Japanese-Patent No. 2000-144534 is used, for example. be able to.
[0028]
This fluid entanglement device is provided with a valve in the middle of a pipe for supplying pressurized fluid, and the pressurized fluid is supplied by opening the valve only during operation of the fluid entanglement device, that is, when joining yarns. It has a mechanism to do.
[0029]
Furthermore, the yarn tension holding mechanism according to the present invention ensures continuous running of the yarn on the downstream side of the mechanism even if the running of the yarn is substantially stopped on the upstream side of the yarn tension holding mechanism. Thus, the tension of the traveling yarn is kept constant.
[0030]
The above invention According to the present invention, the yarn tension holding mechanism is a dancer roll or a moving pulley. By adopting a movable roll system such as a dancer roll system that operates like a pendulum or a system that operates like a moving pulley, the yarn tension can be easily maintained. Alternatively, as the yarn tension holding mechanism, a casing for storing the traveling yarn is arranged, and a tension adjusting device for detecting and adjusting the yarn tension is arranged between the casing and the yarn running device. It can also be configured.
[0031]
This case Claim 2 According to the invention, the yarn end cutting device is provided on the yarn traveling path between the yarn supply section and the yarn tension holding mechanism. When the supply is switched from the preceding yarn to the succeeding yarn by the yarn end cutting device, the yarn end protruding from the joining portion of the preceding yarn is cut in the vicinity of the joining portion to shorten the protruding yarn end. By trimming, it is possible to prevent the yarn end from being wound around the roll in the subsequent process.
[0032]
Similarly, for the yarn end of the subsequent yarn that is on standby, if this yarn end is long, it is likely to cause the yarn end to be wound around the roll in the subsequent process, so the yarn end is shortened as much as possible by the yarn end cutting device. Trimming is preferred.
[0033]
As the yarn end cutting device, a mechanism used for normal cutting including cutting teeth, such as scissors and shearing devices, a disk-shaped cutting device having a rotating blade, and a device in which a fixed blade reciprocates. In addition, other ultrasonic cutters and the like are appropriately selected according to the type of fiber yarn and are not particularly limited.
[0034]
Claim 3 According to the invention, the yarn end detector that detects the presence or absence of a yarn end in the yarn traveling path between the yarn supply unit and the yarn gripping device is provided. The detector is installed in a yarn traveling path between the yarn supply unit and the yarn gripping device, and the presence or absence of a traveling preceding yarn is detected, so that the trailing end of the preceding yarn is a yarn. The timing of passing through the joint can be accurately detected.
[0035]
The type of detector for detecting the presence or absence of the yarn end is not limited at all, but it is preferable to use a photoelectric detector that is non-contact with the yarn. When this detector detects that the preceding yarn does not exist on the yarn running path and the yarn end has passed, the signal is sent to the yarn gripping device and fluid entanglement device of the yarn splicer to operate each device. Can automatically perform the joining operation.
[0036]
Alternatively, when the amount of yarn wound around the bobbin is known in advance, the timing at which the trailing end passes through the yarn splicer can be predicted from the supply speed, so the connection operation is appropriately performed without using the detector. Is also possible.
[0037]
More Claim 4 In the invention according to the present invention, a constant tension is applied to the yarn while connecting the trailing end of the preceding yarn and the leading end of the succeeding yarn of the precursor yarn for carbon fiber production. Retention The carbon fiber manufacturing method is characterized in that it is continuously run and supplied to the carbon fiber manufacturing process.
[0038]
Examples of the precursor yarn for producing carbon fibers include acrylic yarns, cellulose yarns, pitch yarns, and the like. The acrylic fiber yarn is not particularly limited as long as it is an acrylic fiber containing acrylonitrile as a main component, but an acrylic fiber comprising 95% by mass or more of acrylonitrile and 5% by mass of a vinyl monomer copolymerizable with acrylonitrile. Fiber is preferred. Further, the vinyl monomer is selected from a monomer group such as acrylic acid, methacrylic acid, itaconic acid, or an alkali metal salt or ammonium salt thereof, and acrylamide having an action of promoting a flameproofing reaction. It is preferable to use more than one type of monomer in order to promote the flameproofing reaction.
[0039]
When producing carbon fiber using such an acrylic fiber yarn as a precursor, the acrylic fiber yarn unwound from the bobbin of the yarn supply unit is supplied at a constant running speed by the yarn running device, Generally, after making into a flame-resistant fiber by a flameproofing step in which heat treatment is performed in an oxidizing atmosphere at 300 ° C., a carbon fiber is subsequently made in a carbonization step in which heat treatment is performed in an inert atmosphere at 1000 ° C. or higher. .
[0040]
In the carbon fiber production method of the present invention, a constant tension is applied to the yarn while connecting the trailing end of the preceding yarn of the precursor yarn for carbon fiber production and the tip of the succeeding yarn. Retention And it is made to run continuously and is supplied to a carbon fiber manufacturing process. Therefore, at the time of yarn joining as in the prior art, the running of the yarn is stopped especially at the heat treatment temperature in an oxidizing atmosphere in the flameproofing process, and the flameproofing reaction proceeds and finally the yarn breaks or runs away. It does not lead to ignition due to heat generated by.
[0041]
Moreover, since the yarn is always supplied to the firing process at a predetermined tension and a constant speed even when piecing, there is no need to lower the temperature of the reactor in the flameproofing process, and there is no significant time loss. Since the loss of carbon fiber due to non-uniform treatment is eliminated by passing through the flameproofing process while the temperature is lowered, the manufacturing cost can be further reduced.
[0042]
This case Claim 5 According to the invention which concerns on this, It includes making flame resistance beforehand at least one of the front-end | tip part of the said precursor thread | yarn, and a rear-end part.
Or this case Claim 6 According to the invention according to the above, the method includes entanglement of a predetermined length of flame-resistant yarn in advance with the tip of the precursor yarn.
[0043]
In this way, at least one of the leading end portion and the trailing end portion of the precursor yarn is made flame resistant in advance, or a flame resistant yarn having a predetermined length is entangled with the tip of the precursor yarn in advance, in the flameproofing step. It can prevent effectively that a junction part accumulates heat and cuts.
[0044]
There is no particular limitation when flame-treating the end of the precursor yarn, for example, performing flame-resistant treatment by performing heat treatment at 200 to 300 ° C. in air, ozone, or other oxidizing atmosphere. Can do. As an apparatus for performing such heat treatment, a hot air circulating furnace, a dryer using an electric heater, or the like can be used.
[0045]
In the case of an acrylic fiber yarn that is wound into a bobbin by a winder, the end of the winding end, that is, the tip can be easily made flame resistant. That is, when the winding is completed, the end of the winding may be heat-treated by the above-described hot air circulation furnace.
[0046]
On the other hand, in order to make the winding start end to the bobbin, that is, the rear end portion flameproof, the winding start end is laid under the acrylic fiber yarn wound by the winder, that is, the winding start end. By winding up the acrylic fiber yarn over the part, it is necessary to avoid the situation where the end of the bobbin cannot be pulled out after the predetermined amount of acrylic fiber yarn has been wound up. . Therefore, at the start of winding, at a position outside the path where the bobbin is subsequently wound and unrolled, the winding start end is unwound and the length capable of heat treatment in a hot air circulating furnace is wound up, and then a predetermined bobbin Should be formed.
[0047]
Alternatively, when a flame resistant yarn having a predetermined length is entangled with the tip of the precursor yarn in advance, the winding end end (tip) of the acrylic fiber yarn of the bobbin is overlapped with the flame resistant yarn. It is preferable to hold them together and supply a pressurized fluid by a known fluid entanglement device to perform joining by entanglement.
[0048]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view of a yarn splicer according to an official embodiment of the present invention.
[0049]
The yarn splicer 10 is disposed between the yarn supply unit 20 and the yarn traveling device 30. In the present embodiment, the bobbin 21 of the preceding fiber yarn F and the standby bobbin 22 of the subsequent fiber yarn f are arranged in the yarn supply unit 20.
[0050]
The yarn splicer 10 includes a pair of yarn gripping devices 11 and 12 disposed along the yarn traveling path of the preceding yarn F, and a fluid entanglement disposed between the yarn gripping devices 11 and 12. Device 13. An electromagnetic valve 14 is attached to the fluid entanglement device 13 to control opening and closing of a valve that supplies fluid.
[0051]
Furthermore, the yarn splicer 10 includes a dancer roll 15 that is a yarn tension holding mechanism on the yarn traveling path between the yarn gripping device 12 and the yarn traveling device 30 on the downstream side. Detectors 16 and 17 for detecting the presence / absence of a yarn are provided on the yarn traveling paths of the preceding yarn F and the succeeding yarn f between the supply unit 20 and the upstream yarn gripping device 11. It is arranged.
[0052]
When carbon fiber is manufactured using the yarn splicer 10, a preceding yarn F such as an acrylic fiber yarn is continuously fed out from the bobbin 21, and the preceding yarn F is fed by a yarn traveling device 30. The beam travels at a constant speed and is continuously supplied to a firing step such as a flameproofing step and a carbonization step on the downstream side.
[0053]
Between the bobbin 21 of the yarn supply unit and the yarn traveling device 30, a yarn splicer 10 and a dancer roll 15 as a yarn tension holding mechanism are arranged, and the preceding yarn passes through them.
[0054]
While the preceding yarn F is running, the pair of yarn gripping devices 11 and 12 of the yarn splicer 10 do not grip the yarn F and are arranged between the yarn gripping devices 11 and 12. The fluid entanglement device 13 is also in an inoperative state, and free running is guaranteed. Further, in the dancer roll 15, a constant tension is maintained while the yarn is wound around a plurality of rolls to store a required length.
[0055]
While the preceding yarn F is continuously running, the leading end of the subsequent yarn f is fed out and set in parallel with the preceding yarn F between the yarn gripping devices 11 and 12.
[0056]
When the trailing end of the preceding yarn F fed out from the bobbin 21 passes through the detector 16 and the yarn is no longer detected by the detector 16, a signal indicating that it is time to join the yarn is signaled to the yarn splicer 10. To the yarn gripping devices 11 and 12 and the electromagnetic valve 14.
[0057]
In response to this signal, the yarn gripping devices 11 and 12 are operated, and the trailing end portion of the preceding preceding yarn F and the leading end portion of the subsequent succeeding yarn f are held in a state of being aligned and overlapped. . At this time, the preceding yarn F stops traveling at the portion (rear end portion) held by the yarn holding devices 11 and 12.
[0058]
Next, the yarn gripping devices 11 and 12 relatively approach each other to loosen the two yarns being gripped. With the yarn slackened, the electromagnetic valve 14 that supplies the pressurized fluid to the fluid entanglement device 13 is released, and the pressurized fluid is supplied to the fluid entanglement device 13 to fluidly entangle the two yarns. Then, after a predetermined entanglement processing time has elapsed, the solenoid valve 14 is closed to stop the supply of pressurized fluid, and the gripping of the yarn gripping devices 11 and 12 is released.
[0059]
At the time of joining the yarns, the traveling of the yarns F and f is stopped on the upstream side of the yarn gripping devices 11 and 12, that is, the supply of the yarn is stopped. However, on the downstream side of the yarn gripping devices 11 and 12, the yarn traveling device 30 travels so that the preceding yarn F continues to travel at a constant speed.
[0060]
In the yarn splicer 10 of this embodiment, since the dancer roll 15 is provided between the yarn gripping devices 11 and 12 and the yarn traveling device 30, the yarn is stored in the dancer roll 15 during yarn splicing. The preceding yarn F is fed out, and the tension of the yarn is kept constant. Therefore, it is not necessary to stop the traveling of the yarn F by the yarn traveling device 30 even at the time of piecing, and the yarn F can always be supplied to the next process at a constant tension and traveling speed.
[0061]
In this embodiment, the dancer roll is used as the yarn tension holding mechanism, but a mechanism that operates like a moving pulley can also be adopted, and the time required for connection and the supply speed to the carbon fiber manufacturing process. For example, the movable amount may be set as appropriate.
[0062]
When the holding by the yarn holding devices 11 and 12 is released, the succeeding yarn joined to the rear end of the preceding yarn is continuously supplied, and the subsequent acrylic fiber yarn wound around the bobbin for the subsequent firing step. Can be continuously supplied without stopping the process.
[0063]
If a new bobbin of the succeeding yarn is set on the bobbin 21 of the preceding preceding yarn F which has become empty, a further yarn can be joined in the same manner. By repeating this operation, the acrylic precursor yarn fiber can be continuously supplied to the firing step.
[0064]
Furthermore, it is preferable to install a cutting device for cutting and trimming the yarn end on the yarn traveling path between the yarn supply unit 20 and the dancer roll 15 which is a yarn tension holding mechanism. In this case, when the supply is switched from the preceding yarn to the succeeding yarn, the yarn end protruding from the joining portion of the preceding yarn is cut in the vicinity of the joining portion, and the protruding yarn end is trimmed short. Thus, it is possible to prevent the yarn end from being wound around the roll in the subsequent process.
[0065]
In the case of producing carbon fiber, in order to prevent the yarn from being cut due to heat accumulation at the joint portion, the rear end of the preceding yarn or the tip of the subsequent yarn is made flame resistant in advance, It is preferable that a flame resistant yarn having a predetermined length is entangled and connected to the tip in advance.
[0066]
In the above-described embodiment, the splicing timing is detected by using the detectors 16 and 17, but if the amount of yarn wound around the bobbin is known in advance, the relationship with the yarn supply speed. Therefore, since the timing at which the rear end passes through the splicer 10 can be predicted, it is possible to appropriately perform the joining operation without using the detectors 16 and 17.
[0067]
It is easy to heat-treat the winding end end (tip) part of the bobbin of the succeeding yarn in advance, and in that case, it can be joined to any part of the preceding yarn that is running. Thus, even if the timing at which the rear end of the preceding yarn passes through the splicer 10 is not detected, the preceding yarn can be cut and connected to the succeeding yarn at any position and at any timing. In this case, it is necessary to cut the preceding yarn F at the joining portion, that is, the side closer to the bobbin 21 than the upstream yarn gripping device 11. Therefore, it is possible to provide a cutting mechanism at that position as required.
[0068]
Hereinafter, the present invention will be described with reference to specific examples.
In addition, the process passage rate described in the following examples means that when an acrylic fiber yarn having a joint is made into a carbon fiber through a flameproofing process and a carbonization process, cutting is performed in each process. The number of joints passed without is expressed as a percentage (%) to the total joints of the tested yarns.
The process tension (mN / Tex) is a unit of the tension of the acrylic fiber yarn in the flameproofing step and the carbonization step when the carbon fiber is produced by the acrylic fiber yarn having the joint. It is a numerical value converted per fineness.
[0069]
Example 1
Hot air of 240 ° C circulated through the bobbin's winding start end (rear end) and winding end end (front end) of acrylic fiber yarn with a single yarn fineness of 1.2dTex / filament and a filament count of 12000. By applying a flameproofing treatment for 70 minutes under a tension of 5 mN / tex in a furnace in which the density is 1.36 g / cm Three Two bobbins were prepared: a bobbin A that was flame-resistant and a bobbin B that was flame-treated at both ends in the same manner.
[0070]
When the winding start end portion (rear end) is wound around the bobbin by using a winder in the spinning process of the same yarn, after being wound up to form a bobbin, that is, after winding about 10 m outside the traverse range. The acrylic fiber yarn supplied from the spinning process was set on a traverse guide and wound up as usual. When applying the flameproofing treatment to the winding start end, the acrylic fiber yarn wound up outside the traverse range was unwound and introduced into the hot air circulation furnace described above. At this time, density 1.36 g / cm Three The flame-resistant length was 1 m.
[0071]
First, in a flameproofing furnace in which hot air of 230 to 270 ° C is circulating through the acrylic fiber yarn of bobbin A, flame resistance for 30 minutes while limiting the shrinkage of the acrylic fiber yarn at a process tension of 14 mN / Tex. In the carbonization furnace consisting of a nitrogen atmosphere having a temperature distribution of 300 to 1300 ° C., the process tension is set to 7 mN / Tex and the shrinkage of the acrylic fiber yarn is limited. Carbon fibers were produced by subjecting to a carbonization treatment for minutes.
[0072]
In the apparatus shown in FIG. 1, the span of the yarn gripping devices 11 and 12 is 300 mm, the entanglement nozzle of the fluid entanglement device 13 is 60 mm in total length, the shape dimension of the yarn traveling path is φ5 mm, and the air blowing port is in the center. One with a diameter of 2.5 mm was used at a right angle to the yarn running path. The main body of the entangled nozzle has a structure that can divide the yarn traveling path into two parts, and after setting the leading end portion of the traveling thread of the bobbin A and the subsequent thread of the bobbin B waiting on the yarn traveling path, The nozzle was closed.
[0073]
In this way, the acrylic fiber yarn of the bobbin A is supplied to the carbon fiber manufacturing process, the winding start end portion (rear end) subjected to the flame resistance treatment is disengaged from the bobbin A, and the pair of yarn gripping devices 11 , 12 when the thread occupies a position occupying the span, the thread gripping devices 11 and 12 are operated. In this embodiment, the yarn gripping devices 11 and 12 were visually operated without using the detection device.
[0074]
The rear end portion of the preceding yarn and the front end portion of the subsequent yarn to be intertwined with each other by the yarn gripping devices 11 and 12 were aligned and nipped, and then the nip span was shortened by 20 mm to give the yarn slack. Further, since the traveling of the traveling yarn of the bobbin A is stopped along with the nip of the yarn, the dancer roll 15 shown in FIG. 1 is operated, and the preceding yarn stored in the dancer roll 15 is supplied, The tension of the preceding yarn in the next process at the time of yarn joining was maintained, and traveling at a predetermined speed was ensured. In this embodiment, the gripping time by the yarn gripping devices 11 and 12 required for piecing is 1 minute.
[0075]
Supply air pressure used for entanglement with air is 2 kg / cm 2 (196 N / cm 2 ) The air injection time was 5 seconds. After the entanglement by the air injection was finished, the nip of the yarn gripping devices 11 and 12 was opened, and the connection operation was finished. In this example, after the connection operation was finished, the yarn end was cut with scissors.
[0076]
As shown in Table 1, the same connection operation was repeated, and the process passage probability of the flameproofing process in the carbon fiber manufacturing process when the carbon fiber was manufactured and the connection part in the carbonization process was 100%.
[0077]
(Example 2)
Under a tension of 5 mN / tex in a furnace in which hot air of 240 ° C. circulates at the winding start end and winding end of an acrylic fiber yarn having a single yarn fineness of 1.2 dTex / filament and a filament number of 50,000. A density of 1.36 g / cm by applying a flameproofing treatment for 70 minutes Three Two bobbins were prepared: a take-up bobbin C having a flameproof end portion and a bobbin D having both ends flameproofed in the same manner.
[0078]
In the same manner as in Example 1, the winding start end is wound around 10 m outside the range where the bobbin is formed by winding the bobbin using a winder in the spinning step of the acrylic fiber yarn. After taking, the acrylic fiber yarn supplied from the spinning process was set on a traverse guide and wound up as usual. When applying the flameproofing treatment to the winding start end, the acrylic fiber yarn of the portion wound out of the traverse range was unwound and introduced into the hot air circulation furnace described above. At this time, density 1.36 g / cm Three The flame-resistant length was 1 m.
[0079]
First, in a flameproofing furnace in which hot air of 230 to 270 ° C. is circulating through the acrylic fiber yarn of Bobbin C, flame resistance for 60 minutes while limiting the shrinkage of the acrylic fiber yarn at a process tension of 14 mN / Tex. In the carbonization furnace consisting of a nitrogen atmosphere having a temperature distribution of 300 to 1300 ° C., the process tension is set to 7 mN / Tex, and the shrinkage of the acrylic fiber yarn is limited for 1 minute. Carbon fiber was manufactured by subjecting to carbonization treatment.
[0080]
In the apparatus shown in FIG. 1, the span of the yarn gripping devices 11 and 12 is 300 mm, the entanglement nozzle in the fluid entanglement device is 60 mm in total length, the shape dimension of the yarn running path is φ5 mm, and the air blowing port is the yarn in the center. One with a diameter of 2.5 mm was used perpendicular to the running path. The entangled nozzle body has a structure in which the yarn traveling path can be divided into two, and the leading end portion of the succeeding yarn of the bobbin D waiting to be joined to the preceding yarn traveling on the bobbin C is set on the yarn traveling path. After that, the nozzle was closed.
[0081]
In this way, the acrylic fiber yarn of the bobbin C is supplied to the carbon fiber manufacturing process, and the winding start end portion (rear end) subjected to the flame resistance treatment is disengaged from the bobbin C so that the pair of yarn gripping devices 11, When the position of occupying 12 spans was reached, the yarn gripping devices 11 and 12 were operated. By this operation, the rear end portion of the preceding yarn and the front end portion of the subsequent yarn are nipped by the yarn gripping device in a state where they are aligned and overlapped. Subsequently, the nip span by the yarn gripping devices 11 and 12 was shortened by 20 mm to give slack to the two yarns.
[0082]
Further, since the traveling of the preceding yarn on the bobbin C is stopped along with the nip of the yarn, the dancer roll 15 shown in FIG. 1 is operated and the preceding yarn stored in the dancer roll 15 for a time required for connection is operated. The tension in the next process of the preceding yarn for the time required for piecing was maintained, and traveling at a predetermined speed was ensured. In this embodiment, the gripping time required for connection is 1 minute. Supply air pressure used for entanglement with air is 2 kg / cm 2 (196 N / cm 2 ) The air injection time was 5 seconds.
[0083]
After the entanglement by the air injection was finished, the nip of the yarn gripping device was opened, and the connection operation was finished. In this example, after the connection operation was completed, the end of the yarn was cut with scissors.
[0084]
As shown in Table 1, the process connection probability of the flameproofing process in the carbon fiber production process and the connection part in the carbonization process when the carbon fiber is produced by repeating similar connection operations is 100%.
[0085]
(Example 3)
70 minutes under a tension of 5 mN / tex in a furnace in which hot air of 240 ° C is circulated through the winding end (tip) of acrylic fiber yarn having a single yarn fineness of 1.2 dTex / filament and a filament number of 12000 A density of 1.36 g / cm by applying a flameproofing treatment Three Two bobbins were prepared: a take-up bobbin E having a flame resistance and a bobbin F having a flame end-treated end portion (tip) in the same manner.
[0086]
First, in a flameproofing furnace in which hot air of 230 to 270 ° C circulates through the acrylic fiber yarn of bobbin E, the shrinkage of the acrylic fiber yarn is restricted at a process tension of 14 mN / Tex for 30 minutes. Then, in a carbonization furnace consisting of a nitrogen atmosphere having a temperature distribution of 300 to 1300 ° C., the process tension is set to 7 mN / Tex for 2 minutes while restricting the shrinkage of the acrylic fiber yarn. Carbon fiber was manufactured by subjecting to carbonization treatment.
[0087]
In the apparatus shown in FIG. 1, the span of the yarn gripping devices 11 and 12 is 300 mm, the entanglement nozzle in the fluid entanglement device has a total length of 60 mm, the shape of the yarn travel path is φ5 mm, and the air blowing port is the yarn at the center. One with a diameter of 2.5 mm was used perpendicularly to the strip running path. The entanglement nozzle body has a structure that can divide the yarn traveling path into two parts, and after setting the leading thread of the bobbin E and the leading end of the subsequent thread of the waiting bobbin F to the yarn traveling path, The nozzle was closed.
[0088]
In this way, the acrylic fiber yarn of the bobbin E is supplied to the carbon fiber manufacturing process, and at the moment when the winding start end, that is, the rear end of the acrylic fiber yarn of the bobbin E is disassembled from the bobbin E. The yarn gripping devices 11 and 12 were operated. The operations of the yarn gripping devices 11 and 12 were performed by detecting the presence or absence of the yarn on the yarn traveling path using a photoelectric switch.
[0089]
After the two yarns to be intertwined with each other by the yarn gripping devices 11 and 12 were nipped, the nip span was shortened by 20 mm to give the yarn slack. Further, since the traveling of the traveling yarn of the bobbin E is stopped along with the nip of the yarn, the dancer roll 15 shown in FIG. 1 is operated to supply the preceding yarn stored in the roll 15, and the next The tension of the yarn in the process was maintained and the traveling speed was secured. In this example, the yarn splicing time was 1 minute.
[0090]
Supply air pressure used for entanglement with air is 2 kg / cm 2 (196 N / cm 2 ) The air injection time was 5 seconds. Air injection was also performed by detecting the presence or absence of a yarn with a photoelectric switch and operating the yarn gripping devices 11 and 12, and then operating an electromagnetic valve 14 provided in the supply air piping.
[0091]
After the entanglement by the air injection was finished, the end of the yarn was cut with an ultrasonic cutter SUW-30CMH manufactured by Suzuki Co., Ltd. at both ends of the entanglement nozzle for trimming the terminals. The blade type used at this time was H4, and a tool equipped with a stainless steel jig with an angle of 30 degrees with the edge of the blade was placed at a distance of 0.3 mm from both sides of the blade to bring the yarn into close contact with the blade. The cutter was inserted so that the yarn was positioned between the blade and the inclined surface of the jig, and the yarn end was cut. After cutting the yarn end, the nip of the yarn gripping device was opened and the connection operation was completed.
[0092]
As shown in Table 1, the process connection probability of the flameproofing process in the carbon fiber production process and the connection part in the carbonization process when the carbon fiber is produced by repeating similar connection operations is 100%.
[0093]
Example 4
A bobbin G of acrylic fiber yarn having a single yarn fineness of 1.2 dTex / filament and a filament number of 12000 was prepared. On the other hand, in another flame proofing furnace in which hot air of 230 to 270 ° C circulates through other acrylic fiber yarns, flameproofing for 30 minutes while limiting the shrinkage of acrylic fiber yarns at a process tension of 14 mN / Tex. Subjected to treatment, density 1.36 g / cm 2 Of flame resistant yarn was obtained. This flameproof yarn was further intertwined with the tip of an acrylic fiber yarn of another acrylic fiber yarn to obtain a bobbin H.
[0094]
For the connection between the flameproof yarn and the acrylic fiber yarn, a pair of yarn gripping devices 11 and 12 of the connection device shown in FIG. The thread gripping devices 11 and 12 have a span of 300 mm, the tangling nozzle has a total length of 60 mm, and a yarn travel path. The diameter of the nozzle is 5mm, the air blowing port is in the center, 1 perpendicular to the yarn travel path, φ2.5mm, and the supply air pressure is 2kg / cm 2 (19.6 N / cm 2 ), And the injecting connection was performed with the air injection time being 5 seconds.
[0095]
First, in a flameproofing furnace in which hot air of 230 to 270 ° C circulates through the acrylic fiber yarn of bobbin G, the shrinkage of the acrylic fiber yarn is restricted at a process tension of 14 mN / Tex, and the flame resistance for 30 minutes. Then, in a carbonization furnace comprising a nitrogen atmosphere having a temperature distribution of 300 to 1300 ° C., the process tension is set to 7 mN / Tex for 2 minutes while restricting the shrinkage of the acrylic fiber yarn. Carbon fiber was manufactured by subjecting to carbonization treatment.
[0096]
In the apparatus shown in FIG. 1, the span of the yarn gripping devices 11 and 12 is 300 mm, the entanglement nozzle is 60 mm in total length, the shape of the yarn travel path is φ5 mm, and the air blowing port is in the center of the yarn travel path. On the other hand, one with a diameter of 2.5 mm was used vertically. The entanglement nozzle body has a structure that can divide the yarn traveling path into two, and the traveling yarn of the bobbin G and the tip portion of the subsequent yarn of the waiting bobbin H to which the flameproof yarn is connected are used. The nozzle was closed after setting on the road.
[0097]
In this way, the acrylic fiber yarn of the bobbin G is supplied to the carbon fiber manufacturing process, and at the moment when the winding start end, that is, the end of the preceding yarn of the bobbin G is disengaged from the bobbin G, the yarn is gripped. The devices 11 and 12 were operated. The operation of the yarn gripping device was performed by detecting the presence or absence of a yarn on the yarn traveling path with a photoelectric switch. Two yarns to be entangled and connected by a yarn gripping device were aligned and overlapped, and after nipping, the nip span was shortened by 20 mm to give the yarn slack.
[0098]
Further, since the travel of the traveling yarn of the bobbin G is stopped with the yarn nip, the dancer roll 15 shown in FIG. 1 is operated to supply the yarn stored in the roll 15 for the time required for connection. Then, a predetermined tension and traveling speed of the yarn in the next process were secured. In this embodiment, the gripping time is 1 minute.
[0099]
Supply air pressure used for entanglement with air is 2 kg / cm 2 (19.6 N / cm 2 ) The air injection time was 5 seconds. Air injection was also performed by detecting the presence or absence of a yarn with a photoelectric switch and operating the yarn gripping devices 11 and 12, and then operating an electromagnetic valve 14 provided in the supply air piping.
[0100]
After the entanglement by the air injection was completed, the end of the yarn was cut with an ultrasonic cutter SUW-30CMH manufactured by Suzuki at both ends of the entanglement nozzle for trimming the yarn end. The blade type used at this time was H4, and a tool equipped with a stainless steel jig with an angle of 30 degrees with the edge of the blade was placed at a distance of 0.3 mm from both sides of the blade to bring the yarn into close contact with the blade. The cutter was inserted so that the yarn was positioned between the blade and the inclined surface of the jig, and the yarn end was cut. After cutting the yarn end, the nip of the yarn gripping device was opened and the connection operation was completed.
[0101]
As shown in Table 1, the similar connection operation is repeated and the process passage probability of the flameproofing process in the carbon fiber manufacturing process when the carbon fiber is manufactured and the connection part in the carbonization process is 100%.
[0102]
(Example 5)
A single fiber fineness of 1.2 dTex / filament, and the number of filaments of 50 000 acrylic fiber yarn ends at the end of winding (tip portion) in a furnace in which hot air of 240 ° C. is circulated under a tension of 5 mN / tex. Density of 1.31 g / cm Three Two bobbins were prepared: a take-up bobbin I having a flame-resistant end portion and a bobbin J having a flame-end-treated end portion (tip portion) in the same manner.
[0103]
First, in a flameproofing furnace in which hot air of 230 to 270 ° C. is circulating through the acrylic fiber yarn of bobbin G, the shrinkage of the acrylic fiber yarn is restricted at a process tension of 14 mN / Tex for 60 minutes. In the carbonization furnace consisting of a nitrogen atmosphere having a temperature distribution of 300 to 1300 ° C., and with a process tension of 7 mN / Tex, while restricting the shrinkage of the acrylic fiber yarn for 2 minutes. Carbon fiber was manufactured by subjecting to carbonization treatment.
[0104]
In the apparatus shown in FIG. 1, the span of the yarn gripping device is 300 mm, the entanglement nozzle is 100 mm in total length, the shape of the yarn traveling path is φ10 mm, and the air blowing port is at the center perpendicular to the yarn traveling path. The one with a diameter of 5 mm was used. The entangled nozzle body has a structure that can divide the yarn traveling path into two parts. After setting the traveling thread of bobbin I and the leading end of the succeeding thread of bobbin J waiting on the thread traveling path, the nozzle Closed.
[0105]
In this way, the acrylic fiber yarn of bobbin I is supplied to the carbon fiber manufacturing process, and the yarn starts at the moment when the winding start end, that is, the rear end of the acrylic fiber yarn of bobbin I is unraveled from the bobbin. The gripping device was operated. After two yarns to be entangled and connected by the yarn gripping device, the nip span was shortened by 20 mm to give the yarn slack. Further, since the traveling of the traveling yarn of the bobbin I is stopped along with the nip of the yarn, the dancer roll 15 shown in FIG. 1 is operated to supply the preceding yarn stored in the roll 15, and the next The yarn tension in the process was maintained and traveling at a predetermined speed was ensured. In this embodiment, the gripping time is 1 minute.
[0106]
Supply air pressure used for entanglement with air is 2 kg / cm 2 (19.6 N / cm 2 ) The air injection time was 5 seconds. After the entanglement by the air injection was finished, the end of the yarn was cut with an ultrasonic cutter SUW-30CMH manufactured by Suzuki Co., Ltd. at both ends of the entanglement nozzle for trimming the terminals. The blade type used at this time was H4, and a tool equipped with a stainless steel jig with an angle of 30 degrees with the edge of the blade was placed at a distance of 0.3 mm from both sides of the blade to bring the yarn into close contact with the blade. The cutter was inserted so that the yarn was positioned between the blade and the inclined surface of the jig, and the yarn end was cut. After cutting the yarn end, the nip of the nip device was opened and the connection operation was completed.
[0107]
As shown in Table 1, the similar connection operation is repeated and the process passage probability of the flameproofing process in the carbon fiber manufacturing process when the carbon fiber is manufactured and the connection part in the carbonization process is 100%.
[0108]
[Table 1]
Figure 0004541583
[0109]
As described above, for example, when supplying an acrylic fiber yarn for producing carbon fiber wound around a bobbin continuously to a carbon fiber production process (firing process), the subsequent yarn is fluidized to the preceding yarn. When joining by entanglement, a constant tension can always be maintained without lowering the supply speed of the yarn to the next process even during the joining process. Therefore, continuous firing becomes possible, the operability of the carbon fiber manufacturing process is remarkably improved, and the manufacturing cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic view of a yarn splicer according to a preferred embodiment of the present invention.
[Explanation of symbols]
10 Yarn splicer
11 Yarn gripping device
12 Yarn gripping device
13 Fluid entanglement device
14 Solenoid valve
15 Dancer roll
16 Detector
17 Detector
20 Yarn supply section
21 Bobbin
22 Standby bobbin
30 Yarn traveling device
F Lead yarn
f Subsequent yarn

Claims (6)

糸条供給部と、同糸条供給部から引き出される糸条を一方向に連続走行させる糸条走行装置との間に配され、先行糸条の後端に後続糸条の先端を接続するための糸継ぎ機であって、
前記先行糸条の後端部分と待機している後続糸条の先端部分とを引き揃えて重ねた状態で挟持する一対の糸条把持装置と、
一対の前記糸条把持装置の間に配された流体交絡装置と、
前記糸条把持装置と前記糸条走行装置との間の糸条走行路上に配された糸条張力保持機構であるダンサーロール又は動滑車と、
を備えてなることを特徴とする糸継ぎ機。
To connect the leading end of the succeeding yarn to the trailing end of the preceding yarn, arranged between the yarn supplying unit and the yarn traveling device that continuously travels the yarn drawn from the yarn supplying unit in one direction. Yarn splicer
A pair of yarn gripping devices for holding the rear end portion of the preceding yarn and the front end portion of the subsequent succeeding yarn in a state of being aligned and stacked ;
A fluid entanglement device disposed between the pair of yarn gripping devices;
A dancer roll or a movable pulley that is a yarn tension holding mechanism disposed on a yarn traveling path between the yarn gripping device and the yarn traveling device;
A yarn splicer characterized by comprising :
前記糸条供給部と前記ダンサーロール又は動滑車との間の走行路上に配された糸端切断装置を備えてなる請求項1の糸継ぎ機。The yarn splicer according to claim 1 , further comprising a yarn end cutting device disposed on a traveling path between the yarn supply unit and the dancer roll or the movable pulley . 前記糸条供給部と前記糸条把持装置との間の糸条走行路に糸端の有無を検出する糸端検出器を備えてなる請求項1又は2に記載の糸継ぎ機。The yarn splicer according to claim 1 or 2 , further comprising a yarn end detector that detects the presence or absence of a yarn end in a yarn traveling path between the yarn supply unit and the yarn gripping device. 炭素繊維製造用前駆体糸条の先行糸条の後端と後続糸条の先端とを引き揃えて重ねた状態で糸条把持装置により把持し、先行糸条の後端と後続糸条の先端とを接続すること、
先行糸条の後端と後続糸条の先端との接続時に糸条走行路における糸条把持装置の下流側に配された糸条張力保持機構であるダンサーロール又は動滑車により、一定の張力を保持しながら先行糸条の一部を一時的に貯留すること、
貯留中も先行糸条を一方向に連続して走行させること、
一定張力を保持して連続走行する炭素繊維製造用前駆体糸条を連続的に炭素繊維製造工程へと供給することを特徴とする炭素繊維の製造方法。
The precursor yarn for carbon fiber production yarn is gripped by the yarn gripping device in a state in which the trailing edge of the preceding yarn and the leading edge of the succeeding yarn are aligned and overlapped, and the trailing edge of the preceding yarn and the leading edge of the succeeding yarn Connecting with,
When connecting the trailing end of the preceding yarn and the leading end of the succeeding yarn, a constant tension is applied by a dancer roll or moving pulley, which is a yarn tension holding mechanism arranged downstream of the yarn gripping device in the yarn traveling path. Temporarily storing a part of the preceding yarn while holding it,
Running the leading yarn continuously in one direction during storage,
A carbon fiber production method characterized by continuously supplying a carbon fiber production precursor yarn that continuously runs while maintaining a constant tension to a carbon fiber production process.
前記前駆体糸条の先端部分及び後端部分の少なくとも一方を、予め耐炎化することを含んでなる請求項4記載の炭素繊維の製造方法。The method for producing carbon fiber according to claim 4 , comprising preliminarily making flame resistant at least one of a front end portion and a rear end portion of the precursor yarn. 前記前駆体糸条の先端に、予め一定長さの耐炎化糸条を絡合させることを含んでなることを特徴とする請求項4記載の炭素繊維の製造方法。5. The method for producing carbon fiber according to claim 4 , further comprising entanglement of a predetermined length of flame resistant yarn in advance with the tip of the precursor yarn.
JP2001109585A 2001-04-09 2001-04-09 Yarn splicer and carbon fiber manufacturing method Expired - Lifetime JP4541583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001109585A JP4541583B2 (en) 2001-04-09 2001-04-09 Yarn splicer and carbon fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001109585A JP4541583B2 (en) 2001-04-09 2001-04-09 Yarn splicer and carbon fiber manufacturing method

Publications (2)

Publication Number Publication Date
JP2002302341A JP2002302341A (en) 2002-10-18
JP4541583B2 true JP4541583B2 (en) 2010-09-08

Family

ID=18961499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001109585A Expired - Lifetime JP4541583B2 (en) 2001-04-09 2001-04-09 Yarn splicer and carbon fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP4541583B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110950182A (en) * 2018-09-26 2020-04-03 卓郎纺织解决方案两合股份有限公司 Method and device for detecting thread loops on workstations of a textile machine producing bobbins

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097377B2 (en) * 2006-10-11 2012-12-12 三菱レイヨン株式会社 Yarn support device and yarn support method
JP4796517B2 (en) * 2007-02-02 2011-10-19 三菱レイヨン株式会社 Carbon fiber bundle yarn manufacturing method
CN102007061B (en) 2008-04-18 2013-07-24 三菱丽阳株式会社 Production system and production method of carbon fiber thread
JP7408406B2 (en) * 2019-02-20 2024-01-05 帝人株式会社 Method for manufacturing flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and connection device
JP7425695B2 (en) 2019-07-30 2024-01-31 Tmtマシナリー株式会社 Splicing system for synthetic yarns
JP7418742B2 (en) * 2020-03-23 2024-01-22 ポリプラスチックス株式会社 Creel unit and creel device
CN114314196B (en) * 2021-12-23 2023-05-12 吉林宝旌炭材料有限公司 Online wire bonding production process and device for carbon fiber manufacturing
CN114606603A (en) * 2022-03-10 2022-06-10 中国神华煤制油化工有限公司 Carbon fiber and continuous preparation method of carbon fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656060U (en) * 1993-01-20 1994-08-02 日立電線株式会社 Continuous winding device for optical fiber cable

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5733271B2 (en) * 1974-03-04 1982-07-16
JPH02178178A (en) * 1988-12-29 1990-07-11 Nippon Steel Corp Yarn filament continuous conveying method and feed roll thereof
JP3572770B2 (en) * 1995-12-27 2004-10-06 村田機械株式会社 Pneumatic yarn splicing device
JPH11278756A (en) * 1998-03-24 1999-10-12 Nippon Electric Glass Co Ltd Automatic yarn piecing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656060U (en) * 1993-01-20 1994-08-02 日立電線株式会社 Continuous winding device for optical fiber cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110950182A (en) * 2018-09-26 2020-04-03 卓郎纺织解决方案两合股份有限公司 Method and device for detecting thread loops on workstations of a textile machine producing bobbins

Also Published As

Publication number Publication date
JP2002302341A (en) 2002-10-18

Similar Documents

Publication Publication Date Title
JP3833654B2 (en) Carbon fiber manufacturing apparatus and manufacturing method thereof
JP6080153B2 (en) Spinning machine and method for interrupting the production of yarn in a spinning machine
EP2348143B1 (en) Fiber bundle with pieced part, process for producing same, and process for producing carbon fiber
JP4082930B2 (en) Yarn twisting device
EP0909842B1 (en) Precursor carbon fiber bundle, apparatus and method of manufacturing thereof
JP4541583B2 (en) Yarn splicer and carbon fiber manufacturing method
JP4995909B2 (en) Carbon fiber yarn manufacturing apparatus and manufacturing method
US9884740B2 (en) Fiber bundle with pieced part, process for producing same, and process for producing carbon fiber
JPS5846122A (en) Continuous process for producing carbon fiber
JP2008094540A (en) Piecing device and piecing method
JP4592208B2 (en) Method for connecting fiber yarn and method for producing carbon fiber
JP2006291403A (en) Clamp cutter device for yarn
JP3890701B2 (en) Continuous carbon fiber manufacturing process
JPH11200159A (en) Production of carbon fiber and device therefor
JP2705138B2 (en) Mixed yarn and method for producing the same
JPS58208420A (en) Continuous production of carbon fiber
JP2008174846A (en) Method for continuously producing carbon fiber
JP2003321160A (en) Fiber tow package, carbon fiber using the package, and manufacturing method for chopped fiber
JPH042830A (en) Ending of sliver and sliver ending head used therefor
JPH08284036A (en) Joined carbon fiber bundle and its joining treatment
JPH04915B2 (en)
JPS60146023A (en) Ending in fasciated spinning frame
JPS6221710B2 (en)
JP2002038335A (en) Method for continuous production of carbon fiber
JPH01221535A (en) Production device of two folded yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100624

R151 Written notification of patent or utility model registration

Ref document number: 4541583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term