JP5566764B2 - Low temperature fired high strength low thermal expansion ceramic - Google Patents

Low temperature fired high strength low thermal expansion ceramic Download PDF

Info

Publication number
JP5566764B2
JP5566764B2 JP2010104290A JP2010104290A JP5566764B2 JP 5566764 B2 JP5566764 B2 JP 5566764B2 JP 2010104290 A JP2010104290 A JP 2010104290A JP 2010104290 A JP2010104290 A JP 2010104290A JP 5566764 B2 JP5566764 B2 JP 5566764B2
Authority
JP
Japan
Prior art keywords
low
sio
strength
crystal phase
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010104290A
Other languages
Japanese (ja)
Other versions
JP2011230968A (en
Inventor
里紗 林
直樹 木谷
護 毛利
淳 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Co Ltd
Toyama University
Original Assignee
Nikko Co Ltd
Toyama University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Co Ltd, Toyama University filed Critical Nikko Co Ltd
Priority to JP2010104290A priority Critical patent/JP5566764B2/en
Publication of JP2011230968A publication Critical patent/JP2011230968A/en
Application granted granted Critical
Publication of JP5566764B2 publication Critical patent/JP5566764B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、低温焼成高強度低熱膨張性磁器及びその製造方法に関する。さらに詳しく言えば、本発明は、多層基板用材料として信頼性が高く、Ag、Au、Cu等の低抵抗金属と同時焼成でき、低温焼成が可能で、低熱膨張性を実現でき、陽極接合可能な高強度低熱膨張性磁器の製造方法、及びその方法により得られる高強度低熱膨張性磁器に関するものである。   The present invention relates to a low-temperature fired high-strength low-thermal-expansion ceramic and a method for producing the same. More specifically, the present invention is highly reliable as a multi-layer substrate material, can be co-fired with a low resistance metal such as Ag, Au, Cu, etc., can be fired at low temperature, can realize low thermal expansion, and can be anodic bonded. The present invention relates to a method for producing such a high-strength low thermal expansion ceramic and a high-strength low thermal expansion ceramic obtained by the method.

近年、高度情報化時代を迎え、半導体素子には、高速化と共に、高集積化、及び実装の高密度化が求められている。高集積化や実装の高密度化のためには抵抗率の低い配線材料(Ag、Au、Cu等)の使用が求められるが、これらの金属は融点が低いため、配線パターンの印刷後に基板を焼成する多層配線基板等では、低温焼成可能な基板材料システム(LTCC基板)を用いる必要がある。このため、電子機器用基板材料として従来広く用いられてきたアルミナ基板に代わる、低温焼成可能な材料が必要とされている。   In recent years, with the advent of advanced information technology, semiconductor devices are required to have higher integration, higher integration, and higher mounting density. The use of low-resistivity wiring materials (Ag, Au, Cu, etc.) is required for higher integration and higher packaging density. However, since these metals have a low melting point, the substrate is printed after the wiring pattern is printed. In a multilayer wiring board or the like to be fired, it is necessary to use a substrate material system (LTCC board) that can be fired at a low temperature. Therefore, there is a need for a material that can be fired at a low temperature in place of an alumina substrate that has been widely used as a substrate material for electronic equipment.

最近では、ガラスと無機質フィラーとからなるガラスセラミックス材料が検討されている。例えば、特開2000−188017号公報(特許文献1)には、ディオプサイド(CaMgSi26)型結晶相を析出可能なガラス相と、フィラーとしてMg及び/またはZnとTiとを含有する酸化物を含む1000℃以下で焼成可能な磁器用組成物が開示されている。この種のガラスセラミックス材料は、800〜1000℃の温度で焼成することができるため、導体抵抗の低いAg、Au、Cu等と同時焼成できるという特長がある。誘電率や耐湿性からくる特性の安定性等だけでなく、セラミック内部に誘電体と配線を活用した内蔵受動部品の形成が可能であるため、LTCC基板は高周波用途の基板として通信機器や計測機器に数多く使用されている。実際に製品に適用される場合、基板には機能性だけでなく実装性や二次実装時の信頼性等が求められる。この際に、熱膨張係数が実装される基材と近いことが求められる。例えば、MEMS(Micro Electro Mechanical Systems)用途などにおいてシリコンとのウエハレベル実装を考えた場合、熱膨張係数がシリコンにマッチした、熱膨張係数の低い材料が必要となる。 Recently, glass ceramic materials composed of glass and inorganic fillers have been studied. For example, JP 2000-188017 A (Patent Document 1) contains a glass phase capable of precipitating a diopside (CaMgSi 2 O 6 ) type crystal phase and Mg and / or Zn and Ti as fillers. A porcelain composition containing an oxide that can be fired at 1000 ° C. or lower is disclosed. Since this type of glass ceramic material can be fired at a temperature of 800 to 1000 ° C., it has a feature that it can be fired simultaneously with Ag, Au, Cu or the like having a low conductor resistance. In addition to the stability of characteristics resulting from dielectric constant and moisture resistance, it is possible to form built-in passive components using dielectrics and wiring inside ceramics, so LTCC substrates are used as high frequency applications as communication devices and measuring devices. Many are used. When actually applied to a product, the substrate is required to have not only functionality but also mountability and reliability at the time of secondary mounting. At this time, it is required that the thermal expansion coefficient is close to that of the substrate on which the thermal expansion coefficient is mounted. For example, when considering wafer level mounting with silicon in MEMS (Micro Electro Mechanical Systems) applications, etc., a material having a low thermal expansion coefficient that matches that of silicon is required.

低熱膨張性セラミックスとしては、従来よりコージェライトセラミックスやリチウムアルミノシリケートセラミックスが知られている。コージェライトセラミックスは、原料粉末に焼結助剤を添加し、所定形状に成形後、1000〜1400℃の温度で焼成することによって製造する(特開平2−229760号公報:特許文献2)。また、リチウムアルミノシリケートセラミックスについては、β−スポジュメンは、原料を所定形状に成形後、1100〜1400℃の温度で焼成して製造する(特公昭53−9605号公報:特許文献3)。   Conventionally, cordierite ceramics and lithium aluminosilicate ceramics are known as low thermal expansion ceramics. Cordierite ceramics are manufactured by adding a sintering aid to a raw material powder, forming it into a predetermined shape, and firing it at a temperature of 1000 to 1400 ° C. (JP-A-2-229760: Patent Document 2). As for lithium aluminosilicate ceramics, β-spodumene is produced by forming a raw material into a predetermined shape and firing it at a temperature of 1100 to 1400 ° C. (Japanese Patent Publication No. 53-9605: Patent Document 3).

このように、低温焼成可能で、熱膨張性が低い低熱膨張性磁器が求められているが、熱膨張性が低いものは焼成温度が高いといった問題があった。   Thus, there is a demand for low thermal expansion ceramics that can be fired at low temperature and have low thermal expansion, but those having low thermal expansion have a problem of high firing temperature.

この問題を解決するものとして、本発明者らは、先に、式:(1−x)(αLi2O−βMgO−γAl23−δSiO2)・xBi23(式中、xは質量比で0.01〜0.1、α、β、γ及びδはモル比でα:β:γ:δ=2〜5:1〜2:1〜2:7〜17)で示される組成を有する複合酸化物を含む高強度低熱膨張性磁器を提案した(特開2009−263189号公報:特許文献4)。この磁器は、(A)Li2Oまたは焼成したときにLi2Oとなるリチウム化合物とMgOまたは焼成したときにMgOとなるマグネシウム化合物とAl23とSiO2とのモル比α:β:γ:δが2〜5:1〜2:1〜2:7〜17の範囲にある原料粉混合物90〜99質量%と(B)Bi23粉1〜10質量%を含有する原料組成物粉を750℃〜850℃で仮焼した後粉砕して平均粒径(D50)1μm程度の粉末とし、これを所定の形状に成形後850℃〜900℃で焼成したものである。液相形成成分としてBiの酸化物を1〜10質量%用いることにより、β−スポジュメン系結晶相及び/またはLi2O−Al23−SiO2系結晶相、Li2O−SiO2系結晶相、MgO−SiO2系結晶相を主相とする、室温〜400℃での線熱膨張係数が0〜5×10-6/℃、抗折強度が150MPa以上の高強度低熱膨張性磁器を実現したものであり、850〜900℃の低温で焼成でき、Cu、Au、Ag等による配線を同時焼成により形成することができるため、低熱膨張性LTCC(低温焼成多層基板)として好適なものである。 In order to solve this problem, the present inventors have previously described the formula: (1-x) (αLi 2 O—βMgO—γAl 2 O 3 —δSiO 2 ) · xBi 2 O 3 (wherein x is 0.01 to 0.1 by mass ratio, α, β, γ and δ are molar ratios of α: β: γ: δ = 2 to 5: 1 to 2: 1 to 2: 7 to 17) A high-strength, low-thermal-expansion porcelain containing a composite oxide having a low-temperature was proposed (Japanese Patent Laid-Open No. 2009-263189: Patent Document 4). This porcelain is (A) a molar ratio α: β: Li 2 O or a lithium compound that becomes Li 2 O when fired and MgO or a magnesium compound that becomes MgO when fired and Al 2 O 3 and SiO 2. Raw material composition containing 90 to 99% by mass of raw material powder mixture in which γ: δ is in the range of 2 to 5: 1 to 2: 1 to 2: 7 to 17 and (B) 1 to 10% by mass of Bi 2 O 3 powder. The material powder is calcined at 750 ° C. to 850 ° C. and then pulverized to obtain a powder having an average particle size (D 50 ) of about 1 μm, which is formed into a predetermined shape and then fired at 850 ° C. to 900 ° C. By using 1 to 10% by mass of Bi oxide as a liquid phase forming component, a β-spodumene crystal phase and / or a Li 2 O—Al 2 O 3 —SiO 2 crystal phase, a Li 2 O—SiO 2 system A high-strength, low-thermal-expansion ceramic having a linear phase thermal expansion coefficient of 0 to 5 × 10 −6 / ° C. at room temperature to 400 ° C. and a flexural strength of 150 MPa or more, having a crystal phase and a MgO—SiO 2 crystal phase as a main phase It can be fired at a low temperature of 850 to 900 ° C., and a wiring made of Cu, Au, Ag or the like can be formed by simultaneous firing, and is therefore suitable as a low thermal expansion LTCC (low temperature fired multilayer substrate). It is.

本発明者らは、この特許文献4の実施例において305MPaの高い抗折強度が得られた実施例5の組成について、抗折強度の更なる向上を目指して、検討を重ねたところ、実際には抗折強度は250〜300MPaと幅のあることが判明した。   The inventors of the present invention have studied the composition of Example 5 in which a high bending strength of 305 MPa was obtained in the example of Patent Document 4 with the aim of further improving the bending strength. Was found to have a bending strength of 250 to 300 MPa.

なお、この検討に際しては、高強度低熱膨張性磁器の製造方法として、特許文献4の方法とは異なる方法を採用した。すなわち、特許文献4では、リチウム化合物、マグネシウム化合物、Al23、SiO2及びBi23からなる原料組成物粉を仮焼した後粉砕して平均粒径1μm程度の粉末とし、これを所定の形状に成形後に焼成したのに対して、(A)リチウム化合物、マグネシウム化合物、Al23及びSiO2の原料粉混合物を焼成して所定の粒径に微粉砕した仮焼物に(B)Bi23粉を添加混合し、これを所定形状に成形した後、所定温度にて焼成した。この方法によれば、特許文献4の方法に比べて主相の反応性を抑え、焼結時のグレインサイズを小さくする効果が期待できる。 In this examination, a method different from the method of Patent Document 4 was adopted as a method of manufacturing a high-strength low thermal expansion ceramic. That is, in Patent Document 4, a raw material composition powder composed of a lithium compound, a magnesium compound, Al 2 O 3, SiO 2 and Bi 2 O 3 is calcined and then pulverized to obtain a powder having an average particle size of about 1 μm. Whereas (A) a calcined product obtained by firing a raw material powder mixture of a lithium compound, a magnesium compound, Al 2 O 3 and SiO 2 and pulverizing it to a predetermined particle size (B) ) Bi 2 O 3 powder was added and mixed, formed into a predetermined shape, and then fired at a predetermined temperature. According to this method, the effect of suppressing the reactivity of the main phase and reducing the grain size during sintering can be expected as compared with the method of Patent Document 4.

特開2000−188017号公報JP 2000-188017 A 特開平2−229760号公報JP-A-2-229760 特公昭53−9605号公報Japanese Patent Publication No.53-9605 特開2009−263189号公報JP 2009-263189 A

本発明の課題は、上記本発明者らによる特許文献4の高強度低温焼成低熱膨張性磁器の問題点を解決し、多層基板用材料として信頼性の高い磁器であって、Ag、Au、Cu等の低抵抗金属と同時焼成が可能であり、低熱膨張性を実現し、陽極接合可能な低温焼成低熱膨張性磁器及びその製造方法の提供にある。   An object of the present invention is to solve the problems of the above-mentioned high strength low temperature firing low thermal expansion porcelain of Patent Document 4 by the present inventors, and is a highly reliable porcelain as a material for a multilayer substrate, including Ag, Au, Cu The present invention provides a low-temperature-fired low-thermal-expansion ceramic that can be fired at the same time as a low-resistance metal such as low-temperature-expandable and can be anodically bonded, and a method for manufacturing the same.

本発明者らは、抗折強度は250〜300MPaと幅のある上記特許文献4の方法により得られる磁器を走査型電子顕微鏡(SEM)を用いて観察したところ、そのグレインサイズは2μm程度であることが判明した。このグレインサイズを微細化することにより強度が向上することが期待できるが、焼結助剤であるBi23は活発な液相を形成し反応(粒子の成長)が進む。そこで、反応性を下げる目的で仮焼温度を上げてみたが効果は認められなかった(後述の参考例4参照)。次に、仮焼粉砕後の粒径を粗くしたところグレインは若干微細化したが強度が低下した(同参考例3参照)。 The inventors of the present invention observed the porcelain obtained by the method of Patent Document 4 having a bending strength of 250 to 300 MPa using a scanning electron microscope (SEM), and the grain size was about 2 μm. It has been found. Although it can be expected that the strength is improved by making the grain size finer, Bi 2 O 3 as a sintering aid forms an active liquid phase, and the reaction (growth of particles) proceeds. Therefore, although the calcination temperature was raised for the purpose of reducing the reactivity, no effect was observed (see Reference Example 4 described later). Next, when the particle size after calcination pulverization was increased, the grains were slightly refined but the strength was reduced (see the same reference example 3).

そこで、Bi23の配合量を減らす(反応性を低下させる)ことにより粒子の成長を抑制することを試みた。Bi23を配合しない場合には、仮焼粉砕後の粒径が0.80μm以上では焼結しなかったが、仮焼粉砕後の粒径を0.3〜0.4μmと微細化したところ焼結体が緻密化し、グレインサイズが1〜1.5μmと微細化し、抗折強度が300〜330MPaと向上し、安定する結果が得られた。
本発明者らは以上の知見に基づいて本発明を完成した。
Therefore, an attempt was made to suppress particle growth by reducing the amount of Bi 2 O 3 blended (reducing reactivity). When Bi 2 O 3 was not blended, the particle size after calcination pulverization was not sintered when the particle size was 0.80 μm or more, but the particle size after calcination pulverization was refined to 0.3 to 0.4 μm. However, the sintered body was densified, the grain size was refined to 1 to 1.5 μm, the bending strength was improved to 300 to 330 MPa, and a stable result was obtained.
The present inventors have completed the present invention based on the above findings.

すなわち、本発明は下記の高強度低熱膨張性磁器の製造方法及び高強度低熱膨張性磁器に関する。
[1] (A)Li2Oまたは焼成したときにLi2Oとなるリチウム化合物(a1)とMgOまたは焼成したときにMgOとなるマグネシウム化合物(a2)とAl23(a3)とSiO2(a4)との混合物であって、a1とa2とa3とa4の質量%比a1:a2:a3:a4=7.0〜14.0:4.0〜15.0:12.0〜24.0:59.0〜73.0の範囲にある原料粉混合物を750〜1000℃の温度で焼成して平均粒径0.3〜0.8μmに微粉砕した仮焼物99.0〜100質量%に
(B)Bi23粉0〜1.0質量%を添加混合し、バインダーを含む成形助剤を加えて所定形状に成形した後、900〜1000℃の温度で焼成して、式(1)
(式中、aは質量比で0〜0.01であり、α、β、γ及びδは前記a1:a2:a3:a4の質量%比を満足するモル比である。)
で示される組成を有する複合酸化物を形成することを特徴とする高強度低熱膨張性磁器の製造方法。
[2] 前記原料粉として、Li 2 CO 3 、MgO、Al23、SiO2、及びBi23を使用する前項1記載の高強度低熱膨張性磁器の製造方法。
[3] 前記各原料粉の平均粒径が0.3〜2.0μmである前項1または2記載の高強度低熱膨張性磁器の製造方法。
[4] テープ成形法により成形した絶縁層形成用のグリーンシートを焼成する前項1記載の高強度低熱膨張性磁器の製造方法。
[5] 前項1〜4のいずれかに記載の方法によって得られる、式(1)
(式中の記号の意味は前項1に記載のとおりである。)
で示される組成を有する複合酸化物を含む高強度低熱膨張性磁器。
[6] 前記複合酸化物が、β−スポジュメン系結晶相及び/またはLi2O・Al23・SiO2系結晶相、Li2O・SiO2系結晶相、及びMgO・SiO2系結晶相を含む前項5に記載の高強度低熱膨張性磁器。
[7] β−スポジュメン系結晶相及び/またはLi2O・Al23・SiO2系結晶相、Li2O・SiO2系結晶相、及びMgO・SiO2系結晶相を前記磁器の全体積の95%以上含む前項6に記載の高強度低熱膨張性磁器。
[8] 抗折強度が150MPa以上である前項5〜7のいずれか1項記載の高強度低熱膨張性磁器。
[9] 25〜400℃における線熱膨張係数が0〜5×10-6/℃である前項5〜8のいずれか1項記載の高強度低熱膨張性磁器。
[10] 陽極接合時の伝導イオンをLiイオンとする、260〜350℃の温度での陽極接合が可能である前項5〜9のいずれか1項記載の高強度低熱膨張性磁器。
[11] シリコン、GaAs、コバール、Al、またはTiと陽極接合が可能である前項10に記載の高強度低熱膨張性磁器。
That is, the present invention relates to the following high-strength low-thermal-expansion ceramic manufacturing method and high-strength low-thermal-expansion ceramic.
[1] (A) Li 2 O or a lithium compound (a1) that becomes Li 2 O when fired, MgO or a magnesium compound (a2) that becomes MgO when fired, Al 2 O 3 (a3), and SiO 2 A mixture of (a4) and the mass ratio of a1, a2, a3 and a4: a1: a2: a3: a4 = 7.0-14.0: 4.0-15.0: 12.0-24 0.0: 99.0 to 100 mass of calcined powder obtained by firing a raw material powder mixture in the range of 59.0 to 73.0 at a temperature of 750 to 1000 ° C. and finely pulverizing to an average particle size of 0.3 to 0.8 μm % (B) Bi 2 O 3 powder 0 to 1.0 mass% is added and mixed, a molding aid containing a binder is added to form a predetermined shape, and then calcined at a temperature of 900 to 1000 ° C. (1)
(Wherein, a is a mass ratio of 0 to 0.01, and α, β, γ and δ are molar ratios satisfying the mass ratio of a1: a2: a3: a4)
A method for producing a high-strength, low-thermal-expansion ceramic, characterized in that a composite oxide having the composition shown in FIG.
[2] The method for producing a high-strength low-thermal-expansion ceramic according to item 1, wherein Li 2 CO 3 , MgO, Al 2 O 3 , SiO 2 , and Bi 2 O 3 are used as the raw material powder.
[3] The method for producing a high-strength low-thermal-expansion ceramic according to item 1 or 2, wherein the average particle diameter of each raw material powder is 0.3 to 2.0 μm.
[4] The method for producing a high-strength low-thermal-expansion ceramic according to item 1 above, wherein a green sheet for forming an insulating layer formed by a tape forming method is fired.
[5] Formula (1) obtained by the method according to any one of 1 to 4 above
(The meanings of the symbols in the formula are as described in the preceding item 1.)
A high-strength, low-thermal-expansion porcelain containing a composite oxide having a composition represented by:
[6] The composite oxide comprises a β-spodumene crystal phase and / or a Li 2 O.Al 2 O 3 .SiO 2 crystal phase, a Li 2 O.SiO 2 crystal phase, and an MgO.SiO 2 crystal. 6. The high-strength low-thermal-expansion porcelain according to item 5 including a phase.
[7] β-spodumene-based crystal phase and / or Li 2 O.Al 2 O 3 .SiO 2 -based crystal phase, Li 2 O.SiO 2 -based crystal phase, and MgO.SiO 2 -based crystal phase are added to the entire porcelain. 7. The high-strength, low-thermal-expansion porcelain according to the item 6, which contains 95% or more of the product.
[8] The high-strength low-thermal-expansion ceramic according to any one of items 5 to 7, wherein the bending strength is 150 MPa or more.
[9] The high-strength low-thermal-expansion ceramic according to any one of items 5 to 8, wherein the linear thermal expansion coefficient at 25 to 400 ° C. is 0 to 5 × 10 −6 / ° C.
[10] The high-strength, low-thermal-expansion ceramic according to any one of items 5 to 9 above, wherein anodic bonding at a temperature of 260 to 350 ° C. is possible, in which conductive ions at the time of anodic bonding are Li ions.
[11] The high-strength low-thermal-expansion ceramic according to item 10, which can be anodically bonded to silicon, GaAs, Kovar, Al, or Ti.

本発明の低温焼成可能な高強度低熱膨張性磁器は、Li2Oまたは焼成したときにLi2Oとなるリチウム化合物(a1)とMgOまたは焼成したときにMgOとなるマグネシウム化合物(a2)とAl23(a3)とSiO2(a4)とからなる原料粉混合物を750〜1000℃の温度で焼成して仮焼物を平均粒径0.3〜0.8μmに微粉化することにより、液相形成成分としてのBi23の使用量を軽減して、β−スポジュメン系結晶相及び/またはLi2O・Al23・SiO2系結晶相、Li2O・SiO2系結晶相、MgO・SiO2系結晶相を主相とする磁器として実現した。本発明の低熱膨張性磁器は、900〜1000℃の低温で焼結でき、Cu、Au、Ag等による配線を同時焼成により形成することができるため、低熱膨張性LTCC(Low Temperature Co-fired Ceramics;低温同時焼成セラミック)基板として有用である。さらに、260〜350℃の温度でシリコン等に陽極接合が可能であるためMEMS(Micro Electro Mechanical Systems)実装用基板としても有用である。 The low-strength, high-strength, low-temperature-expandable porcelain of the present invention comprises Li 2 O or a lithium compound (a1) that becomes Li 2 O when fired and MgO or a magnesium compound (a2) that becomes MgO when fired and Al By calcining the raw material powder mixture composed of 2 O 3 (a3) and SiO 2 (a4) at a temperature of 750 to 1000 ° C., the calcined product is pulverized to an average particle size of 0.3 to 0.8 μm, thereby obtaining a liquid. The amount of Bi 2 O 3 used as a phase forming component is reduced, and the β-spodumene crystal phase and / or the Li 2 O.Al 2 O 3 .SiO 2 crystal phase, the Li 2 O.SiO 2 crystal phase This was realized as a porcelain having a MgO.SiO 2 crystal phase as a main phase. The low thermal expansion ceramic according to the present invention can be sintered at a low temperature of 900 to 1000 ° C., and can form a wiring made of Cu, Au, Ag or the like by simultaneous firing. Therefore, low thermal expansion LTCC (Low Temperature Co-fired Ceramics) A low-temperature co-fired ceramic) substrate. Furthermore, since anodic bonding to silicon or the like is possible at a temperature of 260 to 350 ° C., it is also useful as a substrate for mounting MEMS (Micro Electro Mechanical Systems).

a〜fは、各々参考例1〜4、6及び8で焼結した多層基板用磁器の走査型電子顕微鏡(SEM)写真である。a to f are scanning electron microscope (SEM) photographs of porcelain for multilayer substrates sintered in Reference Examples 1 to 4, 6 and 8, respectively.

[高強度低熱膨張性磁器]
本発明の低温焼成可能な高強度低熱膨張性磁器は、
(A)Li2Oまたは焼成したときにLi2Oとなるリチウム化合物(a1)とMgOまたは焼成したときにMgOとなるマグネシウム化合物(a2)とAl23(a3)とSiO2(a4)との混合物であって、a1とa2とa3とa4の割合(質量%比)a1:a2:a3:a4=7.0〜14.0:4.0〜15.0:12.0〜24.0:59.0〜73.0の範囲にある原料粉混合物を750〜1000℃の温度で焼成して平均粒径0.3〜0.8μmに微粉砕した仮焼物99.0〜100質量%に
(B)Bi23粉0〜1.0質量%を添加混合し、バインダーを含む成形助剤を加えて所定形状に成形した後、900〜1000℃の温度で焼成して、式(1)
(式中、aは質量比で0〜0.01であり、α、β、γ及びδは前記a1:a2:a3:a4の質量%比を満足するモル比である。)で示される組成を有する複合酸化物を形成することを特徴とする方法によって製造される。
[High-strength, low-thermal-expansion porcelain]
The low-strength, high-strength, low-temperature-expandable porcelain of the present invention is
(A) Li 2 O or lithium compound (a1) that becomes Li 2 O when fired, MgO or magnesium compound (a2), Al 2 O 3 (a3), and SiO 2 (a4) that becomes MgO when fired The ratio of a1, a2, a3, and a4 (mass% ratio) a1: a2: a3: a4 = 7.0-14.0: 4.0-15.0: 12.0-24 0.0: 99.0 to 100 mass of calcined powder obtained by firing a raw material powder mixture in the range of 59.0 to 73.0 at a temperature of 750 to 1000 ° C. and finely pulverizing to an average particle size of 0.3 to 0.8 μm % (B) Bi 2 O 3 powder 0 to 1.0 mass% is added and mixed, a molding aid containing a binder is added to form a predetermined shape, and then calcined at a temperature of 900 to 1000 ° C. (1)
(Wherein, a is a mass ratio of 0 to 0.01, and α, β, γ and δ are molar ratios satisfying the mass ratio of a1: a2: a3: a4). It is manufactured by the method characterized by forming the complex oxide which has this.

Li、Mg、Al、及びSiを含有する原料粉混合物(a1とa2とa3とa4との混合物)を750〜1000℃の温度で焼成して、平均粒径0.3〜0.8μm、好ましくは0.3〜0.5μmに微粉化した仮焼物99.0〜100質量%に、微量の(0〜1.0質量%の)Bi23粉を含有させることにより、900〜1000℃程度の低温で焼結(焼成緻密化)することができる。 A raw material powder mixture (a mixture of a1, a2, a3, and a4) containing Li, Mg, Al, and Si is fired at a temperature of 750 to 1000 ° C., and an average particle size of 0.3 to 0.8 μm, preferably the calcined product from 99.0 to 100% by weight of finely divided into 0.3 to 0.5 [mu] m, by weight of (0 to 1.0% by weight of) Bi 2 O 3 powder traces, 900 to 1000 ° C. Sintering (firing densification) can be performed at a low temperature.

一般式(1)において、Li、Mg、Al、及びSiを含有する原料粉混合物(a1とa2とa3とa4との混合物)を750〜1000℃の温度で焼成した仮焼物の平均粒径が0.3μm未満では成形性が著しく悪くなり、0.8μmを超えると焼結性が低下する。   In the general formula (1), the average particle size of the calcined product obtained by firing a raw material powder mixture (a mixture of a1, a2, a3, and a4) containing Li, Mg, Al, and Si at a temperature of 750 to 1000 ° C. If it is less than 0.3 μm, the moldability is remarkably deteriorated, and if it exceeds 0.8 μm, the sinterability is lowered.

一般式(1)において、Bi23の割合a(質量比)は0(すなわち、Bi23を添加しない場合)には適正焼成温度域帯が狭い(900〜920℃)という欠点があるが、Bi23の割合aを0.1%以下の極微量添加することにより焼成温度域帯が900〜1000℃と広がり、製造しやすくなる。 In the general formula (1), Bi ratio a (mass ratio) of the 2 O 3 is 0 (i.e., Bi 2 if O 3 not added) to the narrow appropriate firing temperature range band disadvantage (nine hundred to nine hundred and twenty ° C.) However, by adding a very small amount of Bi 2 O 3 of 0.1% or less, the firing temperature range is widened to 900 to 1000 ° C., which facilitates production.

一般式(1)において、Li2Oの割合a1(質量%)は7.0〜14.0であり、MgOの割合a2(質量%)は4.0〜15.0であり、Al23の割合a3(質量%)は12.0〜24.0であり、SiO2の割合a4(質量%)は59.0〜73.0である。a1の値が7.0未満だと焼結せず、14.0を超えると、溶融する。a2の値が4.0未満だと焼結せず、15.0を超えると熱膨張が大きくなる。a3の値が12.0未満だと熱膨張が大きくなり、24.0を超えると焼結しない。a4の値が59.0未満だと焼結せず、73.0を超えても焼結しない。 In the general formula (1), the ratio a1 (mass%) of Li 2 O is 7.0 to 14.0, the ratio a2 (mass%) of MgO is 4.0 to 15.0, and Al 2 O 3 ratio of a3 (mass%) is from 12.0 to 24.0, the ratio of SiO 2 a4 (mass%) is from 59.0 to 73.0. If the value of a1 is less than 7.0, sintering will not occur, and if it exceeds 14.0, it will melt. If the value of a2 is less than 4.0, sintering does not occur, and if it exceeds 15.0, thermal expansion increases. If the value of a3 is less than 12.0, thermal expansion increases, and if it exceeds 24.0, sintering does not occur. If the value of a4 is less than 59.0, it will not sinter, and if it exceeds 73.0, it will not sinter.

主原料である、Li2Oまたは焼成したときにLi2Oとなるリチウム化合物と、MgOまたは焼成したときにMgOとなるマグネシウム化合物と、Al23と、SiO2とは、各金属酸化物の混合物でもよいが、β−スポジュメン等の複合酸化物にMgOを必要量混合したものでもよい。出発原料として用い得る、Li2Oまたは焼成したときにLi2Oとなるリチウム化合物と、MgOまたは焼成したときにMgOとなるマグネシウム化合物と、Al23と、SiO2とは、前記各金属の酸化物粉末のほかに、焼結過程で酸化物を形成し得る塩、例えば炭酸塩、酢酸塩、硝酸塩や水酸化物等の形態、例えば炭酸リチウム(Li2CO3)、炭酸マグネシウム(MgCO3)や水酸化マグネシウム(Mg(OH)2)等の形態で添加できる。 The main raw materials, Li 2 O or a lithium compound that becomes Li 2 O when fired, MgO or a magnesium compound that becomes MgO when fired, Al 2 O 3 , and SiO 2 are metal oxides. A mixture of MgO and a complex oxide such as β-spodumene may be used. Li 2 O that can be used as a starting material or a lithium compound that becomes Li 2 O when fired, MgO or a magnesium compound that becomes MgO when fired, Al 2 O 3 , and SiO 2 are each of the above metals In addition to the oxide powder, a salt capable of forming an oxide during the sintering process, such as carbonate, acetate, nitrate, hydroxide, etc., such as lithium carbonate (Li 2 CO 3 ), magnesium carbonate (MgCO 3 ) or magnesium hydroxide (Mg (OH) 2 ).

前記主原料に対して、焼結助剤としてBi23粉末を、微量添加することにより焼結温度域帯が広がる。 By adding a small amount of Bi 2 O 3 powder as a sintering aid to the main raw material, the sintering temperature range is expanded.

Li2CO3、MgO、Al23、SiO2、Bi23等の原料粉末は、分散性を高め、望ましい強度や低熱膨張性を得るために、平均粒径が0.3〜2.0μm、好ましくは0.5〜1.0μmの微粉末とすることが望ましい。平均粒径が0.3μm未満では分散等のハンドリングが困難であり、2.0μmを超えると反応性が低下する。各原料は粒径が揃っている方が混合の均一性の観点からも好ましい。 Raw material powders such as Li 2 CO 3 , MgO, Al 2 O 3 , SiO 2 and Bi 2 O 3 have an average particle size of 0.3 to 2 in order to increase dispersibility and obtain desirable strength and low thermal expansion. It is desirable to use a fine powder of 0.0 μm, preferably 0.5 to 1.0 μm. When the average particle size is less than 0.3 μm, handling such as dispersion is difficult, and when it exceeds 2.0 μm, the reactivity decreases. It is preferable from the viewpoint of uniformity of mixing that the raw materials have uniform particle diameters.

上記の割合で添加混合、750〜1000℃で仮焼後、平均粒径0.3〜0.8μmに粉砕した混合粉末に微量のBi23粉を加え、適宜バインダー、好ましくは有機バインダー、例えば、アクリル樹脂バインダー等や、可塑剤、例えば、ジブチルフタレート(DBP)等のポリエステル樹脂など、必要に応じて、トルエン、メチルエチルケトン(MEK)等の有機溶剤を添加した後、例えば、金型プレス、押し出し成形、ドクターブレード法、圧延法等により任意の形状に成形後、酸化雰囲気中、または窒素ガス、アルゴンガス等の非酸化性雰囲気中において、900〜1000℃の温度で、1〜3時間焼成することにより、相対密度95%以上に緻密化することができる。 Addition and mixing at the above ratio, after calcining at 750 to 1000 ° C., a small amount of Bi 2 O 3 powder is added to the mixed powder pulverized to an average particle size of 0.3 to 0.8 μm, and a binder, preferably an organic binder, For example, after adding an organic solvent such as toluene or methyl ethyl ketone (MEK) as necessary, such as an acrylic resin binder or the like, or a plasticizer such as a polyester resin such as dibutyl phthalate (DBP), for example, a die press, After molding into an arbitrary shape by extrusion molding, doctor blade method, rolling method, etc., firing in an oxidizing atmosphere or a non-oxidizing atmosphere such as nitrogen gas or argon gas at a temperature of 900 to 1000 ° C. for 1 to 3 hours By doing so, it can be densified to a relative density of 95% or more.

この時の焼成温度が900℃より低いと、磁器が十分に緻密化せず、1000℃を越えると緻密化は可能であるが、Ag、Au、Cu等の低融点導体を配線材料として用いることが難しくなる。   If the firing temperature at this time is lower than 900 ° C., the porcelain will not be sufficiently densified, and if it exceeds 1000 ° C., densification is possible, but low melting point conductors such as Ag, Au, Cu, etc. should be used as the wiring material. Becomes difficult.

本発明の高強度低熱膨張性磁器は、式(1)
(式中の記号は前記と同じ意味を表す。)
で示される組成を有する複合酸化物を含む。
The high-strength, low-thermal-expansion porcelain of the present invention has the formula
(The symbols in the formula have the same meaning as described above.)
A composite oxide having a composition represented by:

本発明の高強度低熱膨張性磁器は、β−スポジュメン系結晶相及び/またはLi2O・Al23・SiO2系結晶相、Li2O・SiO2系結晶相、及びMgO・SiO2系結晶相を主体とし、さらにBi23・SiO2系結晶相乃至/及びガラス相から主として構成されるものである。 High-strength and low-thermal-expansion ceramic according to the present invention, beta-spodumene based crystal phase and / or Li 2 O · Al 2 O 3 · SiO 2 type crystal phase, Li 2 O · SiO 2 type crystal phase, and MgO · SiO 2 Mainly composed of a system crystal phase, and further mainly composed of a Bi 2 O 3 .SiO 2 system crystal phase or / and a glass phase.

ここで、「β−スポジュメン系結晶相」とは、β−スポジュメン結晶及びこれに類する組成及び結晶構造の結晶相、「Li2O・Al23・SiO2系結晶相」とは、Li2O・Al23・SiO2結晶及びこれに類する組成及び結晶構造の結晶相、「Li2O・SiO2系結晶相」とは、Li2O・SiO2結晶及びこれに類する組成及び結晶構造の結晶相であり、その各々の結晶相には、前記各結晶を構成する主構成元素以外の他の元素を含む同型の結晶構造の結晶を含んでもよい。 Here, “β-spodumene-based crystal phase” means a β-spodumene crystal and a crystal phase having a composition and a crystal structure similar to this, and “Li 2 O.Al 2 O 3 .SiO 2 -based crystal phase” means Li 2 O.Al 2 O 3 .SiO 2 crystal and a crystal phase of a composition and crystal structure similar to this, “Li 2 O.SiO 2 crystal phase” means a Li 2 O.SiO 2 crystal and a similar composition and Each of the crystal phases may include a crystal having the same type of crystal structure including elements other than the main constituent elements constituting each of the crystals.

MgO・SiO2系結晶相、及びBi23・SiO2系結晶相についても同様であり、「MgO・SiO2系結晶相」とは、MgO・SiO2結晶及びこれに類する組成及び結晶構造の結晶相であり、「Bi23・SiO2系結晶相」とは、Bi23・SiO2結晶及び結晶構造の結晶相であり、その各々の結晶相には、前記各結晶を構成する主構成元素以外の他の元素を含む同型の結晶構造の結晶を含んでもよい。 The same applies to the MgO · SiO 2 crystal phase and the Bi 2 O 3 · SiO 2 crystal phase. The term “MgO · SiO 2 crystal phase” refers to an MgO · SiO 2 crystal and a similar composition and crystal structure. The “Bi 2 O 3 .SiO 2 -based crystal phase” is a crystal phase of Bi 2 O 3 .SiO 2 crystal and crystal structure, and each crystal phase includes the above crystals. A crystal having the same type of crystal structure including other elements than the main constituent element may be included.

各結晶相の具体的な含有比は、目標とする物性値を実現するものであれば特に限定されないが、通常は、β−スポジュメン系結晶相及び/またはLi2O・Al23・SiO2系結晶相、Li2O・SiO2系結晶相、及びMgO・SiO2系結晶相を磁器の全体積の95%以上含み、好ましくは98%以上含む。 The specific content ratio of each crystal phase is not particularly limited as long as it achieves a target physical property value. Usually, the β-spodumene crystal phase and / or Li 2 O.Al 2 O 3 .SiO 2 is used. The two -phase crystal phase, the Li 2 O.SiO 2 -based crystal phase, and the MgO.SiO 2 -based crystal phase include 95% or more, preferably 98% or more, of the total volume of the porcelain.

本発明の高強度低熱膨張性磁器は、線熱膨張係数が0〜5×10-6/℃、抗折強度が150MPa以上であり、900〜1000℃の温度範囲での低温焼成によって相対密度95%以上まで緻密化されたものである。 The high-strength low thermal expansion ceramic of the present invention has a linear thermal expansion coefficient of 0 to 5 × 10 −6 / ° C., a bending strength of 150 MPa or more, and a relative density of 95 by low-temperature firing in a temperature range of 900 to 1000 ° C. % Densified.

[低熱膨張性磁器の用途]
本発明によれば900〜1000℃の低温焼成可能で、Ag、Au、Cu等の低融点・低抵抗な導体との同時焼成が可能であり、得られる磁器は、室温(RT=25℃)〜400℃での線熱膨張係数が0〜5×10-6/℃と小さい。
[Applications of low thermal expansion ceramics]
According to the present invention, it can be fired at a low temperature of 900 to 1000 ° C., and can be fired simultaneously with a low melting point / low resistance conductor such as Ag, Au, Cu, etc., and the resulting porcelain has a room temperature (RT = 25 ° C.). The linear thermal expansion coefficient at ˜400 ° C. is as small as 0 to 5 × 10 −6 / ° C.

すなわち、本発明の磁器は、900〜1000℃で低温焼成可能であることから、特にAg、Au、Cuなどを配線する配線基板の絶縁基板として用いることができる。   That is, the porcelain of the present invention can be fired at a low temperature of 900 to 1000 ° C., so that it can be used as an insulating substrate of a wiring substrate for wiring Ag, Au, Cu or the like.

かかる本発明磁器用組成物を用いて配線基板を作製する場合には、例えば、前記のようにして調合したLi2O、MgO、Al23及びSiO2の混合粉末とBi23粉末を公知のテープ成形法、例えばドクターブレード法、押し出し成形法等に従い、絶縁層形成用のグリーンシートを作製した後、そのシートの表面に配線回路層用として、Ag、Au及びCuのうちの少なくとも1種の金属、特に、Ag粉末を含む導体ペーストを用いて、グリーンシート表面にスクリーン印刷法等によって配線パターンを回路パターン状に印刷し、場合によってはシートにスルーホールやビアホール形成後、上記導体ペーストを充填する。その後、複数のグリーンシートを積層圧着した後、前記条件で焼成することにより、配線層と絶縁層とを同時に焼成することができる。 When producing a wiring board using such a composition for porcelain of the present invention, for example, a mixed powder of Li 2 O, MgO, Al 2 O 3 and SiO 2 and Bi 2 O 3 powder prepared as described above. In accordance with a known tape molding method, for example, a doctor blade method, an extrusion molding method, etc., a green sheet for forming an insulating layer is prepared, and at least one of Ag, Au, and Cu is used as a wiring circuit layer on the surface of the sheet. Using a conductive paste containing one kind of metal, particularly Ag powder, a wiring pattern is printed on the surface of the green sheet by a screen printing method or the like. In some cases, after forming a through hole or via hole on the sheet, the conductor Fill with paste. Thereafter, the plurality of green sheets are laminated and pressure-bonded, and then fired under the above conditions, whereby the wiring layer and the insulating layer can be fired simultaneously.

[陽極接合]
本発明の高強度低熱膨張性磁器は、MEMS(Micro Electro Mechanical Systems)実装用基板の作成に必須な接合技術である陽極接合が可能である。
[Anodic bonding]
The high-strength, low-thermal-expansion porcelain of the present invention is capable of anodic bonding, which is a bonding technique essential for the production of MEMS (Micro Electro Mechanical Systems) mounting substrates.

陽極接合は、アルカリ金属を含む磁器とシリコンを接触させた状態で、磁器中のナトリウムなどのアリカリ金属イオンが動き易い温度まで加熱し、シリコン側を正、磁器側を負の電極に接続して数百〜千ボルト程度の直流電圧を印加することにより、磁器とシリコンを接合する方法である。アルカリ金属イオンが負極側に移動した際に生じる非架橋酸素イオンとシリコンが静電的に引き合い、磁器−シリコン界面で化学結合を生じることにより、強固で信頼性の高い接合が得られる。   In anodic bonding, a silicon containing porcelain containing alkali metal is in contact with silicon and heated to a temperature at which ant potassium metal ions such as sodium in the porcelain easily move, and the silicon side is connected to the positive electrode and the porcelain side is connected to the negative electrode. This is a method of joining porcelain and silicon by applying a DC voltage of about several hundred to 1,000 volts. Non-bridging oxygen ions generated when alkali metal ions move to the negative electrode side and silicon are electrostatically attracted to form a chemical bond at the porcelain-silicon interface, whereby a strong and reliable bond can be obtained.

陽極接合する温度は、MEMSに与える影響が少ない350℃以下の低温が好適であり、例えば260〜330℃またはそれ以下の低い接合温度が特に好適である。
本発明の高強度低熱膨張性磁器は、陽極接合時の伝導イオンを従来のNaから、よりイオン半径の小さいLiに変えたことによって、MEMSに与える影響の少ない好適な温度範囲(300〜350℃)での陽極接合が可能である。
The temperature at which the anodic bonding is performed is preferably a low temperature of 350 ° C. or less that has little influence on the MEMS, and a low bonding temperature of, for example, 260 to 330 ° C. or less is particularly suitable.
The high-strength, low-thermal-expansion porcelain of the present invention has a suitable temperature range (300 to 350 ° C.) that has little influence on MEMS by changing the conductive ions at the time of anodic bonding from conventional Na to Li having a smaller ion radius. ) Anodic bonding is possible.

陽極接合はシリコンだけでなく、GaAs、コバール、Al、Tiなども接合可能であり、本発明の磁器においても特に制限されるものではない。   The anodic bonding can bond not only silicon but also GaAs, Kovar, Al, Ti and the like, and is not particularly limited in the porcelain of the present invention.

陽極接合においては、相手材との熱膨張による位置ずれ等が問題になることから、基板材料の線熱膨張係数は、相手材の線熱膨張係数と近似することが求められ、成形焼成後の材料の線熱膨張係数は相手材の線熱膨張係数の0.5%以内であることが好ましい。相手材がシリコンの場合には、本発明の磁器の線熱膨張係数は、0〜5.0×10-6/℃、好ましくは3.0〜4.0×10-6/℃、さらに好ましくは3.2〜3.8×10-6/℃、特に好ましくは3.2〜3.5×10-6/℃である。 In anodic bonding, misalignment due to thermal expansion with the counterpart material becomes a problem, so the linear thermal expansion coefficient of the substrate material is required to approximate the linear thermal expansion coefficient of the counterpart material. The linear thermal expansion coefficient of the material is preferably within 0.5% of the linear thermal expansion coefficient of the counterpart material. If the counterpart material is silicon, the linear thermal expansion coefficient of porcelain of the invention, 0 to 5.0 × 10 -6 / ° C., preferably 3.0~4.0 × 10 -6 / ℃, more preferably Is 3.2 to 3.8 × 10 −6 / ° C., particularly preferably 3.2 to 3.5 × 10 −6 / ° C.

以下に、参考例、実施例及び比較例を挙げ、本発明を更に詳細に説明するが、これらは本発明を限定するものではない。   Hereinafter, the present invention will be described in more detail with reference to reference examples, examples, and comparative examples, but these do not limit the present invention.

参考例1〜8:
予備的実験として、特許文献4の実施例5の組成について、抗折強度の向上を目指して検討した。
すなわち、表1の参考例1〜8に示すように、平均粒径が1μm以下の、Li2CO3、MgO、Al23、SiO2を酸化物換算の含有比(モル比=2:1:1:9)で、次式
において、(1−a)が1及び0.95の組成になるように、ボールミル中で混合し、790〜880℃で3時間保持して仮焼後、各平均粒径(D50)に粉砕して試料粉末とした。これらの仮焼物に表1に示す割合でBi23を添加し、有機バインダー(ポリビニルアルコール)、可塑剤(ジブチルフタレート)、トルエンを添加混合して、ドクターブレード法により厚さ150μmのグリーンシートを作成した。このグリーンシートを5枚積層し、70℃の温度で150kg/cm2の圧力を加えて熱圧着した。得られた積層体を大気中で、500℃で脱バインダーした後、大気中で表1の温度条件で1時間焼成して多層基板用磁器を得た。
Reference Examples 1-8:
As a preliminary experiment, the composition of Example 5 of Patent Document 4 was examined with the aim of improving the bending strength.
That is, as shown in Reference Examples 1 to 8 in Table 1, Li 2 CO 3 , MgO, Al 2 O 3 and SiO 2 having an average particle diameter of 1 μm or less are contained in terms of oxide (molar ratio = 2: 1: 1: 9)
, Mixed in a ball mill such that (1-a) has a composition of 1 and 0.95, held at 790 to 880 ° C. for 3 hours and calcined, and then pulverized to each average particle size (D 50 ) Sample powder was obtained. Bi 2 O 3 is added to these calcined materials at the ratio shown in Table 1, an organic binder (polyvinyl alcohol), a plasticizer (dibutyl phthalate), and toluene are added and mixed, and a green sheet having a thickness of 150 μm is obtained by a doctor blade method. It was created. Five green sheets were laminated and thermocompression bonded by applying a pressure of 150 kg / cm 2 at a temperature of 70 ° C. The obtained laminate was debindered at 500 ° C. in the air, and then fired in the air for 1 hour under the temperature conditions shown in Table 1 to obtain a multilayer substrate porcelain.

得られた参考例1〜4、6及び8の焼結体について、グレインサイズ、吸水率(試料の絶対乾燥状態の質量A及び表面乾燥飽水状態の質量Bを測定し、{(B−A)÷A}×100から求めた。)、嵩密度(アルキメデス法による)、磁器の3点曲げ強度(抗折強度)(JISR1601による)、破壊靱性値(IF法による)、線熱膨張係数(室温〜400℃,TMA(熱機械的分析)法による)を測定した。これらの結果を表1に示す。
なお、グレインサイズは走査型電子顕微鏡(SEM)による写真よりインターコード法により求めた。基礎となるSEMによる反射電子像を図1(a)〜(f)に示す。
About the obtained sintered bodies of Reference Examples 1 to 4, 6 and 8, the grain size, water absorption (mass A of the sample in an absolute dry state and mass B of the surface dry saturated state were measured, and {(BA ) ÷ A} × 100.), Bulk density (according to Archimedes method), porcelain three-point bending strength (deflection strength) (according to JISR1601), fracture toughness value (according to IF method), linear thermal expansion coefficient ( Room temperature to 400 ° C., measured by TMA (thermomechanical analysis) method. These results are shown in Table 1.
The grain size was determined by the intercode method from a photograph taken with a scanning electron microscope (SEM). The reflected electron images obtained by the SEM as the basis are shown in FIGS.

平均粒径が0.32〜0.48の仮焼物粉にBi23を5%配合した参考例1〜2ではグレインサイズは2.1〜2.2μmで、抗折強度は274〜293MPaであった。グレインサイズの微細化(強度の向上)を目指して、焼結助剤(Bi23)による反応性(粒子の成長)を下げる目的で仮焼温度を上げたが、効果は認められなかった(参考例4)。
仮焼粉砕後の粒径を粗くしたところグレインは若干微細化したが強度が低下した(同参考例3参照)。
Bi23の配合量をゼロとすることにより粒子の成長を抑制することを試みた。Bi23を配合しない場合には、仮焼粉砕後の粒径が0.80μm以上では焼結しなかったが(参考例5及び7)、仮焼粉砕後の粒径を0.31〜0.40μmと微細化したところ焼結体が緻密化し、グレインサイズが0.9〜1.4μmと微細化し、抗折強度が303〜329MPaと向上した。
In Reference Examples 1 and 2 in which 5% Bi 2 O 3 was blended with calcined powder having an average particle size of 0.32 to 0.48, the grain size was 2.1 to 2.2 μm and the bending strength was 274 to 293 MPa. Met. The calcining temperature was raised to reduce the reactivity (particle growth) with the sintering aid (Bi 2 O 3 ) with the aim of reducing grain size (improving strength), but no effect was observed. (Reference Example 4).
When the particle size after calcination pulverization was increased, the grains were slightly refined, but the strength decreased (see Reference Example 3).
Attempts were made to suppress particle growth by reducing the amount of Bi 2 O 3 to zero. When Bi 2 O 3 was not blended, sintering did not occur when the particle size after calcination pulverization was 0.80 μm or more (Reference Examples 5 and 7), but the particle size after calcination pulverization was 0.31 to 0.31. When the size was reduced to 0.40 μm, the sintered body was densified, the grain size was reduced to 0.9 to 1.4 μm, and the bending strength was improved to 303 to 329 MPa.

実施例1〜6及び比較例1〜7:
平均粒径が1μm以下の、Li2CO3、MgO、Al23、SiO2を酸化物換算の含有比が表2の割合となるようにボールミル中で混合し、750〜1000℃で仮焼後、各粒度に粉砕して試料粉末とした。これらの仮焼物に表2の割合でBi23を添加し、有機バインダー(ポリビニルアルコール)、可塑剤(ジブチルフタレート)、トルエンを添加混合して、ドクターブレード法により厚さ150μmのグリーンシートを作成した。このグリーンシートを5枚積層し、70℃の温度で150kg/cm2の圧力を加えて熱圧着した。得られた積層体を大気中で、500℃で脱バインダーした後、大気中で表2の温度条件下で1〜3時間焼成して多層基板用磁器を得た。
Examples 1-6 and Comparative Examples 1-7:
Li 2 CO 3 , MgO, Al 2 O 3 , and SiO 2 having an average particle size of 1 μm or less were mixed in a ball mill so that the content ratio in terms of oxide was the ratio shown in Table 2, and temporarily mixed at 750 to 1000 ° C. After firing, it was pulverized to each particle size to obtain a sample powder. Bi 2 O 3 is added to these calcined materials in the ratio shown in Table 2, an organic binder (polyvinyl alcohol), a plasticizer (dibutyl phthalate), and toluene are added and mixed, and a green sheet having a thickness of 150 μm is formed by a doctor blade method. Created. Five green sheets were laminated and thermocompression bonded by applying a pressure of 150 kg / cm 2 at a temperature of 70 ° C. The obtained laminate was debindered at 500 ° C. in the air, and then fired in the air for 1 to 3 hours under the temperature conditions shown in Table 2 to obtain a multilayer substrate porcelain.

得られた焼結体について嵩密度をアルキメデス法にて測定した。また、JISR1601に基づき、磁器の3点曲げ強度(抗折強度)を測定し、TMA(熱機械的分析)法にて室温(RT=25℃)から400℃における線熱膨張係数を測定した。また、各試料についてX線回折測定を行い、標準試料のX線回折ピークとの比較によって磁器の構成相を同定した。これらの測定結果を表2に示す。   The bulk density of the obtained sintered body was measured by the Archimedes method. Moreover, based on JISR1601, the three-point bending strength (bending strength) of the porcelain was measured, and the linear thermal expansion coefficient from room temperature (RT = 25 ° C.) to 400 ° C. was measured by the TMA (thermomechanical analysis) method. Further, X-ray diffraction measurement was performed for each sample, and the constituent phases of the porcelain were identified by comparison with the X-ray diffraction peak of the standard sample. These measurement results are shown in Table 2.

表1中、Lithium Silicate、Lithium Aluminum Silicate、Enstatite、Bismus Silicate、及びForsteriteは、各々下記結晶相を表す。
Lithium Silicate:Li2SiO3、Li2Si25など、
Lithium Aluminum Silicate:スポジュメン(LiAlSi26)など、
Enstatite:MgSiO3
Bismus Silicate:Eulytite、Bi22・SiO3など、
Forsterite:Mg2SiO4
In Table 1, Lithium Silicate, Lithium Aluminum Silicate, Enstatite, Bismus Silicate, and Forsterite each represent the following crystal phase.
Lithium Silicate: Li 2 SiO 3 , Li 2 Si 2 O 5 etc.
Lithium Aluminum Silicate: Spodumene (LiAlSi 2 O 6 ), etc.
Enstatite: MgSiO 3
Bismus Silicate: Eulytite, Bi 2 O 2 · SiO 3 etc.
Forsterite: Mg 2 SiO 4 .

表2の結晶相の欄に記載したように、実施例の磁器については、β−スポジュメン系結晶相及び/またはLi2O・Al23・SiO2系結晶相、Li2O・SiO2系結晶相、MgO・SiO2系結晶相の各相の存在が確認された。 As described in the column of the crystal phase in Table 2, for the porcelain of the example, the β-spodumene crystal phase and / or the Li 2 O.Al 2 O 3 .SiO 2 crystal phase, Li 2 O.SiO 2 The existence of each phase of the system crystal phase and the MgO.SiO 2 system crystal phase was confirmed.

表2に示す結果から明らかなように、Li2O、MgO、Al23、SiO2を本発明の組成範囲で含み、結晶相として、β−スポジュメン系結晶相及び/またはLi2O・Al23・SiO2系結晶相、Li2O・SiO2系結晶相、MgO・SiO2系結晶相が主として析出した本発明の低温焼成磁器は、いずれも線熱膨張係数が0〜5×10-6/℃の低熱膨張性磁器である。 As is apparent from the results shown in Table 2, Li 2 O, MgO, Al 2 O 3 , SiO 2 are included in the composition range of the present invention, and the β-spodumene crystal phase and / or Li 2 O. The low-temperature fired ceramics of the present invention in which the Al 2 O 3 · SiO 2 crystal phase, Li 2 O · SiO 2 crystal phase, and MgO · SiO 2 crystal phase are mainly precipitated have a linear thermal expansion coefficient of 0 to 5 respectively. × 10 -6 / ° C low thermal expansion porcelain.

[陽極接合の確認]
実施例で焼結した基板6水準を準備し、陽極接合性能を評価した。前記基板6水準、各1枚を20mm□にダイシングし、板厚み0.3mmに鏡面研磨した。この基板とシリコンとを加熱したホットプレート上でシリコンが正極、基板が負極になるように直流電圧(600VDC)を印加して陽極接合を行った。陽極接合回路上に電圧検出用の抵抗素子を挿入し、その抵抗素子にかかる電圧をモニタリングし、接合電流が接合時間とともにどのように変化するかをチェックした。
なお、焼き上がった状態の基板の表面粗さ(Ra:中心線平均粗さ)は200nm程度であったが、本発明では、鏡面研磨加工レベルを上げることにより、パイレックス(登録商標)ガラス(商品名;コーニング社製のホウケイ酸ガラス)と同等の表面粗さ(数nmRa)にまで仕上げた。この鏡面研磨した基板を用いて、260、300℃、330℃、及び360℃で陽極接合を行った。
得られた陽極接合体にガラス切りで傷をつけて手で分割し、破断面をSEMで観察した。結果は表3に示す通り、全水準でシリコンと低温焼結基板が連続した破断面になっており、不連続点(デラミネーション)はなく、強固に接合できている(OK)ことが観察された。
[Confirmation of anodic bonding]
The substrate 6 level sintered in the examples was prepared, and the anodic bonding performance was evaluated. Each of the six substrates and each one was diced to 20 mm □ and polished to a mirror thickness of 0.3 mm. On this hot plate where the substrate and silicon were heated, anodic bonding was performed by applying a DC voltage (600 VDC) so that silicon was a positive electrode and the substrate was a negative electrode. A resistance element for voltage detection was inserted on the anode junction circuit, and the voltage applied to the resistance element was monitored to check how the junction current changed with the junction time.
Although the surface roughness (Ra: centerline average roughness) of the baked substrate was about 200 nm, in the present invention, by increasing the mirror polishing level, Pyrex (registered trademark) glass (product) Name: Finished to a surface roughness (several nmRa) equivalent to Corning Borosilicate Glass). Using this mirror-polished substrate, anodic bonding was performed at 260, 300 ° C., 330 ° C., and 360 ° C.
The obtained anodic bonded body was scratched with glass and divided by hand, and the fractured surface was observed with SEM. As shown in Table 3, the results show that the silicon and the low-temperature sintered substrate have a continuous fracture surface at all levels, and there is no discontinuity (delamination), and it is observed that they are firmly bonded (OK). It was.

比較のため、Naを陽極接合時の伝導イオンとする低温焼成セラミックスとシリコンとを陽極接合した接合体についてデラミネーションの確認を行った。なお、比較のためのLTCCは次のようにして作製した。
すなわち、陽極接合できるガラスとして市販されているガラス粉末(SiO2:81.9〜82.4質量%、Al23:2.9〜3.2質量%、B23:10.5〜11.0質量%、Na2O:3.9〜4.7質量%、K2O、Fe23、CaO、MgOはいずれも0.1質量%以下)55〜60質量%を平均粒径(D50)で0.6〜2.5μmに粉砕し、平均粒径1〜3μmのアルミナ粉末8〜25質量%および平均粒径1〜3μmのコージェライト粉末(ガラス再結晶タイプ)18〜34質量%と混合した。この混合物に溶剤としてトルエンを加えてボールミル中で分散した後、バインダーとしてポリビニルアルコール、可塑剤としてジブチルフタレート(DBP)を加えスラリーを作製した。得られたスラリーをドクターブレード法でシート状に成形し、乾燥し、厚み125μmのグリーンシートを得た。これを所定の大きさに切断し、8層に積層後、大気中、835℃または850℃で1時間焼成を行い、Naを陽極接合時の伝導イオンとするガラス・フィラー複合LTCC(BSW)を作製した。この基板(BSW)は、330℃で陽極接合できなかった(NG)。
For comparison, delamination was confirmed for a bonded body obtained by anodically bonding silicon with low-temperature fired ceramics using Na as a conductive ion during anodic bonding. The LTCC for comparison was produced as follows.
That is, the glass powder which is commercially available as a glass capable of anodic bonding (SiO 2: 81.9 to 82.4 wt%, Al 2 O 3: 2.9~3.2 wt%, B 2 O 3: 10.5 ˜11.0 mass%, Na 2 O: 3.9 to 4.7 mass%, K 2 O, Fe 2 O 3 , CaO, and MgO are all 0.1 mass% or less) 55 to 60 mass% averaged ground to 0.6~2.5μm with particle size (D 50), the average particle diameter 1~3μm of alumina powder 8-25 mass% and an average particle size 1~3μm cordierite powder (glass recrystallized type) 18 Mixed with ~ 34% by weight. Toluene was added as a solvent to this mixture and dispersed in a ball mill, and then polyvinyl alcohol as a binder and dibutyl phthalate (DBP) as a plasticizer were added to prepare a slurry. The obtained slurry was formed into a sheet by a doctor blade method and dried to obtain a green sheet having a thickness of 125 μm. This is cut into a predetermined size, laminated into 8 layers, fired at 835 ° C. or 850 ° C. for 1 hour in the air, and glass / filler composite LTCC (BSW) using Na as a conductive ion at the time of anodic bonding. Produced. This substrate (BSW) could not be anodically bonded at 330 ° C. (NG).

以上のように、従来のNaイオンを陽極接合時の伝導イオンとする低温焼成セラミックス(LTCC)と比較して、陽極接合時の伝導イオンをLiイオンとした本発明の磁器によれば350℃以下の低温でも陽極接合できる。   As described above, according to the porcelain of the present invention in which the conductive ions at the time of anodic bonding are Li ions, compared to the conventional low-temperature fired ceramics (LTCC) using Na ions as the conductive ions at the time of anodic bonding, 350 ° C. or less. Anodic bonding is possible even at low temperatures.

本発明によれば、900〜1000℃の温度で焼結でき、Ag、Au、Cu等の低融点・低抵抗な導体との同時焼成が可能であり、これを焼結することにより、室温(RT=25℃)〜400℃での線熱膨張係数が0〜5×10-6/℃と小さい、本発明の低熱膨張性磁器を提供できる。すなわち、本発明の磁器は、900〜1000℃の温度で焼結可能であることから、特にAg、Au、Cuなどを配線する配線基板の絶縁基板として用いることができる。また260〜350℃の温度で陽極接合が可能であり、MEMS(Micro Electro Mechanical Systems)実装用基板としても有用である。 According to the present invention, sintering can be performed at a temperature of 900 to 1000 ° C., and simultaneous firing with a low melting point / low resistance conductor such as Ag, Au, Cu, etc. is possible. RT = 25 ° C.) The low thermal expansion ceramic of the present invention having a linear thermal expansion coefficient of as small as 0 to 5 × 10 −6 / ° C. at 400 ° C. can be provided. That is, the porcelain of the present invention can be sintered at a temperature of 900 to 1000 ° C., and therefore can be used as an insulating substrate of a wiring substrate for wiring Ag, Au, Cu and the like. Further, anodic bonding is possible at a temperature of 260 to 350 ° C., and it is useful as a substrate for mounting MEMS (Micro Electro Mechanical Systems).

Claims (9)

(A)Li2Oまたは焼成したときにLi2Oとなるリチウム化合物(a1)とMgOまたは焼成したときにMgOとなるマグネシウム化合物(a2)とAl23(a3)とSiO2(a4)との混合物であって、リチウム化合物(a1)の割合αがLi2O換算で、7.0〜14.0質量%、マグネシウム化合物(a2)の割合βがMgO換算で4.0〜15.0質量%、Al23(a3)の割合γが12.0〜24.0質量%、SiO2(a4)の割合δが59.0〜73.0質量%の範囲にある原料粉混合物を750〜1000℃の温度で焼成して平均粒径0.39〜0.58μmに微粉砕した仮焼物にバインダーを含む成形助剤を加えて所定形状に成形した後、900〜920℃の温度で焼成して、式(1’)
(式中、α、β、γ及びδは前記a1:a2:a3:a4の質量%比を満足するモル比である。)で示される組成を有する複合酸化物を形成することを特徴とする、抗折強度が150MPa以上、25〜400℃における線熱膨張係数が0〜5×10-6/℃である高強度低熱膨張性磁器の製造方法。
(A) Li 2 O or lithium compound (a1) that becomes Li 2 O when fired, MgO or magnesium compound (a2), Al 2 O 3 (a3), and SiO 2 (a4) that becomes MgO when fired The ratio α of the lithium compound (a1) is 7.0 to 14.0% by mass in terms of Li 2 O, and the ratio β of the magnesium compound (a2) is 4.0 to 15 in terms of MgO. Raw material powder mixture in which 0% by mass, Al 2 O 3 (a3) ratio γ is 12.0 to 24.0% by mass, and SiO 2 (a4) ratio δ is 59.0 to 73.0% by mass. Is then calcined at a temperature of 750 to 1000 ° C. and finely pulverized to an average particle size of 0.39 to 0.58 μm, and a molding aid containing a binder is added to form a predetermined shape, and then the temperature is 900 to 920 ° C. Baked in the formula (1 ')
(Wherein, α, β, γ, and δ are molar ratios satisfying the mass ratio of a1: a2: a3: a4), and a composite oxide having a composition is formed. The manufacturing method of the high intensity | strength low thermal expansible ceramic whose bending strength is 150 MPa or more and whose linear thermal expansion coefficient in 25-400 degreeC is 0-5 * 10 < -6 > / degreeC.
前記原料粉として、Li 2 CO 3 、MgO、Al23及びSiO2を使用する請求項1記載の高強度低熱膨張性磁器の製造方法。 Wherein as the raw material powder, Li 2 CO 3, MgO, Al 2 O 3 and the method of producing a high-strength and low-thermal-expansion ceramic according to claim 1, wherein the use of SiO 2. 前記各原料粉の平均粒径が0.3〜2.0μmである請求項1または2記載の高強度低熱膨張性磁器の製造方法。   The method for producing a high-strength, low-thermal-expansion ceramic according to claim 1 or 2, wherein an average particle diameter of each raw material powder is 0.3 to 2.0 µm. テープ成形法により成形した絶縁層形成用のグリーンシートを焼成する請求項1記載の高強度低熱膨張性磁器の製造方法。   The method for producing a high-strength, low-thermal-expansion ceramic according to claim 1, wherein a green sheet for forming an insulating layer formed by a tape forming method is fired. 請求項1〜4のいずれかに記載の方法によって得られる、式(1’)
(式中、α、β、γ及びδは請求項1の式(1’)の記載と同じ意味を表す。)
で示される組成を有する複合酸化物を含む、抗折強度が150MPa以上、25〜400℃における線熱膨張係数が0〜5×10 -6 /℃である高強度低熱膨張性磁器。
Formula (1 ') obtained by the method according to any one of claims 1 to 4.
(In the formula, α, β, γ and δ have the same meaning as described in the formula (1 ′) of claim 1).
A high-strength, low-thermal-expansion porcelain having a flexural strength of 150 MPa or more and a linear thermal expansion coefficient at 25 to 400 ° C. of 0 to 5 × 10 −6 / ° C., including a composite oxide having a composition represented by:
前記複合酸化物が、β−スポジュメン系結晶相及び/またはLi2O・Al23・SiO2系結晶相、Li2O・SiO2系結晶相、及びMgO・SiO2系結晶相を含む請求項5に記載の高強度低熱膨張性磁器。 The composite oxide includes a β-spodumene crystal phase and / or a Li 2 O · Al 2 O 3 · SiO 2 crystal phase, a Li 2 O · SiO 2 crystal phase, and an MgO · SiO 2 crystal phase. The high-strength low-thermal-expansion ceramic according to claim 5. β−スポジュメン系結晶相及び/またはLi2O・Al23・SiO2系結晶相、Li2O・SiO2系結晶相、及びMgO・SiO2系結晶相を前記磁器の全体積の95%以上含む請求項6に記載の高強度低熱膨張性磁器。 The β-spodumene-based crystal phase and / or the Li 2 O.Al 2 O 3 .SiO 2 -based crystal phase, the Li 2 O.SiO 2 -based crystal phase, and the MgO.SiO 2 -based crystal phase are 95% of the total volume of the porcelain. The high-strength low-thermal-expansion porcelain according to claim 6 containing at least%. 陽極接合時の伝導イオンをLiイオンとする、260〜350℃の温度での陽極接合が可能である請求項5〜のいずれか1項記載の高強度低熱膨張性磁器。 The high-strength low-thermal-expansion ceramic according to any one of claims 5 to 7 , wherein anodic bonding is possible at a temperature of 260 to 350 ° C, wherein the conductive ions at the time of anodic bonding are Li ions. シリコン、GaAs、コバール、Al、またはTiと陽極接合が可能である請求項8に記載の高強度低熱膨張性磁器。 The high-strength, low-thermal-expansion porcelain according to claim 8, capable of anodic bonding with silicon, GaAs, Kovar, Al, or Ti.
JP2010104290A 2010-04-28 2010-04-28 Low temperature fired high strength low thermal expansion ceramic Active JP5566764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010104290A JP5566764B2 (en) 2010-04-28 2010-04-28 Low temperature fired high strength low thermal expansion ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010104290A JP5566764B2 (en) 2010-04-28 2010-04-28 Low temperature fired high strength low thermal expansion ceramic

Publications (2)

Publication Number Publication Date
JP2011230968A JP2011230968A (en) 2011-11-17
JP5566764B2 true JP5566764B2 (en) 2014-08-06

Family

ID=45320682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010104290A Active JP5566764B2 (en) 2010-04-28 2010-04-28 Low temperature fired high strength low thermal expansion ceramic

Country Status (1)

Country Link
JP (1) JP5566764B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106032318B (en) * 2015-03-12 2018-06-22 中国科学院上海硅酸盐研究所 A kind of low-temperature co-burning ceramic material and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4392633B2 (en) * 1999-01-20 2010-01-06 日立金属株式会社 DIELECTRIC CERAMIC COMPOSITION FOR MICROWAVE AND ITS MANUFACTURING METHOD
JP2009263189A (en) * 2008-04-28 2009-11-12 Nikko Co Low temperature-fired high strength low thermal expansion ceramic, and method for producing the same
JP5175650B2 (en) * 2008-08-06 2013-04-03 ニッコー株式会社 Porcelain capable of anodic bonding and composition for porcelain
JP5249121B2 (en) * 2009-04-23 2013-07-31 ニッコー株式会社 Low-temperature fired high-strength low-thermal-expansion porcelain and method for producing the same
JP2011195429A (en) * 2010-03-17 2011-10-06 Osamu Kimura β-EUCRYPTITE CERAMIC HAVING ZERO EXPANSION COEFFICIENT, HIGH STRENGTH AND LOW DIELECTRIC CONSTANT

Also Published As

Publication number Publication date
JP2011230968A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
JP5175650B2 (en) Porcelain capable of anodic bonding and composition for porcelain
KR101290089B1 (en) Ceramic material for low-temperature sintering, and ceramic substrate
JP5321066B2 (en) Ceramic composition and ceramic substrate
WO2010092970A1 (en) Sintered body of low temperature cofired ceramic and multilayer ceramic substrate
JPH09295827A (en) Glass for substrate and ceramic base using the same
WO2007074606A1 (en) Method for production of forsterite powder, forsterite powder, sintered forsterite, ceramic insulator composition, and laminated ceramic electronic element
WO2010092969A1 (en) Low temperature cofired ceramic material and ceramic substrate
IE64626B1 (en) Ceramic composition of matter and its use
CN106536448B (en) Medium K L TCC compositions and devices
JP6728859B2 (en) Ceramic substrate and manufacturing method thereof
JP4613826B2 (en) Ceramic substrate composition, ceramic substrate, method for producing ceramic substrate, and glass composition
JP3042441B2 (en) Low temperature fired glass-ceramic substrate and its manufacturing method
JP5566764B2 (en) Low temperature fired high strength low thermal expansion ceramic
JP5175791B2 (en) Low-temperature fired high-strength low-thermal-expansion porcelain and method for producing the same
JP5249121B2 (en) Low-temperature fired high-strength low-thermal-expansion porcelain and method for producing the same
WO2011099397A1 (en) Ceramic sintered body and method for producing same
JP2003095746A (en) Glass-ceramic composition, sintered compact and wiring board obtained by using the same
JP4794040B2 (en) Ceramic sintered body and wiring board using the same
JP2009263189A (en) Low temperature-fired high strength low thermal expansion ceramic, and method for producing the same
JP2018008863A (en) Dielectric ceramic material and dielectric ceramic composition
JP4580923B2 (en) Low-frequency fired porcelain composition for high frequency, its manufacturing method and electronic component
JP2010037126A (en) Ceramic composition and ceramic sintered compact
JP3944839B2 (en) COMPOSITE CERAMIC COMPONENT AND MANUFACTURING METHOD THEREOF
JP2003073162A (en) Glass ceramic and wiring board
JP4748799B2 (en) Low-frequency fired porcelain composition for high frequency and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140618

R150 Certificate of patent or registration of utility model

Ref document number: 5566764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250