JP2010254658A - Method for producing antibacterial ionized metal composition - Google Patents

Method for producing antibacterial ionized metal composition Download PDF

Info

Publication number
JP2010254658A
JP2010254658A JP2009122508A JP2009122508A JP2010254658A JP 2010254658 A JP2010254658 A JP 2010254658A JP 2009122508 A JP2009122508 A JP 2009122508A JP 2009122508 A JP2009122508 A JP 2009122508A JP 2010254658 A JP2010254658 A JP 2010254658A
Authority
JP
Japan
Prior art keywords
antibacterial
metal
silver
ionized
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009122508A
Other languages
Japanese (ja)
Other versions
JP5368170B2 (en
Inventor
Makoto Yafuji
眞 八藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009122508A priority Critical patent/JP5368170B2/en
Publication of JP2010254658A publication Critical patent/JP2010254658A/en
Application granted granted Critical
Publication of JP5368170B2 publication Critical patent/JP5368170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a safe ionized metal composition effectively utilizing the metal excellent in the antibacterial function as an ion. <P>SOLUTION: The method for producing an antibacterial ionized metal composition comprises primarily fermenting a micronized metal having antibacterial property such as silver or the silver with copper, followed by secondarily fermenting, dissociating the metal contained in the secondarily fermented mixture into an organic acid, and further subjecting the resulting product to filtration and extraction. Thus, the ionized metal composition can be produced safely and simply by an extremely simple procedure, and the antibacterial function of the metal ion can be fully utilized. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、イオン化金属組成物の製造方法に関するものであり、一層詳細には、例えば、衣類などの製品に抗菌機能を付与する際に好適に使用される抗菌性イオン化金属組成物の製造方法に関するものである  The present invention relates to a method for producing an ionized metal composition, and more particularly, to a method for producing an antibacterial ionized metal composition that is suitably used for imparting an antibacterial function to a product such as clothing. Is a thing

近時、清潔を志向する意識の高まりなどから抗菌処理を施した各種の生活用品、衣料品などが種々開発され、その販売量も増大しており有望な市場として注目されている。  Recently, various items of daily use and clothing that have undergone antibacterial treatment have been developed due to the increasing awareness of cleanliness, and their sales volume has increased, attracting attention as a promising market.

ところで、この種の抗菌製品における抗菌手段として一般的には化学合成した抗菌剤が使用されており、この抗菌剤を所望の製品に噴霧したり、あるいは該抗菌剤を付着させた繊維を使用することによりその製品に抗菌機能を付与している。
しかしながら、洗濯、クリーニングなどにより抗菌剤が剥離、脱落することが多く、その結果、抗菌機能が急速に低下してしまうことが指摘されている。
このため、例えば、化学合成した抗菌剤を直接練りこんだ繊維や蟹の甲羅から抽出したキトサンなどの天然抗菌物質を練りこんだ繊維などを使用することにより抗菌性能を長期に亘って維持できるようにする提案もなされてはいるが、製造が面倒でコストも嵩むだけでなく、通常よりも多少高く設定されている製品価格がさらに上昇してしまうという問題があった。
By the way, a chemically synthesized antibacterial agent is generally used as an antibacterial means in this type of antibacterial product, and the antibacterial agent is sprayed on a desired product or a fiber to which the antibacterial agent is attached is used. The antibacterial function is given to the product.
However, it has been pointed out that antibacterial agents often peel and fall off due to washing, cleaning, etc., and as a result, the antibacterial function rapidly decreases.
For this reason, for example, it is possible to maintain antibacterial performance over a long period of time by using a fiber directly kneaded with a chemically synthesized antibacterial agent or a fiber kneaded with a natural antibacterial substance such as chitosan extracted from the shell of straw. However, there is a problem that not only the production is troublesome and the cost is increased, but also the price of the product set a little higher than usual is further increased.

ところで、抗菌性の高い金属としては水銀Hg、鉛Pb、銀Ag、銅Cuなどが知られているが、これらのうち水銀Hg、鉛Pbは人や動物さらには環境に対しても問題があるため実際に使用することはできない。
一方、銀Agや銅Cuは金属の中でも電気伝導率と熱伝導率が高く、銀Agは可視光線の反射率も高いことから「しろがね(白銀;白い金属)」とも呼ばれており、いずれもバクテリアなどに対して極めて強い殺菌力を有しているため、例えば、浄水器の殺菌装置などの抗菌手段として広く使用されている。
By the way, mercury Hg, lead Pb, silver Ag, copper Cu and the like are known as metals having high antibacterial properties. Of these, mercury Hg and lead Pb have problems for humans, animals and the environment. Therefore, it cannot actually be used.
On the other hand, silver Ag and copper Cu are also called “shirogane (white silver; white metal)” because silver and silver Cu have high electrical conductivity and thermal conductivity, and silver Ag also has high reflectance of visible light. Since it has extremely strong sterilizing power against bacteria and the like, it is widely used as an antibacterial means such as a water purifier sterilizer.

このような事情から、例えば、微粉末の銀を水中で帯電するように浮遊させたコロイド状態の銀溶液を病原菌の殺菌・滅菌に使用したり、あるいは衣料品の抗菌手段として使用することも提案されているが(特許文献1)、微粉末の銀といってもせいぜいサブミクロン程度のサイズであるため、イオンとして抗菌性を備えていたとしても充分な抗菌機能を獲得できないだけでなく、剥離、脱落など耐久性の点で相変わらず問題があり、費用対効果の面からも満足できるものとは言えなかった。  Under such circumstances, for example, it is also proposed to use a colloidal silver solution in which fine powdered silver is suspended so as to be charged in water for sterilization and sterilization of pathogens or as an antibacterial means for clothing. (Patent Document 1) However, even if it is a fine powder of silver, it is at most a submicron size, so even if it has antibacterial properties as an ion, it can not only acquire a sufficient antibacterial function, but also peels off. However, there were still problems in terms of durability, such as dropout, and it could not be said that it was satisfactory in terms of cost effectiveness.

特開2002−173405号公報  JP 2002-173405 A

そこで、本発明では、抗菌機能に優れた金属をイオンとして有効に利用することができる安全なイオン化金属組成物の製造方法を提供することを課題とするものである。  Accordingly, an object of the present invention is to provide a safe method for producing an ionized metal composition that can effectively use a metal having an antibacterial function as ions.

本発明ではこの課題を解決するため、抗菌性を備える原料としての金属を適宜の手段により微細化し、この微細化した金属を一次醗酵させのち再び醗酵させ、ついでこの二次醗酵混合物を熟成することにより有機酸と抗菌性を備える金属が解離(電解質状態)している状態のイオン化金属組成物として製造するものである。  In the present invention, in order to solve this problem, the metal as a raw material having antibacterial properties is refined by an appropriate means, the refined metal is first fermented and then fermented again, and then the secondary fermentation mixture is aged. Is produced as an ionized metal composition in a state where an organic acid and a metal having antibacterial properties are dissociated (electrolyte state).

この場合、抗菌性を備える微細化した金属として、銀または銀および銅を使用するのが好適である。  In this case, it is preferable to use silver or silver and copper as the refined metal having antibacterial properties.

より具体的には、微細化した銀または銀および銅原料に所定量の浄化水を加えて蒸煮し、つぎにこれを所定温度に保持するとともにアスペルギルス属の麹菌10重量%〜30重量%と糖質を複数回加えることにより一次醗酵させ、この一次発酵金属混合物にストレプトコックス属またはラクトバチルス属の乳酸菌、酢酸菌を単独でまたはこれらの混合物10重量%〜20重量%と糖質を複数回加えて所定温度に保持することにより二次醗酵させ、次いで二次発酵金属混合物を35℃〜40℃で熟成することにより乳酸菌や酢酸菌から生じた有機酸中に銀または銀および銅を解離し、さらにこれを濾過抽出することを特徴とするものである。  More specifically, a predetermined amount of purified water is added to the refined silver or silver and copper raw material and steamed. Next, this is kept at a predetermined temperature and 10% to 30% by weight of Aspergillus spp. The primary fermentation is performed by adding the quality multiple times, and the lactic acid bacteria of the genus Streptococcus or Lactobacillus and the acetic acid bacteria are added to the primary fermented metal mixture alone or 10% to 20% by weight of these mixtures and the saccharide is added several times. Second fermentation by holding at a predetermined temperature, and then aging the secondary fermentation metal mixture at 35 ° C. to 40 ° C. to dissociate silver or silver and copper into the organic acid generated from lactic acid bacteria and acetic acid bacteria, Furthermore, this is filtered and extracted.

この場合、アスペルギルス属の麹菌としては、アスペルギルス・オリゼー、アスペルギルスソーエ、アスペルギルス・ニガー、アスペルギルス・アワモリ、アスペルギルス・レベンスを単独でまたはこれらの混合物を使用するのが好適である。  In this case, it is preferable to use Aspergillus oryzae, Aspergillus soe, Aspergillus niger, Aspergillus awamori, Aspergillus revens alone or a mixture thereof as the Aspergillus genus.

また、二次醗酵金属混合物の熟成に際しては、遠赤外線照射およびエレクトロン供給雰囲気において流動させながら行うのが好ましい。  The secondary fermentation metal mixture is preferably aged while flowing in a far-infrared irradiation and electron supply atmosphere.

さらに、本発明は上述の方法により得られたイオン化金属組成物も包含するものである。  Further, the present invention includes an ionized metal composition obtained by the above-described method.

本発明に係るイオン化金属組成物の製造方法によれば;
古くから行われている発酵技術を利用して微細化金属を一次醗酵させたのち二次醗酵させ、この二次醗酵混合物に含まれる金属を有機酸中に解離させるので安全に且つ簡便にイオン化金属組成物の製造することができるものである。
According to the method for producing an ionized metal composition according to the present invention;
The fermented technology that has been used for a long time has been used for primary fermentation of the refined metal, followed by secondary fermentation, and the metals contained in this secondary fermentation mixture are dissociated into organic acids, making it safe and simple to ionize metals. The composition can be manufactured.

また、微細化した金属原料に所定量の浄化水を加えて蒸煮し、つぎにこれを所定温度に保持するとともにアスペルギルス属の麹菌10重量%〜30重量%と糖質を複数回加えることにより一次醗酵させ、この一次発酵金属混合物にストレプトコックス属またはラクトバチルス属の乳酸菌、酢酸菌を単独でまたはこれらの混合物10重量%〜20重量%と糖質を複数回加えて所定温度に保持することにより二次醗酵させ、次いで二次発酵金属混合物を35℃〜40℃で熟成して濾過抽出するので、二次醗酵で生じたに乳酸、酢酸などの有機酸と金属が解離している電解質の状態として得られ、従って、金属イオンが保有している抗菌性を充分利用することができる。  In addition, a predetermined amount of purified water is added to the refined metal raw material and steamed. Next, the mixture is kept at a predetermined temperature, and 10% to 30% by weight of Aspergillus sp. By fermenting, and adding the lactic acid bacteria of the genus Streptococcus or Lactobacillus, acetic acid bacteria alone or 10% -20% by weight of these mixtures and saccharides to the primary fermented metal mixture a plurality of times and maintaining at a predetermined temperature. Since the secondary fermentation metal mixture is aged at 35 to 40 ° C. and filtered and extracted, the state of the electrolyte in which the organic acid such as lactic acid and acetic acid is dissociated from the metal produced in the secondary fermentation Therefore, the antibacterial property possessed by the metal ions can be fully utilized.

なお、本発明で使用する金属としての銀または銀および銅が保有する抗菌性を充分利用できるのは、銀または銀および銅イオンが対象となる製品の組織表面および内部に取り込まれ、プラス荷電している銀または銀および銅イオンと通常マイナス荷電している細菌類とが結合して、所謂、電気的平衡作用により細菌類の増殖が抑制され、さらには、銀または銀および銅イオン自体が放出する遠赤外線の作用により殺菌されるからであり、従って、製品への後加工による抗菌性の付与も行うことができ、さらには、従来の抗菌剤による点効果に対して面としての抗菌効果を得ることができるなど種々の効果を奏するものである。  The antibacterial property possessed by silver or silver and copper as a metal used in the present invention can be fully utilized because silver or silver and copper ions are incorporated into the tissue surface and inside of the target product and positively charged. The silver or silver and copper ions that are normally bound to the negatively-charged bacteria are bound to suppress the growth of the bacteria by the so-called electrical equilibration action, and the silver or silver and copper ions themselves are released. This is because it is sterilized by the action of far-infrared rays. Therefore, antibacterial property can be imparted to the product by post-processing, and furthermore, the antibacterial effect as a surface against the point effect by the conventional antibacterial agent is achieved. It is possible to obtain various effects.

本発明に係るイオン化金属組成物を製造する方法における実施の形態を示す概略手順説明図である。It is a schematic procedure explanatory drawing which shows embodiment in the method of manufacturing the ionized metal composition which concerns on this invention.

次に、本発明に係るイオン化金属組成物の製造方法における実施の形態としてイオン化銀組成物の製造方法を例示し、以下詳細に説明する。
図1において、本発明に係るイオン化銀組成物の製造方法においては、まず、従来公知の手段により微細粉末に加工した原料銀(微細粉末銀)10を用意し、この原料粉末銀10の重量に対して8倍量〜15倍量の水、好ましくは、上水から塩素などの不純物を除去した浄化水12を混合して10分程度煮沸したのち、35℃〜40℃まで自然冷却する。この場合、原料粉末銀の粒径としては次段の醗酵操作の効率を勘案すると細かいほど良いのは勿論であるが、好ましくは、サブミクロン程度の粉末銀が好適に使用される。
Next, a method for producing an ionized silver composition is illustrated as an embodiment in the method for producing an ionized metal composition according to the present invention, and will be described in detail below.
In FIG. 1, in the method for producing an ionized silver composition according to the present invention, first, raw material silver (fine powder silver) 10 processed into a fine powder by a conventionally known means is prepared, and the weight of the raw material powder silver 10 is adjusted. On the other hand, 8 times to 15 times the amount of water, preferably purified water 12 from which impurities such as chlorine have been removed from the tap water, boiled for about 10 minutes, and then naturally cooled to 35 ° C. to 40 ° C. In this case, the particle size of the raw powder silver is preferably finer considering the efficiency of the subsequent fermentation operation, but preferably submicron powder silver is preferably used.

次に煮沸処理した原料粉末銀10と浄化水12の混合物14に対して10重量%〜30重量%のアスペルギルス属の麹菌16と、この麹菌16と略同量の糖質18を加えて加熱ヒータなどで35℃〜40℃に保持することにより一次醗酵を行う。  Next, 10 wt% to 30 wt% of Aspergillus gonococcus 16 and a saccharide 18 of approximately the same amount as this gonococcus 16 are added to the mixture 14 of boiling raw material powder silver 10 and purified water 12, and a heater is added. Etc., primary fermentation is performed by hold | maintaining at 35 to 40 degreeC.

なお、混合物14に加えるアスペルギルス属の麹菌16としては、例えば、アスペルギルス・オリゼー、アスペルギルスソーエ、アスペルギルス・ニガー、アスペルギルス・アワモリ、アスペルギルス・レベンスなどを単独でまたはこれらの混合物を使用することができる。
また、この一次醗酵の際、銀の抗菌作用により当初は麹菌の一部が死滅したり弱ってしまい良好な醗酵を得られないことがあるので保持温度や醗酵状態を常時観察しながら、麹菌16と糖質18を複数回加えて調整し確実に醗酵させが、混合物14に加える麹菌16の量が10重量%未満であると量的な関係から充分な醗酵を期待できず、また30重量%を超えると量が多すぎて経済性が低下することになるのでこの点にも留意しながら醗酵を行う。
In addition, as the Aspergillus gonococcus 16 added to the mixture 14, for example, Aspergillus oryzae, Aspergillus soe, Aspergillus niger, Aspergillus awamori, Aspergillus revens etc. can be used alone or a mixture thereof.
Further, during this primary fermentation, some of the koji molds may initially be killed or weakened due to the antibacterial action of silver, and a good fermentation may not be obtained. And sugar 18 are added and adjusted several times to ensure fermentation, but if the amount of koji mold 16 added to the mixture 14 is less than 10% by weight, sufficient fermentation cannot be expected from the quantitative relationship, and 30% by weight. If it exceeds 1, the amount will be too much and the economic efficiency will be lowered, so the fermentation is performed while paying attention to this point.

麹菌16などの混合により得られた一次醗酵銀混合物20には、この一次醗酵銀混合物20の5重量%程度の糖質18を新たに補填するとともにストレプトコックス属またはラクトバチルス属の乳酸菌、アセトバクター属の酢酸菌を単独でまたはこれらの混合物22を10重量%〜20重量%加えて、再び35℃〜40℃で10日ほど保持することにより二次醗酵させる。
なお、この一次醗酵銀混合物20に加える乳酸菌、酢酸菌あるいはこれらの混合物22が5重量%未満であると醗酵が充分行われず、また25重量%を超えると量が多すぎて経済性が低下してしまうことになる。
さらには、この二次醗酵の際も乳酸菌、酢酸菌あるいはこれらの混合物22の一部が一次醗酵時と同様に死滅したり弱ってしまうことのないようその保持温度や醗酵状態を観察しながら、糖質18および乳酸菌、酢酸菌またはこれらの混合物22を複数回加えて調整を行うことにより確実に二次醗酵させる。
The primary fermented silver mixture 20 obtained by mixing the koji mold 16 and the like is newly supplemented with about 18% by weight of the saccharide 18 of the primary fermented silver mixture 20, and also lactic acid bacteria belonging to the genus Streptococcus or Lactobacillus, Acetobacter Acetic acid bacteria of the genus alone or a mixture 22 of these is added at 10% to 20% by weight, and then subjected to secondary fermentation by holding again at 35 ° C. to 40 ° C. for about 10 days.
If the lactic acid bacteria, acetic acid bacteria or their mixture 22 added to the primary fermented silver mixture 20 is less than 5% by weight, the fermentation is not sufficiently carried out, and if it exceeds 25% by weight, the amount is too high and the economy is lowered. It will end up.
Furthermore, during this secondary fermentation, while observing the holding temperature and fermentation state so that lactic acid bacteria, acetic acid bacteria or a part of these mixtures 22 are not killed or weakened in the same manner as in the primary fermentation, Carbohydrate 18 and lactic acid bacteria, acetic acid bacteria, or a mixture 22 thereof are added several times to effect secondary fermentation.

このようにして得られた二次醗酵銀混合物24は、適宜の加熱ヒータなどを使用して35℃〜40℃に保持して熟成を行う。
この場合、35℃〜40℃に保持した二次醗酵銀混合物24は、好ましくは、遠赤外線照射下および静電磁場、エレクトロン(−e)供給雰囲気において撹拌しながら流動させることによりゆっくりと熟成し、原料としての粉末銀10の液化を促進して二次醗酵によって乳酸菌、酢酸菌あるいはこれらの混合物22から生じた乳酸、酢酸などの有機酸中に銀Agを解離(イオン化)させる。
The secondary fermented silver mixture 24 thus obtained is aged by being maintained at 35 ° C. to 40 ° C. using an appropriate heater or the like.
In this case, the secondary fermented silver mixture 24 maintained at 35 ° C. to 40 ° C. is preferably aged slowly by flowing under stirring in an infrared magnetic field, an electrostatic magnetic field, and an electron (−e) supply atmosphere, Liquefaction of powdered silver 10 as a raw material is promoted, and silver Ag is dissociated (ionized) in an organic acid such as lactic acid or acetic acid produced from lactic acid bacteria, acetic acid bacteria or a mixture 22 thereof by secondary fermentation.

そして、二次醗酵銀混合物24中の銀Agが充分に解離したら、2〜3週間程静置したのち紫外線などにより殺菌し、イオン化銀組成物26として濾過抽出する。
この抽出によって得られたイオン化銀組成物26は、常温で略透明を呈し、原子吸光光度法による分析試験(財団法人 日本食品分析センター)をしたところ100ml中に銀Agを592mg含有していた。なお、上述の本発明に係る製造方法で得られるイオン化銀組成物における銀Agの含有率は概ね0.4%〜0.6%(400mg〜600mg)の範囲であった。
And if silver Ag in the secondary fermented silver mixture 24 fully dissociates, after leaving still for about 2 to 3 weeks, it sterilizes with an ultraviolet-ray etc., and is filtered and extracted as the ionized silver composition 26. FIG.
The ionized silver composition 26 obtained by this extraction was substantially transparent at room temperature, and was subjected to an analytical test by the atomic absorption photometry (Japan Food Analysis Center), and contained 592 mg of silver Ag in 100 ml. In addition, the content rate of silver Ag in the ionized silver composition obtained by the manufacturing method which concerns on the above-mentioned this invention was the range of about 0.4%-0.6% (400 mg-600 mg) in general.

また、上述した実施の形態であるイオン化銀組成物の製造方法において、原料としての金属である微細粉末銀に代替して微細粉末銅を使用してイオン化銅組成物を製造し、得られたにイオン化銅組成物を原子吸光光度法による分析試験(財団法人 日本食品分析センター)をしたところ100ml中に銅Cuを1450mg含有していた。なお、得られたイオン化銅組成物における銅Cuの含有率は概ね1%〜2%(1000mg〜2000mg)の範囲であった。  Moreover, in the manufacturing method of the ionized silver composition which is embodiment mentioned above, it replaced with the fine powder silver which is a metal as a raw material, manufactured the ionized copper composition using fine powder copper, and obtained. When the ionized copper composition was subjected to an atomic absorption spectrophotometric analysis test (Japan Food Analysis Center), 1450 mg of copper Cu was contained in 100 ml. In addition, the content rate of copper Cu in the obtained ionized copper composition was in the range of approximately 1% to 2% (1000 mg to 2000 mg).

実験例1(生地の加工)
まず、浄化水にイオン化銀銀組成物26を0.2%添加し、この浄化水(40℃)にポリエステル製の生地(白)を投入して2時間流水加工したのち乾燥し、原子吸光光度法により分析試験(財団法人 日本食品分析センター)をしたところ、銀Agを10.7ppm含有していた。
この実験結果によれば、本発明方法で得られたイオン化銀は簡単な流水加工によっても繊維組織に充分付着させることができることが確認された。
Experimental Example 1 (Dough processing)
First, 0.2% of ionized silver silver composition 26 is added to purified water, polyester fabric (white) is added to this purified water (40 ° C.), processed with running water for 2 hours, dried and then subjected to atomic absorption spectrophotometry. When an analytical test (Japan Food Analysis Center) was conducted by the law, it contained 10.7 ppm of silver Ag.
According to this experimental result, it was confirmed that the ionized silver obtained by the method of the present invention can be sufficiently adhered to the fiber structure by simple flowing water processing.

実験例2(洗濯による抗菌性試験)
実験例1と同様に調製した浄化水(イオン化銀銀組成物26を0.2%添加、40℃)に綿生地製Tシャツを投入して2時間流水加工したのち乾燥した試験用原品を調製した。
次にJIS L 0217の103号で規定される洗濯(但し、JAFET標準洗剤を使用)を10回行った原品試験布1と、洗濯を行わない原品試験布2、さらに比較のための無加工試験布3(標準綿布)を用意した。
ついで、各試験布1、2および無加工試験布3使用してJIS L 1902、定量試験(菌液吸収法)による抗菌性の試験を行った。具体的には、各試験片1、2および無加工試験片3に試験菌として黄色ぶどう球菌(Staphylococcusaureus ATCC 6538P)を植菌し、混釈平板培養法により生菌数の測定(財団法人日本紡績検査協会)で行ったところつぎのような結果を得た。
Experimental Example 2 (Antimicrobial test by washing)
A test original product that was dried after the cotton fabric T-shirt was put into purified water (0.2% of ionized silver composition 26, 40 ° C.) prepared in the same manner as in Experimental Example 1 and subjected to running water for 2 hours. Prepared.
Next, the original test cloth 1 which was washed 10 times (provided using JAFET standard detergent) as defined in No. 103 of JIS L 0217, the original test cloth 2 which was not washed, A processed test cloth 3 (standard cotton cloth) was prepared.
Subsequently, each of the test cloths 1 and 2 and the unprocessed test cloth 3 was used to perform an antibacterial test by JIS L 1902 and a quantitative test (bacterial solution absorption method). Specifically, Staphylococcus aureus ATCC 6538P was inoculated as a test bacterium in each of test pieces 1 and 2 and unprocessed test piece 3, and the number of viable bacteria was measured by a pour plate culture method (Nippon Spinning Co., Ltd.). The following results were obtained when it was conducted at the Inspection Association.

[試験結果]

Figure 2010254658
Figure 2010254658
試験規定によると、抗菌性が認められるのは静菌活性値が2.2以上の場合とされているが、試験布1、2はいずれも2.2以上の値を示し、充分な抗菌性を有していることが確認された。[Test results]
Figure 2010254658
Figure 2010254658
According to the test regulations, antibacterial activity is recognized when the bacteriostatic activity value is 2.2 or more, but both test cloths 1 and 2 show a value of 2.2 or more and sufficient antibacterial activity. It was confirmed that

実験例3(プラスチックの抗菌性比較試験1)
1Kgのプラスチック原料(ポリエチレン)に、本発明方法で得られたイオン化銀組成物26を100ml混錬して10%濃度のマスターバッチを調製し、このマスターバッチ1に対して9のプラスチック原料(ポリエチレン)を混錬することにより「まな板用プラスチック原料」を調製した。
次にこの「まな板用プラスチック原料」の抗菌性試験(JIS Z 2801:2000「抗菌加工製品−抗菌性試験方法・抗菌効果」準拠)を行った。
具体的には、普通寒天培地に24時間培養した菌体(NBRC12732黄色ブドウ球菌、NBRC3972大腸菌)を、蒸留水で1/500に希釈した普通ブイヨン培地に、菌数が2.0×10〜1・0×10/mlとなるよう懸濁し、その0.2mlを検体(まな板用プラスチック原料)と対照(無加工試験)に滴下し、PEフィルムを被せて35℃で24時間培養した。その後、SCDPL培地10mlで洗い流し、寒天培地法(35℃×2日)により生菌数を測定したところ、以下の結果を得た。
Experimental Example 3 (Antibacterial Comparative Test 1 Plastic)
A 1% plastic raw material (polyethylene) is kneaded with 100 ml of the ionized silver composition 26 obtained by the method of the present invention to prepare a master batch having a concentration of 10%. ) Was kneaded to prepare a “cutting board plastic raw material”.
Next, an antibacterial property test of this “cutting board plastic raw material” (based on JIS Z 2801: 2000 “Antimicrobial Processed Products—Antimicrobial Test Method / Antimicrobial Effect”) was performed.
Specifically, the cell number (NBRC12732 Staphylococcus aureus, NBRC3982 E. coli) cultured on a normal agar medium for 24 hours is diluted to 1/500 in distilled water to a normal bouillon medium, and the number of bacteria is 2.0 × 10 5 to The suspension was suspended at 1.0 × 10 6 / ml, 0.2 ml of the suspension was dropped onto a specimen (cutting board plastic raw material) and a control (non-processed test), covered with a PE film, and cultured at 35 ° C. for 24 hours. Thereafter, the cells were washed with 10 ml of SCDPL medium, and the viable cell count was measured by the agar medium method (35 ° C. × 2 days). The following results were obtained.

[試験結果]

Figure 2010254658
この試験結果によると、一般的には抗菌活性値が2以上は抗菌力ありとされるが、本発明方法で得られたイオン化銀組成物26を僅か1%しか含まない検体の抗菌活性値は4以上の値を示し、十分な抗菌力が認められた。[Test results]
Figure 2010254658
According to this test result, an antibacterial activity value of 2 or more is generally considered to have antibacterial activity, but the antibacterial activity value of a specimen containing only 1% of the ionized silver composition 26 obtained by the method of the present invention is A value of 4 or more was shown, and sufficient antibacterial activity was recognized.

実験例4(プラスチックの抗菌性試験)
1Kgのプラスチック原料(ポリウレタン)に、本発明方法で得られたイオン化銀組成物26を10ml混錬して1%濃度のマスターバッチを調製し、このマスターバッチ1に対して9のプラスチック原料(ポリウレタン)を混錬して発泡することにより「インソール用発泡ポリウレタン」を調製した。
次に、このインソール用発泡ポリウレタン(試験体)を使用してJIS L 1902、定量試験(菌液吸収法)による抗菌性の試験を行った。
具体的には、試験体に試験菌として黄色ぶどう球菌(Staphylococcus aureus ATCC 6538P)を植菌し、混釈平板培養法により生菌数の測定を行ったところつぎのような結果を得た[注 試験菌液として、界面活性剤(Tween80)0.05%を添加した試験菌液を使用した]。
Experimental Example 4 (Plastic antibacterial test)
A master batch of 1% concentration was prepared by kneading 10 ml of the ionized silver composition 26 obtained by the method of the present invention with 1 kg of plastic raw material (polyurethane). ) Was kneaded and foamed to prepare “foam polyurethane for insole”.
Next, using this foamed polyurethane for insole (test body), an antibacterial test was conducted by JIS L 1902, a quantitative test (bacterial solution absorption method).
Specifically, Staphylococcus aureus ATCC 6538P was inoculated as a test bacterium, and the number of viable bacteria was measured by the pour plate culture method, and the following results were obtained [Note: As the test bacterial solution, a test bacterial solution to which 0.05% of a surfactant (Tween 80) was added was used.

[試験結果]

Figure 2010254658
試験規定によると、抗菌性が認められるのは静菌活性値が2.2以上の場合とされているが、試験体はイオン化銀組成物26を僅か0.1%混錬したに過ぎないにも拘わらず、5.7以上の値を示し、充分な抗菌性を有していることが確認された。[Test results]
Figure 2010254658
According to the test regulations, antibacterial activity is recognized when the bacteriostatic activity value is 2.2 or more, but the test body is only 0.1% of the ionized silver composition 26 kneaded. Nevertheless, it showed a value of 5.7 or more and was confirmed to have sufficient antibacterial properties.

実験例5(洗剤の抗菌力試験)
洗剤(新日本理化株式会社製;CS.A2)に、本発明方法で得られたイオン化銀組成物0.3%とイオン化銅組成物0.3%を添加した検体Aと、同洗剤に本発明方法で得られたイオン化銀組成物0.15%とイオン化銅組成物0.15%を添加した検体Bを調製し、これら検体A、Bの細菌に対する抗菌力を財団法人日本食品分析センターにおいて試験を行った。
具体的には、普通寒天培地で35℃±1℃、18〜24時間培養した試験菌株(NBRC12732黄色ブドウ球菌、NBRC3972大腸菌)を生理食塩水に浮遊させ、菌数が10〜10/mlとなるよう調製し、試験菌液とした。
つぎに精製水で調製した検体Aおよび検体Bの100倍希釈液10mlに試験菌液0.1mlを夫々接種して試験液とした。これらの試験液を室温で保存し、24時間後にSCDL培地で直ちに10倍に希釈して試験液中の生菌数を菌数測定用培地を用いて測定したところ以下の結果を得た(なお、試験液をSCDL培地で10倍に希釈することにより、検体に影響を受けずに生菌数が測定できることを予備試験により予め確認した)。
Experimental Example 5 (Detergent antibacterial activity test)
Specimen A obtained by adding 0.3% of ionized silver composition and 0.3% of ionized copper composition obtained by the method of the present invention to detergent (manufactured by Nippon Nippon Chemical Co., Ltd .; CS.A2), and this detergent Specimen B was prepared by adding 0.15% of the ionized silver composition and 0.15% of the ionized copper composition obtained by the inventive method, and the antibacterial activity of these specimens A and B against bacteria was determined by the Japan Food Analysis Center. A test was conducted.
Specifically, a test strain (NBRC12732 Staphylococcus aureus, NBRC3982 Escherichia coli) cultured on a normal agar medium at 35 ° C. ± 1 ° C. for 18-24 hours is suspended in physiological saline, and the number of bacteria is 10 7 to 10 8 / ml. To prepare a test bacterial solution.
Next, 0.1 ml of the test bacterial solution was inoculated into 10 ml of a 100-fold diluted solution of Sample A and Sample B prepared with purified water to prepare a test solution. These test solutions were stored at room temperature, and after 24 hours, immediately diluted 10-fold with SCDL medium and the number of viable bacteria in the test solution was measured using a medium for measuring the number of bacteria. The preliminary test confirmed that the number of viable bacteria could be measured without being affected by the specimen by diluting the test solution 10 times with SCDL medium).

[試験結果]

Figure 2010254658
この試験結果によると、検体A、Bのいずれにおいても試験菌は検出せず、従って、十分な抗菌力を有する抗菌洗剤であることが認められた。[Test results]
Figure 2010254658
According to this test result, the test bacteria were not detected in any of the specimens A and B, and therefore, it was recognized that the antibacterial detergent had sufficient antibacterial activity.

実験例6(柔軟剤の抗菌力試験)
柔軟剤(新日本理化株式会社製;オアシス)に、本発明方法で得られたイオン化銀組成物0.3%とイオン化銅組成物0.3%を添加した検体Aと、同柔軟剤に本発明方法で得られたイオン化銀組成物0.15%とイオン化銅組成物0.15%を添加した検体Bを調製し、これら検体A、Bの細菌に対する抗菌力を財団法人日本食品分析センターにおいて試験を行った。
具体的には、普通寒天培地で35℃±1℃、18〜24時間培養した試験菌株(NBRC12732黄色ブドウ球菌、NBRC3972大腸菌)を生理食塩水に浮遊させ、菌数が10〜10/mlとなるよう調製し、試験菌液とした。
つぎに精製水で調製した検体Aおよび検体Bの100倍希釈液10mlに試験菌液0.1mlを夫々接種して試験液とした。これらの試験液を室温で保存し、24時間後にSCDL培地で直ちに10倍に希釈して試験液中の生菌数を菌数測定用培地を用いて測定したところ以下の結果を得た(なお、試験液をSCDL培地で10倍に希釈することにより、検体に影響を受けずに生菌数が測定できることを予備試験により予め確認した)。
Experimental Example 6 (Antimicrobial test of softener)
Specimen A obtained by adding 0.3% of an ionized silver composition and 0.3% of an ionized copper composition obtained by the method of the present invention to a softener (manufactured by Shin Nippon Rika Co., Ltd .; Oasis) and this softener Specimen B was prepared by adding 0.15% of the ionized silver composition and 0.15% of the ionized copper composition obtained by the inventive method, and the antibacterial activity of these specimens A and B against bacteria was examined at the Japan Food Analysis Center. A test was conducted.
Specifically, usually 35 ° C. ± 1 ° C. in agar medium, 18 to 24 hour incubation with test strains (NBRC12732 Staphylococcus aureus, NBRC3972 coli) were suspended in physiological saline, the number of bacteria 10 7 ~10 8 / ml To prepare a test bacterial solution.
Next, 0.1 ml of the test bacterial solution was inoculated into 10 ml of a 100-fold diluted solution of Sample A and Sample B prepared with purified water to prepare a test solution. These test solutions were stored at room temperature, and after 24 hours, immediately diluted 10-fold with SCDL medium and the number of viable bacteria in the test solution was measured using a medium for measuring the number of bacteria. The preliminary test confirmed that the number of viable bacteria could be measured without being affected by the sample by diluting the test solution 10 times with SCDL medium).

[試験結果]

Figure 2010254658
この試験結果によると、検体A、Bのいずれにおいても試験菌は検出せず、従って、十分な抗菌力を有する抗菌性柔軟剤であることが認められた。[Test results]
Figure 2010254658
According to this test result, the test bacteria were not detected in any of the samples A and B, and therefore, it was recognized that the antibacterial softener had sufficient antibacterial activity.

10・・原料銀(微細粉末銀)、
12・・浄化水、
14・・粉末銀と浄化水の混合物、
16・・麹菌、または麹菌混合物、
18・・糖質、
20・・一次醗酵銀混合物、
22・・乳酸菌、酢酸菌またはこれらの混合物、
24・・二次醗酵銀混合物、
26・・イオン化銀組成液、
10. Raw material silver (fine powder silver),
12. Purified water,
14. Mixture of powdered silver and purified water,
16. .. Koji mold or Koji mold mixture,
18. Sugars,
20 ・ ・ Primary fermented silver mixture,
22. ・ Lactic acid bacteria, acetic acid bacteria or a mixture of these,
24 .. Secondary fermented silver mixture,
26 .. Ionized silver composition liquid,

Claims (6)

抗菌性を備える微細化した金属を一次醗酵させたのち二次醗酵させ、この二次醗酵混合物に含まれる金属を有機酸中に解離させることを特徴とする抗菌性イオン化金属組成物の製造方法。  A method for producing an antibacterial ionized metal composition, comprising first fermenting a refined metal having antibacterial properties, followed by secondary fermentation, and dissociating the metal contained in the secondary fermentation mixture into an organic acid. 抗菌性を備える微細化した金属として、銀または銀および銅を使用することからなる請求項1に記載の抗菌性イオン化金属組成物の製造方法。  The method for producing an antibacterial ionized metal composition according to claim 1, wherein silver or silver and copper are used as the refined metal having antibacterial properties. 微細化した金属原料に所定量の浄化水を加えて蒸煮し、つぎにこれを所定温度に保持するとともにアスペルギルス属の麹菌10重量%〜30重量%と糖質を複数回加えることにより一次醗酵させ、この一次発酵金属混合物にストレプトコックス属またはラクトバチルス属の乳酸菌、酢酸菌を単独でまたはこれらの混合物10重量%〜20重量%と糖質を複数回を加えて所定温度に保持することにより二次醗酵させ、次いで二次発酵金属混合物を35℃〜40℃で熟成することにより有機酸中に金属を解離し、さらにこれを濾過抽出することを特徴とする請求項1または2に記載の抗菌性イオン化金属組成物の製造方法。  A predetermined amount of purified water is added to the refined metal raw material and steamed. Next, the mixture is maintained at a predetermined temperature, and 10% to 30% by weight of Aspergillus spp. The lactic acid bacteria of the genus Streptococcus or Lactobacillus and the acetic acid bacteria are added to the primary fermented metal mixture alone or 10% to 20% by weight of these mixtures and the saccharides are added several times and kept at a predetermined temperature. The antibacterial according to claim 1 or 2, wherein the metal is dissociated in an organic acid by subfermenting and then aging the secondary fermented metal mixture at 35 ° C to 40 ° C and further filtered and extracted. For producing a functional ionized metal composition. アスペルギルス属の麹菌として、アスペルギルス・オリゼー、アスペルギルスソーエ、アスペルギルス・ニガー、アスペルギルス・アワモリ、アスペルギルス・レベンスを単独でまたはこれらの混合物を使用することからなる請求項1〜3のいずれかに記載の抗菌性イオン化金属組成物の製造方法。  The antibacterial property according to any one of claims 1 to 3, which comprises using Aspergillus oryzae, Aspergillus soe, Aspergillus niger, Aspergillus awamori, Aspergillus revens alone or as a mixture thereof as the Aspergillus genus A method for producing an ionized metal composition. 二次醗酵器金属混合物の熟成は、遠赤外線照射およびエレクトロン供給雰囲気において流動させながら行うことからなる請求項1〜4のいずれかに記載の抗菌性イオン化金属組成物の製造方法。  The method for producing an antibacterial ionized metal composition according to any one of claims 1 to 4, wherein the aging of the secondary fermenter metal mixture is carried out while flowing in a far infrared irradiation and electron supply atmosphere. 請求項1〜5のいずれかに記載の方法により得られた抗菌性イオン化金属組成物の製造方法。  The manufacturing method of the antibacterial ionized metal composition obtained by the method in any one of Claims 1-5.
JP2009122508A 2009-04-24 2009-04-24 Method for producing antibacterial ionized metal composition Active JP5368170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009122508A JP5368170B2 (en) 2009-04-24 2009-04-24 Method for producing antibacterial ionized metal composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009122508A JP5368170B2 (en) 2009-04-24 2009-04-24 Method for producing antibacterial ionized metal composition

Publications (2)

Publication Number Publication Date
JP2010254658A true JP2010254658A (en) 2010-11-11
JP5368170B2 JP5368170B2 (en) 2013-12-18

Family

ID=43316007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009122508A Active JP5368170B2 (en) 2009-04-24 2009-04-24 Method for producing antibacterial ionized metal composition

Country Status (1)

Country Link
JP (1) JP5368170B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015101547A (en) * 2013-11-22 2015-06-04 八藤 眞 Method for producing ionization metal liquid which can bind to nutritional component

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998012924A1 (en) * 1996-09-24 1998-04-02 Snd Co., Ltd. Method for preparing sterilizing solutions, sterilizing solutions, and sterilizing media
JP2002173405A (en) * 2000-12-04 2002-06-21 Hidehiro Tagusari Sterilizing method with colloidal silver and sterilization material using the same
JP2006328532A (en) * 2005-05-10 2006-12-07 Samsung Electro-Mechanics Co Ltd Metal nano particle, method for manufacturing and conductive ink
JP2007209324A (en) * 2006-02-13 2007-08-23 Makoto Yafuji Method for producing iron supplement composition
WO2008003522A1 (en) * 2006-07-05 2008-01-10 Janssen Pharmaceutica N.V. Method for producing metal nanoparticles
JP2008050682A (en) * 2006-08-28 2008-03-06 Makoto Yafuji Method for improving silverwares

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998012924A1 (en) * 1996-09-24 1998-04-02 Snd Co., Ltd. Method for preparing sterilizing solutions, sterilizing solutions, and sterilizing media
JP2002173405A (en) * 2000-12-04 2002-06-21 Hidehiro Tagusari Sterilizing method with colloidal silver and sterilization material using the same
JP2006328532A (en) * 2005-05-10 2006-12-07 Samsung Electro-Mechanics Co Ltd Metal nano particle, method for manufacturing and conductive ink
JP2007209324A (en) * 2006-02-13 2007-08-23 Makoto Yafuji Method for producing iron supplement composition
WO2008003522A1 (en) * 2006-07-05 2008-01-10 Janssen Pharmaceutica N.V. Method for producing metal nanoparticles
JP2008050682A (en) * 2006-08-28 2008-03-06 Makoto Yafuji Method for improving silverwares

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015101547A (en) * 2013-11-22 2015-06-04 八藤 眞 Method for producing ionization metal liquid which can bind to nutritional component

Also Published As

Publication number Publication date
JP5368170B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
Paš et al. Uptake of chromium (III) and chromium (VI) compounds in the yeast cell structure
CN109536296B (en) Antibacterial biological detergent for infants and preparation method thereof
CN101979490B (en) Cleaning agent for removing pesticides and microorganisms from surfaces of fruits and vegetables
CN106083765B (en) A kind of Environmental Safety cleaning agent with antibacterial functions
KR20010095031A (en) Silver Ion - Containing Solution and use thereof
JP2010187648A (en) Sterilization method using air plasma
JP2008011795A (en) Method for producing pu-erh tea
EP2810559A1 (en) Heated moist towelette and method for producing heated moist towelette
JP5368170B2 (en) Method for producing antibacterial ionized metal composition
CN107232235A (en) A kind of micro-nano shell water disinfectant and preparation method thereof
CN103405378A (en) Hand washing solution
KR100817911B1 (en) Composition for microbe-proof processing of fiber comprising silver nanoparticles and saponins, and a fiber microbe-proof processed with the same
JP2007138343A (en) Method for treatment of natural antimicrobial agent and antimicrobial fiber material
CN110575816B (en) Lactobacillus plantarum YW11 with high adsorption and high heavy metal lead tolerance
CN109699866B (en) Application of pterostilbene in inhibiting growth of aspergillus carbonarius and generation of ochratoxin A in grape juice
CN106719816B (en) Yttrium oxide-stalk cellulose composite Nano antibacterial material
JP2002339243A (en) Antibacterial treating agent and washing agent and antibacterial treating method
CN108480647B (en) Recycling method of nano-silver particle waste liquid
CN111733025B (en) Bacteriostatic laundry detergent for infants
CN114907923A (en) Preparation method of biological nano-silver sterilizing and disinfecting laundry tablets
KR200404546Y1 (en) Nano silver and perfume coating wrap
KR20060068824A (en) Nano silver and perfume contain door handle
KR200379832Y1 (en) Nano silver silver and perfume contain mobile phone portable hanger necklace
CN114456882A (en) Underwear laundry detergent containing yeast fermentation product extract
Chen et al. Sunlight-induced antibacterial poly (vinyl alcohol) grafted 3, 3′, 4, 4′-benzophenone tetracarboxylic dianhydride film for the preservation of Mongolian cheese

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130912

R150 Certificate of patent or registration of utility model

Ref document number: 5368170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350