JP2010254505A - Low temperature-fired, high-strength, low thermal expansion ceramic and method for producing the same - Google Patents

Low temperature-fired, high-strength, low thermal expansion ceramic and method for producing the same Download PDF

Info

Publication number
JP2010254505A
JP2010254505A JP2009104760A JP2009104760A JP2010254505A JP 2010254505 A JP2010254505 A JP 2010254505A JP 2009104760 A JP2009104760 A JP 2009104760A JP 2009104760 A JP2009104760 A JP 2009104760A JP 2010254505 A JP2010254505 A JP 2010254505A
Authority
JP
Japan
Prior art keywords
strength
low
sio
thermal
porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009104760A
Other languages
Japanese (ja)
Other versions
JP5249121B2 (en
Inventor
Naoki Kitani
直樹 木谷
Reiko Morohashi
玲子 諸橋
Mamoru Mori
護 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Co Ltd
Nikko KK
Original Assignee
Nikko Co Ltd
Nikko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Co Ltd, Nikko KK filed Critical Nikko Co Ltd
Priority to JP2009104760A priority Critical patent/JP5249121B2/en
Publication of JP2010254505A publication Critical patent/JP2010254505A/en
Application granted granted Critical
Publication of JP5249121B2 publication Critical patent/JP5249121B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength, low thermal expansion ceramic which is co-fired with low resistance metals such as Ag, Au, and Cu and which achieves high mechanical strength and low thermal expansibility and to provide a method for producing the same. <P>SOLUTION: The high-strength, low thermal expansion ceramic containing a composite oxide having a composition denoted as equation (1) (wherein, a is 0.04-0.25 in mass ratio; and α, β, γ and δ satisfy α:β:γ:δ=7.6-13.2:4.0-10.3:13.0-30.4:53.7-72.8 in mass% ratio) and the method for producing the same are provided. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、低温焼成高強度低熱膨張性磁器及びその製造方法に関する。さらに詳しく言えば、本発明は、多層基板用材料、構造材料として信頼性が高く、Ag、Au、Cu等の低抵抗金属と同時焼成できる、低温焼成可能な高強度低熱膨張性磁器用組成物、その組成物から得られる磁器及びその製造方法に関するものである。   The present invention relates to a low-temperature fired high-strength low-thermal-expansion ceramic and a method for producing the same. More specifically, the present invention is highly reliable as a multilayer substrate material and structural material, and can be fired at the same time with a low resistance metal such as Ag, Au, Cu, etc., and can be fired at a low temperature. The present invention relates to a porcelain obtained from the composition and a method for producing the same.

近年、高度情報化時代を迎え、半導体素子には、高速化と共に、高集積化、及び実装の高密度化が求められている。高集積化や実装の高密度化のためには抵抗率の低い配線材料(Ag、Au、Cu等)の使用が求められるが、これらの金属は融点が低いため、配線パターンの印刷後に基板を焼成する多層配線基板等では、低温焼成可能な基板材料を用いる必要がある。このため、電子機器用基板材料として従来広く用いられてきたアルミナ基板に代わる、低温焼成可能な材料が必要とされている。   In recent years, with the advent of advanced information technology, semiconductor devices are required to have higher integration, higher integration, and higher mounting density. The use of low-resistivity wiring materials (Ag, Au, Cu, etc.) is required for higher integration and higher packaging density. However, since these metals have a low melting point, the substrate is printed after the wiring pattern is printed. In a multilayer wiring board to be fired, it is necessary to use a substrate material that can be fired at a low temperature. Therefore, there is a need for a material that can be fired at a low temperature in place of an alumina substrate that has been widely used as a substrate material for electronic equipment.

最近では、ガラスと無機質フィラーとからなるガラスセラミックス材料が検討されている。例えば、特開2000−188017号公報(特許文献1)には、ディオプサイド(CaMgSi26)型結晶相を析出可能なガラス相と、フィラーとしてMg及び/またはZnとTiとを含有する酸化物を含む1000℃以下で焼成可能な磁器用組成物が開示されている。この種のガラスセラミックス材料は、800〜1000℃の温度で焼成することができるため、導体抵抗の低いAg、Au、Cu等と同時焼成できるという特長がある。 Recently, glass ceramic materials composed of glass and inorganic fillers have been studied. For example, JP 2000-188017 A (Patent Document 1) contains a glass phase capable of precipitating a diopside (CaMgSi 2 O 6 ) type crystal phase and Mg and / or Zn and Ti as fillers. A porcelain composition containing an oxide that can be fired at 1000 ° C. or lower is disclosed. Since this type of glass ceramic material can be fired at a temperature of 800 to 1000 ° C., it has a feature that it can be fired simultaneously with Ag, Au, Cu or the like having a low conductor resistance.

高集積化に伴う半導体電子回路線幅の微細化が進み、シリコンウエハに電子回路を形成する露光装置用のX−Yステージには高精度で高い位置精度が要求され、露光装置用のX−Yステージ用のセラミックス材料や、シリコンウエハを載置する静電チャック用のセラミックス材料として、アルミナセラミックスや窒化珪素セラミックスが、従来、広く用いられてきた。前記静電チャック用のセラミックス材料としてコージェライトセラミックスが提案されている。   With the progress of miniaturization of semiconductor electronic circuit line width due to high integration, an XY stage for an exposure apparatus for forming an electronic circuit on a silicon wafer is required to have high precision and high positional accuracy. Conventionally, alumina ceramics and silicon nitride ceramics have been widely used as ceramic materials for Y stages and ceramic materials for electrostatic chucks on which silicon wafers are placed. Cordierite ceramics have been proposed as a ceramic material for the electrostatic chuck.

露光時の熱変形を軽減するためには、露光装置の使用温度での熱膨張性は低い方がよく、低熱膨張性のものが求められている。コージェライトセラミックスは、アルミナセラミックスや窒化珪素セラミックスと比較して、熱膨張性が低いが、剛性が小さいことが知られている。β−スポジュメンも剛性が小さい。   In order to reduce thermal deformation during exposure, it is better that the thermal expansion at the operating temperature of the exposure apparatus is low, and a low thermal expansion is required. Cordierite ceramics are known to be less rigid but less rigid than alumina ceramics or silicon nitride ceramics. β-spodumene is also less rigid.

雰囲気温度での熱膨張性が高いと、温度変化による変形により、シリコンウエハ回路形成時や検査時のウエハ支持体の位置決め精度に影響を与え、製品品質及び歩留りに問題が発生する。また、シリコンウエハ支持体に外部衝撃が加わると、支持体が振動し、振動した状態で回路形成や検査を行うと、精度が低下する。振動は、支持体の剛性が低いことに起因するので、支持体には高い強度が要求される。しかし、高強度化を進めると、逆に熱膨張性が大きくなる傾向があった。   If the thermal expansibility at the ambient temperature is high, the deformation due to the temperature change affects the positioning accuracy of the wafer support during the formation of the silicon wafer circuit or at the time of inspection, causing problems in product quality and yield. In addition, when an external impact is applied to the silicon wafer support, the support vibrates, and if circuit formation or inspection is performed in the vibrated state, the accuracy decreases. Since vibration is caused by the low rigidity of the support, the support is required to have high strength. However, when the strength is increased, the thermal expansibility tends to increase.

従来、コージェライトセラミックスやリチウムアルミノシリケートセラミックスは、低熱膨張性セラミックスとして知られている。しかし、コージェライトセラミックスは、原料粉末に焼結助剤を添加し、所定形状に成形後、1000〜1400℃の温度で焼成することによって製造する(特開平2−229760号公報:特許文献2)。また、リチウムアルミノシリケートセラミックスについては、β−スポジュメンは、原料を所定形状に成形後、1100〜1400℃の温度で焼成して製造する(特公昭53−9605号公報:特許文献3)。   Conventionally, cordierite ceramics and lithium aluminosilicate ceramics are known as low thermal expansion ceramics. However, cordierite ceramics are manufactured by adding a sintering aid to a raw material powder, forming it into a predetermined shape, and firing it at a temperature of 1000 to 1400 ° C. (Japanese Patent Laid-Open No. Hei 2-229760: Patent Document 2). . As for lithium aluminosilicate ceramics, β-spodumene is produced by forming a raw material into a predetermined shape and firing it at a temperature of 1100 to 1400 ° C. (Japanese Patent Publication No. 53-9605: Patent Document 3).

このように、低温焼成可能で、使用温度での熱膨張性が低く、剛性が大きい低熱膨張性磁器が求められているが、熱膨張性が低いものは剛性が小さく、高強度化を進めると熱膨張性が大きくなる傾向があり、熱膨張性が低いものは焼成温度が高いといった問題があった。   Thus, there is a demand for low thermal expansion porcelain that can be fired at low temperature, has low thermal expansibility at the use temperature, and has high rigidity. There was a tendency that thermal expansibility tends to be large, and those having low thermal expansibility had a problem that the firing temperature was high.

特開2000−188017号公報JP 2000-188017 A 特開平2−229760号公報JP-A-2-229760 特公昭53−9605号公報Japanese Patent Publication No.53-9605

従って、本発明の目的は、多層基板用材料、構造材料として信頼性の高い磁器であって、Ag、Au、Cu等の低抵抗金属と同時焼成が可能であり、しかも高い機械的強度と低熱膨張性を実現する、低温焼成可能な高強度低熱膨張性磁器用組成物、その組成物から得られる磁器及びその製造方法の提供にある。   Accordingly, an object of the present invention is a highly reliable porcelain as a multilayer substrate material and a structural material, which can be co-fired with a low-resistance metal such as Ag, Au, Cu, and has high mechanical strength and low heat. An object of the present invention is to provide a low-strength, high-strength, low-temperature-expandable porcelain composition that realizes expansibility, a porcelain obtained from the composition, and a method for producing the same.

本発明者らは、上記課題を解決すべく鋭意検討した結果、LiとMgとAlとSiとを特定の比率で含有する酸化物(焼成して前記酸化物を形成し得るLi、Mg、Al、及びSiの化合物及び/または複合酸化物を含む。)を所定温度で仮焼し、粉砕した原料にBi23を添加した組成物は、850〜900℃程度の低温で焼成可能であり、かかる組成物を低温焼成して得られる磁器は、低熱膨張性と高強度を有することを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have determined that an oxide containing Li, Mg, Al, and Si in a specific ratio (Li, Mg, Al that can be fired to form the oxide). , And Si compounds and / or composite oxides) are calcined at a predetermined temperature, and a composition obtained by adding Bi 2 O 3 to the pulverized raw material can be fired at a low temperature of about 850 to 900 ° C. The porcelain obtained by firing such a composition at a low temperature has been found to have low thermal expansion and high strength, and the present invention has been completed.

すなわち、本発明は、下記の低温焼成可能な高強度低熱膨張性磁器用組成物、前記組成物を低温焼成した高強度低熱膨張性磁器及びその製造方法を提供する。
[1](A)Li2Oまたは焼成したときにLi2Oとなるリチウム化合物(a1)とMgOまたは焼成したときにMgOとなるマグネシウム化合物(a2)とAl23(a3)とSiO2(a4)との混合物であって、a1とa2とa3とa4の割合(質量%比)α:β:γ:δ=7.6〜13.2:4.0〜10.3:13.0〜30.4:53.7〜72.8の範囲にある仮焼物75〜96質量%と
(B)Bi234〜25質量%を含有し、850〜900℃の温度で焼成して式(1)

Figure 2010254505
(式中、aは質量比で0.04〜0.25であり、α、β、γ及びδは質量%比でα:β:γ:δ=7.6〜13.2:4.0〜10.3:13.0〜30.4:53.7〜72.8である。)
で示される高強度低熱膨張性磁器を生成する高強度低熱膨張性磁器用組成物。
[2]Li2Oまたは焼成したときにLi2Oとなるリチウム化合物(a1)とMgOまたは焼成したときにMgOとなるマグネシウム化合物(a2)とAl23(a3)とSiO2(a4)との混合物を750〜1000℃の温度で焼成した仮焼物を0.2〜5μmに微粉砕して、これにBi23を所定量混合して850〜900℃で焼結させた前項1に記載の高強度低熱膨張性磁器用組成物。
[3]前記a1、a2、a3及びa4の混合物の一部として、Li2OとAl23とSiO2との複合酸化物であるβ−スポジュメンを含む前項1または2に記載の高強度低熱膨張性磁器用組成物。
[4]式(1)
Figure 2010254505
(式中の記号は前項1の記載と同じ意味を表す。)
で示される組成を有する複合酸化物を含む高強度低熱膨張性磁器。
[5]前記複合酸化物が、β−スポジュメン系結晶相及び/またはLi2O・Al23・SiO2系結晶相、Li2O・SiO2系結晶相、及びMgO・SiO2系結晶相を含む前項4に記載の高強度低熱膨張性磁器。
[6]β−スポジュメン系結晶相及び/またはLi2O・Al23・SiO2系結晶相、Li2O・SiO2系結晶相、及びMgO・SiO2系結晶相を前記磁器の全体積の80%以上含む前項5に記載の高強度低熱膨張性磁器。
[7]抗折強度が150MPa以上である前項4〜6のいずれか1項記載の高強度低熱膨張性磁器。
[8]25〜400℃における線熱膨張係数が0〜5×10-6/℃である前項4〜7のいずれか1項記載の高強度低熱膨張性磁器。
[9]陽極接合時の伝導イオンをLiイオンとし、300〜350℃の温度で陽極接合可能な、式(1)
Figure 2010254505
(式中の記号は前項1の記載と同じ意味を表す。)
で示される組成を有する複合酸化物を含む高強度低熱膨張性磁器。
[10]
シリコン、GaAs、コバール、Al、またはTiと陽極接合可能な前項9に記載の高強度低熱膨張性磁器。
[11](A)Li2Oまたは焼成したときにLi2Oとなるリチウム化合物(a1)とMgOまたは焼成したときにMgOとなるマグネシウム化合物(a2)とAl23(a3)とSiO2(a4)との混合物であって、a1とa2とa3とa4の質量%比α:β:γ:δ=7.6〜13.2:4.0〜10.3:13.0〜30.4:53.7〜72.8の範囲にある混合物を750〜1000℃の温度で焼成粉砕した仮焼物75〜96質量%に
(B)Bi234〜25質量%を添加混合して、バインダーを含む成形助剤を加え所定形状に成形後、850〜900℃で焼成して、式(1)
Figure 2010254505
(式中の記号は前項1の記載と同じ意味を表す。)
で示される組成を有する複合酸化物を形成することを特徴とする高強度低熱膨張性磁器の製造方法。
[12]テープ成形法により成形した絶縁層形成用のグリーンシートを焼成する前項11記載の高強度低熱膨張性磁器の製造方法。 That is, the present invention provides the following composition for high-strength low-thermal-expansion ceramics that can be fired at low temperature, high-strength low-thermal-expansion ceramics obtained by firing the composition at low temperatures, and a method for producing the same.
[1] (A) Li 2 O or lithium compound (a1) that becomes Li 2 O when fired, MgO or magnesium compound (a2) that becomes MgO when fired, Al 2 O 3 (a3), and SiO 2 (A4), a ratio of a1, a2, a3 and a4 (mass% ratio) α: β: γ: δ = 7.6 to 13.2: 4.0 to 10.3: 13. 0 to 30.4: 75 to 96% by mass of the calcined product in the range of 53.7 to 72.8 and 4 to 25% by mass of (B) Bi 2 O 3 and calcined at a temperature of 850 to 900 ° C. Formula (1)
Figure 2010254505
(Wherein a is a mass ratio of 0.04 to 0.25, and α, β, γ, and δ are mass ratios of α: β: γ: δ = 7.6 to 13.2: 4.0. ˜10.3: 13.0-30.4: 53.7-72.8)
A composition for high-strength low-thermal-expansion porcelain that produces a high-strength low-thermal-expansion porcelain represented by
[2] Li 2 O or lithium compound (a1) that becomes Li 2 O when fired, and MgO or magnesium compound (a2), Al 2 O 3 (a3), and SiO 2 (a4) that becomes MgO when fired The calcined product obtained by calcining the mixture with 750 to 1000 ° C. is finely pulverized to 0.2 to 5 μm, mixed with a predetermined amount of Bi 2 O 3 and sintered at 850 to 900 ° C. 2. A high-strength, low-thermal-expansion ceramic composition as described in 1.
[3] The high strength according to the above item 1 or 2, comprising β-spodumene which is a composite oxide of Li 2 O, Al 2 O 3 and SiO 2 as a part of the mixture of a1, a2, a3 and a4. A composition for low thermal expansion porcelain.
[4] Formula (1)
Figure 2010254505
(The symbols in the formula have the same meaning as described in item 1 above.)
A high-strength, low-thermal-expansion porcelain containing a composite oxide having a composition represented by:
[5] The composite oxide is a β-spodumene crystal phase and / or a Li 2 O.Al 2 O 3 .SiO 2 crystal phase, a Li 2 O.SiO 2 crystal phase, and an MgO.SiO 2 crystal. 5. The high-strength low-thermal-expansion porcelain according to item 4 including a phase.
[6] The β-spodumene-based crystal phase and / or the Li 2 O.Al 2 O 3 .SiO 2 -based crystal phase, the Li 2 O.SiO 2 -based crystal phase, and the MgO.SiO 2 -based crystal phase are added to the entire porcelain. 6. The high-strength low-thermal-expansion porcelain according to 5 above, containing 80% or more of the product.
[7] The high-strength low-thermal-expansion ceramic according to any one of items 4 to 6, wherein the bending strength is 150 MPa or more.
[8] The high-strength low-thermal-expansion ceramic according to any one of items 4 to 7, wherein the linear thermal expansion coefficient at 25 to 400 ° C. is 0 to 5 × 10 −6 / ° C.
[9] Formula (1), in which conduction ions at the time of anodic bonding are Li ions, and anodic bonding is possible at a temperature of 300 to 350 ° C.
Figure 2010254505
(The symbols in the formula have the same meaning as described in item 1 above.)
A high-strength, low-thermal-expansion porcelain containing a composite oxide having a composition represented by:
[10]
10. The high-strength, low-thermal-expansion ceramic according to item 9, which can be anodically bonded to silicon, GaAs, Kovar, Al, or Ti.
[11] (A) Li 2 O or lithium compound (a1) that becomes Li 2 O when fired, MgO or magnesium compound (a2) that becomes MgO when fired, Al 2 O 3 (a3), and SiO 2 A mixture of (a4) and the mass% ratio of a1, a2, a3 and a4 α: β: γ: δ = 7.6 to 13.2: 4.0 to 10.3: 13.0 to 30 .4: Add 75 to 96% by mass of (B) Bi 2 O 3 4 to 25% by mass to a calcined product obtained by calcining and pulverizing a mixture in the range of 53.7 to 72.8 at a temperature of 750 to 1000 ° C. Then, a molding aid containing a binder is added to form a predetermined shape, and then fired at 850 to 900 ° C. to obtain the formula (1)
Figure 2010254505
(The symbols in the formula have the same meaning as described in item 1 above.)
A method for producing a high-strength, low-thermal-expansion ceramic, characterized in that a composite oxide having the composition shown in FIG.
[12] The method for producing a high-strength, low-thermal-expansion ceramic as described in 11 above, wherein a green sheet for forming an insulating layer formed by a tape forming method is fired.

本発明の低温焼成可能な高強度低熱膨張性磁器用組成物は、液相形成成分としてBi23を用いることにより、β−スポジュメン系結晶相及び/またはLi2O・Al23・SiO2系結晶相、Li2O・SiO2系結晶相、MgO・SiO2系結晶相を主相とする磁器において低温焼結性を実現した。従って、本発明の高強度低熱膨張性磁器用組成物は、850〜900℃の低温で焼結でき、Cu、Au、Ag等による配線を同時焼成により形成することができるため、低熱膨張性LTCC(Low Temperature Co-fired Ceramics ;低温同時焼成セラミック)基板として有用である。また、非常に高い機械的強度も有していることから、半導体製造工程等で使用される、露光装置用のX−Yステージ、静電チャック及びその構造部品、ミラー等の部材に適した高強度低熱膨張性セラミックスとしても有用である。さらに、300〜350℃の温度でシリコン等に陽極接合が可能であるためMEMS(Micro Electro Mechanical Systems)実装用基板としても有用である。 By using Bi 2 O 3 as a liquid phase-forming component, the high-strength and low-temperature-expandable porcelain composition according to the present invention is capable of forming a β-spodumene crystal phase and / or Li 2 O.Al 2 O 3. Low temperature sinterability was realized in a porcelain mainly composed of SiO 2 crystal phase, Li 2 O · SiO 2 crystal phase, and MgO · SiO 2 crystal phase. Therefore, the high strength and low thermal expansion ceramic composition of the present invention can be sintered at a low temperature of 850 to 900 ° C., and a wiring made of Cu, Au, Ag or the like can be formed by co-firing. It is useful as a substrate (Low Temperature Co-fired Ceramics). In addition, since it has very high mechanical strength, it is suitable for members such as XY stage for exposure equipment, electrostatic chuck and its structural parts, mirrors, etc. used in semiconductor manufacturing processes. It is also useful as a high strength low thermal expansion ceramic. Further, since anodic bonding to silicon or the like is possible at a temperature of 300 to 350 ° C., it is also useful as a substrate for mounting MEMS (Micro Electro Mechanical Systems).

[磁器用組成物及び磁器]
本発明の低温焼成可能な高強度低熱膨張性磁器用組成物は、
(A)Li2Oまたは焼成したときにLi2Oとなるリチウム化合物(a1)とMgOまたは焼成したときにMgOとなるマグネシウム化合物(a2)とAl23(a3)とSiO2(a4)との混合物であって、a1とa2とa3とa4の割合(質量%比)α:β:γ:δ=7.6〜13.2:4.0〜10.3:13.0〜30.4:53.7〜72.8の範囲にある仮焼物75〜96質量%と
(B)Bi234〜25質量%を含有し、850〜900℃の温度で焼成して式(1)

Figure 2010254505
(式中、aは質量比で0.04〜0.25であり、α、β、γ及びδは質量%比でα:β:γ:δ=7.6〜13.2:4.0〜10.3:13.0〜30.4:53.7〜72.8である。)で示される高強度低熱膨張性磁器を生成する高強度低熱膨張性磁器用組成物である。 [Porcelain composition and porcelain]
The composition for high-strength low-thermal-expansion ceramics that can be fired at low temperature according to the present invention
(A) Li 2 O or lithium compound (a1) that becomes Li 2 O when fired, MgO or magnesium compound (a2), Al 2 O 3 (a3), and SiO 2 (a4) that becomes MgO when fired A ratio of a1, a2, a3 and a4 (mass% ratio) α: β: γ: δ = 7.6 to 13.2: 4.0 to 10.3: 13.0 to 30 .4: 75 to 96% by mass of the calcined product in the range of 53.7 to 72.8 and (B) Bi 2 O 3 4 to 25% by mass, and calcined at a temperature of 850 to 900 ° C. 1)
Figure 2010254505
(Wherein a is a mass ratio of 0.04 to 0.25, and α, β, γ, and δ are mass ratios of α: β: γ: δ = 7.6 to 13.2: 4.0. ~ 10.3: 13.0-30.4: 53.7-72.8)). A high-strength low-thermal-expansion porcelain composition that produces a high-strength low-thermal-expansion porcelain.

Li、Mg、Al、及びSiを含有する混合物(a1とa2とa3とa4との混合物)に対してBi23を含有させることにより、850〜900℃程度の低温で焼結(焼成緻密化)できる。 By containing Bi 2 O 3 in a mixture containing Li, Mg, Al, and Si (a mixture of a1, a2, a3, and a4), sintering (firing dense) is performed at a low temperature of about 850 to 900 ° C. ).

一般式(1)において、Bi23の割合a(質量比)は0.04〜0.25である。xが0.04より不足すると焼結せず、0.25より過剰だと強度が低下してしまう。 In the general formula (1), the ratio a (weight ratio) of Bi 2 O 3 is 0.04 to 0.25. If x is less than 0.04, sintering will not occur, and if it exceeds 0.25, the strength will decrease.

一般式(1)において、Li2Oの割合α(質量%)は7.6〜13.2であり、MgOの割合β(質量%)は4.0〜10.3であり、Al23の割合γ(質量%)は13.0〜30.4であり、SiO2の割合δ(質量%)は53.7〜72.8である。 In the general formula (1), the ratio α (mass%) of Li 2 O is 7.6 to 13.2, the ratio β (mass%) of MgO is 4.0 to 10.3, and Al 2 O ratio of 3 gamma (mass%) is from 13.0 to 30.4, the ratio of SiO 2 [delta] (mass%) is from 53.7 to 72.8.

αは7.6%より不足すると焼結せず、13.2%より過剰だと熱膨張係数が大きくなってしまう。βは4.0%より不足だと焼結せず、10.3%より過剰になると熱膨張が大きくなる。γは13.0%より不足だと熱膨張が大きくなり、30.4%より過剰だと焼結しない。δは53.7〜72.8%の範囲を外れると焼結しない。   If α is less than 7.6%, sintering does not occur, and if it exceeds 13.2%, the thermal expansion coefficient becomes large. If β is less than 4.0%, sintering does not occur, and if it exceeds 10.3%, thermal expansion increases. If γ is less than 13.0%, thermal expansion increases, and if it is more than 30.4%, sintering does not occur. If δ is out of the range of 53.7 to 72.8%, it does not sinter.

前記組成物からなる原料粉を仮焼して複合酸化物を形成し、これにBi23を加え焼結させることにより、本発明の高強度低熱膨張性磁器を得ることができる。 The high-strength low-thermal-expansion ceramic of the present invention can be obtained by calcining the raw material powder made of the composition to form a composite oxide, and adding Bi 2 O 3 thereto and sintering it.

本発明の高強度低熱膨張性磁器は、式(1)

Figure 2010254505
(式中の記号は前記と同じ意味を表す。)
で示される組成を有する複合酸化物を含む。 The high-strength low-thermal-expansion porcelain of the present invention has the formula (1)
Figure 2010254505
(The symbols in the formula have the same meaning as described above.)
A composite oxide having a composition represented by:

本発明の高強度低熱膨張性磁器は、β−スポジュメン系結晶相及び/またはLi2O・Al23・SiO2系結晶相、Li2O・SiO2系結晶相、及びMgO・SiO2系結晶相を主体とし、さらにBi23・SiO2系結晶相乃至/及びガラス相から主として構成されるものである。 High-strength and low-thermal-expansion ceramic according to the present invention, beta-spodumene based crystal phase and / or Li 2 O · Al 2 O 3 · SiO 2 type crystal phase, Li 2 O · SiO 2 type crystal phase, and MgO · SiO 2 Mainly composed of a system crystal phase, and further mainly composed of a Bi 2 O 3 .SiO 2 system crystal phase or / and a glass phase.

ここで、「β−スポジュメン系結晶相」とは、β−スポジュメン結晶及びこれに類する組成及び結晶構造の結晶相、「Li2O・Al23・SiO2系結晶相」とは、Li2O・Al23・SiO2結晶及びこれに類する組成及び結晶構造の結晶相、「Li2O・SiO2系結晶相」とは、Li2O・SiO2結晶及びこれに類する組成及び結晶構造の結晶相であり、その各々の結晶相には、前記各結晶を構成する主構成元素以外の他の元素を含む同型の結晶構造の結晶を含んでもよい。 Here, “β-spodumene-based crystal phase” means a β-spodumene crystal and a crystal phase having a composition and a crystal structure similar to this, and “Li 2 O.Al 2 O 3 .SiO 2 -based crystal phase” means Li 2 O.Al 2 O 3 .SiO 2 crystal and a crystal phase of a composition and crystal structure similar to this, “Li 2 O.SiO 2 crystal phase” means a Li 2 O.SiO 2 crystal and a similar composition and Each of the crystal phases may include a crystal having the same type of crystal structure including elements other than the main constituent elements constituting each of the crystals.

MgO・SiO2系結晶相、及びBi23・SiO2系結晶相についても同様であり、「MgO・SiO2系結晶相」とは、MgO・SiO2結晶及びこれに類する組成及び結晶構造の結晶相であり、「Bi23・SiO2系結晶相」とは、Bi23・SiO2結晶及び結晶構造の結晶相であり、その各々の結晶相には、前記各結晶を構成する主構成元素以外の他の元素を含む同型の結晶構造の結晶を含んでもよい。 The same applies to the MgO · SiO 2 crystal phase and the Bi 2 O 3 · SiO 2 crystal phase. The term “MgO · SiO 2 crystal phase” refers to an MgO · SiO 2 crystal and a similar composition and crystal structure. The “Bi 2 O 3 .SiO 2 -based crystal phase” is a crystal phase of Bi 2 O 3 .SiO 2 crystal and crystal structure, and each crystal phase includes the above crystals. A crystal having the same type of crystal structure including other elements than the main constituent element may be included.

各結晶相の具体的な含有比は、目標とする物性値を実現するものであれば特に限定されないが、通常は、β−スポジュメン系結晶相及び/またはLi2O・Al23・SiO2系結晶相、Li2O・SiO2系結晶相、及びMgO・SiO2系結晶相を磁器の全体積の90%以上含み、好ましくは95%以上含む。 The specific content ratio of each crystal phase is not particularly limited as long as it achieves a target physical property value. Usually, the β-spodumene crystal phase and / or Li 2 O.Al 2 O 3 .SiO 2 is used. 90% or more, preferably 95% or more of the total volume of the porcelain is contained in the two- based crystal phase, the Li 2 O · SiO 2 -based crystal phase, and the MgO · SiO 2 -based crystal phase.

本発明の高強度低熱膨張性磁器は、線熱膨張係数が0〜5×10-6/℃、抗折強度が150MPa以上であり、850〜900℃の温度範囲での低温焼成によって相対密度95%以上まで緻密化されたものである。 The high-strength low thermal expansion ceramic of the present invention has a linear thermal expansion coefficient of 0 to 5 × 10 −6 / ° C., a bending strength of 150 MPa or more, and a relative density of 95 by low-temperature firing in a temperature range of 850 to 900 ° C. % Densified.

[磁器の製造方法]
本発明の高強度低熱膨張性磁器は、前記組成物からなる原料粉を750〜1000℃で仮焼後粉砕して粉末とし、これにBi23を加え、バインダーを含む成形助剤を加え所定形状に成形後、850〜900℃の温度で焼成して複合酸化物を形成することにより製造できる。
[Manufacturing method of porcelain]
The high-strength, low-thermal-expansion ceramic of the present invention is prepared by calcining the raw material powder made of the above composition at 750 to 1000 ° C. and then pulverizing it, adding Bi 2 O 3 thereto, and adding a molding aid containing a binder. After forming into a predetermined shape, it can be manufactured by firing at a temperature of 850 to 900 ° C. to form a composite oxide.

主原料である、Li2Oまたは焼成したときにLi2Oとなるリチウム化合物と、MgOまたは焼成したときにMgOとなるマグネシウム化合物と、Al23と、SiO2とは、各金属酸化物の混合物でもよいが、β−スポジュメン等の複合酸化物にMgOを必要量混合したものでもよい。出発原料として用い得る、Li2Oまたは焼成したときにLi2Oとなるリチウム化合物と、MgOまたは焼成したときにMgOとなるマグネシウム化合物と、Al23と、SiO2とは、前記各金属の酸化物粉末のほかに、焼結過程で酸化物を形成し得る塩、例えば炭酸塩、酢酸塩、硝酸塩や水酸化物等の形態、例えば炭酸リチウム(Li2CO3)、炭酸マグネシウム(MgCO3)や水酸化マグネシウム(Mg(OH)2)等の形態で添加できる。 The main raw materials, Li 2 O or a lithium compound that becomes Li 2 O when fired, MgO or a magnesium compound that becomes MgO when fired, Al 2 O 3 , and SiO 2 are metal oxides. A mixture of MgO and a complex oxide such as β-spodumene may be used. Li 2 O that can be used as a starting material or a lithium compound that becomes Li 2 O when fired, MgO or a magnesium compound that becomes MgO when fired, Al 2 O 3 , and SiO 2 are each of the above metals In addition to the oxide powder, a salt capable of forming an oxide during the sintering process, such as carbonate, acetate, nitrate, hydroxide, etc., such as lithium carbonate (Li 2 CO 3 ), magnesium carbonate (MgCO 3) magnesium and hydroxide (Mg (OH) 2) can be added in the form of such.

前記主原料に対して、焼結助剤としてBi23粉末を、好ましくは前記主原料が75〜96質量%、Bi23が4〜25質量%の範囲となるように添加混合する。 Bi 2 O 3 powder as a sintering aid is added to and mixed with the main raw material, preferably so that the main raw material is in the range of 75 to 96% by mass and Bi 2 O 3 is in the range of 4 to 25% by mass. .

Li2CO3、MgO、Al23、SiO2、Bi23等の原料粉末は、分散性を高め、望ましい強度や低熱膨張性を得るために、2.0μm以下、特に1.0μm以下の微粉末とすることが望ましい。 Raw material powders such as Li 2 CO 3 , MgO, Al 2 O 3 , SiO 2 , Bi 2 O 3 are 2.0 μm or less, particularly 1.0 μm, in order to increase dispersibility and obtain desirable strength and low thermal expansion. The following fine powder is desirable.

上記の割合で添加混合、750〜1000℃で仮焼後粉砕した混合粉末にBi23を加え、適宜バインダー、好ましくは有機バインダー、例えば、アクリル樹脂バインダー等や、可塑剤、例えば、ジブチルフタレート(DBP)等のポリエステル樹脂など、必要に応じて、トルエン、メチルエチルケトン(MEK)等の有機溶剤を添加した後、例えば、金型プレス、押し出し成形、ドクターブレード法、圧延法等により任意の形状に成形後、酸化雰囲気中、または窒素ガス、アルゴンガス等の非酸化性雰囲気中において、850〜900℃の温度で、1〜3時間焼成することにより、相対密度95%以上に緻密化することができる。 Bi 2 O 3 is added to the mixed powder added and mixed at the above ratio, calcined after calcination at 750 to 1000 ° C., and a binder, preferably an organic binder such as an acrylic resin binder, or a plasticizer such as dibutyl phthalate. After adding an organic solvent such as toluene and methyl ethyl ketone (MEK) as necessary, such as polyester resin such as (DBP), it can be formed into any shape by, for example, die pressing, extrusion molding, doctor blade method, rolling method, etc. After molding, in a non-oxidizing atmosphere such as nitrogen gas, argon gas or the like, it is densified to a relative density of 95% or more by firing at a temperature of 850 to 900 ° C. for 1 to 3 hours. it can.

この時の焼成温度が850℃より低いと、磁器が十分に緻密化せず、900℃を越えると緻密化は可能であるが、Ag、Au、Cu等の低融点導体を配線材料として用いることが難しくなる。   If the firing temperature at this time is lower than 850 ° C., the porcelain will not be sufficiently densified, and if it exceeds 900 ° C., densification is possible, but a low melting point conductor such as Ag, Au, Cu or the like should be used as the wiring material. Becomes difficult.

本発明によれば、Li、Mg、Al、及びSiの複合酸化物である固相とBi23・SiO2系液相の活性な固液反応が生じる結果、少ない焼結助剤量で磁器を緻密化することができる。そのため非晶質相の量を最小限に抑えることができる。 According to the present invention, as a result of an active solid-liquid reaction between a solid phase that is a composite oxide of Li, Mg, Al, and Si and a Bi 2 O 3 · SiO 2 liquid phase, a small amount of sintering aid is required. Porcelain can be densified. Therefore, the amount of amorphous phase can be minimized.

このように本発明によれば、低温焼成した磁器中に、少なくともLi、Al、及びSiを含むスポジュメン系結晶相及び/またはLi2O・Al23・SiO2系結晶相、Li2O・SiO2系結晶相、MgO・SiO2系結晶相、及びBi23・SiO2系結晶相を析出させることにより、強度が高い低熱膨張性磁器を得ることができる。 As described above, according to the present invention, a spodumene-based crystal phase containing at least Li, Al, and Si and / or a Li 2 O.Al 2 O 3 .SiO 2 -based crystal phase, Li 2 O -By precipitating the SiO 2 crystal phase, MgO · SiO 2 crystal phase, and Bi 2 O 3 · SiO 2 crystal phase, a low thermal expansion ceramic having high strength can be obtained.

[磁器用組成物及び磁器の用途]
本発明の磁器用組成物によれば850〜900℃の低温焼成可能で、Ag、Au、Cu等の低融点・低抵抗な導体との同時焼成が可能であり、本発明の磁器用組成物を焼結した磁器は、室温(RT=25℃)〜400℃での線熱膨張係数が0〜5×10-6/℃と小さく、かつ抗折強度が150MPa以上の高強度を有する。
[Use of porcelain composition and porcelain]
According to the porcelain composition of the present invention, it can be fired at a low temperature of 850 to 900 ° C., and can be simultaneously fired with a low melting point / low resistance conductor such as Ag, Au, Cu, etc. The porcelain composition of the present invention The sintered porcelain has a linear thermal expansion coefficient as small as 0 to 5 × 10 −6 / ° C. from room temperature (RT = 25 ° C.) to 400 ° C., and has a bending strength of 150 MPa or more.

すなわち、本発明磁器用組成物は、850〜900℃で低温焼成可能であることから、特にAg、Au、Cuなどを配線する配線基板の絶縁基板として用いることができる。   That is, since the composition for porcelain of the present invention can be fired at a low temperature of 850 to 900 ° C., it can be used particularly as an insulating substrate for a wiring substrate for wiring Ag, Au, Cu and the like.

かかる本発明磁器用組成物を用いて配線基板を作製する場合には、例えば、前記のようにして調合した混合粉末とBi23を公知のテープ成形法、例えばドクターブレード法、押し出し成形法等に従い、絶縁層形成用のグリーンシートを作製した後、そのシートの表面に配線回路層用として、Ag、Au及びCuのうちの少なくとも1種の金属、特に、Ag粉末を含む導体ペーストを用いて、グリーンシート表面にスクリーン印刷法等によって配線パターンを回路パターン状に印刷し、場合によってはシートにスルーホールやビアホール形成後、上記導体ペーストを充填する。その後、複数のグリーンシートを積層圧着した後、前記条件で焼成することにより、配線層と絶縁層とを同時に焼成することができる。 When producing a wiring board using such a composition for porcelain of the present invention, for example, the mixed powder and Bi 2 O 3 prepared as described above are formed by a known tape molding method such as a doctor blade method or an extrusion molding method. After producing a green sheet for forming an insulating layer according to the above, at least one metal of Ag, Au and Cu, particularly a conductor paste containing Ag powder is used for the wiring circuit layer on the surface of the sheet. Then, a wiring pattern is printed on the surface of the green sheet by a screen printing method or the like, and in some cases, the sheet is filled with the conductor paste after through holes and via holes are formed. Thereafter, the plurality of green sheets are laminated and pressure-bonded, and then fired under the above conditions, whereby the wiring layer and the insulating layer can be fired simultaneously.

さらに、本発明磁器によれば、雰囲気温度での熱膨張性が十分低いため、温度変化による変形が改善され、露光装置のX−Yステージやシリコンウエハ支持体の位置決め精度に付随する製品品質及び歩留りの問題も改善される。また、本発明磁器は剛性が高いので、これを適用することにより、外部衝撃が加わった場合の振動による精度低下の問題を改善することができる。   Furthermore, according to the porcelain of the present invention, since the thermal expansion at the ambient temperature is sufficiently low, deformation due to temperature change is improved, and the product quality associated with the positioning accuracy of the XY stage of the exposure apparatus and the silicon wafer support and Yield issues are also improved. In addition, since the porcelain of the present invention has high rigidity, by applying this, it is possible to improve the problem of accuracy reduction due to vibration when an external impact is applied.

このように、本発明磁器は、低温焼成が可能なばかりでなく、緻密で高強度を有し、かつ熱膨張性が低い。従って、本発明に係る磁器用組成物及び磁器は、半導体製造工程等で使用される、露光装置用のX−Yステージ、静電チャック及びその構造部品、ミラー等の部材に適した低熱膨張性セラミックスとしても最適である。   Thus, the porcelain of the present invention is not only capable of being fired at a low temperature, but also has a dense and high strength and low thermal expansion. Therefore, the composition for porcelain and the porcelain according to the present invention have low thermal expansion suitable for members such as an XY stage for an exposure apparatus, an electrostatic chuck and its structural parts, and a mirror used in a semiconductor manufacturing process and the like. It is also optimal as a ceramic.

[陽極接合]
本発明の高強度低熱膨張性磁器は、MEMS(Micro Electro Mechanical Systems)実装用基板の作成に必須な接合技術である陽極接合が可能である。
[Anodic bonding]
The high-strength, low-thermal-expansion porcelain of the present invention is capable of anodic bonding, which is a bonding technique essential for the production of MEMS (Micro Electro Mechanical Systems) mounting substrates.

陽極接合は、アルカリ金属を含むガラスとシリコンを接触させた状態で、ガラス中のナトリウムなどのアリカリ金属イオンが動き易い温度まで加熱し、シリコン側を正、ガラス側を負の電極に接続して数百〜千ボルト程度の直流電圧を印加することにより、ガラスとシリコンを接合する方法である。アルカリ金属イオンが負極側に移動した際に生じる非架橋酸素イオンとシリコンが静電的に引き合い、磁器−シリコン界面で化学結合を生じることにより、強固で信頼性の高い接合が得られる。   In anodic bonding, glass containing alkali metal is in contact with silicon, heated to a temperature at which ant potassium metal ions such as sodium in the glass move easily, and the silicon side is connected to the positive electrode and the glass side is connected to the negative electrode. This is a method of joining glass and silicon by applying a DC voltage of about several hundred to 1,000 volts. Non-bridging oxygen ions generated when alkali metal ions move to the negative electrode side and silicon are electrostatically attracted to form a chemical bond at the porcelain-silicon interface, whereby a strong and reliable bond can be obtained.

陽極接合する温度は、MEMSに与える影響が少ないため350℃以下の低温が好適であり、例えば300〜330℃またはそれ以下の低い接合温度が特に好適である。
本発明の高強度低熱膨張性磁器は、陽極接合時の伝導イオンを従来のNaから、よりイオン半径の小さいLiに変えたことによって、MEMSに与える影響の少ない好適な温度範囲(300〜350℃)での陽極接合が可能である。
The temperature at which the anodic bonding is performed has a small influence on the MEMS, and therefore, a low temperature of 350 ° C. or lower is preferable, and a low bonding temperature of 300 to 330 ° C. or lower is particularly preferable.
The high-strength, low-thermal-expansion porcelain of the present invention has a suitable temperature range (300 to 350 ° C.) that has little influence on MEMS by changing the conductive ions at the time of anodic bonding from conventional Na to Li having a smaller ion radius. ) Anodic bonding is possible.

陽極接合はシリコンだけでなく、GaAs、コバール、Al、Tiなども接合可能であり、本発明の磁器においても特に制限されるものではない。   The anodic bonding can bond not only silicon but also GaAs, Kovar, Al, Ti and the like, and is not particularly limited in the porcelain of the present invention.

陽極接合においては、相手材との熱膨張による位置ずれ等が問題になることから、基板材料の線熱膨張係数は、相手材の線熱膨張係数と近似することが求められ、成形焼成後の材料の線熱膨張係数は相手材の線熱膨張係数の0.5%以内であることが好ましい。相手材がシリコンの場合には、本発明の磁器の線熱膨張係数は、0〜5.0×10-6/℃、好ましくは3.0〜4.0×10-6/℃、さらに好ましくは3.2〜3.8×10-6/℃、特に好ましくは3.2〜3.5×10-6/℃である。 In anodic bonding, misalignment due to thermal expansion with the counterpart material becomes a problem, so the linear thermal expansion coefficient of the substrate material is required to approximate the linear thermal expansion coefficient of the counterpart material. The linear thermal expansion coefficient of the material is preferably within 0.5% of the linear thermal expansion coefficient of the counterpart material. If the counterpart material is silicon, the linear thermal expansion coefficient of porcelain of the invention, 0 to 5.0 × 10 -6 / ° C., preferably 3.0~4.0 × 10 -6 / ℃, more preferably Is 3.2 to 3.8 × 10 −6 / ° C., particularly preferably 3.2 to 3.5 × 10 −6 / ° C.

以下に実施例及び比較例を挙げ、本発明を更に詳細に説明するが、これらは本発明を限定するものではない。   EXAMPLES The present invention will be described in more detail below with reference to examples and comparative examples, but these do not limit the present invention.

実施例1〜8及び比較例1〜9
平均粒径が1μm以下の、Li2CO3、MgO、Al23、SiO2を酸化物換算の含有比が表1の割合となるようにボールミル中で混合し、750〜1000℃で仮焼後、0.2〜5μmまで微粉砕して粉末とした。これらの仮焼物に表1の割合でBi23を添加し、有機バインダー(ポリビニルアルコール)、可塑剤(ジブチルフタレート)、トルエンを添加混合して、ドクターブレード法により厚さ150μmのグリーンシートを作成した。このグリーンシートを5枚積層し、70℃の温度で150kg/cm2の圧力を加えて熱圧着した。得られた積層体を大気中で、500℃で脱バインダーした後、大気中で表1の温度条件下で焼成して多層基板用磁器を得た。
Examples 1-8 and Comparative Examples 1-9
Li 2 CO 3 , MgO, Al 2 O 3 , and SiO 2 having an average particle size of 1 μm or less were mixed in a ball mill so that the content ratio in terms of oxide would be the ratio shown in Table 1, and temporarily mixed at 750 to 1000 ° C. After firing, the powder was finely pulverized to 0.2 to 5 μm. Bi 2 O 3 is added to these calcined materials in the ratio shown in Table 1, an organic binder (polyvinyl alcohol), a plasticizer (dibutyl phthalate), and toluene are added and mixed, and a green sheet having a thickness of 150 μm is formed by a doctor blade method. Created. Five green sheets were laminated and thermocompression bonded by applying a pressure of 150 kg / cm 2 at a temperature of 70 ° C. The resulting laminate was debindered at 500 ° C. in the air, and then fired in the air under the temperature conditions shown in Table 1 to obtain a multilayer substrate porcelain.

得られた焼結体について嵩密度をアルキメデス法にて測定した。また、JISR1601に基づき、磁器の3点曲げ強度(抗折強度)を測定した。TMA(熱機械的分析)法にて室温(RT=25℃)から400℃における線熱膨張係数を測定した。また、各試料についてX線回折測定を行い、標準試料のX線回折ピークとの比較によって磁器の構成相を同定した。これらの測定結果を表1に示す。   The bulk density of the obtained sintered body was measured by the Archimedes method. Moreover, based on JISR1601, the three-point bending strength (bending strength) of the porcelain was measured. The linear thermal expansion coefficient from room temperature (RT = 25 ° C.) to 400 ° C. was measured by the TMA (thermomechanical analysis) method. Further, X-ray diffraction measurement was performed for each sample, and the constituent phases of the porcelain were identified by comparison with the X-ray diffraction peak of the standard sample. These measurement results are shown in Table 1.

Figure 2010254505
Figure 2010254505

表1中、Lithium Silicate、Lithium Aluminum Silicate、Enstatite、Bismus Silicate、及びForsteriteは、各々下記結晶相を表す。
Lithium Silicate:Li2SiO3、Li2Si25など、
Lithium Aluminum Silicate :スポジュメン(LiAlSi26)など、
Enstatite :MgSiO3
Bismus Silicate:Eulytite、Bi22・SiO3など、
Forsterite:Mg2SiO4
In Table 1, Lithium Silicate, Lithium Aluminum Silicate, Enstatite, Bismus Silicate, and Forsterite each represent the following crystal phase.
Lithium Silicate: Li 2 SiO 3 , Li 2 Si 2 O 5 etc.
Lithium Aluminum Silicate: Spodumene (LiAlSi 2 O 6 ), etc.
Enstatite: MgSiO 3
Bismus Silicate: Eulytite, Bi 2 O 2 and SiO 3 etc.
Forsterite: Mg 2 SiO 4 .

表1の結晶相の欄に記載したように、実施例の磁器については、β−スポジュメン系結晶相及び/またはLi2O・Al23・SiO2系結晶相、Li2O・SiO2系結晶相、MgO・SiO2系結晶相の各相の存在が確認された。 As described in the column of the crystal phase in Table 1, for the porcelain of the example, the β-spodumene crystal phase and / or the Li 2 O.Al 2 O 3 .SiO 2 crystal phase, Li 2 O.SiO 2 The existence of each phase of the system crystal phase and the MgO.SiO 2 system crystal phase was confirmed.

表1に示す結果から明らかなように、Li2O、MgO、Al23、SiO2を本発明の組成範囲で含み、結晶相として、β−スポジュメン系結晶相及び/またはLi2O・Al23・SiO2系結晶相、Li2O・SiO2系結晶相、MgO・SiO2系結晶相が主として析出した本発明の低温焼成磁器は、いずれも線熱膨張係数が0〜5×10-6/℃、抗折強度が150MPa以上の優れた値を示す高強度低熱膨張性磁器である。
これに対して、Li2Oの含有量が過少の場合には焼結せず(比較例1)、過多の場合には線熱膨張係数が5×10-6/℃を超え(比較例2)、MgOを含まない場合には焼結せず(比較例9)、MgOの含有量が過多の場合には線熱膨張係数が5×10-6/℃を超え(比較例5〜6)、Al23の含有量が過多の場合には焼結しない(比較例7)。またBi23の含有量が過少の場合には焼結せず(比較例3)、過多の場合には抗折強度が低くなる(比較例4)。
As is apparent from the results shown in Table 1, Li 2 O, MgO, Al 2 O 3 , SiO 2 are included in the composition range of the present invention, and the β-spodumene crystal phase and / or Li 2 O. The low-temperature fired ceramics of the present invention in which the Al 2 O 3 · SiO 2 crystal phase, Li 2 O · SiO 2 crystal phase, and MgO · SiO 2 crystal phase are mainly precipitated have a linear thermal expansion coefficient of 0 to 5 respectively. This is a high-strength, low-thermal-expansion ceramic exhibiting excellent values of × 10 −6 / ° C. and bending strength of 150 MPa or more.
On the other hand, when the content of Li 2 O is too small, it is not sintered (Comparative Example 1), and when it is excessive, the linear thermal expansion coefficient exceeds 5 × 10 −6 / ° C. (Comparative Example 2). ), When MgO is not contained, sintering is not performed (Comparative Example 9), and when the content of MgO is excessive, the linear thermal expansion coefficient exceeds 5 × 10 −6 / ° C. (Comparative Examples 5 to 6) When the content of Al 2 O 3 is excessive, it is not sintered (Comparative Example 7). Further, when the content of Bi 2 O 3 is too small, sintering is not performed (Comparative Example 3), and when it is excessive, the bending strength is low (Comparative Example 4).

[陽極接合の確認]
実施例で焼結した基板8水準を準備し、陽極接合性能を評価した。前記基板8水準、各1枚を20mm□にダイシングし、板厚み0.3mmに鏡面研磨した。この基板とシリコンとを加熱したホットプレート上でシリコンが正極、基板が負極になるように直流電圧(600VDC)を印加して陽極接合を行った。陽極接合回路上に電圧検出用の抵抗素子を挿入し、その抵抗素子にかかる電圧をモニタリングし、接合電流が接合時間とともにどのように変化するかをチェックした。
なお、焼き上がった状態の基板の表面粗さ(Ra:中心線平均粗さ)は200nm程度であったが、本発明では、鏡面研磨加工レベルを上げることにより、パイレックス(登録商標)ガラス(商品名;コーニング社製のホウケイ酸ガラス)と同等の表面粗さ(数nmRa)にまで仕上げた。この鏡面研磨した基板を用いて、300℃、330℃、及び360℃で陽極接合を行った。
得られた陽極接合体にガラス切りで傷をつけて手で分割し、破断面をSEMで観察した。結果は表2に示す通り、全水準でシリコンと低温焼結基板が連続した破断面になっており、不連続点(デラミネーション)はなく、強固に接合できている(OK)ことが観察された。
[Confirmation of anodic bonding]
The substrate 8 level sintered in the examples was prepared, and the anodic bonding performance was evaluated. The substrate 8 level, each one was diced to 20 mm □, and mirror polished to a plate thickness of 0.3 mm. On this hot plate where the substrate and silicon were heated, anodic bonding was performed by applying a DC voltage (600 VDC) so that silicon was a positive electrode and the substrate was a negative electrode. A resistance element for voltage detection was inserted on the anode junction circuit, and the voltage applied to the resistance element was monitored to check how the junction current changed with the junction time.
Although the surface roughness (Ra: centerline average roughness) of the baked substrate was about 200 nm, in the present invention, by increasing the mirror polishing level, Pyrex (registered trademark) glass (product) Name: Finished to a surface roughness (several nmRa) equivalent to Corning Borosilicate Glass). Using this mirror-polished substrate, anodic bonding was performed at 300 ° C., 330 ° C., and 360 ° C.
The obtained anodic bonded body was scratched with glass and divided by hand, and the fractured surface was observed with SEM. As shown in Table 2, the results show that the silicon and the low-temperature sintered substrate have a continuous fracture surface at all levels, and there are no discontinuities (delaminations), and it is observed that they are firmly bonded (OK). It was.

比較のため、Naを陽極接合時の伝導イオンとする低温焼成セラミックスとシリコンとを陽極接合した接合体についてデラミネーションの確認を行った。なお、比較のためのLTCCは次のようにして作製した。
すなわち、陽極接合できるガラスとして市販されているガラス粉末(SiO2:81.9〜82.4質量%、Al23:2.9〜3.2質量%、B23:10.5〜11.0質量%、Na2O:3.9〜4.7質量%、K2O、Fe23、CaO、MgOはいずれも0.1%以下)55〜60質量%を平均粒径(D50)で0.6〜2.5μmに粉砕し、平均粒径1〜3μmのアルミナ粉末8〜25質量%および平均粒径1〜3μmのコージェライト粉末(ガラス再結晶タイプ)18〜34質量%と混合した。この混合物に溶剤としてトルエンを加えてボールミル中で分散したあと、バインダーとしてポリビニルアルコール、可塑剤としてジブチルフタレート(DBP)を加えスラリーを作製した。得られたスラリーをドクターブレード法でシート状に成形し、乾燥し、厚み125μmのグリーンシートを得た。これを所定の大きさに切断し、8層に積層後、大気中、835℃または850℃で1時間焼成を行い、Naを陽極接合時の伝導イオンとするガラス・フィラー複合LTCC(BSW)を作製した。この基板(BSW)は、330℃で陽極接合できなかった(NG)。
For comparison, delamination was confirmed for a bonded body obtained by anodically bonding silicon with low-temperature fired ceramics using Na as a conductive ion during anodic bonding. The LTCC for comparison was produced as follows.
That is, the glass powder which is commercially available as a glass capable of anodic bonding (SiO 2: 81.9 to 82.4 wt%, Al 2 O 3: 2.9~3.2 wt%, B 2 O 3: 10.5 11.0 wt%, Na 2 O: 3.9~4.7 wt%, K 2 O, Fe 2 O 3, CaO, more than 0.1% any MgO is) an average particle of 55 to 60 wt% It is pulverized to 0.6 to 2.5 μm in diameter (D 50 ), 8 to 25 mass% of alumina powder having an average particle diameter of 1 to 3 μm, and cordierite powder (glass recrystallization type) having an average particle diameter of 1 to 3 μm 18 to Mixed with 34% by weight. Toluene was added to this mixture as a solvent and dispersed in a ball mill, and then polyvinyl alcohol as a binder and dibutyl phthalate (DBP) as a plasticizer were added to prepare a slurry. The obtained slurry was formed into a sheet by a doctor blade method and dried to obtain a green sheet having a thickness of 125 μm. This is cut into a predetermined size, laminated into 8 layers, fired at 835 ° C. or 850 ° C. for 1 hour in the air, and glass / filler composite LTCC (BSW) using Na as a conductive ion at the time of anodic bonding. Produced. This substrate (BSW) could not be anodically bonded at 330 ° C. (NG).

Figure 2010254505
Figure 2010254505

以上のように、従来のNaイオンを陽極接合時の伝導イオンとする低温焼成セラミックス(LTCC)と比較して、陽極接合時の伝導イオンをLiイオンとした本発明の磁器によれば350℃以下の低温でも陽極接合できる。   As described above, according to the porcelain of the present invention in which the conductive ions at the time of anodic bonding are Li ions, compared to the conventional low-temperature fired ceramics (LTCC) using Na ions as the conductive ions at the time of anodic bonding, 350 ° C. or less. Anodic bonding is possible even at low temperatures.

本発明の磁器用組成物によれば、850〜900℃の温度で焼結でき、Ag、Au、Cu等の低融点・低抵抗な導体との同時焼成が可能であり、これを焼結することにより、室温(RT=25℃)〜400℃での線熱膨張係数が0〜5×10-6/℃と小さく、かつ抗折強度が150MPa以上と高い強度を有する本発明の高強度低熱膨張性磁器を提供できる。すなわち、本発明の磁器用組成物は、850〜900℃の温度で焼結可能であることから、特にAg、Au、Cuなどを配線する配線基板の絶縁基板として用いることができるばかりでなく、焼結された高強度低熱膨張性磁器は、半導体製造工程等で使用される、露光装置用のX−Yステージ、静電チャック及びその構造部品、ミラー等の部材に適した高強度低熱膨張性セラミックスとして有用である。また300〜350℃の温度で陽極接合が可能であり、MEMS実装用基板としても有用である。 According to the porcelain composition of the present invention, sintering can be performed at a temperature of 850 to 900 ° C., and simultaneous firing with a low melting point / low resistance conductor such as Ag, Au, or Cu is possible, and this is sintered. by room temperature (RT = 25 ℃) ~400 linear thermal expansion coefficient at ° C. is 0~5 × 10 -6 / ℃ and smaller, and high strength low thermal of the invention flexural strength having the above high strength 150MPa An expandable porcelain can be provided. That is, since the composition for porcelain of the present invention can be sintered at a temperature of 850 to 900 ° C., it can be used not only as an insulating substrate of a wiring substrate for wiring Ag, Au, Cu, etc. Sintered high-strength, low-thermal-expansion porcelain is a high-strength, low-thermal-expansion suitable for members such as XY stages for exposure equipment, electrostatic chucks and their structural parts, and mirrors used in semiconductor manufacturing processes. Useful as ceramics. Further, anodic bonding is possible at a temperature of 300 to 350 ° C., and it is also useful as a substrate for MEMS mounting.

Claims (12)

(A)Li2Oまたは焼成したときにLi2Oとなるリチウム化合物(a1)とMgOまたは焼成したときにMgOとなるマグネシウム化合物(a2)とAl23(a3)とSiO2(a4)との混合物であって、a1とa2とa3とa4の割合(質量%比)α:β:γ:δ=7.6〜13.2:4.0〜10.3:13.0〜30.4:53.7〜72.8の範囲にある仮焼物75〜96質量%と
(B)Bi234〜25質量%を含有し、850〜900℃の温度で焼成して式(1)
Figure 2010254505
(式中、aは質量比で0.04〜0.25であり、α、β、γ及びδは質量%比でα:β:γ:δ=7.6〜13.2:4.0〜10.3:13.0〜30.4:53.7〜72.8である。)
で示される高強度低熱膨張性磁器を生成する高強度低熱膨張性磁器用組成物。
(A) Li 2 O or lithium compound (a1) that becomes Li 2 O when fired, MgO or magnesium compound (a2), Al 2 O 3 (a3), and SiO 2 (a4) that becomes MgO when fired A ratio of a1, a2, a3 and a4 (mass% ratio) α: β: γ: δ = 7.6 to 13.2: 4.0 to 10.3: 13.0 to 30 .4: 75 to 96% by mass of the calcined product in the range of 53.7 to 72.8 and (B) Bi 2 O 3 4 to 25% by mass, and calcined at a temperature of 850 to 900 ° C. 1)
Figure 2010254505
(Wherein a is a mass ratio of 0.04 to 0.25, and α, β, γ, and δ are mass ratios of α: β: γ: δ = 7.6 to 13.2: 4.0. ˜10.3: 13.0-30.4: 53.7-72.8)
A composition for high-strength low-thermal-expansion porcelain that produces a high-strength low-thermal-expansion porcelain represented by
Li2Oまたは焼成したときにLi2Oとなるリチウム化合物(a1)とMgOまたは焼成したときにMgOとなるマグネシウム化合物(a2)とAl23(a3)とSiO2(a4)との混合物を750〜1000℃の温度で焼成した仮焼物を0.2〜5μmに微粉砕して、これにBi23を所定量混合して850〜900℃で焼結させた請求項1に記載の高強度低熱膨張性磁器用組成物。 Li 2 O or a lithium compound (a1) that becomes Li 2 O when fired and a mixture of MgO or a magnesium compound (a2) that becomes MgO when fired, Al 2 O 3 (a3), and SiO 2 (a4) The calcined product obtained by firing at a temperature of 750 to 1000 ° C is finely pulverized to 0.2 to 5 µm, and a predetermined amount of Bi 2 O 3 is mixed with the calcined product and sintered at 850 to 900 ° C. A high-strength, low-heat-expandable porcelain composition. 前記a1、a2、a3及びa4の混合物の一部として、Li2OとAl23とSiO2との複合酸化物であるβ−スポジュメンを含む請求項1または2に記載の高強度低熱膨張性磁器用組成物。 The high-strength low thermal expansion according to claim 1 or 2, comprising β-spodumene, which is a composite oxide of Li 2 O, Al 2 O 3 and SiO 2 , as a part of the mixture of a1, a2, a3 and a4. A composition for natural porcelain. 式(1)
Figure 2010254505
(式中の記号は請求項1の記載と同じ意味を表す。)
で示される組成を有する複合酸化物を含む高強度低熱膨張性磁器。
Formula (1)
Figure 2010254505
(The symbols in the formula have the same meaning as described in claim 1.)
A high-strength, low-thermal-expansion porcelain containing a composite oxide having a composition represented by:
前記複合酸化物が、β−スポジュメン系結晶相及び/またはLi2O・Al23・SiO2系結晶相、Li2O・SiO2系結晶相、及びMgO・SiO2系結晶相を含む請求項4に記載の高強度低熱膨張性磁器。 The composite oxide includes a β-spodumene crystal phase and / or a Li 2 O · Al 2 O 3 · SiO 2 crystal phase, a Li 2 O · SiO 2 crystal phase, and an MgO · SiO 2 crystal phase. The high-strength low thermal expansion ceramic according to claim 4. β−スポジュメン系結晶相及び/またはLi2O・Al23・SiO2系結晶相、Li2O・SiO2系結晶相、及びMgO・SiO2系結晶相を前記磁器の全体積の80%以上含む請求項5に記載の高強度低熱膨張性磁器。 The β-spodumene crystal phase and / or the Li 2 O · Al 2 O 3 · SiO 2 crystal phase, the Li 2 O · SiO 2 crystal phase, and the MgO · SiO 2 crystal phase are 80% of the total volume of the porcelain. The high-strength low-thermal-expansion ceramic according to claim 5 containing at least 抗折強度が150MPa以上である請求項4〜6のいずれか1項記載の高強度低熱膨張性磁器。   The high strength low thermal expansion ceramic according to any one of claims 4 to 6, wherein the bending strength is 150 MPa or more. 25〜400℃における線熱膨張係数が0〜5×10-6/℃である請求項4〜7のいずれか1項記載の高強度低熱膨張性磁器。 The high-strength low-thermal-expansion ceramic according to any one of claims 4 to 7, wherein a linear thermal expansion coefficient at 25 to 400 ° C is 0 to 5 × 10 -6 / ° C. 陽極接合時の伝導イオンをLiイオンとし、300〜350℃の温度で陽極接合可能な、式(1)
Figure 2010254505
(式中の記号は請求項1の記載と同じ意味を表す。)
で示される組成を有する複合酸化物を含む高強度低熱膨張性磁器。
Formula (1), in which the conduction ion at the time of anodic bonding is Li ion, and anodic bonding is possible at a temperature of 300 to 350 ° C.
Figure 2010254505
(The symbols in the formula have the same meaning as described in claim 1.)
A high-strength, low-thermal-expansion porcelain containing a composite oxide having a composition represented by:
シリコン、GaAs、コバール、Al、またはTiと陽極接合可能な請求項9に記載の高強度低熱膨張性磁器。   The high-strength low-thermal-expansion porcelain according to claim 9, which can be anodically bonded to silicon, GaAs, Kovar, Al, or Ti. (A)Li2Oまたは焼成したときにLi2Oとなるリチウム化合物(a1)とMgOまたは焼成したときにMgOとなるマグネシウム化合物(a2)とAl23(a3)とSiO2(a4)との混合物であって、a1とa2とa3とa4の質量%比α:β:γ:δ=7.6〜13.2:4.0〜10.3:13.0〜30.4:53.7〜72.8の範囲にある混合物を750〜1000℃の温度で焼成粉砕した仮焼物75〜96質量%に
(B)Bi234〜25質量%を添加混合して、バインダーを含む成形助剤を加え所定形状に成形後、850〜900℃で焼成して、式(1)
Figure 2010254505
(式中の記号は請求項1の記載と同じ意味を表す。)
で示される組成を有する複合酸化物を形成することを特徴とする高強度低熱膨張性磁器の製造方法。
(A) Li 2 O or lithium compound (a1) that becomes Li 2 O when fired, MgO or magnesium compound (a2), Al 2 O 3 (a3), and SiO 2 (a4) that becomes MgO when fired A mass ratio of a1, a2, a3 and a4 α: β: γ: δ = 7.6 to 13.2: 4.0 to 10.3: 13.0 to 30.4: the mixture in the range of 53.7 to 72.8 in the precalcination 75 to 96 wt% firing pulverized at a temperature of 750 to 1000 ° C. (B) was added and mixed Bi 2 O 3 4 to 25% by weight, a binder After forming into a predetermined shape by adding a molding auxiliary containing baked at 850 to 900 ° C., the formula (1)
Figure 2010254505
(The symbols in the formula have the same meaning as described in claim 1.)
A method for producing a high-strength, low-thermal-expansion ceramic, characterized in that a composite oxide having the composition shown in FIG.
テープ成形法により成形した絶縁層形成用のグリーンシートを焼成する請求項11記載の高強度低熱膨張性磁器の製造方法。   The manufacturing method of the high intensity | strength low thermal expansible ceramics of Claim 11 which bakes the green sheet for insulating layer shaping | molding shape | molded by the tape shaping | molding method.
JP2009104760A 2009-04-23 2009-04-23 Low-temperature fired high-strength low-thermal-expansion porcelain and method for producing the same Expired - Fee Related JP5249121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009104760A JP5249121B2 (en) 2009-04-23 2009-04-23 Low-temperature fired high-strength low-thermal-expansion porcelain and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009104760A JP5249121B2 (en) 2009-04-23 2009-04-23 Low-temperature fired high-strength low-thermal-expansion porcelain and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010254505A true JP2010254505A (en) 2010-11-11
JP5249121B2 JP5249121B2 (en) 2013-07-31

Family

ID=43315892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009104760A Expired - Fee Related JP5249121B2 (en) 2009-04-23 2009-04-23 Low-temperature fired high-strength low-thermal-expansion porcelain and method for producing the same

Country Status (1)

Country Link
JP (1) JP5249121B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230968A (en) * 2010-04-28 2011-11-17 Nikko Co Low temperature-fired high strength low thermal expansion ceramic and method for producing the same
JP2016172683A (en) * 2015-03-12 2016-09-29 中国科学院上海硅酸塩研究所 Low temperature simultaneous calcination ceramic material and manufacturing method therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126275A (en) * 1984-07-16 1986-02-05 Shibuya Kogyo Co Ltd Cooling device for laser optical component
JPS6172679A (en) * 1984-09-14 1986-04-14 株式会社日本自動車部品総合研究所 Low thermal expansion ceramic sintered body
JPH07187765A (en) * 1993-12-27 1995-07-25 Kyocera Corp Insulating porcelain, its production process and multilayered wiring base plate
JPH1053460A (en) * 1996-08-05 1998-02-24 Mizuno Giken:Kk Thermal shock resistant ceramic material and production thereof
JPH1087365A (en) * 1996-09-10 1998-04-07 Mizuno Giken:Kk Thermal shock resistant ceramics and its production
JP2000290064A (en) * 1999-04-06 2000-10-17 Nippon Steel Corp Low thermal expansion and high rigidity ceramic sintered compact
JP2006232667A (en) * 2006-04-03 2006-09-07 Kyocera Corp Low thermal expansion ceramic and member for device for manufacturing semiconductor using it
JP2010037165A (en) * 2008-08-06 2010-02-18 Nikko Co Anodic joinable ceramic and composition for ceramic

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126275A (en) * 1984-07-16 1986-02-05 Shibuya Kogyo Co Ltd Cooling device for laser optical component
JPS6172679A (en) * 1984-09-14 1986-04-14 株式会社日本自動車部品総合研究所 Low thermal expansion ceramic sintered body
JPH07187765A (en) * 1993-12-27 1995-07-25 Kyocera Corp Insulating porcelain, its production process and multilayered wiring base plate
JPH1053460A (en) * 1996-08-05 1998-02-24 Mizuno Giken:Kk Thermal shock resistant ceramic material and production thereof
JPH1087365A (en) * 1996-09-10 1998-04-07 Mizuno Giken:Kk Thermal shock resistant ceramics and its production
JP2000290064A (en) * 1999-04-06 2000-10-17 Nippon Steel Corp Low thermal expansion and high rigidity ceramic sintered compact
JP2006232667A (en) * 2006-04-03 2006-09-07 Kyocera Corp Low thermal expansion ceramic and member for device for manufacturing semiconductor using it
JP2010037165A (en) * 2008-08-06 2010-02-18 Nikko Co Anodic joinable ceramic and composition for ceramic

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012039651; KARKHANAVALA, M.D. et al.: 'Reactions in the System Li2O-MgO-Al2O3-SiO2: 1, The Cordierite-Spodumene Join' Journal of the American Ceramic Society Volume 36, Issue 12, pp.393-397, 195312, American Ceramic Society *
JPN6012039654; 毛利護: 'シリコンと熱膨張係数を合わせた多層貫通配線LTCC基板' Materials Integration Vol.22, Mo.04, pp.20-28, 2009, ティー・アイ・シィー *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230968A (en) * 2010-04-28 2011-11-17 Nikko Co Low temperature-fired high strength low thermal expansion ceramic and method for producing the same
JP2016172683A (en) * 2015-03-12 2016-09-29 中国科学院上海硅酸塩研究所 Low temperature simultaneous calcination ceramic material and manufacturing method therefor

Also Published As

Publication number Publication date
JP5249121B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5175650B2 (en) Porcelain capable of anodic bonding and composition for porcelain
JP4840935B2 (en) Ceramic multilayer substrate
JP6724481B2 (en) Ceramic substrate and manufacturing method thereof
JP2003055034A (en) Laminated glass ceramic material and laminated glass ceramic sintered body
JP4557417B2 (en) Manufacturing method of low-temperature fired ceramic wiring board
WO2012066976A1 (en) Crystalline glass powder
JP2008270741A (en) Wiring board
IE903823A1 (en) Ceramic composition of matter and its use
JP4890968B2 (en) Low thermal expansion ceramic joined body and manufacturing method thereof
CN106536448B (en) Medium K L TCC compositions and devices
JP2008053525A (en) Multilayer ceramic substrate and its manufacturing method
JP5249121B2 (en) Low-temperature fired high-strength low-thermal-expansion porcelain and method for producing the same
JP5175791B2 (en) Low-temperature fired high-strength low-thermal-expansion porcelain and method for producing the same
WO1989001461A1 (en) Co-sinterable metal-ceramic packages and materials therefor
CN109565939A (en) Ceramic substrate and module having built-in electronic parts
JP5566764B2 (en) Low temperature fired high strength low thermal expansion ceramic
JP2009263189A (en) Low temperature-fired high strength low thermal expansion ceramic, and method for producing the same
JP2006073280A (en) Metalized composition and ceramic wiring board
JP2009280417A (en) Anode-joinable ceramic composition for low temperature sintering
JP2018008863A (en) Dielectric ceramic material and dielectric ceramic composition
JP2002053369A (en) Ceramic sintered compact and wiring board using the same
JP4047050B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board using the same
JP2008186905A (en) Manufacturing method for low-temperature baked wiring board
JPH0354163A (en) Ceramic material composition and use thereof
JP2016160176A (en) Method for producing low temperature sintered alumina ceramic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees