JP2010253942A - Double-layer film-coated metal plate and manufacturing method therefor - Google Patents
Double-layer film-coated metal plate and manufacturing method therefor Download PDFInfo
- Publication number
- JP2010253942A JP2010253942A JP2010079147A JP2010079147A JP2010253942A JP 2010253942 A JP2010253942 A JP 2010253942A JP 2010079147 A JP2010079147 A JP 2010079147A JP 2010079147 A JP2010079147 A JP 2010079147A JP 2010253942 A JP2010253942 A JP 2010253942A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- group
- film
- coating
- aqueous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/42—Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/082—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/085—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/09—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/092—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/095—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/18—Layered products comprising a layer of metal comprising iron or steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/24—Layered products comprising a layer of synthetic resin characterised by the use of special additives using solvents or swelling agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/283—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/308—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/38—Layered products comprising a layer of synthetic resin comprising epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/40—Layered products comprising a layer of synthetic resin comprising polyurethanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/03—3 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/04—4 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/40—Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/06—Coating on the layer surface on metal layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/20—Inorganic coating
- B32B2255/205—Metallic coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/02—Synthetic macromolecular particles
- B32B2264/0214—Particles made of materials belonging to B32B27/00
- B32B2264/0257—Polyolefin particles, e.g. polyethylene or polypropylene homopolymers or ethylene-propylene copolymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/107—Ceramic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2270/00—Resin or rubber layer containing a blend of at least two different polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/402—Coloured
- B32B2307/4026—Coloured within the layer by addition of a colorant, e.g. pigments, dyes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/536—Hardness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/554—Wear resistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/584—Scratch resistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/714—Inert, i.e. inert to chemical degradation, corrosion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/718—Weight, e.g. weight per square meter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/746—Slipping, anti-blocking, low friction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/752—Corrosion inhibitor
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Laminated Bodies (AREA)
- Paints Or Removers (AREA)
- Chemical Treatment Of Metals (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Description
本発明は、水性樹脂塗料の金属板への塗布、加熱乾燥により生成する耐食性、高加工密着性の最下層皮膜と、水性樹脂塗料の塗布、乾燥後、紫外線照射、電子線照射、高温加熱等で硬化することにより得られる高硬質樹脂を主体とする耐擦傷性、耐摩耗性の最表層皮膜とを含む複層皮膜で表面の少なくとも一部が被覆された、耐擦傷性、耐摩耗性、耐食性、加工密着性のすべてに優れる複層皮膜被覆金属板、及び、その複層皮膜被覆金属板の複層皮膜形成方法に関する。 The present invention is applied to a metal plate of a water-based resin paint, a corrosion-resistant, high-working adhesion bottom layer film produced by heat drying, and after application and drying of the water-based resin paint, ultraviolet irradiation, electron beam irradiation, high temperature heating, etc. At least a part of the surface is covered with a multi-layer film including a scratch-resistant, abrasion-resistant outermost layer film mainly composed of a high-hardness resin obtained by curing with scratch resistance, abrasion resistance, The present invention relates to a multilayer coating-coated metal plate excellent in all of corrosion resistance and work adhesion, and a multilayer coating forming method for the multilayer coating-coated metal plate.
以下、本発明の背景技術について説明する。
最初に本明細書で使用する「紫外線硬化型樹脂」、「紫外線硬化型樹脂塗料」、「紫外線硬化済み皮膜」、「電子線硬化型樹脂」、「電子線硬化型樹脂塗料」、「電子線硬化済み皮膜」、「加熱成膜型樹脂」、「加熱成膜型樹脂塗料」、「加熱成膜済み皮膜」、「不揮発分」、「高硬質樹脂」について説明する。「紫外線硬化型樹脂」とは、電磁波である紫外線の照射により重合や架橋が始まる紫外線硬化型の樹脂や重合性炭化水素を構成主成分とする、紫外線硬化前の樹脂組成物を意味し、「紫外線硬化型樹脂塗料」とは、前記「紫外線硬化型樹脂」で不揮発分の主体が構成される塗料を意味し、「紫外線硬化済み皮膜」とは、前記「紫外線硬化型樹脂塗料」を被塗面に塗布、乾燥後、紫外線を照射して得られる、紫外線硬化後の皮膜のことを意味する。また、本明細書において、「加熱成膜型樹脂」とは、加熱による重合や架橋反応で高分子化が促進され皮膜を形成する熱硬化型樹脂、熱可塑性樹脂、または重合性炭化水素を構成主成分とする樹脂組成物を意味し、「加熱成膜型樹脂塗料」とは、前記「加熱成膜型樹脂」で不揮発分の主体が構成される塗料を意味し、「加熱成膜済み皮膜」とは、前記「加熱成膜型樹脂塗料」を被塗面に塗布、加熱乾燥して得られる皮膜のことを意味する。また、本明細書において、「電子線硬化型樹脂」とは、粒子線である電子線の吸収により重合や架橋が始まる電子線硬化型の樹脂や重合性炭化水素を構成主成分とする、電子線硬化前の樹脂組成物を意味し、「電子線硬化型樹脂塗料」とは、前記「電子線硬化型樹脂」で不揮発分の主体が構成される塗料を意味し、「電子線硬化済み皮膜」とは、前記「電子線硬化型樹脂塗料」を被塗面に塗布、乾燥後、電子線を照射して得られる、電子線硬化後の皮膜のことを意味する。前記の「不揮発分」とは、本明細書では、塗料や組成物に溶媒として配合されている低分子量化合物(水や溶剤類など)を揮発させた後に残る成分のことを意味する。前記の「高硬質樹脂」とは、前記の「紫外線硬化型樹脂」に紫外線を照射して高度に架橋、硬質化させた樹脂、前記の「電子線硬化型樹脂」に電子線を照射して高度に架橋、硬質化させた樹脂、前記の「加熱成膜型樹脂」を200℃以上に高温加熱して高度に架橋、硬質化させた樹脂、または、前記以外の架橋方法で高度に架橋、硬質化させた樹脂を意味する。 紫外線硬化型樹脂塗料による金属板の表面被覆処理は、秒単位あるいはそれ以下の短時間の紫外線照射により高分子量、高架橋構造の紫外線硬化済み皮膜の形成が可能であり、得られた皮膜は多くの場合加熱成膜型樹脂塗料による表面被覆処理より硬質の表面が得られるため、種々の産業分野で金属表面の擦傷防止や耐摩耗処理に用いられている。この紫外線硬化型樹脂塗料の中で、溶剤系塗料や、高粘度の反応性ポリマーを低粘度の反応性モノマーで希釈して塗工性を付与する無溶剤系塗料は、塗装時に溶剤や希釈モノマーが大気中に放散し作業者や環境に悪影響を及ぼすため、最近では、溶剤やモノマーを殆ど含まない水性や粉体性の紫外線硬化型樹脂塗料の開発が進み、幾つか上市もされている。
Hereinafter, the background art of the present invention will be described.
"UV curable resin", "UV curable resin paint", "UV cured film", "electron beam curable resin", "electron beam curable resin paint", "electron beam" The “cured film”, “heat-deposited resin”, “heat-deposited resin paint”, “heat-deposited film”, “nonvolatile component”, and “highly hard resin” will be described. The term “ultraviolet curable resin” means an ultraviolet curable resin or a polymerizable hydrocarbon that begins polymerization or crosslinking upon irradiation with ultraviolet rays that are electromagnetic waves, and a resin composition before ultraviolet curing, The term “ultraviolet curable resin paint” means a paint mainly composed of non-volatile components by the “ultraviolet curable resin”, and the term “ultraviolet curable film” means that the “ultraviolet curable resin paint” It means a film after UV curing, obtained by irradiating the surface with UV light after coating, drying. Further, in this specification, “heat-deposited resin” refers to a thermosetting resin, a thermoplastic resin, or a polymerizable hydrocarbon that forms a film by promoting polymerization by a polymerization or crosslinking reaction by heating. The term “heated film-forming resin paint” means a paint mainly composed of a non-volatile component in the “heat-film-forming resin”, "Means a film obtained by applying the above-mentioned" heat-deposited resin paint "to the surface to be coated and drying by heating. Further, in this specification, the “electron beam curable resin” means an electron beam curable resin or a polymerizable hydrocarbon that starts polymerization or cross-linking by absorption of an electron beam that is a particle beam. It means a resin composition before wire curing, and “electron beam curable resin coating” means a coating mainly composed of non-volatile components with the above “electron beam curable resin”. "Means a coating after electron beam curing, obtained by applying the above-mentioned" electron beam curable resin coating "to a coated surface, drying, and then irradiating with an electron beam. In the present specification, the “nonvolatile content” means a component remaining after volatilizing a low molecular weight compound (such as water or a solvent) blended as a solvent in a paint or a composition. The “highly hard resin” is a resin that has been highly crosslinked and hardened by irradiating ultraviolet rays to the “ultraviolet curable resin”, and irradiating an electron beam to the “electron beam curable resin”. Highly cross-linked and hardened resin, the above-mentioned “heat-deposited resin” is heated to 200 ° C. or higher at a high temperature, highly cross-linked and hardened resin, or highly cross-linked by other cross-linking methods, It means a hardened resin. The surface coating treatment of metal plates with UV curable resin coatings enables the formation of UV cured films with high molecular weight and highly cross-linked structure by UV irradiation in seconds or less. In some cases, a harder surface can be obtained than a surface coating treatment with a heat-deposited resin coating, and therefore, it is used in various industrial fields for scratch prevention and wear resistance treatment of metal surfaces. Among these UV-curable resin paints, solvent-based paints and solvent-free paints that impart coating properties by diluting high-viscosity reactive polymers with low-viscosity reactive monomers Recently, water-based and powdery UV-curable resin coatings containing almost no solvent or monomer have been developed, and some have been put on the market.
これら無溶剤系塗料のうち粉体の紫外線硬化型樹脂塗料による金属被覆処理の場合は、単一層の皮膜形成に少なくとも、(1)金属板への静電塗装、(2)高温での粉体溶融と連続皮膜化、及び、(3)紫外線照射による硬化、の3工程が必要で、製造工程が煩雑でトータル設備コストが高く、かつ、膜厚20μm以下の薄膜被覆処理が困難であった。 Of these solvent-free paints, in the case of metal coating with powder UV curable resin paint, at least (1) electrostatic coating on a metal plate, (2) powder at high temperature Three steps of melting and continuous film formation and (3) curing by ultraviolet irradiation are required, the manufacturing process is complicated, the total equipment cost is high, and thin film coating treatment with a film thickness of 20 μm or less is difficult.
また、水性の紫外線硬化型樹脂塗料による金属被覆処理の場合も、塗装、乾燥、紫外線照射の3工程が必須であるが、液状塗料の塗装は粉体塗料の場合より簡便で、かつ、水乾燥工程では粉体塗料のような高温ベーキングが要らないため、設備費やランニングコストは粉体塗装の場合よりかなり安価である。更に、水性の紫外線硬化型樹脂塗料による金属被覆処理では、粉体塗装では不可能なミクロンレベル、サブミクロンレベルの膜厚、あるいはそれ以下の薄膜被覆処理も工業的に可能なため、最近では、低環境負荷性で安価な金属板の硬質薄膜処理方法として注目されている。 Also, in the case of metal coating treatment with water-based UV-curable resin paint, three steps of painting, drying and UV irradiation are indispensable, but liquid coating is easier than powder coating and water drying. Since the process does not require high-temperature baking as in powder coating, the equipment and running costs are considerably lower than in powder coating. Furthermore, in metal coating treatment with water-based UV-curable resin paint, thin film coating treatment of micron level, submicron level, or less, which is impossible with powder coating, is industrially possible. It is attracting attention as a method for processing a hard thin film of a metal plate that is low in environmental impact and inexpensive.
しかし、溶剤系、或いは無溶剤系の水性、粉体性いずれの紫外線硬化型樹脂塗料を用いた被覆処理でも、紫外線を照射した塗膜全域に光重合開始剤起源のラジカルが瞬時に多数発生し、高速の連鎖反応でたちまち高架橋、高分子化するため、硬化後の体積収縮や皮膜の残留歪みが大きく、また、金属板への密着性や皮膜バルクの繊密性は加熱成膜型樹脂塗料を用いた場合に比較し不十分であった。そのため、金属板上に生成した紫外線硬化済み皮膜は、加熱成膜済み皮膜に比べ、酸素や塩化物イオン等の金属腐食因子の遮蔽性に劣り、耐食性に問題があった。 However, even with a coating treatment using a solvent-based, solvent-free, water-based or powder-based UV-curable resin coating, a large number of radicals originating from the photopolymerization initiator are instantaneously generated in the entire coating film irradiated with UV light. Because of high-speed chain reaction, high cross-linking and high-polymerization occur quickly, resulting in large volume shrinkage and residual film distortion after curing. It was insufficient compared with the case of using. Therefore, the ultraviolet-cured film produced on the metal plate is inferior in shielding properties of metal corrosion factors such as oxygen and chloride ions, and has a problem in corrosion resistance, as compared with the film formed by heating.
この様な課題に対し、例えば、水性の紫外線硬化型樹脂塗料での、硬化時の収縮を抑え金属面との密着性を改善する方法として、数平均分子量1000〜15000の比較的高分子量の重合体をベースとした反応性樹脂の水分散体を用い、金属との密着性に優れる紫外線硬化済み皮膜を形成する方法が提案されている(特許文献1参照)。また、重量平均分子量が500〜2000とやや高めで水分散性の光重合開始剤を用い、金属や木材などに優れた密着性を持つ紫外線硬化済み皮膜を形成する方法も提案されている(特許文献2参照)。 To solve such problems, for example, as a method for suppressing shrinkage during curing and improving adhesion to a metal surface in an aqueous ultraviolet curable resin coating, a relatively high molecular weight weight having a number average molecular weight of 1000 to 15000 is used. There has been proposed a method for forming an ultraviolet-cured film having excellent adhesion to a metal using an aqueous dispersion of a reactive resin based on coalescence (see Patent Document 1). In addition, a method of forming a UV-cured film having excellent adhesion to metal or wood using a water-dispersible photopolymerization initiator having a weight average molecular weight of 500 to 2000 is slightly proposed (patent) Reference 2).
一方、単一層の紫外線硬化済み皮膜を被覆した金属板でなく、本発明の皮膜構成のように、最表層を紫外線硬化済み皮膜とし、下層皮膜が紫外線硬化済み皮膜以外の皮膜である複層被覆金属板に関する技術がいくつか提案されている。例えば、金属板あるいは表面処理金属板に水性ウレタン系樹脂下地を塗装してからその上層に紫外線硬化型塗料を塗装することにより、紫外線硬化済み皮膜の密着性を改善する技術が開示されている(特許文献3参照)。また、表層から順に、紫外線硬化済み樹脂層、アクリル樹脂層、塩化ビニル樹脂層からなる3層被覆金属板(特許文献4参照)が提案されている。他の例として、表層から順に、紫外線照射と加熱の併用による成膜樹脂層、下塗り皮膜層、化成処理皮膜層からなる3層被覆亜鉛めっき鋼板(特許文献5参照)も提案されている。 On the other hand, a multilayer coating in which the outermost layer is a UV-cured film and the lower film is a film other than the UV-cured film, as in the film structure of the present invention, instead of a metal plate coated with a single-layer ultraviolet-cured film Several techniques related to metal plates have been proposed. For example, a technique for improving the adhesion of an ultraviolet-cured film by coating an aqueous urethane-based resin base on a metal plate or a surface-treated metal plate and then applying an ultraviolet curable coating on the upper layer is disclosed ( (See Patent Document 3). Further, a three-layer coated metal plate (see Patent Document 4) composed of an ultraviolet-cured resin layer, an acrylic resin layer, and a vinyl chloride resin layer in order from the surface layer has been proposed. As another example, a three-layer coated galvanized steel sheet (see Patent Document 5) composed of a film-forming resin layer, an undercoat film layer, and a chemical conversion film layer using ultraviolet irradiation and heating in order from the surface layer has been proposed.
電子線硬化型樹脂塗料による金属板の表面被覆処理は、紫外線硬化の場合と同様の短時間架橋が可能なだけでなく、紫外線硬化の場合より遥かに強烈な電子エネルギーで樹脂鎖を切断してラジカルを発生させることができるため、紫外線硬化の場合には必須の重合開始剤が要らない、ガラス状態にある樹脂(分子鎖の移動度が非常に低い状態にある樹脂)でも架橋可能なため加熱不要、等の優れた特徴を持つ。そのため、金属表面の擦傷防止や耐摩耗処理に用いられている。しかし、電子線を吸収した塗膜全域にラジカルが瞬時に多数発生し、高速の連鎖反応でたちまち高架橋、高分子化するため、硬化後の体積収縮や皮膜の残留歪みが大きく、また、金属板への密着性や皮膜バルクの繊密性は加熱成膜型樹脂塗料を用いた場合に比較し不十分であった。そのため、金属板上に生成した電子線硬化済み皮膜は、加熱成膜済み皮膜に比べ、酸素や塩化物イオン等の金属腐食因子の遮蔽性に劣り、耐食性に問題があった。 The surface coating treatment of metal plates with electron beam curable resin coatings not only enables short-time cross-linking as in the case of UV curing, but also breaks the resin chain with much stronger electron energy than in UV curing. Since radicals can be generated, it is possible to crosslink even a resin in a glass state (resin with a very low molecular chain mobility) that does not require an essential polymerization initiator in the case of UV curing. Excellent features such as unnecessary. Therefore, it is used for preventing scratches on metal surfaces and for anti-wear treatment. However, a large number of radicals are instantaneously generated in the entire coating film that has absorbed the electron beam, and it is quickly crosslinked and polymerized by a high-speed chain reaction, resulting in a large volume shrinkage and residual film distortion after curing. Adhesion to the film and film bulk density were insufficient as compared with the case of using a heat-deposited resin paint. For this reason, the electron beam-cured film formed on the metal plate is inferior in shielding properties of metal corrosive factors such as oxygen and chloride ions, and has a problem in corrosion resistance, as compared with the film formed by heating.
このような課題に対し、例えば、硬質の電子線硬化済み皮膜と金属板の間に、電子線硬化済み皮膜より軟質の層としてガラス転移温度が30℃以下で塗膜伸びが50%以上(またはガラス転移温度が65℃以下で塗膜伸びが30%以上、またはガラス転移温度が100℃以下)の熱硬化塗膜を設け、単一層の電子線硬化済み皮膜で被覆しただけでは抑止できない腐食誘発要因(寒暖の差による塗膜収縮割れ、振動による塗膜割れ、飛来物による塗膜割れ等)を抑止し、耐食性を改善する方法が提案されている(それぞれ特許文献6、7、8参照)。 In response to such problems, for example, between a hard electron beam-cured film and a metal plate, as a softer layer than the electron beam-cured film, the glass transition temperature is 30 ° C. or less and the film elongation is 50% or more (or glass transition). Corrosion-inducing factors that cannot be suppressed simply by providing a thermosetting coating with a temperature of 65 ° C or less and a coating elongation of 30% or more, or a glass transition temperature of 100 ° C or less) and coating with a single-layer electron beam-cured coating ( There have been proposed methods for suppressing corrosion shrinkage due to differences in temperature, coating cracking due to vibration, coating cracking due to flying objects, etc., and improving corrosion resistance (refer to Patent Documents 6, 7, and 8 respectively).
前記特許文献1では、高分子量の反応性樹脂を水性の紫外線硬化型樹脂塗料の主成分に用いており、反応性モノマーや低分子量の反応性樹脂を多く含む塗料の場合よりラジカル反応点が少ないため、急激な紫外線硬化反応が生じても、ある程度の硬化収縮を抑制できる。しかし、硬化前の皮膜中で、高分子量の反応性樹脂の移動度が低いため、紫外線照射で生成するラジカルと反応性樹脂の反応効率が低くなり、架橋度や繊密性が不十分で金属腐食因子の遮蔽性に劣る皮膜が生成し、耐食性は加熱成膜済み皮膜に及ばなかった。また、前記特許文献2の方法では、水性の紫外線硬化型樹脂塗料中の開始剤が嵩高く、紫外線照射で低移動度のラジカルしか生成しないため、共存する反応性樹脂との反応効率が低く皮膜の架橋度や繊密性が不十分となる。そのため、金属腐食因子の遮蔽性に劣る皮膜となり、耐食性は加熱成膜済み皮膜に及ばなかった。 In Patent Document 1, a high molecular weight reactive resin is used as a main component of an aqueous ultraviolet curable resin coating, and there are fewer radical reactive sites than a coating containing a large amount of reactive monomers and low molecular weight reactive resins. Therefore, even if a rapid ultraviolet curing reaction occurs, a certain degree of curing shrinkage can be suppressed. However, since the mobility of the high molecular weight reactive resin is low in the film before curing, the reaction efficiency between the radical generated by UV irradiation and the reactive resin is low, and the degree of crosslinking and fineness are insufficient. A film with inferior corrosion factor shielding properties was produced, and the corrosion resistance was not as good as that of the heat-formed film. Further, in the method of Patent Document 2, since the initiator in the aqueous ultraviolet curable resin coating is bulky and generates only low mobility radicals upon irradiation with ultraviolet light, the reaction efficiency with the coexisting reactive resin is low. The degree of cross-linking and the fineness are insufficient. For this reason, the film is inferior in the shielding property of the metal corrosion factor, and the corrosion resistance is not as high as that of the heat-formed film.
前記特許文献3の技術は、金属表面との密着性に劣る紫外線硬化済み皮膜の密着性を改善する技術であり、不足する耐食性を改善するものでなかった。また、この技術で用いる紫外線硬化型塗料は水性でないため、水性ウレタン系樹脂下地の乾燥を行わない状態でその上に紫外線硬化型塗料をウェット・オン・ウェット塗装や多層同時塗装できず、煩雑でコストがかかる塗装工程であった。即ち、水性ウレタン系樹脂を下地塗装後、一旦加熱して水分乾燥と熱硬化を行い、冷却後、その上に溶剤系または無溶剤系の紫外線硬化型樹脂塗装を行い、溶剤系の場合は再度加熱して溶剤を揮発させ、最後に紫外線照射を行う、という多くの工程を経る必要があり、実用的でなかった。 The technique of Patent Document 3 is a technique for improving the adhesion of an ultraviolet-cured film that is inferior in adhesion to a metal surface, and does not improve the insufficient corrosion resistance. In addition, since the UV curable paint used in this technology is not water-based, the UV curable paint cannot be wet-on-wet-painted or coated simultaneously in multiple layers without drying the aqueous urethane-based resin base, which is cumbersome. It was a costly painting process. In other words, after water-based urethane-based resin is applied to the base, it is heated once to dry the moisture and heat-cured, and after cooling, a solvent-based or solvent-free UV-curable resin coating is applied to it. It was necessary to go through many steps of heating to volatilize the solvent and finally irradiating with ultraviolet rays, which was not practical.
前記特許文献4の実施例で用いられている紫外線硬化型樹脂塗料は水性ではないが、特許文献4では水性、溶剤系、無溶剤系等の液性の特定はなく、水性の紫外線硬化型塗料も使用できると考えられる。ところが、この技術の目的は、塩化ビニル樹脂を被覆した金属化粧板の表面硬度と耐熱変色性の改善であり、アクリル樹脂層は、当該金属板を照明器具等の熱源付近で用いた場合の塩化ビニル樹脂層の加熱変色を防止するため、また塩化ビニル樹脂層は、意匠性を付与するために用い、いずれの層も、紫外線硬化済み樹脂層に不足する耐食性を改善するものでなかった。また、特許文献5の技術で用いる紫外線硬化型樹脂塗料は、水性、溶剤系のいずれでもよいとあるので水性の紫外線硬化型塗料も使用できるが、この技術にて最表層に紫外線硬化成分を添加する理由は、ウェット・オン・ウェット塗装等による複層塗膜のタレ防止であり、紫外線硬化成分による最表層皮膜の硬質化ではなかった。 Although the ultraviolet curable resin coating used in the examples of Patent Document 4 is not water-based, Patent Document 4 does not specify liquidity such as aqueous, solvent-based, or solvent-free, and is a water-based UV-curable coating. Can also be used. However, the purpose of this technology is to improve the surface hardness and heat discoloration of a metal decorative plate coated with a vinyl chloride resin, and the acrylic resin layer is used for chlorination when the metal plate is used in the vicinity of a heat source such as a lighting fixture. In order to prevent heat discoloration of the vinyl resin layer and the vinyl chloride resin layer was used for imparting design properties, none of the layers improved the corrosion resistance which is insufficient for the UV-cured resin layer. Moreover, since the ultraviolet curable resin coating used in the technique of Patent Document 5 may be either water-based or solvent-based, an aqueous ultraviolet curable paint can also be used, but this technique adds an ultraviolet curable component to the outermost layer. The reason for this was to prevent sagging of the multilayer coating film by wet-on-wet coating or the like, and not to harden the outermost layer film by an ultraviolet curing component.
前記特許文献6〜8では、最表層の電子線硬化済み皮膜により十分な耐擦傷性が得られ、かつ、主として最下層の熱硬化塗膜の働きにより塗膜割れ(寒暖の差による塗膜収縮割れ、振動による塗膜割れ、飛来物による塗膜割れ等)は抑止できる。ところが、最下層の熱硬化塗膜には、皮膜の架橋度や繊密性を大きく改善する工夫や、皮膜と好適な防錆剤を複合化する工夫が見られないため、金属腐食因子の遮蔽性や防錆性に劣る皮膜となり、結果として、このような複層被覆金属板の耐食性が不十分だった。 In Patent Documents 6 to 8, sufficient scratch resistance is obtained by the electron beam cured film on the outermost layer, and coating film cracking (coating shrinkage due to difference in temperature) is mainly caused by the action of the lowermost thermosetting film. Cracks, coating film cracks due to vibration, coating film cracks due to flying objects, etc.) can be suppressed. However, the thermosetting coating film in the lowermost layer does not show any device that greatly improves the degree of cross-linking and fineness of the film, or a device that combines the film with a suitable rust preventive agent. As a result, the corrosion resistance of such a multilayer coated metal sheet was insufficient.
このように、従来の技術では、水性の紫外線硬化型樹脂を紫外線硬化して得られる皮膜を被覆した金属板は得られているが、単一層で十分な耐擦傷性と耐食性を兼ね備えた被覆皮膜は得られていない。また、最表層が紫外線硬化済み皮膜で、下層皮膜が紫外線硬化済み皮膜以外の皮膜である複層被覆金属板においても、十分な耐擦傷性と耐食性を兼ね備えたものは見当たらなかった。そのため、種々の産業分野で、水性のため塗料塗工時の環境負荷が低く、かつ耐擦傷性や耐摩耗性に優れる紫外線硬化済み皮膜の特性を活かした用途が拡がるに従い、この皮膜に対し、十分な耐食性がほしいとの要望が強まってきた。 As described above, in the conventional technique, a metal plate coated with a film obtained by ultraviolet curing an aqueous ultraviolet curable resin has been obtained, but a coating film having sufficient scratch resistance and corrosion resistance in a single layer. Is not obtained. In addition, even in the multilayer coated metal plate in which the outermost layer is a UV-cured film and the lower layer film is a film other than the UV-cured film, there has been no product having sufficient scratch resistance and corrosion resistance. Therefore, in various industrial fields, as the use of the UV-cured film, which is water-based and has a low environmental impact during coating, and has excellent scratch resistance and abrasion resistance, has expanded, There has been an increasing demand for sufficient corrosion resistance.
また、電子線硬化済み皮膜被覆に関する従来技術では、最表層が電子線硬化済み皮膜で、下層皮膜が電子線硬化済み皮膜以外の皮膜である複層被覆金属板において、十分な耐擦傷性と耐食性を兼ね備えたものは見当たらなかった。水性の電子線硬化型塗料を電子線硬化した皮膜を最表層に持つ被覆金属板はまだ工業化されていないが、紫外線線硬化型塗料の場合と異なり重合開始剤を添加する必要がないこと、水性のため塗料塗工時の環境負荷性に優れること、紫外線硬化型樹脂の場合と異なり室温での硬化性に優れること、紫外線硬化済み皮膜の場合より更に耐擦傷性や耐摩耗性に優れる皮膜の被覆が可能なこと、等の特徴を活かし、将来、種々の産業分野で用いられると考えられる。このような用途拡大に伴い、紫外線硬化済み皮膜の場合と同様に、耐擦傷性や耐摩耗性だけでなく十分な耐食性、加工密着性もほしいとのニーズが高まるのは必至である。 In addition, in the prior art related to electron beam cured coating, sufficient scratch resistance and corrosion resistance are obtained in a multilayer coated metal plate in which the outermost layer is an electron beam cured coating and the lower layer coating is a coating other than the electron beam cured coating. I couldn't find anything that had. The coated metal plate with the outermost layer coated with an electron beam curable coating of water-based electron beam curable paint has not been industrialized yet, unlike the case of ultraviolet ray curable paint, there is no need to add a polymerization initiator. Therefore, it has excellent environmental impact during coating, excellent curability at room temperature unlike UV curable resins, and better scratch resistance and abrasion resistance than UV cured films. It is considered that it can be used in various industrial fields in the future, taking advantage of the fact that it can be coated. As such applications are expanded, the need for not only scratch resistance and wear resistance but also sufficient corrosion resistance and work adhesion is inevitably increased as in the case of UV-cured films.
水性の加熱成膜型樹脂を200℃以上に高温加熱して高度に架橋、硬質化させた皮膜、または、水性の樹脂を紫外線硬化、電子線硬化、200℃以上の高温加熱以外の方法で高度に架橋、硬質化させた皮膜を最表層に持ち、耐擦傷性、耐摩耗性、耐食性、加工密着性のすべてに優れる被覆金属板に関わる従来技術は見当たらなかった。 A coating obtained by heating a water-based heat-forming resin to a temperature of 200 ° C. or higher to be highly crosslinked or hardened, or a water-based resin using a method other than UV curing, electron beam curing, or heating at a temperature of 200 ° C. or higher. There is no prior art relating to a coated metal plate that has a cross-linked and hardened film on the outermost layer and is excellent in all of scratch resistance, wear resistance, corrosion resistance, and work adhesion.
本発明は、以上のような課題に鑑みてなされたものであり、水性樹脂塗料の塗布後、紫外線照射、電子線照射、200℃以上の高温加熱等により得られる耐擦傷性、耐摩耗性に優れる高硬質樹脂皮膜を最表層とし、水性樹脂塗料の塗布、乾燥により得られる耐食性、加工密着性に優れる樹脂からなる最下層皮膜を組み合わせた複層皮膜被覆金属板、及び、その複層皮膜被覆金属板の複層皮膜形成方法に関する。 The present invention has been made in view of the problems as described above. After application of the water-based resin coating, the present invention has improved abrasion resistance and abrasion resistance obtained by ultraviolet irradiation, electron beam irradiation, high temperature heating at 200 ° C. or higher, and the like. A multi-layer coating coated metal plate with an excellent high-hardness resin coating as the outermost layer and a combination of the bottom coating made of a resin with excellent corrosion resistance and processing adhesion obtained by application of water-based resin paint and drying, and its multi-layer coating coating The present invention relates to a method for forming a multilayer coating on a metal plate.
本発明者らは、前記のような目的を達成するため鋭意研究を行った結果、乾式でのスチールウール摺動試験、湿式でのクレンザー摺動試験のいずれによっても樹脂表面の擦傷が皆無か、軽微な浅い擦傷しか付かない高い硬度を有する高硬質樹脂を構成主成分とする皮膜を最表層に配し、かつ、耐食性、加工密着性に優れる特定の樹脂を最下層に配する複層構造を金属表面に形成すれば、耐擦傷性、耐摩耗性、耐食性、加工密着性の全てに優れる被覆金属板が得られることを見出した。 As a result of earnest research to achieve the above-mentioned object, the present inventors have found that there is no scratch on the resin surface by any of the dry steel wool sliding test and the wet cleanser sliding test, A multi-layer structure in which a coating consisting mainly of a high-hardness resin with a high hardness that only gives slight, shallow scratches is placed on the outermost layer, and a specific resin with excellent corrosion resistance and work adhesion is placed on the lowermost layer It has been found that if it is formed on a metal surface, a coated metal plate excellent in all of scratch resistance, wear resistance, corrosion resistance, and work adhesion can be obtained.
本発明は、以上の知見をもとに完成されたものであって、具体的には、以下の通りである。 The present invention has been completed based on the above knowledge, and specifically, is as follows.
(1)2層以上が積層した複層皮膜で表面の少なくとも一部が被覆された金属板であって、前記複層皮膜のうち金属表面に接する最下層の皮膜が、水性の加熱成膜型樹脂塗料(a)を金属表面に塗布、加熱乾燥することにより得られる皮膜であり、かつ該皮膜中に水性樹脂(a1)を金属表面に塗布、加熱乾燥することにより得られる樹脂(A1)と、更にその誘導体で下記一般式(I)に示す樹脂(A2)のいずれか1種以上を合計で皮膜の50〜100質量%含有し、かつ、前記複層皮膜のうち最表層の皮膜が、水性樹脂塗料(j)を塗装皮膜表面に塗布、乾燥後、紫外線照射、電子線照射や200℃以上の高温加熱等で硬化することにより得られる皮膜であり、かつ、高硬質樹脂(J)を該皮膜の50〜95質量%、シリカ微粒子(C1)を皮膜の5〜35質量%含有することを特徴とする、複層被覆金属板。
(2) 前記水性樹脂塗料(j)が水性の紫外線硬化型樹脂塗料(b)であり、かつ、前記高硬質樹脂(J)が下記一般式(II)に示す紫外線硬化済み樹脂(B1)であることを特徴とする、複層被覆金属板。
(3)前記水性塗料(a)の樹脂成分が、水性エポキシ系樹脂、水性フェノール系樹脂、水性ポリエステル系樹脂、水性ポリウレタン系樹脂、水性(メタ)アクリル系樹脂及び水性ポリオレフィン系樹脂からなる群から選ばれることを特徴とする1種又は2種以上である前記(1)、(2)のいずれかに記載の複層被覆金属板。
(4)前記樹脂(A2)中の−C−Si−O−結合を形成するSi原子が、前記複層皮膜のうち金属表面に接する最下層の皮膜中に、前記樹脂(A1)と(A2)の合計100質量部に対し0.1〜30質量部含まれることを特徴とする前記(1)〜(3)のいずれかに記載の金属板。
(5)前記最下層皮膜の付着量が0.01〜3g/m2である前記(1)〜(4)のいずれかに記載の金属板。
(6)前記最下層皮膜が、ポリフェノール化合物(D)を前記樹脂(A1)と(A2)の合計100質量部に対して1〜100質量部含有する前記(1)〜(5)のいずれかに記載の金属板。
(7)前記最下層皮膜が、りん酸及びヘキサフルオロ金属酸からなる群より選択される1種又は2種以上の酸成分(E)を前記樹脂(A1)と(A2)の合計100質量部に対して0.1〜100質量部含有する前記(1)〜(6)のいずれかに記載の金属板。
(8)前記へキサフルオロ金属酸が、Ti、Si、Zr、Nbからなる群より選択される1種又は2種以上の元素を含む前記(7)に記載の金属板。
(9)前記最下層皮膜が、りん酸塩化合物(F)を前記樹脂(A1)と(A2)の合計100質璽部に対して0.1〜100質量部含有する前記(1)〜(8)のいずれかに記載の金属板。
(10)前記りん酸塩化合物(F)が、カチオン成分としてMg、Mn、Al、Ca、Niからなる群より選択される1種又は2種以上の元素を含む前記(9)に記載の金属板。
(11)前記最下層皮膜が、Si、Ti、Al、Zrからなる群より選択される1種又は2種以上の金属の酸化物からなる金属酸化物微粒子(G)を前記樹脂(A1)と(A2)の合計100質量部に対して1〜100質量部含有する前記(1)〜(10)のいずれかに記載の金属板。
(12)前記紫外線硬化済み樹脂(B1)末端のラジカル付加物Radが、下記式(Rad1)〜(Rad13)のいずれかで示される構造を持つ末端基である、前記(1)、(2)のいずれかに記載の金属板。
(14)前記紫外線硬化済み樹脂(B1)の−X1基が水素原子で、該樹脂(B1)が下記一般式(III)に示す構造である(1)、(2)、(12)、(13)のいずれかに記載の金属板。
(15)前記複層皮膜の最表層皮膜の付着量が0.2〜3g/m2である前記(1)、(2)、(12)〜(14)のいずれかに記載の金属板。
(16)前記複層被覆金属板の表面に対し乾式スチールウール摺動試験を行った後、金属表面に達する深い擦傷が皆無であり、かつ、前記表面の別部位に対し湿式クレンザー摺動試験を行った後、金属表面に達する深い擦傷が皆無であり、かつ、エリクセン加工後の剥離試験による皮膜剥離面積が頂部面積の10%未満であることを特徴とする(1)〜(15)のいずれかに記載の複層被覆金属板。
(17)前記(1)〜(16)のいずれかに記載の複層皮膜で片面または表裏両面の少なくとも一部が被覆された金属板の製造方法であって、金属板表面に接する最下層から最表層までの各層の皮膜を、含水(ウェット)状態で、順次、または同時に複層被覆する工程(水性塗料のウェット・オン・ウェット塗装または多層同時塗装工程)と、含水状態の複層皮膜の水分や揮発分を同時に加熱乾燥させる乾燥工程と、乾燥後の複層皮膜の最表層皮膜を紫外線または電子線でラジカル重合し成膜する紫外線または電子線照射工程を、列記した順序で含む、複層被覆金属板の製造方法。
(1) A metal plate in which at least a part of the surface is coated with a multilayer film in which two or more layers are laminated, and the lowermost film in contact with the metal surface of the multilayer film is an aqueous heating film forming type A resin (A1) obtained by applying a resin coating (a) to a metal surface and drying by heating; and applying the aqueous resin (a1) to the metal surface and drying by heating in the coating; Furthermore, the derivative | guide_body contains 50-100 mass% of any one or more of resin (A2) shown to the following general formula (I) with the derivative | guide_body in total, and the membrane | film | coat of the outermost layer among the said multilayer membrane | film | coats, A coating obtained by applying a water-based resin paint (j) to the surface of the coating film, drying, and then curing by ultraviolet irradiation, electron beam irradiation, high temperature heating of 200 ° C. or higher, and the like, and a highly rigid resin (J) 50 to 95% by mass of the coating, silica fine particles (C ) And characterized in that it contains 5 to 35 wt% of the coating, multilayer-coated metal sheet.
(2) The aqueous resin paint (j) is an aqueous ultraviolet curable resin paint (b), and the highly rigid resin (J) is an ultraviolet curable resin (B1) represented by the following general formula (II). A multilayer coated metal sheet, characterized in that it is present.
(3) The resin component of the aqueous paint (a) is selected from the group consisting of an aqueous epoxy resin, an aqueous phenol resin, an aqueous polyester resin, an aqueous polyurethane resin, an aqueous (meth) acrylic resin, and an aqueous polyolefin resin. The multilayer coated metal sheet according to any one of (1) and (2), wherein the multilayer coated metal sheet is one type or two or more types.
(4) The resin (A1) and (A2) are formed in the lowermost layer of the multilayer coating in which Si atoms forming —C—Si—O— bonds in the resin (A2) are in contact with the metal surface. The metal plate according to any one of (1) to (3), wherein the metal plate is contained in an amount of 0.1 to 30 parts by mass with respect to 100 parts by mass in total.
(5) The metal plate according to any one of (1) to (4), wherein an adhesion amount of the lowermost layer film is 0.01 to 3 g / m 2 .
(6) Any of (1) to (5), wherein the lowermost layer film contains 1 to 100 parts by mass of the polyphenol compound (D) with respect to a total of 100 parts by mass of the resins (A1) and (A2). Metal plate as described in.
(7) The lowermost layer film is composed of one or more acid components (E) selected from the group consisting of phosphoric acid and hexafluorometal acid in a total of 100 parts by mass of the resins (A1) and (A2). The metal plate in any one of said (1)-(6) contained 0.1-100 mass parts with respect to.
(8) The metal plate according to (7), wherein the hexafluorometal acid contains one or more elements selected from the group consisting of Ti, Si, Zr, and Nb.
(9) The above (1) to (1), wherein the lowermost layer film contains 0.1 to 100 parts by mass of the phosphate compound (F) with respect to a total of 100 mass parts of the resins (A1) and (A2). The metal plate according to any one of 8).
(10) The metal according to (9), wherein the phosphate compound (F) contains one or more elements selected from the group consisting of Mg, Mn, Al, Ca, and Ni as a cation component. Board.
(11) The metal oxide fine particles (G) made of an oxide of one or more metals selected from the group consisting of Si, Ti, Al, and Zr are used as the resin (A1). The metal plate in any one of said (1)-(10) which contains 1-100 mass parts with respect to a total of 100 mass parts of (A2).
(12) The ultraviolet-cured resin (B1) terminal radical adduct Rad is a terminal group having a structure represented by any of the following formulas (Rad1) to (Rad13) (1), (2) The metal plate in any one of.
(14) The ultraviolet-cured resin (B1) has a structure in which —X 1 group is a hydrogen atom, and the resin (B1) has the structure represented by the following general formula (III) (1), (2), (12), (13) The metal plate in any one of.
(15) The metal plate according to any one of (1), (2), and (12) to (14), wherein an adhesion amount of the outermost layer film of the multilayer film is 0.2 to 3 g / m 2 .
(16) After performing a dry steel wool sliding test on the surface of the multilayer coated metal plate, there is no deep scratch reaching the metal surface, and a wet cleanser sliding test is performed on another part of the surface. Any of (1) to (15), characterized in that there is no deep scratch after reaching the metal surface, and the film peeling area by the peeling test after the Erichsen processing is less than 10% of the top area A multilayer coated metal plate according to any one of the above.
(17) A method for producing a metal plate in which at least a part of one side or both sides of the front and back sides is coated with the multilayer film according to any one of (1) to (16) above, from the lowest layer in contact with the metal plate surface The coating of each layer up to the outermost layer, in a wet (wet) state, sequentially or simultaneously with a multilayer coating (water-based wet-on-wet coating or multilayer simultaneous coating step) and a multilayer coating with a moisture content It includes a drying process in which moisture and volatile components are heated and dried at the same time, and an ultraviolet or electron beam irradiation process in which the outermost layer film of the dried multi-layer film is radically polymerized with ultraviolet light or electron beam to form a film. A method for producing a layer-coated metal sheet.
本発明によれば、硬い異物により強い摺動を受けても表面に擦傷がつきにくく、摩耗しにくく、かつ、耐食性、加工密着性に優れる複層皮膜被覆金属板を提供することができる。本発明の複層皮膜を得るための塗料は全て水性のため、低環境負荷性で、かつ、溶剤系塗料を用いる場合には必要不可欠な溶剤回収設備や、防爆化への設備投資が不要である。更に、複層皮膜被覆金属板の製造に際し、金属表面に接する最下層から最表層までの各層の皮膜を、含水状態で順次または同時に複層被覆する方法(ウェット・オン・ウェット塗装法または多層同時塗装法)を用いることにより、耐擦傷性、耐摩耗性、耐食性、加工密着性の全てに優れる複層被覆金属板を簡便に製造する方法を提供することができる。なお、前記複層皮膜の構成層のうち最下層皮膜は、水性の加熱成膜型樹脂を構成主成分とする含水皮膜を加熱乾燥、架橋して得られる加熱成膜済み樹脂を主成分とし、また、最表層皮膜は、水性の高硬質樹脂を構成主成分とする含水皮膜を乾燥後、紫外線照射、電子線照射、200℃以上の高温加熱、またはそれら以外の方法で高度に架橋、硬質化させた樹脂を主成分とする。 ADVANTAGE OF THE INVENTION According to this invention, even if it receives a strong sliding with a hard foreign material, it is hard to be scratched on the surface, it is hard to wear | wear, and the multilayer coating | coated metal plate which is excellent in corrosion resistance and process adhesiveness can be provided. Since the paint for obtaining the multilayer film of the present invention is all water-based, it has low environmental impact, and there is no need for capital investment for solvent recovery equipment and explosion-proofing when using solvent-based paint. is there. Furthermore, in the production of a multi-layer coated metal sheet, a method of coating each layer from the bottom layer to the top layer in contact with the metal surface sequentially or simultaneously in a water-containing state (wet-on-wet coating method or multilayer simultaneous coating). By using the coating method, it is possible to provide a method for easily producing a multi-layer coated metal sheet that is excellent in all of scratch resistance, abrasion resistance, corrosion resistance, and work adhesion. Of the constituent layers of the multilayer coating, the lowermost layer coating is mainly composed of a heat-deposited resin obtained by heat-drying and crosslinking a water-containing coating comprising a water-based heating film-forming resin as a main component, The outermost layer film is highly crosslinked and hardened by drying a water-containing film composed mainly of a water-based high-hardness resin and then irradiating it with ultraviolet rays, electron beams, heating at 200 ° C or higher, or other methods. The main component is a cured resin.
以下、本発明について詳細に説明する。なお、本願において、「(メタ)アクリル系樹脂」とはアクリル系樹脂とメタクリル系樹脂を意味し、「(メタ)アクリル酸」とはアクリル酸とメタクリル酸を意味し、「(メタ)アクリレート」とはアクリレートとメタクリレートを意味する。 Hereinafter, the present invention will be described in detail. In the present application, “(meth) acrylic resin” means acrylic resin and methacrylic resin, “(meth) acrylic acid” means acrylic acid and methacrylic acid, and “(meth) acrylate” Means acrylate and methacrylate.
<金属板>
本発明の金属板は、2層以上が積層した特定の複層皮膜で表面の少なくとも一部が被覆された金属板で、用途に応じ、金属板の両面が複層皮膜で被覆されていても、片面のみが被覆されていてもよく、また、表面の一部が被覆されていても、全面が被覆されていてもよい。金属板の複層皮膜で被覆された部位の耐擦傷性、耐摩耗性、耐食性、加工密着性が優れるものである。
<Metal plate>
The metal plate of the present invention is a metal plate having at least a part of the surface coated with a specific multilayer film in which two or more layers are laminated. Only one surface may be coated, or a part of the surface may be coated or the entire surface may be coated. It is excellent in the scratch resistance, wear resistance, corrosion resistance, and work adhesion of the part coated with the multilayer film of the metal plate.
金属板の構成金属としては、例えば、アルミニウム、チタン、亜鉛、銅、ニッケル、そして鋼等が適用可能である。これらの金属の成分は特に限定せず、例えば、鋼を使用する場合には、普通鋼であっても、クロム等の添加元素含有鋼であってもよい。ただし、本発明の金属板を強しごき加工や深絞り加工用途に用いる場合は、いずれの金属の場合も、強しごき加工や深絞り加工に適するように、添加元素の種類と添加量、及び金属組織を適正に制御したものが好ましい。また、金属板として鋼板を使用する場合、その表面には被覆めっき層があってもよいが、その種類は特に限定されず、適用可能なめっき層としては、例えば、亜鉛、アルミニウム、コバルト、錫、ニッケルのうちのいずれか1種からなるめっき、及び、これらの金属元素やさらに他の金属元素、非金属元素を含む合金めっき等が挙げられる。特に、亜鉛系めっき層としては、例えば、亜鉛からなるめっき、亜鉛と、アルミニウム、コバルト、錫、ニッケルの少なくとも1種との合金めっき、又は、さらに他の金属元素、非金属元素を含む種々の亜鉛系合金めっきが挙げられるが、亜鉛以外の合金成分を特に限定しない。めっき層の形成方法も特に限定せず、例えば、電気めっき、無電解めっき、溶融めっき、気相めっき等を用いることができる。めっき処理方法は、連続式、バッチ式のいずれでもよい。また、鋼板を使用する場合、めっき後の処理として、溶融めっき後の外観均一処理であるゼロスパングル処理、めっき層の改質処理である焼鈍処理、表面状態や材質調整のための調質圧延等があり得るが、本発明においては特にこれらを限定せず、いずれを適用することも可能である。 As a constituent metal of the metal plate, for example, aluminum, titanium, zinc, copper, nickel, steel, and the like are applicable. The components of these metals are not particularly limited. For example, when steel is used, it may be ordinary steel or steel containing additive elements such as chromium. However, when the metal plate of the present invention is used for strong ironing or deep drawing, the type and amount of additive elements and the metal are selected so that they are suitable for strong ironing or deep drawing. What controlled the structure | tissue appropriately is preferable. Moreover, when using a steel plate as a metal plate, the surface may have a coating plating layer, but the type is not particularly limited, and examples of applicable plating layers include zinc, aluminum, cobalt, and tin. And plating made of any one of nickel, alloy plating containing these metal elements, and other metal elements and non-metal elements. In particular, as the zinc-based plating layer, for example, plating made of zinc, alloy plating of zinc and at least one of aluminum, cobalt, tin, and nickel, or various other metal elements and non-metal elements are included. Although zinc-based alloy plating is mentioned, alloy components other than zinc are not specifically limited. The method for forming the plating layer is not particularly limited, and for example, electroplating, electroless plating, hot dipping, vapor phase plating, or the like can be used. The plating method may be either a continuous type or a batch type. In addition, when using steel sheets, post-plating treatments include zero spangle treatment, which is uniform appearance after hot dipping, annealing treatment, which is a modification treatment of the plating layer, temper rolling for surface condition and material adjustment, etc. However, in the present invention, these are not particularly limited, and any of them can be applied.
<複層皮膜>
本発明において金属板を被覆する複層皮膜は、各層で異なる機能を分担してなる多機能皮膜であり、前記複層皮膜のうち金属表面に接する最下層の皮膜は、加熱成膜済み樹脂を構成主成分とし、かつ、前記複層皮膜のうち最表層の皮膜は、紫外線照射、電子線照射、200℃以上の高温加熱、またはそれら以外の方法で高度に架橋、硬質化させた樹脂を構成主成分とするが、水性塗料の塗装により工業的に製造できる2層以上の積層構造であれば、最表層と最下層の両皮膜が挟む中間層の皮膜の有無、中間層の皮膜を設ける場合はその層数、組成、及び、複層皮膜の金属表面への形成方法を特に限定しない。ただし、簡便にかつ効率的に複層皮膜を金属表面に形成する方法として、金属表面に接する最下層から最表層までの各層の皮膜を、含水(ウェット)状態で、順次または同時に複層被覆する工程(水性塗料のウェット・オン・ウェット塗装または多層同時塗装工程)と、含水状態の各層皮膜の水分や揮発分を同時に乾燥させる乾燥工程と、前記複層皮膜の最表層皮膜を紫外線硬化、電子線硬化、200℃以上の高温加熱等で重合し硬化する成膜工程を、列記した順序で含む積層方法で成膜することが好ましい。ここで、ウェット・オン・ウェット塗装法とは、金属板上に塗液を塗布後、この塗液が乾燥する前の含溶媒(ウェット)状態のうちに、その上に他の塗液を塗布し、得られる積層塗液の溶媒を同時に乾燥、硬化させ、成膜する方法である。また、多層同時塗装法とは、多層スライド式カーテンコーダーやスロットダイコーター等により、複数層の塗液を積層状態で同時に金属板上に塗布後、積層塗液の溶媒を同時に乾燥、硬化させ成膜する方法である。
<Multi-layer coating>
In the present invention, the multi-layer coating covering the metal plate is a multi-functional coating that shares different functions in each layer, and the lowermost layer in contact with the metal surface of the multi-layer coating is made of a heat-deposited resin. The outermost layer of the multilayer coating comprises a highly crosslinked resin and hardened resin by ultraviolet irradiation, electron beam irradiation, high temperature heating of 200 ° C. or higher, or other methods. If it is a laminated structure of two or more layers that can be manufactured industrially by painting with water-based paint, the presence or absence of an intermediate layer film sandwiched between both the outermost layer and the lowermost layer, and the provision of an intermediate layer film The number of layers, composition, and formation method of the multilayer coating on the metal surface are not particularly limited. However, as a simple and efficient method of forming a multilayer coating on the metal surface, the coating of each layer from the lowest layer to the outermost layer in contact with the metal surface is sequentially or simultaneously coated in a wet (wet) state. Process (wet-on-wet coating of water-based paint or multi-layer simultaneous coating process), drying process to dry the moisture and volatile content of each layer film in a water-containing state at the same time, and the outermost layer film of the multilayer film is UV cured, electronic It is preferable to form a film by a laminating method including a film forming process in which the film is polymerized and cured by linear curing, heating at a high temperature of 200 ° C. or higher, and the like in the listed order. Here, wet-on-wet coating is a method of applying a coating solution on a metal plate and then applying another coating solution on top of the solvent-containing (wet) state before the coating solution dries. Then, the solvent of the resulting laminated coating liquid is simultaneously dried and cured to form a film. The multilayer simultaneous coating method is a method in which multiple layers of coating liquid are applied simultaneously on a metal plate in a laminated state using a multilayer slide curtain coder, slot die coater, etc., and then the solvent of the laminated coating liquid is simultaneously dried and cured. It is a method to form a film.
本発明の前記複層皮膜のうち、金属表面に接する最下層の皮膜は、水性樹脂(a1)を金属表面に塗布、加熱乾燥することにより得られる樹脂(A1)と、その誘導体で下記一般式(I)に示す樹脂(A2)のいずれか1種又は2種以上を、樹脂(A1)と樹脂(A2)の合計で皮膜の50〜100質量%含有する。
本発明に用いる樹脂(A1)は、水性樹脂(a1)を不揮発分の50〜100質量%含む水性塗料(a)を調合し、金属板表面に塗布後、乾燥して得られる樹脂である。 The resin (A1) used in the present invention is a resin obtained by preparing an aqueous paint (a) containing 50 to 100% by mass of a non-volatile content of the aqueous resin (a1), applying it to the surface of a metal plate, and drying it.
水性塗料(a)に含まれる水性樹脂(a1)以外の不揮発成分は、後に詳述するような、架橋剤、シランカップリング剤(s)、ポリフェノール化合物(D)、りん酸及びヘキサフルオロ金属酸(E)、りん酸塩化合物(F)、金属酸化物微粒子(G)などである。成膜後の最下層皮膜におけるこれらの化合物の含有量には、後述するように、前記樹脂(A1)と(A2)の合計質量に対し好ましい範囲があるため、これらの化合物を含む水性塗料(a)を調合する際、成膜後の皮膜中でこれらが好ましい含有量範囲に収まるように配合量を調節する。 Non-volatile components other than the aqueous resin (a1) contained in the aqueous coating material (a) are a cross-linking agent, a silane coupling agent (s), a polyphenol compound (D), phosphoric acid, and hexafluorometal acid as described in detail later. (E), phosphate compound (F), metal oxide fine particles (G) and the like. Since the content of these compounds in the lowermost layer film after film formation has a preferable range with respect to the total mass of the resins (A1) and (A2), as described later, an aqueous paint containing these compounds ( When blending a), the blending amount is adjusted so that these are within the preferable content range in the film after film formation.
水性樹脂(a1)には特に制限はないが、金属表面の水性化成処理に広く用いられている水性エポキシ樹脂、水性フェノール系樹脂、水性ポリエステル系樹脂、水性ポリウレタン系樹脂、水性(メタ)アクリル系樹脂及び水性ポリオレフィン系樹脂からなる群から選ばれる1種又は2種以上が好ましい。なお、本発明において、水性樹脂とは、水に完全溶解する水溶性樹脂、及び、エマルションやサスペンジョン等の形態で水中に均一に微分散している樹脂(水分散性樹脂)を含める。 前記水性樹脂(a1)のうち、水性エポキシ樹脂としては特に限定されず、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、レゾルシン型エポキシ樹脂、水素添加ビスフェノールA型エポキシ樹脂、水素添加ビスフェノールF型エポキシ樹脂、レゾルシン型エポキシ樹脂、ノボラック型エポキシ樹脂等のエポキシ樹脂をジエタノールアミン、N−メチルエタノールアミン等のアミン化合物と反応させ、有機酸又は無機酸で中和、水性化したものや、前記エポキシ樹脂の存在下で、高酸価アクリル樹脂をラジカル重合した後、アンモニアやアミン化合物等で中和し水性化したもの等を挙げることができる。 Although there is no restriction | limiting in particular in aqueous resin (a1), The aqueous | water-based epoxy resin, aqueous | water-based phenol resin, aqueous | water-based polyester resin, aqueous | water-based polyurethane resin, aqueous | water-based (meth) acrylic-type widely used for the aqueous chemical conversion treatment of the metal surface One or more selected from the group consisting of a resin and an aqueous polyolefin resin are preferred. In the present invention, the aqueous resin includes a water-soluble resin that is completely dissolved in water and a resin (water-dispersible resin) that is uniformly finely dispersed in water in the form of an emulsion, suspension, or the like. Among the aqueous resins (a1), the aqueous epoxy resin is not particularly limited. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, resorcin type epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F Epoxy resin such as epoxy resin, resorcinol type epoxy resin, novolac type epoxy resin, etc., reacted with an amine compound such as diethanolamine, N-methylethanolamine, etc. Examples thereof include those obtained by radical polymerization of a high acid value acrylic resin in the presence of a resin and then neutralized with ammonia or an amine compound to make it water-based.
前記水性樹脂(a1)のうち、水性フェノール系樹脂としては特に限定されず、例えば、フェノール、レゾルシン、クレゾール、ビスフェノールA、パラキシリレンジメチルエーテル等の芳香族化合物とホルムアルデヒドとを反応触媒の存在下で付加反応させたメチロール化フェノール樹脂等のフェノール樹脂を、ジエタノールアミン、N−メチルエタノールアミン等のアミン化合物類と反応させ、有機酸又は無機酸で中和し水性化したもの等を挙げることができる。 Among the aqueous resins (a1), the aqueous phenolic resin is not particularly limited. For example, an aromatic compound such as phenol, resorcin, cresol, bisphenol A, and paraxylylene dimethyl ether and formaldehyde are present in the presence of a reaction catalyst. Examples thereof include those obtained by reacting an addition-reacted phenol resin such as methylolated phenol resin with amine compounds such as diethanolamine and N-methylethanolamine, and neutralizing with an organic acid or inorganic acid to make it aqueous.
前記水性樹脂(a1)のうち、水性ポリエステル系樹脂としては特に限定されず、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、1,6−へキサンジオール、ネオペンチルグリコール、トリエチレングリコール、ビスフェノールヒドロキシプロピルエーテル、グリセリン、トリメチロールエタン、トリメチロールプロパン等のポリオールと、無水フタル酸、イソフタル酸、テレフタル酸、無水コハク酸、アジピン酸、セバシン酸、無水マレイン酸、イタコン酸、フマル酸、無水ハイミック酸等の多価カルボン酸とを脱水重縮合させ、アンモニアやアミン化合物等で中和し、水性化したもの等を挙げることができる。 Of the aqueous resin (a1), the aqueous polyester resin is not particularly limited. For example, ethylene glycol, propylene glycol, diethylene glycol, 1,6-hexanediol, neopentyl glycol, triethylene glycol, bisphenol hydroxypropyl ether. , Polyols such as glycerin, trimethylolethane, trimethylolpropane, and phthalic anhydride, isophthalic acid, terephthalic acid, succinic anhydride, adipic acid, sebacic acid, maleic anhydride, itaconic acid, fumaric acid, hymic anhydride, etc. Examples thereof include those obtained by dehydrating polycondensation with a polyvalent carboxylic acid, neutralizing with ammonia or an amine compound, and making it aqueous.
前記水性樹脂(a1)のうち、水性ポリウレタン系樹脂としては特に限定されず、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、1,6−へキサンジオール、ネオペンチルグリコール、トリエチレングリコール、ビスフェノールヒドロキシプロピルエーテル、グリセリン、トリメチロールエタン、トリメチロールプロパン等のポリオールと、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)、トリレンジイソシアネート(TDI)等のジイソシアネートとを重付加反応させ、さらにジアミン等で鎖延長し、水性化したもの等を挙げることができる。 Of the aqueous resin (a1), the aqueous polyurethane resin is not particularly limited. For example, ethylene glycol, propylene glycol, diethylene glycol, 1,6-hexanediol, neopentyl glycol, triethylene glycol, bisphenol hydroxypropyl ether. , Glycerin, trimethylolethane, trimethylolpropane and other polyols and polyisocyanates such as hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI) and tolylene diisocyanate (TDI) are subjected to a polyaddition reaction. And water-based ones.
前記水性樹脂(a1)のうち、水性(メタ)アクリル系樹脂としては特に限定されず、例えば、エチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、n−ブチル(メタ)アクリレート等のアルキル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート、アルコキシシラン(メタ)アクリレート等の(メタ)アクリル酸エステルを、(メタ)アクリル酸と共に水中でラジカル重合することにより得られるものを挙げることができる。 Of the aqueous resin (a1), the aqueous (meth) acrylic resin is not particularly limited, and examples thereof include alkyl (such as ethyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and n-butyl (meth) acrylate). By radical polymerizing (meth) acrylic acid esters such as (meth) acrylate, 2-hydroxyethyl (meth) acrylate and other hydroxyalkyl (meth) acrylates and alkoxysilane (meth) acrylates in water together with (meth) acrylic acid. What can be obtained can be mentioned.
前記水性樹脂(a1)のうち、水性ポリオレフィン樹脂としては特に限定されず、例えば、エチレンとメタクリル酸、アクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸等の不飽和カルボン酸類とを高温高圧下でラジカル重合したのち、アンモニアやアミン化合物、KOH、NaOH、LiOH等の塩基性金属化合物あるいは前記金属化合物を含有するアンモニアやアミン化合物等で中和し、水性化したもの等を挙げることができる。 Of the aqueous resin (a1), the aqueous polyolefin resin is not particularly limited. For example, ethylene and unsaturated carboxylic acids such as methacrylic acid, acrylic acid, maleic acid, fumaric acid, itaconic acid, and crotonic acid are used at high temperature and high pressure. After radical polymerization, ammonia, amine compounds, basic metal compounds such as KOH, NaOH, LiOH, etc. or neutralized with ammonia or amine compounds containing the above metal compounds to make them aqueous can be mentioned. .
前記樹脂(A1)を形成するための水性樹脂(a1)は、1種又は2種以上を混合して用いてもよい。また、前記水性塗料の主成分として、少なくとも1種の水性樹脂存在下で、少なくとも1種のその他の水性樹脂を変性することによって得られる水性複合樹脂の1種又は2種以上を水性樹脂(a1)として用いてもよい。 The aqueous resin (a1) for forming the resin (A1) may be used alone or in combination of two or more. Further, as the main component of the water-based paint, one or two or more water-based composite resins obtained by modifying at least one other water-based resin in the presence of at least one water-based resin are water-based resins (a1). ).
更に、必要に応じ、前記水性樹脂(a1)を含む水性塗料を調合する際、前記水性樹脂(a1)の架橋剤を添加しても良いし、樹脂骨格中に架橋剤を導入してもよい。前記架橋剤としては特に限定されず、例えば、アミノ樹脂、ポリイソシアネート化合物、ブロック化ポリイソシアネート、エポキシ化合物、カルボジイミド基含有化合物等からなる群から選択される少なくとも1種の架橋剤が挙げられる。これらの架橋剤を配合することで、皮膜の架橋密度や金属表面への密着性を高めることができ、耐食性や加工密着性が向上する。これらの架橋剤は単独で使用してもよいし、2種以上を併用してもよい。 Furthermore, when preparing an aqueous paint containing the aqueous resin (a1), a crosslinking agent for the aqueous resin (a1) may be added, or a crosslinking agent may be introduced into the resin skeleton, if necessary. . The crosslinking agent is not particularly limited, and examples thereof include at least one crosslinking agent selected from the group consisting of amino resins, polyisocyanate compounds, blocked polyisocyanates, epoxy compounds, carbodiimide group-containing compounds, and the like. By blending these cross-linking agents, the cross-linking density of the film and the adhesion to the metal surface can be increased, and the corrosion resistance and work adhesion are improved. These crosslinking agents may be used alone or in combination of two or more.
前記アミノ樹脂としては特に限定されず、例えば、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、グリコールウリル樹脂等を挙げることができる。 The amino resin is not particularly limited, and examples thereof include a melamine resin, a benzoguanamine resin, a urea resin, and a glycoluril resin.
前記ポリイソシアネート化合物としては特に限定されず、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、トリレンジイソシアネート等を挙げることができる。また、ブロック化ポリイソシアネートは、前記ポリイソシアネート化合物のブロック化物である。 It does not specifically limit as said polyisocyanate compound, For example, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, tolylene diisocyanate etc. can be mentioned. The blocked polyisocyanate is a blocked product of the polyisocyanate compound.
前記エポキシ化合物は、3員環の環状エーテル基であるエポキシ基(オキシラン環)を複数有する化合物であれば特に限定されず、例えば、アジピン酸ジグリシジルエステル、フタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、ソルビタンポリグルシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、グリセリンポリグリシジルエーテル、トリメチルプロパンポリグリシジルエーテル、ネオペンチルグリコールポリグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、2,2−ビス−(4’−グリシジルオキシフェニル)プロパン、トリス(2,3−エポキシプロピル)イソシアヌレート、ビスフェノールAジグリシジルエーテル、水素添加ビスフェノールAジグリシジルエーテル等を挙げることができる。これらのエポキシ化合物の多くは、エポキシ基に1基の−CH2−が付加したグリシジル基を持つため、化合物名の中に「グリシジル」という語を含む。 The epoxy compound is not particularly limited as long as it is a compound having a plurality of epoxy groups (oxirane rings) which are 3-membered cyclic ether groups. For example, adipic acid diglycidyl ester, phthalic acid diglycidyl ester, terephthalic acid diglycidyl Esters, sorbitan polyglycidyl ether, pentaerythritol polyglycidyl ether, glycerin polyglycidyl ether, trimethylpropane polyglycidyl ether, neopentyl glycol polyglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene Glycol diglycidyl ether, 2,2-bis- (4′-glycidyloxyphenyl) propane, tris (2,3-epoxy Propyl) isocyanurate, bisphenol A diglycidyl ether, and hydrogenated bisphenol A diglycidyl ether and the like. Since many of these epoxy compounds have a glycidyl group in which one —CH 2 — is added to the epoxy group, the word “glycidyl” is included in the compound name.
前記カルボジイミド基含有化合物としては、例えば、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネート等のジイソシアネート化合物の脱二酸化炭素を伴う縮合反応によりイソシアネート末端ポリカルボジイミドを合成した後、更にイソシアネート基との反応性を有する官能基を持つ親水性セグメントを付加した化合物等を挙げることができる。 As the carbodiimide group-containing compound, for example, an isocyanate-terminated polycarbodiimide is synthesized by a condensation reaction involving decarbonization of a diisocyanate compound such as aromatic diisocyanate, aliphatic diisocyanate, and alicyclic diisocyanate, and then further reacted with an isocyanate group. And a compound to which a hydrophilic segment having a functional group having a property is added.
これらの架橋剤の量は、最下層皮膜を形成するための水性樹脂100質量部に対して1〜40質量部が好ましい。1質量部未満の場合、量が不十分で添加効果が得られない場合があり、40質量部を超える量では過剰硬化で皮膜が脆くなり、耐食性や加工密着性が低下する。 As for the quantity of these crosslinking agents, 1-40 mass parts is preferable with respect to 100 mass parts of aqueous resin for forming the lowest layer membrane | film | coat. If the amount is less than 1 part by mass, the effect may not be obtained due to an insufficient amount. If the amount exceeds 40 parts by mass, the film becomes brittle due to excessive curing, and the corrosion resistance and work adhesion deteriorate.
本発明にて最下層皮膜に含まれる樹脂(A2)は、例えば、樹脂(A1)を形成するための前記水性樹脂(a1)と、シランカップリング剤(s)とを主成分とする水性塗料を、本発明で用いる金属板に塗布、乾燥することにより得られる。一般に、シランカップリング剤は、水酸基などの官能基を持つ金属表面や、多くの官能性有機樹脂に化学結合できるため、金属表面、官能性有機樹脂、シランカップリング剤の共存下で、金属表面と官能性有機樹脂とをシランカップリング剤で架橋できる。本発明においては、前記水性樹脂(a1)とシランカップリング剤(s)を主成分とする水性塗料を、複層皮膜の最下層として金属板に塗布、乾燥することにより、前記水性樹脂の官能基の少なくとも一部と、金属表面の官能基の少なくとも一部がそれぞれシランカップリング剤(s)と反応し、樹脂(A2)が生成する。前記一般式(I)に示す樹脂(A2)の−O−(エーテル結合)または−OH(水酸基)の少なくとも一部は、金属表面と結合している。エーテル結合と金属表面との結合は共有結合であり、水酸基と金属表面との結合は水素結合または配位結合である。このような、最下層と金属表面の化学結合により、両者の加工密着性が高まり、ひいては加工部の耐食性が向上する。 In the present invention, the resin (A2) contained in the lowermost layer film is, for example, an aqueous paint mainly composed of the aqueous resin (a1) for forming the resin (A1) and the silane coupling agent (s). Is applied to a metal plate used in the present invention and dried. In general, silane coupling agents can be chemically bonded to metal surfaces with functional groups such as hydroxyl groups and many functional organic resins, so in the presence of metal surfaces, functional organic resins, and silane coupling agents, And a functional organic resin can be crosslinked with a silane coupling agent. In the present invention, the aqueous resin (a1) and the silane coupling agent (s) as a main component are coated on a metal plate as the lowermost layer of the multilayer film and dried, whereby the functionality of the aqueous resin is determined. At least a part of the groups and at least a part of the functional groups on the metal surface each react with the silane coupling agent (s) to produce a resin (A2). At least a part of —O— (ether bond) or —OH (hydroxyl group) of the resin (A2) represented by the general formula (I) is bonded to the metal surface. The bond between the ether bond and the metal surface is a covalent bond, and the bond between the hydroxyl group and the metal surface is a hydrogen bond or a coordinate bond. Such chemical bonding between the lowermost layer and the metal surface increases the processing adhesion between them, and consequently improves the corrosion resistance of the processed part.
本発明の複層皮膜の形成にウェット・オン・ウェット塗装法や多層同時塗装法を用いる場合、最下層から最表層までの積層状態を含水(ウェット)状態で金属板上に一旦形成してから加熱乾燥する。含水状態では、最下層に含まれるシランカップリング剤(s)の移動度が高いため、シランカップリング剤(s)の少なくとも一部が、金属表面だけでなく、1つ上の層に含まれる官能性化合物とも効率的に反応する。最下層と1つ上の層との化学結合により、両層の加工密着性が高まり、ひいては加工部の耐食性が向上する。ここで、ウェット・オン・ウェット塗装法とは、既に述べたように、金属板上に塗液を塗布後、この塗液の溶媒が乾燥する前の含溶媒(ウェット)状態のうちに、その上に他の塗液を塗布し、積層塗液の溶媒を同時に乾燥、硬化させ成膜する方法である。また、多層同時塗装法とは、スライドカーテンコーターやスロットダイコーター等により、複数層の塗液を積層状態で同時に金属表面に塗布後、積層塗液の溶媒を同時に乾燥、硬化させ成膜する方法である。 When wet-on-wet coating method or multilayer simultaneous coating method is used to form the multilayer coating of the present invention, the laminated state from the lowermost layer to the outermost layer is once formed on a metal plate in a wet (wet) state. Heat to dry. In the water-containing state, since the mobility of the silane coupling agent (s) contained in the lowermost layer is high, at least a part of the silane coupling agent (s) is contained not only in the metal surface but also in the upper layer. Reacts efficiently with functional compounds. Due to the chemical bond between the lowermost layer and the layer one layer above, the work adhesion of both layers is increased, and consequently the corrosion resistance of the processed part is improved. Here, as described above, the wet-on-wet coating method is a method including a solvent-containing (wet) state after applying a coating liquid on a metal plate and before the solvent of the coating liquid is dried. In this method, another coating liquid is applied on top, and the solvent of the laminated coating liquid is simultaneously dried and cured to form a film. In addition, the multi-layer simultaneous coating method is a method of forming a film by simultaneously applying a plurality of layers of coating liquid to a metal surface in a laminated state using a slide curtain coater or slot die coater, and simultaneously drying and curing the solvent of the multilayer coating liquid. It is.
本発明にて、樹脂(A2)を形成するために用いるシランカップリング剤(s)は、一般式Y−Z−SiXmR3−mで示される分子構造を持つシランカップリング剤から選ばれる1種又は2種以上である。前記分子構造中の各官能基のうち、主として金属表面や他のシランカップリング剤との反応点となる−X基は、炭素原子数1〜3の加水分解性アルコキシ基、又は、加水分解性ハロゲノ基(フルオロ基(−F)、クロロ基(−Cl)、ブロモ基(−Br)など)、又は、加水分解性アセトキシ基(−O−CO−CH3)である。これらのうち、炭素原子数1〜3の加水分解性アルコキシ基が、アルコキシ基の炭素原子数を変えることにより加水分解性を調整しやすいため好ましく、メトキシ基(−OCH3)又はエトキシ基(−OCH2CH3)が特に好ましい。−X基が前記以外の官能基であるシランカップリング剤は、−X基の加水分解性が低いか、または加水分解性が高すぎるため、本発明では望ましくない。 In the present invention, the silane coupling agent (s) used for forming the resin (A2) is selected from silane coupling agents having a molecular structure represented by the general formula YZ-SiX m R 3-m. 1 type or 2 types or more. Among the functional groups in the molecular structure, -X group, which is a reaction point with the metal surface or other silane coupling agent, is a hydrolyzable alkoxy group having 1 to 3 carbon atoms or hydrolyzable. It is a halogeno group (fluoro group (—F), chloro group (—Cl), bromo group (—Br), etc.), or hydrolyzable acetoxy group (—O—CO—CH 3 ). Among these, a hydrolyzable alkoxy group having 1 to 3 carbon atoms is preferable because it easily adjusts the hydrolyzability by changing the number of carbon atoms of the alkoxy group, and is preferably a methoxy group (—OCH 3 ) or an ethoxy group (— OCH 2 CH 3 ) is particularly preferred. A silane coupling agent in which the —X group is a functional group other than the above is not desirable in the present invention because the hydrolyzability of the —X group is low or the hydrolyzability is too high.
前記分子構造中の−R基は、炭素原子数1〜3のアルキル基である。−R基がメチル基又はエチル基の場合、嵩高いn-プロピル基やイソプロピル基に比べ、水性塗料中で前記−X基への水分子の接近を妨げず、−X基が比較的容易に加水分解するため好ましく、中でもメチル基が特に好ましい。−R基が前記以外の官能基であるシランカップリング剤は、−X基の加水分解性が極端に低いか、または反応性が高すぎるため、本発明では望ましくない。 The -R group in the molecular structure is an alkyl group having 1 to 3 carbon atoms. When -R group is methyl group or ethyl group, compared to bulky n-propyl group or isopropyl group, -X group is relatively easy without disturbing water molecule access to the -X group in water-based paint. In order to hydrolyze, a methyl group is particularly preferable. Silane coupling agents in which the -R group is a functional group other than those described above are not desirable in the present invention because the hydrolyzability of the -X group is extremely low or the reactivity is too high.
前記分子構造にて、置換基の数を示すmは1〜3の整数である。加水分解性の−X基が多いほど金属表面との反応点が多いため、置換基の数を示すmは、2又は3が好ましい。 In the molecular structure, m indicating the number of substituents is an integer of 1 to 3. The more hydrolyzable -X groups, the more reactive points with the metal surface, and therefore m representing the number of substituents is preferably 2 or 3.
前記シランカップリング剤(s)の分子構造中の−Z−は、炭素原子数1〜9、窒素原子数0〜2,酸素原子数0〜2の炭化水素鎖である。これらのうち、炭素原子数2〜5,窒素原子数0又は1,酸素原子数0又は1の炭化水素鎖が、シランカップリング剤の水分散性と反応性のバランスが良いため、好ましい。−Z−の炭素原子数が10以上、窒素原子数が3以上、または酸素原子数が3以上の場合、シランカップリング剤の水分散性と反応性のバランスが不良のため、本発明では望ましくない。 -Z- in the molecular structure of the silane coupling agent (s) is a hydrocarbon chain having 1 to 9 carbon atoms, 0 to 2 nitrogen atoms, and 0 to 2 oxygen atoms. Of these, hydrocarbon chains having 2 to 5 carbon atoms, 0 or 1 nitrogen atoms, and 0 or 1 oxygen atoms are preferable because the water dispersibility and reactivity of the silane coupling agent are well balanced. When the number of carbon atoms in -Z- is 10 or more, the number of nitrogen atoms is 3 or more, or the number of oxygen atoms is 3 or more, the balance between water dispersibility and reactivity of the silane coupling agent is poor, which is desirable in the present invention. Absent.
前記シランカップリング剤(s)の分子構造にて、水性樹脂(a1)、樹脂(A1)や他の共存樹脂の官能基との反応点となる−Y基は、水性樹脂(a1)、樹脂(A1)や他の共存樹脂と反応するものであれば特に制限がないが、反応性の高さから、エポキシ基、アミノ基、メルカプト基、又はメチリデン基(H2C=)が好ましく、エポキシ基又はアミノ基が特に好ましい。 In the molecular structure of the silane coupling agent (s), the —Y group that becomes a reaction point with the functional group of the aqueous resin (a1), the resin (A1) or other coexisting resin is the aqueous resin (a1), resin There is no particular limitation as long as it reacts with (A1) and other coexisting resins, but an epoxy group, amino group, mercapto group, or methylidene group (H 2 C =) is preferred because of its high reactivity. A group or an amino group is particularly preferred.
本発明の複層皮膜被覆金属板の最下層形成時に、前記分子構造 Y−Z−SiXmR3−mで示されるシランカップリング剤(s)分子の−SiXm基が金属表面等と、また、−Y基が水性樹脂(a1)、樹脂(A1)等と反応すると、前記一般式(I)に示す樹脂(A2)となる。即ち、前記シランカップリング剤(s)分子末端の−Si−Xの少なくとも一部が加水分解して一Si−OH(シラノール基)を生成し、その少なくとも一部が金属表面や他のシランカップリング剤(s)分子の水酸基と脱水縮合し、エーテル結合を介した共有結合一Si−O−Me(Meは金属原子)や−Si−O−Si*−(Si*は他のシランカップリング剤分子由来のSi原子)を生成する。一方、前記シランカップリング剤(s)分子の他端にある−Y基が水性樹脂(a1)や樹脂(A1)の官能基と反応し、A1〜Zの結合を生成し、その結果、下記一般式(I)に示す構造を持つ樹脂(A2)となる。これらの反応が終わり、樹脂(A2)が生成した後に(A2)中のSi原子に結合している−O−,−OH、−X、−R基数をそれぞれa、b、c、dとすると、a+b+c=m、また、前記シランカップリング剤(s)の−R基は前記反応に関与せず樹脂(A2)に残るため、−R基数d=3−m=3−(a+b+c)、a+b+c+d=3である。なお、一般式(I)の「A1〜Z」の表記は、A1とZが両者の官能基を介して共有結合していることを示す。
前記シランカップリング剤(s)の具体例としては、前記一般式Y−Z−SiXmR3−m(−X基は炭素原子数1〜3の加水分解性アルコキシ基、加水分解性ハロゲノ基、又は加水分解性アセトキシ基、−R基は炭素原子数1〜3のアルキル基、置換基の数を示すmは1〜3の整数、−Z−は炭素原子数1〜9、窒素原子数0〜2,酸素原子数0〜2の炭化水素鎖、−Y基は水性樹脂(a1)や樹脂(A1)と反応する官能基)の分子構造を持つものとして、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、N−フェニルー3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン等を挙げることができる。 Specific examples of the silane coupling agent (s), the general formula Y-Z-SiX m R 3 -m (-X group is a hydrolyzable alkoxy group having 1 to 3 carbon atoms, hydrolyzable halogeno group , Or a hydrolyzable acetoxy group, -R group is an alkyl group having 1 to 3 carbon atoms, m indicating the number of substituents is an integer of 1 to 3, -Z- is 1 to 9 carbon atoms, and the number of nitrogen atoms 0-2, hydrocarbon chain having 0-2 oxygen atoms, -Y group has a molecular structure of aqueous resin (a1) or resin (A1)), for example, vinyltrimethoxysilane, Vinyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxy Propyltriethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltri Methoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxy Examples thereof include silane, N-phenyl-3-aminopropyltrimethoxysilane, and 3-mercaptopropyltrimethoxysilane.
本発明にて、樹脂(A1)と樹脂(A2)を主成分とする最下層皮膜を金属表面に形成する時、用いる水性塗料は、水性樹脂(a1)100質量部に対し、シランカップリング剤(s)を1〜100質量部含有するのが好ましい。1質量部未満ではシランカップリング剤(s)の量が少なく、シランカップリング剤による架橋構造があまり発達しないため、十分に繊密な皮膜が得られず耐食性が不十分になる可能性や、金属表面等との加工密着性が不十分になる可能性がある。一方、100質量部を超えると、密着性向上効果が飽和し、高価なシランカップリング剤を必要以上に用いるため不経済であったり、塗料の安定性を低下させることがある。 In the present invention, when the lowermost layer film mainly composed of the resin (A1) and the resin (A2) is formed on the metal surface, the water-based paint used is a silane coupling agent with respect to 100 parts by mass of the water-based resin (a1). It is preferable to contain 1 to 100 parts by mass of (s). If the amount is less than 1 part by mass, the amount of the silane coupling agent (s) is small, and the crosslinked structure by the silane coupling agent does not develop so much, so that a sufficiently fine film cannot be obtained and the corrosion resistance may be insufficient. There is a possibility that the processing adhesion with a metal surface or the like is insufficient. On the other hand, when the amount exceeds 100 parts by mass, the effect of improving the adhesion is saturated, and an expensive silane coupling agent is used more than necessary, which may be uneconomical and may decrease the stability of the paint.
本発明における最下層皮膜は、前記樹脂(A1)と前記樹脂(A2)のいずれか1種又は2種以上を合計で皮膜の50〜100質量%含有する必要があり、好ましくは、樹脂(A1)と樹脂(A2)の合計で皮膜の75〜100質量%含有するのがよい。樹脂(A1)と樹脂(A2)の合計が最下層皮膜の50質量%未満の場合、皮膜の繊密性や金属表面との密着性が不足し、所望の耐食性や加工密着性が得られない。 The lowermost layer film in the present invention must contain one or more of the resin (A1) and the resin (A2) in a total amount of 50 to 100% by mass of the film, preferably the resin (A1 ) And resin (A2) in a total amount of 75 to 100% by mass of the film. When the total of the resin (A1) and the resin (A2) is less than 50% by mass of the lowermost layer film, the film has insufficient fineness and adhesion to the metal surface, and desired corrosion resistance and work adhesion cannot be obtained. .
本発明にて、樹脂(A1)と樹脂(A2)を主成分とする最下層皮膜は、前記樹脂(A1)と(A2)の合計100質量部に対し、前記樹脂(A2)中の−C−Si−O−結合を形成するSi原子を0.1〜30質量部含むのが好ましい。0.1質量部未満では、皮膜の繊密性や金属表面等との加工密着性を左右する−C−Si−O−結合の量が少なく、十分な耐食性と加工密着性が得られない可能性がある。また、30質量部を超えると、金属表面等との密着性向上効果が飽和し、皮膜形成のために高価なシランカップリング剤を必要以上に用いるため、不経済であったり、塗料の安定性を低下させることがある。なお、前記一C−Si−O−結合を形成するSi原子の同定や定量は、金属板上の皮膜のFT−IRスペクトルや、29Si−NMR等の分析方法を利用して行うことができる。 In the present invention, the lowermost layer film containing the resin (A1) and the resin (A2) as main components is -C in the resin (A2) with respect to a total of 100 parts by mass of the resin (A1) and (A2). It is preferable that 0.1-30 mass parts of Si atoms which form -Si-O- bond are included. If the amount is less than 0.1 parts by mass, the amount of —C—Si—O— bond that affects the fineness of the film and the processing adhesion to the metal surface is small, and sufficient corrosion resistance and processing adhesion may not be obtained. There is sex. On the other hand, if it exceeds 30 parts by mass, the effect of improving adhesion to the metal surface and the like is saturated, and an expensive silane coupling agent is used more than necessary for film formation. May be reduced. The identification and quantification of Si atoms forming the one C—Si—O— bond can be performed by using an analysis method such as FT-IR spectrum of a film on a metal plate or 29 Si-NMR. .
本発明において、前記樹脂(A1)と前記樹脂(A2)のいずれか1種又は2種以上を構成主成分とする 最下層皮膜の乾燥後の付着量は、0.01〜3g/m2が好ましく、0.05〜2g/m2が特に好ましい。0.01g/m2未満では、皮膜が薄すぎて、所望の耐食性、加工密着性が得られない可能性がある。また、3g/m2を超えると、皮膜が厚すぎて塗料コストが高くなるばかりか、加工密着性が低下し、そのため加工部耐食性も低下する可能性がある。 In the present invention, the adhesion amount after drying of the lowermost layer film having one or more of the resin (A1) and the resin (A2) as a main component is 0.01 to 3 g / m 2. 0.05 to 2 g / m 2 is particularly preferable. Is less than 0.01 g / m 2, film is too thin, the desired corrosion resistance, processability adhesion may not be obtained. On the other hand, if it exceeds 3 g / m 2 , the coating film is too thick and the coating cost increases, and the work adhesion decreases, so that the corrosion resistance of the processed part may also decrease.
本発明で用いる複層皮膜の最下層皮膜には、更に、ポリフェノール化合物(D)を含有することが好ましい。ポリフェノール化合物は、ベンゼン環に結合したフェノール性水酸基を2基以上有する化合物又 その縮合物であって、金属表面にキレート作用で配位結合でき、また、共存する水性樹脂の親水基と水素結合することができる。このようなポリフェノール化合物を配合することにより、金属表面と最下層皮膜との加工密着性、及び、最下層皮膜と1つ上の皮膜との加工密着性を飛躍的に向上させ、ひいては加工部耐食性も向上させる。 The lowermost layer film of the multilayer film used in the present invention preferably further contains a polyphenol compound (D). A polyphenol compound is a compound having two or more phenolic hydroxyl groups bonded to a benzene ring or a condensate thereof, which can coordinately bond to a metal surface by a chelating action and hydrogen bond with a hydrophilic group of a coexisting aqueous resin. be able to. By blending such a polyphenol compound, the processing adhesion between the metal surface and the lowermost layer film and the processing adhesion between the lowermost layer film and the uppermost film are dramatically improved, and as a result, the corrosion resistance of the processed part is increased. Also improve.
本発明にて用いるポリフェノール化合物(D)は、最下層皮膜形成に用いる水性塗料に均一に溶解又は微細分散できるものであれば、特に制限はない。水溶性または水分散性でなくても、水性塗料中に共存する水性樹脂(a1)の疎水鎖間に浸入し、均一に微細分散できるものであれば用いることができる。 The polyphenol compound (D) used in the present invention is not particularly limited as long as it can be uniformly dissolved or finely dispersed in the aqueous paint used for forming the lowermost layer film. Even if it is not water-soluble or water-dispersible, it can be used as long as it penetrates between the hydrophobic chains of the water-based resin (a1) coexisting in the water-based paint and can be uniformly finely dispersed.
前記ベンゼン環に結合したフェノール性水酸基を2基以上有する化合物としては、例えば、没食子酸、ピロガロール、カテコール等を挙げることができる。ベンゼン環に結合したフェノール性水酸基を2基以上有する化合物の縮合物としては特に限定されず、例えば、通常タンニン酸と呼ばれる植物界に広く分布するポリフェノール化合物等を挙げることができる。タンニン酸は、広く植物界に分布する多数のフェノール性水酸基を有する複雑な構造の芳香族化合物の総称である。前記タンニン酸は、加水分解性タンニン酸でも縮合型タンニン酸でもよい。前記タンニン酸としては特に限定されず、例えば、ハマメリタンニン、カキタンニン、チャタンニン、五倍子タンニン、没食子タンニン、ミロバランタンニン、ジビジビタンニ ン、アルガロビラタンニン、バロニアタンニン、カテキンタンニン等を挙げることができる。前記ポリフェノー ル化合物は1種で使用しても良く、2種以上を併用してもよい。 Examples of the compound having two or more phenolic hydroxyl groups bonded to the benzene ring include gallic acid, pyrogallol, catechol and the like. The condensate of the compound having two or more phenolic hydroxyl groups bonded to the benzene ring is not particularly limited, and examples thereof include a polyphenol compound widely distributed in the plant kingdom, usually called tannic acid. Tannic acid is a general term for aromatic compounds having a complex structure having a large number of phenolic hydroxyl groups widely distributed in the plant kingdom. The tannic acid may be hydrolyzable tannic acid or condensed tannic acid. The tannic acid is not particularly limited. it can. The said polyphenol compound may be used by 1 type, and may use 2 or more types together.
ポリフェノール化合物(D)は、樹脂(A1)と樹脂(A2)の合計100質量部に対し、1〜100質量部含有することが好ましい。1質量部未満ではポリフェノール化合物(D)の量が不十分であるため、十分な加工密着性が得られなかったり、その結果、加工部耐食性が不十分となる可能性がある。100質量部を超えると皮膜中のポリフェノール化合物(D)の量が多すぎて、加工密着性や耐食性が低下したり、塗料の安定性を低下させることがある。 It is preferable to contain 1-100 mass parts of polyphenol compounds (D) with respect to a total of 100 mass parts of resin (A1) and resin (A2). If the amount is less than 1 part by mass, the amount of the polyphenol compound (D) is insufficient, so that sufficient process adhesion may not be obtained, and as a result, the processed part corrosion resistance may be insufficient. When the amount exceeds 100 parts by mass, the amount of the polyphenol compound (D) in the film is too large, and the work adhesion and corrosion resistance may be lowered, or the stability of the paint may be lowered.
前記最下層皮膜には、更に、りん酸及びヘキサフルオロ金属酸からなる群より選択される1種又は2種以上(E)を含有することが好ましい。このりん酸とヘキサフルオロ金属酸は、それぞれ単独で用いてもよいし、併用してもよい。これらの酸は、金属表面をエッチングにより活性化し、前記シランカップリング剤(s)やポリフェノール化合物(D)の金属面への作用を促進させる。また、りん酸は、前記作用のほかに、金属表面にりん酸塩層を形成して不働態化する作用を持つため、耐食性を向上させる。また、ヘキサフルオロ金属酸は、前記作用のほかに、最下層皮膜を形成する金属表面に、ヘキサフルオロ金属酸から供給される金属の酸化物を含む安定な薄膜を形成でき、その結果、耐食性を向上させる。本発明で用いることができるりん酸には特に制限はなく、例えば、オルトりん酸、ポリりん酸(オルトりん酸の重合度6までの直鎖状重合体の単体、又はこれらの2種以上の混合物)、メタりん酸(オルトりん酸の重合度3〜6までの環状重合体の単体、又はこれらの2種以上の混合物)を挙げることができる。前記りん酸は1種で用いてもよく、2種以上を併用してもよい。重合度が2より大きなポリりん酸は、幾つかの重合度のポリりん酸の混合物として工業的に容易に得られるため、本発明では、このような混合物を用いるのがよい。 The lowermost film preferably further contains one or more (E) selected from the group consisting of phosphoric acid and hexafluorometal acid. The phosphoric acid and hexafluorometal acid may be used alone or in combination. These acids activate the metal surface by etching and promote the action of the silane coupling agent (s) and the polyphenol compound (D) on the metal surface. In addition to the above-described effects, phosphoric acid has the effect of forming a phosphate layer on the metal surface to passivate it, thereby improving the corrosion resistance. In addition to the above-described effects, hexafluorometal acid can form a stable thin film containing a metal oxide supplied from hexafluorometal acid on the metal surface forming the lowermost layer film. Improve. The phosphoric acid that can be used in the present invention is not particularly limited, and examples thereof include orthophosphoric acid, polyphosphoric acid (a linear polymer having a degree of polymerization of orthophosphoric acid up to 6 or a combination of two or more of these. Mixture) and metaphosphoric acid (single cyclic polymer having a degree of polymerization of orthophosphoric acid of 3 to 6 or a mixture of two or more of these). The phosphoric acid may be used alone or in combination of two or more. Since polyphosphoric acid having a degree of polymerization of more than 2 can be easily obtained industrially as a mixture of polyphosphoric acids having several degrees of polymerization, such a mixture is preferably used in the present invention.
本発明で用いることができるヘキサフルオロ金属酸にも特に制限はなく、例えば、ヘキサフルオロりん酸、ヘキサフルオロチタン酸、ヘキサフルオロジルコン酸、ヘキサフルオロけい酸、へキサフルオロニオブ酸、ヘキサフルオロアンチモン酸やそれらのアンモニウム塩、カリウム塩、ナトリウム塩、カルシウム塩、マグネシウム塩等が挙げられる。ヘキサフルオロ金属酸は、前記のように、最下層皮膜を形成する金属表面に金属酸化物を含む安定な薄膜を形成するが、そのような効果をもたらすには、金属としてTi、Si、Zr、Nbの中からなる群より選択される1種又は2種以上の元素を含むものが好ましい。前記へキサフルオロ金属酸は、1種で用いてもよく、2種以上を併用してもよい。 The hexafluorometal acid that can be used in the present invention is not particularly limited. For example, hexafluorophosphoric acid, hexafluorotitanic acid, hexafluorozirconic acid, hexafluorosilicic acid, hexafluoroniobic acid, hexafluoroantimonic acid And ammonium salts, potassium salts, sodium salts, calcium salts, magnesium salts and the like thereof. As described above, hexafluorometal acid forms a stable thin film containing a metal oxide on the metal surface that forms the lowermost layer film. In order to bring about such an effect, metals such as Ti, Si, Zr, Those containing one or more elements selected from the group consisting of Nb are preferred. The hexafluorometal acid may be used alone or in combination of two or more.
りん酸及びヘキサフルオロ金属酸からなる群より選択される1種又は2種以上(E)は、樹脂(A1)と樹脂(A2)の合計100質量部に対し、0.1〜100質量部含有することが好ましい。0.1質量部未満ではこれらの酸による作用が不十分であるため、耐食性が低下することがある。100質量部を超えると皮膜が脆くなり、皮膜凝集破壊により加エ密着性が低下することがある。 1 type or 2 types or more (E) selected from the group which consists of phosphoric acid and hexafluoro metal acid contain 0.1-100 mass parts with respect to a total of 100 mass parts of resin (A1) and resin (A2). It is preferable to do. If the amount is less than 0.1 parts by mass, the action of these acids is insufficient, and thus the corrosion resistance may be lowered. When the amount exceeds 100 parts by mass, the coating becomes brittle, and the heat adhesion may decrease due to cohesive failure of the coating.
前記最下層皮膜には、更に、りん酸塩化合物(F)を含有することが好ましい。このりん酸塩化合物を配合することにより、最下層皮膜形成時に、金属表面に難溶性のりん酸塩薄膜を形成できる。即ち、りん酸塩のりん酸イオンにより金属が溶解すると、金属表面でpHが上昇し、その結果、りん酸塩の沈殿薄膜が形成され、耐食性が向上する。 It is preferable that the lowermost layer film further contains a phosphate compound (F). By blending this phosphate compound, a hardly soluble phosphate thin film can be formed on the metal surface when the lowermost layer film is formed. That is, when the metal is dissolved by the phosphate ions of the phosphate, the pH rises on the metal surface, and as a result, a precipitated thin film of phosphate is formed and the corrosion resistance is improved.
本発明で用いることができるりん酸塩化合物(F)には、特に制限はなく、例えば、オルトりん酸、ポリりん酸(オルトりん酸の重合度6までの直鎖状重合体の単体、又はこれらの2種以上の混合物)、メタりん酸(オルトりん酸の重合度3〜6までの環状重合体の単体、又はこれらの2種以上の混合物)などの金属塩、フィチン酸、ホスホン酸(亜りん酸)、ホスフィン酸(次亜りん酸)などの有機金属塩が挙げられる。カチオン種としては特に制限はなく、例えば、Cu、Co、Fe、Mn、Sn、V、Mg、Ba、Al、Ca、Sr、Nb、Y、Ni及びZn等が挙げられるが、Mg、Mn、Al、Ca、Niを用いるのが好ましい。前記りん酸塩化合物は、1種で用いてもよく、2種以上を併用してもよい。 The phosphate compound (F) that can be used in the present invention is not particularly limited, and examples thereof include orthophosphoric acid, polyphosphoric acid (a linear polymer having a degree of polymerization of orthophosphoric acid of up to 6, or Metal salts such as metaphosphoric acid (monocyclic cyclic polymers having a degree of polymerization of 3 to 6 or a mixture of two or more of these), phytic acid, phosphonic acid (a mixture of two or more of these) And organometallic salts such as phosphorous acid and phosphinic acid (hypophosphorous acid). The cation species is not particularly limited, and examples thereof include Cu, Co, Fe, Mn, Sn, V, Mg, Ba, Al, Ca, Sr, Nb, Y, Ni, and Zn, but Mg, Mn, Al, Ca and Ni are preferably used. The said phosphate compound may be used by 1 type, and may use 2 or more types together.
りん酸塩化合物(F)は、樹脂(A1)と樹脂(A2)の合計100質量部に対し、0.1〜100質量部含有することが好ましい。0.1質量部未満ではりん酸塩化合物の作用が不十分なため、耐食性が低下することがある。100質量部を超えると最下層皮膜が脆くなり、皮膜凝集破壊により加工密着性が低下することがある。 It is preferable to contain 0.1-100 mass parts of phosphate compounds (F) with respect to a total of 100 mass parts of resin (A1) and resin (A2). If the amount is less than 0.1 parts by mass, the corrosion resistance may deteriorate because the action of the phosphate compound is insufficient. When the amount exceeds 100 parts by mass, the lowermost layer film becomes brittle, and the work adhesion may decrease due to film cohesive failure.
前記最下層皮膜には、更に、Si、Ti、Al、Zrからなる群より選択される少なくとも1種の金属元素からなる金属酸化物微粒子(G)を含有することが好ましい。この金属酸化物微粒子を配合することにより、耐食性をより高めることができる。 The lowermost film preferably further contains metal oxide fine particles (G) made of at least one metal element selected from the group consisting of Si, Ti, Al, and Zr. By adding the metal oxide fine particles, the corrosion resistance can be further improved.
本発明で用いることができる前記金属酸化物微粒子(G)としては、例えば、シリカ微粒子、アルミナ微粒子、チタニア微粒子、ジルコニア微粒子等を挙げることができ、平均粒子径が1〜300nm程度のものが好適である。これらは単独で用いてもよく、2種以上を併用してもよい。これらのうち、シリカ微粒子は、皮膜の耐食性向上及び強靭化の両方が必要な場合に添加する。シリカ微粒子としては特に制限なく、皮膜が薄膜であることから、一次粒子径が3〜50nmのコロイダルシリカ、ヒユームドシリ力等のシリカ微粒子であることが好ましい。 Examples of the metal oxide fine particles (G) that can be used in the present invention include silica fine particles, alumina fine particles, titania fine particles, and zirconia fine particles, and those having an average particle diameter of about 1 to 300 nm are preferable. It is. These may be used alone or in combination of two or more. Among these, silica fine particles are added when both improvement of corrosion resistance and toughening of the coating are required. The silica fine particles are not particularly limited, and since the film is a thin film, colloidal silica having a primary particle diameter of 3 to 50 nm, silica fine particles such as fumed silica force are preferable.
前記金属酸化物微粒子(G)は、樹脂(A1)と樹脂(A2)の合計100質量部に対し、1〜100質量部含有することが好ましい。1質量部未満では金属酸化物微粒子の量が不十分であるため、耐食性を高める効果が得られないことがある。100質量部を超えると最下層皮膜が脆くなり、皮膜凝集破壊により加工密着性が低下することがある。 It is preferable that 1-100 mass parts of said metal oxide microparticles | fine-particles (G) are contained with respect to a total of 100 mass parts of resin (A1) and resin (A2). If the amount is less than 1 part by mass, the amount of the metal oxide fine particles is insufficient, so that the effect of improving the corrosion resistance may not be obtained. When the amount exceeds 100 parts by mass, the lowermost layer film becomes brittle, and the work adhesion may decrease due to film cohesive failure.
<最表層の皮膜>
本発明の最表層の皮膜は、水性樹脂塗料(j)を塗装皮膜表面に塗布、乾燥後、紫外線照射、電子線照射や200℃以上の高温加熱等で硬化すること等により得られる高硬質樹脂(J)を該皮膜の50〜95質量%、シリカ微粒子(C1)を皮膜の5〜35質量%含有する。最表層皮膜に含まれる高硬質樹脂(J)は、紫外線硬化型樹脂に紫外線を照射して高度に架橋、硬質化させた樹脂、電子線硬化型樹脂に電子線を照射して高度に架橋、硬質化させた樹脂、加熱成膜型樹脂を200℃以上に高温加熱して高度に架橋、硬質化させた樹脂、または、前記以外の架橋方法で高度に架橋、硬質化させた樹脂であって、以下に示す乾式でのスチールウール摺動試験、湿式でのクレンザー摺動試験のいずれによっても樹脂表面の擦傷が皆無か、軽微な浅い擦傷しか付かない高い硬度を有する樹脂である。
<Outermost layer film>
The outermost layer film of the present invention is a highly rigid resin obtained by applying a water-based resin paint (j) to the surface of the coating film, drying, and then curing by ultraviolet irradiation, electron beam irradiation, high temperature heating at 200 ° C. or higher, etc. (J) is contained in an amount of 50 to 95% by mass of the coating, and silica fine particles (C1) are contained in an amount of 5 to 35% by mass of the coating. The highly rigid resin (J) contained in the outermost layer film is a highly crosslinked resin that has been hardened by irradiating ultraviolet rays to an ultraviolet curable resin, and is highly crosslinked by irradiating an electron beam to an electron beam curable resin. A hardened resin, a heat-deposited resin heated to a temperature of 200 ° C. or higher and highly crosslinked or hardened, or a resin highly crosslinked or hardened by a crosslinking method other than the above. The resin has a high hardness with no scratches on the resin surface or only slight shallow scratches by either a dry steel wool sliding test or a wet cleanser sliding test shown below.
乾式でのスチールウール摺動試験:#0000スチールウールを50mm角に切出し、ラビングテスター(理研工学(株)製 DIC式ラビングテスター1型)のヘッドに取付けたゴム栓(20mm径)に貼付し、1.56N/cm2の荷重で樹脂表面に押付け、乾式で、摺動距離60mm、60往復/分、100往復の摺動試験を行った後、樹脂表面を染色して摺動を受けた面の擦傷を肉眼観察する。 Steel wool sliding test in dry type: Cut out # 0000 steel wool into 50 mm square and affix it to a rubber plug (20 mm diameter) attached to the head of a rubbing tester (DIC type rubbing tester type 1 manufactured by Riken Engineering Co., Ltd.) Surface that was pressed against the resin surface with a load of 1.56 N / cm 2 , subjected to a dry sliding test with a sliding distance of 60 mm, 60 reciprocations / min, 100 reciprocations, and then the resin surface was dyed and slid Visually observe the scratches.
湿式でのクレンザー摺動試験:フェルト(ユザワヤ商事(株)取扱ワンタッチフェルトRN-01)を40mm角に切出し、ラビングテスター(理研工学(株)製 DIC式ラビングテスタ−1型)のヘッドに取付けたゴム栓(20mm径)に貼付し、輪ゴムで固定後、フェルト部分に蒸留水を十分に含ませ、垂れる水を軽く拭き取る。次に、樹脂表面に、シリカ系鉱物研磨剤5%液(花王(株)製ホーミングクレンザーを蒸留水で10倍に薄めたもの)を0.5cc滴下し、1.56N/cm2の荷重で前記試験片に押付け、湿式で、摺動距離60mm、60往復/分、100往復の摺動試験を行う。樹脂表面を洗浄後、染色して摺動を受けた面の擦傷を肉眼観察する。 Wet cleanser sliding test: Felt (One Touch Felt RN-01 handled by Yuzawaya Corp.) was cut into a 40 mm square and attached to the head of a rubbing tester (DIC type rubbing tester-1 type manufactured by Riken Engineering Co., Ltd.). Affixed to a rubber stopper (20 mm diameter) and fixed with rubber bands, soak the distilled water sufficiently in the felt part and gently wipe off the dripping water. Next, 0.5 cc of a silica mineral abrasive 5% liquid (a Kao Co., Ltd. homing cleanser diluted 10-fold with distilled water) was dropped on the resin surface at a load of 1.56 N / cm 2 . The test piece is pressed against the test piece, and wet-type sliding test is performed at a sliding distance of 60 mm, 60 reciprocations / minute, and 100 reciprocations. After the resin surface is washed, the scratches on the dyed and slid surface are visually observed.
本発明では、水性樹脂塗料(j)が、水性の紫外線硬化型樹脂塗料または電子線硬化型樹脂塗料であり、かつ、対応する高硬質樹脂(J)が、それぞれ、紫外線硬化済み樹脂、電子線硬化済み樹脂であることが好ましい。いずれも、架橋時間が1秒あるいはそれ以下と短く、連続的なインライン塗工ができるからである。 In the present invention, the aqueous resin paint (j) is an aqueous ultraviolet curable resin paint or an electron beam curable resin paint, and the corresponding highly rigid resin (J) is an ultraviolet curable resin or an electron beam, respectively. A cured resin is preferred. In any case, the crosslinking time is as short as 1 second or less, and continuous in-line coating can be performed.
紫外線硬化方式で成膜する場合、水性樹脂塗料(j)は水性の紫外線硬化型樹脂塗料(b)、高硬質樹脂(J)は、下記一般式(II)に示す紫外線硬化済み樹脂(B1)である。この場合、最表層の皮膜は、前記紫外線硬化済み樹脂(B1)を皮膜の50〜95質量%、シリカ微粒子(Cl)を5〜35質量%含有する。最表層の皮膜構成成分のうち、前記紫外線硬化済み樹脂(B1)、シリカ微粒子(Cl)以外の成分は、紫外線照射で樹脂(B1)が生成する時の出発化合物である未反応の水性重合性炭化水素(b1)、未反応の光開裂型重合開始剤(P)などである。
前記の紫外線硬化済み樹脂(B1)は、前記の水性重合性炭化水素(b1)と光開裂型重合開始剤(P)を含む水性塗料(b)を金属板表面に塗布、乾燥後、紫外線照射して得られる樹脂である。本発明で用いる水性塗料(b)は、水性重合性炭化水素(b1)と光開裂型重合開始剤(P)の合計を不揮発分の50〜95質量%、シリカ微粒子(Cl)を不揮発分の5〜35質量%含むが、その他に、後に詳述する硬質セラミックス微粒子、固体潤滑剤、架橋剤、ポリフェノール化合物(D)、りん酸及びヘキサフルオロ金属酸(E)、りん酸塩化合物(F)などを含んでいてもよい。 The UV-cured resin (B1) is prepared by applying an aqueous paint (b) containing the aqueous polymerizable hydrocarbon (b1) and the photocleavable polymerization initiator (P) to the surface of the metal plate, drying it, and then irradiating with ultraviolet rays. It is resin obtained. The water-based paint (b) used in the present invention comprises 50 to 95% by mass of the nonvolatile content of the water-polymerizable hydrocarbon (b1) and the photocleavable polymerization initiator (P), and silica fine particles (Cl) as the nonvolatile content. In addition to the above, it contains 5 to 35% by mass. In addition, the hard ceramic fine particles, solid lubricant, crosslinking agent, polyphenol compound (D), phosphoric acid and hexafluorometal acid (E), phosphate compound (F), which will be described in detail later Etc. may be included.
シリカ微粒子(Cl)が水性塗料(b)の不揮発分の5質量%未満の場合、成膜後、最表層皮膜の耐擦傷性、耐摩耗性、耐食性のいずれも不十分になる。シリカ微粒子(Cl)が不揮発分の35質量%を超える場合、成膜後の最表層皮膜中で、樹脂(B1)に比べ微粒子の量が多すぎて、皮膜の織密性、靭性や強度が低下し、耐食性や加工密着性が不十分になる。 When the silica fine particles (Cl) are less than 5% by mass of the non-volatile content of the water-based paint (b), after the film formation, all of the scratch resistance, abrasion resistance, and corrosion resistance of the outermost layer film are insufficient. When the silica fine particles (Cl) exceed 35% by mass of the non-volatile content, the amount of fine particles in the outermost layer film after film formation is too large compared to the resin (B1), and the film has tightness, toughness and strength. The corrosion resistance and work adhesion become insufficient.
硬質セラミックス微粒子には高価なものが多く、また、シリカ微粒子より比重が高く皮膜を形成するための水性塗料への均一分散が困難であり、更に、シリカ微粒子ほど成膜後の皮膜の耐食性改善効果が高くないため、最上層皮膜への添加は最少限にすべきである。 Hard ceramic fine particles are often expensive, have a higher specific gravity than silica fine particles, and are difficult to uniformly disperse in water-based paints to form a film. Furthermore, silica fine particles have the effect of improving the corrosion resistance of the film after film formation. Is not high, the addition to the top film should be minimized.
また、固体潤滑剤は、水性塗料(b)の不揮発分100質量部に対し1〜40質量部含有することが好ましい。1質量部未満の場合、成膜後の皮膜の加工性向上効果が小さく、一方、40質量部を超えると皮膜中の潤滑剤量が多すぎて、皮膜の繊密性や密着性が損なわれ、耐食性や加工密着性などが低下する場合がある。 Moreover, it is preferable to contain 1-40 mass parts of solid lubricant with respect to 100 mass parts of non volatile matters of water-based paint (b). When the amount is less than 1 part by mass, the effect of improving the workability of the film after film formation is small. On the other hand, when the amount exceeds 40 parts by mass, the amount of lubricant in the film is too large and the fineness and adhesion of the film are impaired. Corrosion resistance, processing adhesion, etc. may be reduced.
架橋剤の添加は、最表層皮膜に求められる耐擦傷性、耐摩耗性、その他の必要機能を保持する範囲に限られる。 The addition of the crosslinking agent is limited to a range that retains the scratch resistance, abrasion resistance, and other necessary functions required for the outermost layer film.
工業化されている紫外線重合機構にはラジカル重合型とカチオン重合型があるが、本発明では、水性塗料の水分を乾燥して得られる未反応皮膜中の水性重合性炭化水素(b1)を重合させるため、少々の水分が残っていても反応が速やかに進むラジカル重合型で重合皮膜を形成する。カチオン重合型は、残存水分や共存する塩基性化合物により硬化阻害を受けるだけでなく、重合速度がラジカル重合型に比べ遅いため、工業的実用性がラジカル重合型より劣り、本発明では望ましくない。また、光ラジカル重合の主要な開始機構には、開始剤分子が紫外線を受けて分子内開裂し、開始剤分子単独でラジカルを発生できる光開裂型と、開始剤分子と水素供与化合物との2分子反応でラジカルを発生する水素引抜き型があるが、本発明では、水素供与化合物が不要な光開裂型を用いる。水素引抜き型では水素供与化合物を共存させる必要があり、水性塗料の処方が複雑になるため、本発明では望ましくない。 There are a radical polymerization type and a cationic polymerization type in the ultraviolet polymerization mechanism that has been industrialized. In the present invention, the aqueous polymerizable hydrocarbon (b1) in the unreacted film obtained by drying the water of the aqueous coating is polymerized. Therefore, even if a little moisture remains, a polymerized film is formed by a radical polymerization type in which the reaction proceeds rapidly. The cationic polymerization type is not only not inhibited by residual moisture or a coexisting basic compound, but also has a slower polymerization rate than the radical polymerization type, so that the industrial practicality is inferior to the radical polymerization type, which is not desirable in the present invention. In addition, the main initiation mechanism of photoradical polymerization includes a photocleavable type in which an initiator molecule undergoes intramolecular cleavage upon receiving ultraviolet light, and a radical can be generated by the initiator molecule alone, and an initiator molecule and a hydrogen donor compound. There is a hydrogen abstraction type that generates radicals by molecular reaction. In the present invention, a photocleavage type that does not require a hydrogen donor compound is used. In the hydrogen abstraction type, it is necessary to coexist with a hydrogen donor compound, and the formulation of the water-based paint becomes complicated, which is not desirable in the present invention.
本発明において、一般式(II)に示す紫外線硬化済み樹脂(B1)は、メチリデン基(H2C=)からなる炭素-炭素二重結合基を末端に持ち、下記一般式(IV)の構造を有する水性重合性炭化水素(b1)と、光開裂型重合開始剤(P)とを主成分とする水性塗料(b)の水分を乾燥、成膜後、紫外線を照射し、ラジカル重合することにより得られる。
前記(IV)において、分子末端のメチリデン基(H2C=)からなる炭素-炭素二重結合基が、紫外線照射により生じたラジカルの攻撃を受け、重合の起点となる。紫外線照射により、光開裂型重合開始剤(P)と水性重合性炭化水素(b1)から樹脂(B1)が生成する機構の例を、下記の反応式1〜反応式4に示す。 In the above (IV), the carbon-carbon double bond group consisting of the methylidene group (H 2 C =) at the molecular end is attacked by radicals generated by ultraviolet irradiation and becomes the starting point of polymerization. Examples of the mechanism by which the resin (B1) is produced from the photocleavable polymerization initiator (P) and the aqueous polymerizable hydrocarbon (b1) by ultraviolet irradiation are shown in the following reaction formulas 1 to 4.
紫外線照射により、光開裂型重合開始剤(P)が開裂してラジカルRad1・とRad2・が生成する(反応式1,光開裂)。水性重合性炭化水素(b1)に作用するラジカルはRad1・、Rad2・のいずれでもよいので、これらを包括的にRad・と表す。Rad・が、前記(b1)末端のメチリデン基(H2C=)からなる二重結合基に作用し、Rad・が(b1)に付加した新しいラジカルが発生する(反応式2、連鎖開始)。このラジカルが他の(b1)に付加し、更に分子量の大きなラジカルが生成する(反応式3、連鎖成長)。この過程を次々に繰り返し、反応中間体のラジカルが高分子化し、ラジカルどうしの結合などによる停止反応を経て、樹脂(A1)が生成する(反応式4,高分子化)。 Upon irradiation with ultraviolet light, the photocleavable polymerization initiator (P) is cleaved to generate radicals Rad 1 · and Rad 2 · (reaction formula 1, photocleavage). Radical Rad 1 · acting on the aqueous polymerizable hydrocarbon (b1), so may be either Rad 2 ·, generically represented as Rad · them. Rad · acts on the double bond group consisting of the methylidene group (H 2 C =) at the terminal (b1) to generate a new radical with Rad · added to (b1) (Scheme 2, chain initiation) . This radical is added to the other (b1), and a radical having a larger molecular weight is generated (Reaction Formula 3, chain growth). This process is repeated one after another, and the radicals of the reaction intermediate are polymerized, and a resin (A1) is produced through a termination reaction due to the bonding between the radicals (Reaction Formula 4, Polymerization).
反応式1では、1種類の光開裂型重合開始剤(P)を用いた場合を例示しているが、紫外線硬化済み樹脂(B1)からなる最表層皮膜を形成する際、1種類の開始剤(P)を単独で用いても、分子構造が異なる2種以上の開始剤(P)の混合物を用いてもよい。光開始剤は紫外線に対してそれぞれ異なる吸収を示すため、2種以上の開始剤の混合物を用いることにより、光感応応答性の幅(紫外線吸収波長範囲)を広げることができる。そのため、本発明では、紫外線硬化済み樹脂(B1)からなる最表層皮膜を形成する際に架橋度、分子量、性能などを制御するため、2種以上の光開裂型重合開始剤(P)を併用することがある。 Reaction Formula 1 illustrates the case where one type of photocleavable polymerization initiator (P) is used, but one type of initiator is used when forming the outermost layer film composed of the UV-cured resin (B1). (P) may be used alone or a mixture of two or more initiators (P) having different molecular structures may be used. Since photoinitiators exhibit different absorptions with respect to ultraviolet rays, the width of the photosensitive response (ultraviolet absorption wavelength range) can be expanded by using a mixture of two or more initiators. Therefore, in the present invention, two or more kinds of photocleavable polymerization initiators (P) are used in combination in order to control the degree of crosslinking, molecular weight, performance, etc., when forming the outermost layer film made of the ultraviolet curable resin (B1). There are things to do.
反応式2〜4では、1種類の水性重合性炭化水素(b1)を用いた場合を例示しているが、紫外線硬化済み樹脂(B1)からなる最表層皮膜を形成する際、1種類の(b1)を単独で用いても、−X1基または−Z1基の少なくとも一方が異なる2種以上の(b1)の混合物を用いてもよい。ただし、混合物の場合、−Z1基 中の親水基がアニオン型のものとカチオン型のものを混ぜると不安定化する場合があるため、これらを併用してはならない。許容される親水基の組合せは、アニオン型のものとノニオン型のもの、あるいは、カチオン型のものとノニオン型のものである。
炭化水素が、炭素-炭素二重結合基(>C=C<)そのものを持たない飽和炭化水素である場合、ラジカルが飽和炭化水素と共存していてもラジカル重合できず、高分子化が非常に困難である。ハロゲノラジカルなどの非常に反応性の高いラジカルが飽和炭化水素と共存すれば、飽和炭化水素から水素原子を引抜いてアルキルラジカルを生成できる。しかし、これらのラジカルから周囲の他の飽和炭化水素へのラジカル移動反応(ラジカルの攻撃を受けた飽和炭化水素が励起し、攻撃したアルキルラジカルが失活する反応)や、ラジカルどうしが結合して消滅する可能性はあるが、ラジカルが次々に飽和炭化水素に付加し、高分子化することはない。従って、炭化水素がラジカル重合性であるためには、分子鎖に炭素-炭素二重結合基が必要である。 When the hydrocarbon is a saturated hydrocarbon that does not have a carbon-carbon double bond group (> C = C <) itself, radical polymerization cannot be performed even if the radical coexists with the saturated hydrocarbon, and the polymerization is extremely high. It is difficult to. If a highly reactive radical such as a halogeno radical coexists with a saturated hydrocarbon, an alkyl radical can be generated by extracting a hydrogen atom from the saturated hydrocarbon. However, radical transfer reactions from these radicals to other surrounding saturated hydrocarbons (reactions in which saturated hydrocarbons attacked by radicals are excited and the attacked alkyl radicals are deactivated) Although there is a possibility of disappearing, radicals are successively added to saturated hydrocarbons and do not become polymerized. Therefore, in order for the hydrocarbon to be radically polymerizable, a carbon-carbon double bond group is required in the molecular chain.
一般に、炭化水素が炭素-炭素二重結合基(>C=C<)を持つ場合、そのような不飽和炭化水素の構造式は、A1A2C=CB1B2と表記される。ここで、置換基A1、A2、B1、B2は、水素原子又は炭化水素基、又は、水素原子と炭素原子以外のヘテロ原子(例えば−F、−Cl、−Br、−I等)、又は、中心原子が炭素原子でないヘテロ置換基(例えば−N(CH3)2、−O−CH2CH3、−SO3Na等)である。前記不飽和炭化水素A1A2C=CB1B2において、左側の二重結合炭素に付いているA1またはA2のうち少なくとも1つ、及び、右側の二重結合炭素に付いているB1またはB2のうち少なくとも1つが、炭素原子数1以上の炭化水素基、又は、水素原子と炭素原子以外のヘテロ原子、又は、中心原子が炭素原子でないヘテロ置換基のいずれかである場合、両方の二重結合炭素に水素原子より嵩高い原子または置換基が結合しているため、二重結合部位が非常に強く遮蔽され、ラジカルが炭素-炭素二重結合部位に近づけない。そのため、該二重結合部位へのラジカルの付加が事実上不可能で、本発明の水性重合性炭化水素(b1)として用いることはできない。一方、前記不飽和炭化水素A1A2C=CB1B2において、右側の二重結合炭素原子に付いているB1またはB2)のうち少なくとも1つが水素原子より嵩高い置換基であっても、左側の二重結合炭素に付いている置換基A1、A2の両方が水素原子であれば、前記A1A2C=CB1B2は遮蔽力の小さなメチリデン基(H2C=)を持つ構造(H2C=CB1B2)となるため、置換基A1、A2のいずれかと置換基B1、B2のいずれかが共に水素原子より嵩高い置換基である場合と異なり、ラジカルが炭素-炭素二重結合部位に近づけるようになる。従って、ラジカルが不飽和炭化水素の炭素一炭素二重結合部位に逐次付加重合するためには、本発明における水性重合性炭化水素(b1)は、メチリデン基(H2C=)を有する炭素-炭素二重結合基を少なくとも1つ待つ前記H2C=CB1B2のような構造でなければならない。 In general, when the hydrocarbon has a carbon-carbon double bond group (> C = C <), the structural formula of such an unsaturated hydrocarbon is expressed as A 1 A 2 C = CB 1 B 2 . Here, the substituents A 1 , A 2 , B 1 , B 2 are hydrogen atoms or hydrocarbon groups, or hetero atoms other than hydrogen atoms and carbon atoms (for example, —F, —Cl, —Br, —I, etc.) Or a hetero substituent whose central atom is not a carbon atom (for example, —N (CH 3 ) 2 , —O—CH 2 CH 3 , —SO 3 Na, etc.). In the unsaturated hydrocarbon A 1 A 2 C═CB 1 B 2 , it is attached to at least one of A 1 or A 2 attached to the left double bond carbon and to the right double bond carbon. When at least one of B 1 or B 2 is a hydrocarbon group having 1 or more carbon atoms, a hetero atom other than a hydrogen atom and a carbon atom, or a hetero substituent whose central atom is not a carbon atom , Since atoms or substituents higher than hydrogen atoms are bonded to both double bond carbons, the double bond sites are shielded very strongly, and the radicals are not close to the carbon-carbon double bond sites. Therefore, it is practically impossible to add a radical to the double bond site, and it cannot be used as the aqueous polymerizable hydrocarbon (b1) of the present invention. On the other hand, in the unsaturated hydrocarbon A 1 A 2 C═CB 1 B 2 , at least one of B 1 or B 2 ) attached to the double bond carbon atom on the right side is a substituent that is bulkier than the hydrogen atom. However, if both of the substituents A 1 and A 2 attached to the left double bond carbon are hydrogen atoms, the A 1 A 2 C═CB 1 B 2 is a methylidene group (H 2 having a small shielding power). C =) (H 2 C═CB 1 B 2 ), so that either substituent A 1 or A 2 and substituent B 1 or B 2 are both bulkier than hydrogen atoms. Unlike some cases, radicals come closer to the carbon-carbon double bond site. Therefore, in order for the radical to undergo sequential addition polymerization to the carbon-carbon double bond site of the unsaturated hydrocarbon, the aqueous polymerizable hydrocarbon (b1) in the present invention is a carbon- having a methylidene group (H 2 C =). The structure must be such as H 2 C═CB 1 B 2 waiting for at least one carbon double bond group.
更に、前記の不飽和炭化水素H2C=CB1B2を水性塗料中で安定化し、ウェット塗装、水分乾燥後に効率よくラジカル重合するためには、置換基B1がアニオン型、カチオン型またはノニオン型の親水基または該親水基を持つ炭化水素基であり、かつ、残る置換基B2が小さな水素原子又はメチル基でなければならない。B1が前記の親水性置換基であれば、不飽和炭化水素H2C=CB1B2は水性塗料に安定に溶解または微細分散する。しかし、このような親水性置換基は非常に嵩高いため、不飽和炭化水素H2C=CB1B2の二重結合部位にラジカルが近づきにくく、反応速度が遅くなる。更に、残る置換基B2も、嵩高い炭素数2以上のアルキル基、水素原子と炭素原子以外のヘテロ原子、又は、中心原子が炭素原子でないヘテロ置換基であれば、嵩高い置換基B1とB2の共存によるラジカル遮蔽効果が非常に大きく、ラジカル重合は実質的に生じない。ところが、不飽和炭化水素H2C=CB1B2において、B1が嵩高い親水性置換基でも、B2が小さな水素原子又はメチル基であれば、実用レベルの反応速度でラジカル重合する。そのため、紫外線受光で樹脂(B1)が生成する時の出発化合物である水性重合性炭化水素(b1)は、前記一般式(IV)に示す構造でなければならない。
本発明で用いる樹脂(B1)は、前記反応式2〜4に示したように、前記の水性重合性炭化水素(b1)のラジカル重合で生成する。そのため、樹脂(B1)の―X1基と−Z1基は、(IV)のそれらと同じである。また、樹脂(B1)の−Y1基は、反応式4に示したように、多数の水性重合性炭化水素(b1)の付加重合体であり、(b1)分子の構造上の特徴(例えば、1分子中にあるメチリデン基(H2C=)を有する炭素-炭素二重結合基の数、分子中に他の反応性基があれば、その種類と数)や、塗装時の含水(ウェット)皮膜中で(b1)分子と共存する重合開始剤や架橋剤の種類などにより、生成する−Y1基の構造は多岐に亘り、特定の構造式を当てはめることはできない。従って、樹脂(B1)の構造を示す一般式(II)では、下記のように、−Y1基を単に「炭化水素基」と記す。 The resin (B1) used in the present invention is produced by radical polymerization of the aqueous polymerizable hydrocarbon (b1) as shown in the reaction formulas 2 to 4. Therefore, the —X 1 group and —Z 1 group of the resin (B1) are the same as those of (IV). Also, -Y 1 group in the resin (B1), as shown in Scheme 4, is an addition polymer of a number of aqueous polymeric hydrocarbon (b1), (b1) structural features of the molecule (e.g. The number of carbon-carbon double bond groups having a methylidene group (H 2 C =) in one molecule, the type and number of other reactive groups in the molecule) and the water content during coating ( In the (wet) film, (b1) the structure of the —Y 1 group to be produced varies depending on the type of polymerization initiator and cross-linking agent coexisting with the molecule, and a specific structural formula cannot be applied. Therefore, in the general formula (II) showing the structure of the resin (B1), the —Y 1 group is simply referred to as “hydrocarbon group” as follows.
本発明で用いる紫外線硬化済み樹脂(B1)は、下記一般式(II)に示す構造である。
本発明において、樹脂(B1)、及び紫外線受光で樹脂(B1)が生成する時の出発化合物である水性重合性炭化水素(b1)の−X1基は、メチル基より水素原子の方が好ましい。即ち、樹脂(B1)は下記一般式(III)、また、水性重合性炭化水素(b1)は、末端二重結合基がビニル基(H2C=CH−)である下記一般式(V)の構造の水性重合性炭化水素(b2)を用いるのが好ましい。その理由として、第一に、水素原子はメチル基よりかなり小さくラジカル遮蔽効果が僅少なため、水性重合性炭化水素(b2)へのラジカルの付加反応が非常に速く生じるからである。第二に、水性重合性炭化水素(b1)の−X1基基が水素原子の場合、ラジカル付加により生じるアクリレートラジカル(例えば、Rad−CH2−CHZ1・)は2級ラジカルで、−X1基がメチル基の場合に生じる3級のメタクリレートラジカル(例えば、Rad−CH2−C(CH3)Z1・))より不安定なため、このようなアクリレートラジカルは、近傍の水性重合性炭化水素(b2)に速やかに付加するからである。
本発明において、紫外線硬化済み樹脂(B1)や水性重合性炭化水素(b1)の一部を構成する−Z1基は、その親水効果により(b1)が水溶性または水分散性であれば、モノマー、オリゴマー、それらより高分子量のポリマーのいずれでもよい。モノマーやオリゴマーの場合、−Z1基は低分子量であるが、ポリマーの場合、−Z1基は、高分子量の長鎖基、二次元架橋基、または三次元架橋基である。 In the present invention, the -Z 1 group constituting a part of the ultraviolet-cured resin (B1) or the aqueous polymerizable hydrocarbon (b1) is, if (b1) is water-soluble or water-dispersible due to its hydrophilic effect, Any of a monomer, an oligomer, and a polymer having a higher molecular weight than those may be used. In the case of monomers and oligomers, the —Z 1 group has a low molecular weight, but in the case of polymers, the —Z 1 group is a high molecular weight long chain group, a two-dimensional crosslinking group, or a three-dimensional crosslinking group.
本発明において、前記−Z1基は、アニオン型、カチオン型またはノニオン型の親水基を持つ炭化水素基である。ここでいうアニオン型またはカチオン型の親水基は、反対電荷を持つイオンと水溶性塩を形成することにより、水性重合性炭化水素(b1)を水中に溶解あるいは分散できる基、または、それらの水溶性塩からなる基であれば特に制限はない。アニオン型では、カルボキシル基(−COOH)、硫酸基(-SO3H)硫酸エステル基(-OSO3H)、りん酸基(-P=O(OH)2)などの酸基と、これらにNaOH、KOH、NH3、各種アミンなどの塩基を作用させて得られる一COONa、−COOK、−COONH4、−SO3Na、−SO3K−SO3NH4、−OSO3Na、−P=O(ONa)2などの中和基が好ましく、水性重合性炭化水素(b1)とそれより得られる樹脂(B1)の−Z1基には、通常、これらの酸基を持つものと中和基を持つものが混在する。また、カチオン型では、Cl-やBr-などのアニオンと中和した4級アンモニウム塩やピリジニウム塩が好ましい。また、ノニオン型では、ポリオキシエチレン基 (−(CH2−CH2−O)x−基、繰返し単位の数xは概ね5〜20の整数)や、ポリオキシプロピレン基(−(CH2−CH(CH3)−O)y−基、繰返し単位の数yは概ね5〜20の整数)が好ましい。 In the present invention, the -Z 1 group is a hydrocarbon group having an anionic, cationic or nonionic hydrophilic group. The anionic or cationic hydrophilic group mentioned here is a group that can dissolve or disperse the aqueous polymerizable hydrocarbon (b1) in water by forming a water-soluble salt with an ion having an opposite charge, or a water solution thereof. There is no particular limitation as long as it is a group consisting of a functional salt. In the anion type, an acid group such as a carboxyl group (—COOH), a sulfate group (—SO 3 H), a sulfate ester group (—OSO 3 H), a phosphate group (—P═O (OH) 2 ), and the like One COONa, —COOK, —COONH 4 , —SO 3 Na, —SO 3 K—SO 3 NH 4 , —OSO 3 Na, —P obtained by reacting a base such as NaOH, KOH, NH 3 and various amines A neutralizing group such as ═O (ONa) 2 is preferable, and the —Z 1 group of the aqueous polymerizable hydrocarbon (b1) and the resin (B1) obtained therefrom is usually one having these acid groups. The thing with the sum is mixed. Further, the cationic, Cl - and Br - anions quaternary ammonium salt or pyridinium salt formed by neutralizing the like are preferable. In the nonionic type, a polyoxyethylene group (— (CH 2 —CH 2 —O) x — group, the number of repeating units x is an integer of about 5 to 20) or a polyoxypropylene group (— (CH 2 — CH (CH 3 ) —O) y — group, the number y of repeating units is generally an integer of 5 to 20).
既に述べたように、本発明で用いる紫外線硬化済み樹脂(B1)からなる最表層皮膜を形成する際、1種類の水性重合性炭化水素(b1)を単独で用いても、−X1基または−Z1基の少なくとも一方が異なる2種以上の(b1)の混合物を用いてもよい。ただし、混合物の場合、−Z1基中の親水基がアニオン型のものとカチオン型のものを混ぜると不安定化する場合があるため、これらを併用してはならない。許容される親水基の組合せは、アニオン型のものとノニオン型のもの、あるいは、カチオン型のものとノニオン型のものである。 As already described, when forming the outermost layer film made of the ultraviolet curable resin (B1) used in the present invention, even if one kind of aqueous polymerizable hydrocarbon (b1) is used alone, -X 1 group or A mixture of two or more (b1) s in which at least one of the —Z 1 groups is different may be used. However, in the case of a mixture, the hydrophilic group in the -Z 1 group may become unstable when an anionic type and a cationic type are mixed, so these should not be used in combination. Acceptable combinations of hydrophilic groups are anionic and nonionic, or cationic and nonionic.
本発明において、紫外線硬化済み樹脂(B1)や水性重合性炭化水素(b1)の一部を構成する−Z1基は、水性エポキシ系樹脂、水性ポリエステル系樹脂、水性ポリウレタン系樹脂、水性(メタ)アクリル系樹脂、水性アミノ系樹脂及び水性シリコーン系樹脂からなる群から選ばれる1種又は2種以上であることが好ましい。 In the present invention, the —Z 1 group constituting a part of the ultraviolet curable resin (B1) or the aqueous polymerizable hydrocarbon (b1) is an aqueous epoxy resin, aqueous polyester resin, aqueous polyurethane resin, aqueous (meta It is preferably one or more selected from the group consisting of acrylic resins, aqueous amino resins and aqueous silicone resins.
前記の水性エポキシ系樹脂としては、例えば、以下のような手順で合成する樹脂が挙げられる。まず、ビスフェノールA、ビスフェノールFまたは水添ビスフェノールA、または、ビスフェノールA、ビスフェノールF及び水添ビスフェノールAから選ばれる2種以上の混合物とエピクロルヒドリンとの重縮合により両末端エポキシ基のビスフェノール型エポキシ樹脂を合成する。次に、一方の二重結合炭素に2個の水素原子が付いた炭素-炭素二重結合含有モノカルボン酸((メタ)アクリル酸等)と多くのカルボキシル基が樹脂鎖に付いた高酸価樹脂とを適宜添加し、エポキシ基とカルボキシル基との間の反応により、これらを前記エポキシ樹脂にそれぞれ付加する。この操作は、前記エポキシ樹脂鎖の末端にメチリデン基(H2C=)を持つ炭素-炭素二重結合基を付与し、且つ、高酸価樹脂により前記エポキシ樹脂の酸価を高める操作である。最後に、付加した高酸価樹脂に残る未反応のカルボキシル基を塩基で中和し、水性化する。前記の高酸価樹脂は1本の樹脂鎖に多くのカルボキシル基が付いているため、1本の高酸価樹脂鎖が複数のエポキシ樹脂鎖と結合可能であり、この高酸価樹脂を介して、メチリデン基(H2C=)を持つ炭素-炭素二重結合基を樹脂鎖末端に多数有する水性エポキシ系樹脂を得ることもできる。 Examples of the aqueous epoxy resin include resins synthesized by the following procedure. First, a bisphenol type epoxy resin having both terminal epoxy groups is obtained by polycondensation of bisphenol A, bisphenol F or hydrogenated bisphenol A, or a mixture of two or more selected from bisphenol A, bisphenol F and hydrogenated bisphenol A with epichlorohydrin. Synthesize. Next, a carbon-carbon double bond-containing monocarboxylic acid (such as (meth) acrylic acid) with two hydrogen atoms attached to one double bond carbon and a high acid value with many carboxyl groups attached to the resin chain A resin is appropriately added, and these are added to the epoxy resin by a reaction between an epoxy group and a carboxyl group, respectively. This operation is an operation of imparting a carbon-carbon double bond group having a methylidene group (H 2 C =) to the end of the epoxy resin chain and increasing the acid value of the epoxy resin with a high acid value resin. . Finally, the unreacted carboxyl group remaining in the added high acid value resin is neutralized with a base to make it aqueous. Since the high acid value resin has many carboxyl groups attached to one resin chain, one high acid value resin chain can be bonded to a plurality of epoxy resin chains. Thus, an aqueous epoxy resin having many carbon-carbon double bond groups having a methylidene group (H 2 C =) at the end of the resin chain can also be obtained.
前記の、メチリデン基(H2C=)を持つ炭素~炭素二重結合基を樹脂鎖末端に有するビスフェノール型水性エポキシ系樹脂の中でも、ビスフェノールAとアクリル酸と前記高酸価樹脂を用いて得られるビスフェノールA型水性エポキシ系樹脂が、工業的な製造性に優れ、かつ、アクリル酸に由来するメチリデン基(H2C=)を持つ炭素-炭素二重結合がラジカルにより攻撃され易く、紫外線硬化反応速度が速いため、好適に用いられる。 Among the above-mentioned bisphenol type aqueous epoxy resins having a carbon to carbon double bond group having a methylidene group (H 2 C =) at the resin chain end, it is obtained using bisphenol A, acrylic acid and the high acid value resin. Bisphenol A water-based epoxy resin is excellent in industrial productivity, and the carbon-carbon double bond having a methylidene group (H 2 C =) derived from acrylic acid is easily attacked by radicals, and is cured by ultraviolet rays. Since the reaction rate is fast, it is preferably used.
メチリデン基(H2C=)を持つ炭素-炭素二重結合基を末端に少なくとも1つ有する水性ポリエステル系樹脂としては、例えば、以下のような手順で合成する樹脂が挙げられる。まず、脂肪族ジカルボン酸(例えば、マロン酸、コハク酸、アジピン酸等の飽和脂肪族ジカルボン酸、及び、マレイン酸、フマル酸、イタコン酸、無水マレイン酸、無水フマル酸等の不飽和脂肪族ジカルボン酸)、芳香族ジカルボン酸(例えば、テレフタル酸、イソフタル酸、無水フタル酸等)の少なくとも1種以上と1分子に3基以上のカルボキシル基を持つ多価カルボン酸(例えば、無水トリメリット酸、クエン酸、前記の高酸価樹脂等)との混合物と、グリコール(例えば、エチレングリコール、プロピレングリコール、1,3−ブチレングリコール、1,6−へキサンジオール、ジエチレングリコール、トリエチレングリコール、ネオペンチルグリコール、水添ビスフェノールA等)とを脱水重縮合して樹脂鎖に多数の未反応カルボキシル基が付いた高酸価ポリエステル樹脂を合成し、次に、このポリエステル樹脂末端の水酸基と、一方の二重結合炭素に2個の水素原子が付いた炭素−炭素二重結合含有モノカルボン酸((メタ)アクリル酸等)とを反応させるか、または、このポリエステル樹脂末端のカルボキシル基とグリシジル(メタ)アクリレートとを反応させて、このポリエステル樹脂鎖末端にメチリデン基(H2C=)を持つ炭素~炭素二重結合基を付与する。最後に、樹脂鎖に残る未反応のカルボキシル基の酸性を中和し、水性化する。 Examples of the aqueous polyester-based resin having at least one carbon-carbon double bond group having a methylidene group (H 2 C═) at the terminal include resins synthesized by the following procedure. First, aliphatic dicarboxylic acids (for example, saturated aliphatic dicarboxylic acids such as malonic acid, succinic acid, and adipic acid, and unsaturated aliphatic dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid, maleic anhydride, and fumaric anhydride. Acid), aromatic dicarboxylic acid (e.g., terephthalic acid, isophthalic acid, phthalic anhydride, etc.) and polyvalent carboxylic acid having 3 or more carboxyl groups in one molecule (e.g., trimellitic anhydride, Mixture with citric acid, the above-mentioned high acid value resin, etc.) and glycol (for example, ethylene glycol, propylene glycol, 1,3-butylene glycol, 1,6-hexanediol, diethylene glycol, triethylene glycol, neopentyl glycol) Dehydrated polycondensation with hydrogenated bisphenol A, etc.) and many unreacted carboxyl groups are attached to the resin chain After synthesizing a high acid value polyester resin, the hydroxyl group at the end of the polyester resin and a carbon-carbon double bond-containing monocarboxylic acid ((meth) acrylic) with two hydrogen atoms attached to one double bond carbon Acid) or a carboxyl group at the end of the polyester resin and glycidyl (meth) acrylate to react with carbon to carbon dioxygen having a methylidene group (H 2 C =) at the end of the polyester resin chain. Adds a heavy bond group. Finally, the acidity of the unreacted carboxyl group remaining in the resin chain is neutralized to make it aqueous.
メチリデン基(H2C=)を持つ炭素-炭素二重結合基を末端に少なくとも1つ有する水性ポリウレタン系樹脂としては、例えば、以下のような手順で合成する樹脂が挙げられる。まず、2基以上のイソシアネート基を持つポリイソシアネートと2基以上の水酸基を持つポリオールとの重付加反応により末端がイソシアネート基のポリウレタン樹脂を合成し、次に、この樹脂のイソシアネート基と、1分子中に2基以上の水酸基と1基以上のカルボキシル基を持つヒドロキシ酸(例えば、ジメチロールプロピオン酸、グリセリン酸、酒石酸等)の水酸基とを反応させて、樹脂鎖に多数のカルボキシル基が付いた高酸価ウレタン樹脂を合成する。この高酸価ウレタン樹脂末端の水酸基と、一方の二重結合炭素に2個の水素原子が付いた炭素-炭素二重結合含有モノカルボン酸((メタ)アクリル酸等)とを反応させるか、または、この高酸価ウレタン樹脂末端のカルボキシル基とグリシジル(メタ)アクリレートとを反応させてこのウレタン樹脂鎖末端にメチリデン基(H2C=)を持つ炭素-炭素二重結合基を付与する。最後に、樹脂鎖に残る未反応のカルボキシル基の酸性を中和し、水性化する。 Examples of the aqueous polyurethane resin having at least one carbon-carbon double bond group having a methylidene group (H 2 C═) at the terminal include resins synthesized by the following procedure. First, a polyurethane resin having an isocyanate group at the end is synthesized by a polyaddition reaction of a polyisocyanate having two or more isocyanate groups and a polyol having two or more hydroxyl groups, and then the isocyanate group of this resin and one molecule are synthesized. A number of carboxyl groups were attached to the resin chain by reacting the hydroxyl group of a hydroxy acid (for example, dimethylolpropionic acid, glyceric acid, tartaric acid, etc.) having two or more hydroxyl groups and one or more carboxyl groups therein. Synthesize high acid value urethane resin. This hydroxyl group at the end of the high acid value urethane resin is reacted with a carbon-carbon double bond-containing monocarboxylic acid (such as (meth) acrylic acid) in which two hydrogen atoms are attached to one double bond carbon, Alternatively, the carboxyl group at the end of the high acid value urethane resin is reacted with glycidyl (meth) acrylate to give a carbon-carbon double bond group having a methylidene group (H 2 C =) at the end of the urethane resin chain. Finally, the acidity of the unreacted carboxyl group remaining in the resin chain is neutralized to make it aqueous.
前記のポリイソシアネートとしては、芳香族、脂環式及び脂肪族ポリイソシアネートが挙げられる。芳香族ポリイソシアネートとしては、例えば、トリレンジイソシアネート(TDI)(2,4−または2,6−TDI)、ジフェニルメタンジイソシアネート(MDI)(4,4’−または2,4’−MDI)、ポリメリックMDI、キシリレンジイソシアネート(XDI)、ナフチレンジイソシアネート(NDI)(通常1,5−NDI)、パラフェニレンジイソシアネート(PPDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、トリジンジイソシアネート(TODI)、3,3’−ジメトキシ−4,4’−ビフェニレンジイソシアネート等が、脂環式ポリイソシアネートとしては、例えば、ジシクロヘキシルメタンジイソシアネート(HMDI)(4,4’−または2,4’−HMDI)、イソホロンジイソシアネート(IPDI)、イソプロピリデンビス−(4−シクロヘキシルイソシアネート)(IPC)、水添キシリレンジイソシアネート(水添XDI)、シクロヘキシレンジイソシアネート(CHPI)(通常1,4−CHPI)、1,5−テトラヒドロナフタレンジイソシアネート等が、また、脂肪族ポリイソシアネートとしては、例えば、へキサメチレンジイソシアネート(HDI)、リジンジイソシアネート(LDI)、テトラメチレンジイソシアネート等が挙げられる。 The polyisocyanates include aromatic, alicyclic and aliphatic polyisocyanates. Examples of aromatic polyisocyanates include tolylene diisocyanate (TDI) (2,4- or 2,6-TDI), diphenylmethane diisocyanate (MDI) (4,4′- or 2,4′-MDI), polymeric MDI. , Xylylene diisocyanate (XDI), naphthylene diisocyanate (NDI) (usually 1,5-NDI), paraphenylene diisocyanate (PPDI), tetramethylxylylene diisocyanate (TMXDI), tolidine diisocyanate (TODI), 3,3′- Examples of alicyclic polyisocyanates such as dimethoxy-4,4′-biphenylene diisocyanate include dicyclohexylmethane diisocyanate (HMDI) (4,4′- or 2,4′-HMDI), isophorone diisocyanate (IPDI), isopropyl Redenbis (4-cyclohexyl isocyanate) (IPC), hydrogenated xylylene diisocyanate (hydrogenated XDI), cyclohexylene diisocyanate (CHPI) (usually 1,4-CHPI), 1,5-tetrahydronaphthalene diisocyanate, etc. are also aliphatic. Examples of the polyisocyanate include hexamethylene diisocyanate (HDI), lysine diisocyanate (LDI), and tetramethylene diisocyanate.
前記のポリオールとしては、例えば、(ポリ)アルキレングリコール、ポリエステルポリオール、C−C結合を主鎖とするポリオール、及びその他のポリオールが挙げられる。 Examples of the polyol include (poly) alkylene glycol, polyester polyol, polyol having a C—C bond as a main chain, and other polyols.
ここで(ポリ)アルキレングリコールとしては、例えば、(ポリ)エチレングリコール(エチレングリコール、ジエチレングリコール、トリエチレングリコール等)、1,2−プロピレングリコール、1,3−プロピレングリコール、ポリエチレン/プロピレングリコール、ネオペンチルグリコール、1,2−ブチレングリコール、1,3−ブチレングリコール、1,4−ブチレングリコール、3−メチル−1,5−ペンタンジオール、へキサメチレングリコール等が挙げられる。 Here, as the (poly) alkylene glycol, for example, (poly) ethylene glycol (ethylene glycol, diethylene glycol, triethylene glycol, etc.), 1,2-propylene glycol, 1,3-propylene glycol, polyethylene / propylene glycol, neopentyl Examples include glycol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 3-methyl-1,5-pentanediol, hexamethylene glycol, and the like.
また、ポリエステルポリオールとしては、例えば、低分子量のポリオール(例えば、比較的低分子量の(ポリ)アルキレングリコール、ビスフェノールA、水添ビスフェノールA、トリメチロールプロパン、グリセリン等)と、多価カルボン酸(例えば、コハク酸、グルタル酸、アジピン酸、セバチン酸、フタル酸、イソフタル酸、テレフタル酸、無水トリメリット酸、テトラヒドロフタル酸、エンドメチレンテトラヒドロフタル酸、ヘキサヒドロフタル酸等)との重縮合によって得られる末端に水酸基を持つポリエステルポリオールが挙げられる。 Examples of polyester polyols include low molecular weight polyols (for example, relatively low molecular weight (poly) alkylene glycols, bisphenol A, hydrogenated bisphenol A, trimethylolpropane, glycerin, etc.) and polyvalent carboxylic acids (for example, Succinic acid, glutaric acid, adipic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, trimellitic anhydride, tetrahydrophthalic acid, endomethylenetetrahydrophthalic acid, hexahydrophthalic acid, etc.) Examples include polyester polyols having a hydroxyl group at the terminal.
C−C結合を主鎖とするポリオールとしては、例えば、メチル(メタ)アクリレート−ビニルアルコール共重合体、両末端に水酸基を持つポリオレフィン(両末端に水酸基を持つポリエチレン、ポリプロピレン等)、エチレン−酢酸ビニル共重合体の部分もしくは完全加水分解物等が挙げられる。 Examples of the polyol having a C—C bond as the main chain include methyl (meth) acrylate-vinyl alcohol copolymer, polyolefin having hydroxyl groups at both ends (polyethylene having a hydroxyl group at both ends, polypropylene, etc.), and ethylene-acetic acid. Examples thereof include a vinyl copolymer part or a completely hydrolyzed product.
その他のポリオールとしては、例えば、ビスフェノールA、水添ビスフェノールA、トリメチロールプロパン、グリセリン等が挙げられる。 Examples of other polyols include bisphenol A, hydrogenated bisphenol A, trimethylolpropane, and glycerin.
メチリデン基(H2C=)を持つ炭素-炭素二重結合基を末端に少なくとも1つ有する水性(メタ)アクリル系樹脂としては、例えば、以下のような手順で合成する樹脂が挙げられる。まず、(メタ)アクリル酸を重合して末端カルボキシル基を持つオリゴマーを作り、このオリゴマーに(メタ)アクリル酸エステル(例えば、エチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、n−ブチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート等)と(メタ)アクリル酸の混合物を共重合して末端カルボキシル基を持つ高酸価(メタ)アクリル系樹脂を合成する。次に、この樹脂の末端カルボキシル基とグリシジル(メタ)アクリレートを反応させてこの樹脂鎖末端にメチリデン基(H2C=)を持つ炭素−炭素二重結合基を付与する。最後に、樹脂鎖に残る未反応のカルボキシル基の酸性を中和し、水性化する。また、例えば、以下のような手順で合成する樹脂が挙げられる。(メタ)アクリル酸グリシジルを重合して末端グリシジル基を持つオリゴマーを作り、このオリゴマーに前記(メタ)アクリル酸エステルと(メタ)アクリル酸の混合物を共重合して末端グリシジル基を持つ高酸価(メタ)アクリル系樹脂を合成する。次に、この樹脂の末端グリシジル基と(メタ)アクリル酸を反応させてこの樹脂鎖末端にメチリデン基(H2C=)を持つ炭素−炭素二重結合基を付与する。最後に、樹脂鎖に残る未反応のカルボキシル基の酸性を中和し、水性化する。 Examples of the aqueous (meth) acrylic resin having at least one carbon-carbon double bond group having a methylidene group (H 2 C═) at the terminal include resins synthesized by the following procedure. First, (meth) acrylic acid is polymerized to form an oligomer having a terminal carboxyl group, and (meth) acrylic acid ester (for example, ethyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-butyl ( (Meth) acrylate, 2-hydroxyethyl (meth) acrylate, glycidyl (meth) acrylate, etc.) and (meth) acrylic acid are copolymerized to synthesize a high acid value (meth) acrylic resin having a terminal carboxyl group. . Next, the terminal carboxyl group of this resin and glycidyl (meth) acrylate are reacted to give a carbon-carbon double bond group having a methylidene group (H 2 C =) at the resin chain end. Finally, the acidity of the unreacted carboxyl group remaining in the resin chain is neutralized to make it aqueous. Further, for example, a resin synthesized by the following procedure can be given. A glycidyl (meth) acrylate is polymerized to produce an oligomer having a terminal glycidyl group, and a high acid value having a terminal glycidyl group is obtained by copolymerizing the oligomer with a mixture of the (meth) acrylic acid ester and (meth) acrylic acid. A (meth) acrylic resin is synthesized. Next, the terminal glycidyl group of this resin and (meth) acrylic acid are reacted to give a carbon-carbon double bond group having a methylidene group (H 2 C =) at the resin chain end. Finally, the acidity of the unreacted carboxyl group remaining in the resin chain is neutralized to make it aqueous.
メチリデン基(H2C=)を持つ炭素−炭素二重結合基を末端に少なくとも1つ有する水性アミノ系樹脂としては、例えば、以下のような手順で合成する樹脂が挙げられる。まず、2基以上のアミノ基を持つ化合物(例えば、尿素、メラミン、ベンゾグアナミン等)とホルムアルデヒドを縮合させ、アミノ樹脂を合成する。生成樹脂の水分散性を失わない範囲で、必要に応じ、このアミノ樹脂末端のメチロール基の少なくとも一部を低級アルコール(例えばメチルアルコール、エチルアルコール、ブチルアルコール等)でエーテル化してアルコキシメチル基とする。次に、1分子中にメチリデン基(H2C=)を持つ炭素−炭素二重結合と水酸基を持つ化合物を、水酸基を介して前記樹脂のメチロール基やアルコキシメチル基と反応させ、メチリデン基(H2C=)を持つ炭素−炭素二重結合基を有する水性アミノ系樹脂とする。 Examples of the aqueous amino resin having at least one carbon-carbon double bond group having a methylidene group (H 2 C═) at the terminal include resins synthesized by the following procedure. First, a compound having two or more amino groups (for example, urea, melamine, benzoguanamine, etc.) and formaldehyde are condensed to synthesize an amino resin. As long as the water dispersibility of the resulting resin is not lost, at least part of the methylol group at the end of the amino resin is etherified with a lower alcohol (for example, methyl alcohol, ethyl alcohol, butyl alcohol, etc.) to form an alkoxymethyl group. To do. Next, a compound having a carbon-carbon double bond having a methylidene group (H 2 C =) in one molecule and a hydroxyl group is reacted with a methylol group or an alkoxymethyl group of the resin via the hydroxyl group to obtain a methylidene group ( An aqueous amino resin having a carbon-carbon double bond group having H 2 C =) is used.
ここで、1分子中にメチリデン基(H2C=)を持つ炭素−炭素二重結合と水酸基を持つ化合物としては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、N−メチロール(メタ)アクリルアミド、2−ヒドロキシエチル−o−キシリレン(メタ)アクリレート、2−ヒドロキシプロピル−o−キシリレン(メタ)アクリレート等が挙げられる。 Here, examples of the compound having a carbon-carbon double bond having a methylidene group (H 2 C═) and a hydroxyl group in one molecule include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate. N-methylol (meth) acrylamide, 2-hydroxyethyl-o-xylylene (meth) acrylate, 2-hydroxypropyl-o-xylylene (meth) acrylate, and the like.
メチリデン基(H2C=)を持つ炭素−炭素二重結合基を末端に少なくとも1つ有する水性シリコーン系樹脂としては、例えば、シラノール基やアルキルシラノール基を持つ反応性ポリシロキサンと、前記の水性エポキシ系樹脂、水性ポリエステル系樹脂、水性ポリウレタン系樹脂、水性(メタ)アクリル系樹脂、水性アミノ系樹脂のエポキシ基、水酸基、アミノ基等と反応させて得られる樹脂が挙げられる。 Examples of the aqueous silicone resin having at least one carbon-carbon double bond group having a methylidene group (H 2 C =) at its terminal include reactive polysiloxanes having a silanol group or an alkylsilanol group, and the aqueous Examples thereof include resins obtained by reacting with epoxy groups, hydroxyl groups, amino groups, and the like of epoxy resins, aqueous polyester resins, aqueous polyurethane resins, aqueous (meth) acrylic resins, and aqueous amino resins.
一般に、ラジカル重合性炭化水素を主成分とする紫外線硬化型樹脂塗料が光重合開始剤を含まない場合、成膜後に紫外線を照射しても重合性炭化水素の重合に有効なラジカルが発生しないため、このような塗料には、必ず、光重合開始剤を配合する。本発明にて最表層皮膜を形成するための水性塗料には、必ず、光開裂型重合開始剤(P)を配合する。 In general, when an ultraviolet curable resin coating mainly composed of radically polymerizable hydrocarbons does not contain a photopolymerization initiator, radicals effective for polymerization of polymerizable hydrocarbons will not be generated even when irradiated with ultraviolet rays after film formation. Such a paint always contains a photopolymerization initiator. In the present invention, the photo-cleavable polymerization initiator (P) is always blended in the water-based paint for forming the outermost layer film.
本発明で用いる光開裂型重合開始剤(P)に特に制限はないが、波長200〜400nmの紫外光領域に吸収波長帯を持ち、特定波長の紫外線を吸収し、分子内開裂してラジカルを生成する化合物が好ましい。その中でも、下記式(P1)〜(P10)から選ばれる1種、または2種以上の混合物が特に好ましい。何故なら、これらは、水性重合性炭化水素(b1)と共に水性塗料化する際、(b1)と相溶性がよいため(b1)と共に水性塗料中に均一分散でき、かつ、紫外線受光によるラジカル生成能力が高く、更に、生成ラジカルの反応性が高いからである。(P1)〜(P10)の化合物名は、それぞれ、ベンゾイン(P1)、ベンゾインメチルエーテル(P2)、ベンゾインエチルエーテル(P3)、ベンゾインイソプロピルエーテル(P4)、1−ヒドロキシシクロヘキシルフェニルケトン(P5)、2,2−ジメチル−2−ヒドロキシアセトフェノン(P6)、2,2−ジエトキシアセトフェノン(P7)、2,2−ジメトキシ−2−フェニルアセトフェノン(P8)、2−メチル−1−[4−(メチルチオ)フェニル]−2−(4−モルフォリニル)−1−プロパノン(P9)、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフインオキサイド(P10)である。
本発明で用いる光開裂型重合開始剤(P)は、最表層皮膜を形成するために用いる水性塗料の不揮発分100質量部に対し、0.2〜20質量部の範囲で水性塗料に配合するのが好ましく、0.5〜10質量部の範囲で配合するのがより好ましい。光開裂型重合開始剤(P)が0.2質量部未満の微量しか含まれていない場合、紫外線の受光で十分な量の開始剤ラジカルが発生せず、水性重合性炭化水素(b1)の多くが未反応のまま皮膜に残存するため、最表層皮膜の耐擦傷性や耐摩耗性が不十分になる可能性が高い。光開裂型重合開始剤(P)が20質量部を超える場合、紫外線受光で非常に多くの開始剤ラジカル(Rad・)が一斉に発生し、水性重合性炭化水素(b1)の消費速度が非常に速くなるため、各連鎖成長鎖が十分に高分子化する前に水性重合性炭化水素(b1)が消費し尽くされてしまう可能性が高い。そのため、最表層皮膜の耐擦傷性や耐摩耗性が不十分になる可能性が高い。 The photocleavable polymerization initiator (P) used in the present invention is blended in the aqueous paint in a range of 0.2 to 20 parts by mass with respect to 100 parts by mass of the nonvolatile content of the aqueous paint used for forming the outermost layer film. Of these, it is more preferable to blend in the range of 0.5 to 10 parts by mass. When the photocleavable polymerization initiator (P) contains only a trace amount of less than 0.2 parts by mass, a sufficient amount of initiator radicals are not generated by receiving ultraviolet light, and the water-polymerizable hydrocarbon (b1) Most of them remain in the film unreacted, so that the scratch resistance and wear resistance of the outermost layer film are likely to be insufficient. When the photocleavable polymerization initiator (P) exceeds 20 parts by mass, a very large number of initiator radicals (Rad.) Are generated all at once by UV light reception, and the consumption rate of the aqueous polymerizable hydrocarbon (b1) is very high. Therefore, there is a high possibility that the aqueous polymerizable hydrocarbon (b1) will be consumed before each chain-grown chain is sufficiently polymerized. Therefore, there is a high possibility that the scratch resistance and wear resistance of the outermost layer film will be insufficient.
本発明において、紫外線硬化済み樹脂(B1)の一部を構成するRadは、前記の光開裂型重合開始剤(P)の受光開裂で生成するラジカル(Rad・)が、既述の反応式2に示すように、水性重合性炭化水素(b1)に付加したものである。本発明では、Radの構造には特に制限はないが、下記式(Rad1)〜(Rad13)で示される構造を持つ末端基の1種または2種以上が好ましい。何故なら、本発明において特に好ましい光開裂型重合開始剤(P)は、前記式(P1)〜(P10)から選ばれる1種または2種以上であり、これらの受光開裂により、下記式(Rad1)〜(Rad13)の構造に対応するラジカル(Rad1・)〜(Rad13・)が生じるからである。
本発明にて、シリカ微粒子(C1)は、前記紫外線硬化済み樹脂(B1)の耐擦傷性、耐摩耗性、耐食性のすべてを更に向上させるために添加する。シリカ微粒子としては特に制限はなく、皮膜が薄膜であることから、一次粒子径が3〜50nmのコロイダルシリ力、ヒュームドシリ力等のシリカ微粒子であることが好ましい。 In the present invention, the silica fine particles (C1) are added to further improve all of the scratch resistance, wear resistance, and corrosion resistance of the ultraviolet-cured resin (B1). There is no restriction | limiting in particular as a silica fine particle, Since a membrane | film | coat is a thin film, it is preferable that they are silica fine particles, such as colloidal silicic force with a primary particle diameter of 3-50 nm, and fumed silicic force.
本発明の水性樹脂塗料(j)が水性の電子線硬化型樹脂塗料であり、かつ、高硬質樹脂(J)が電子線硬化済み樹脂である場合、最表層の皮膜は、前記電子線硬化済み樹脂を皮膜の50〜95質量%、シリカ微粒子(Cl)を5〜35質量%含有する。最表層の皮膜構成成分のうち、前記電子線硬化済み樹脂、シリカ微粒子(Cl)以外の成分は、未反応の樹脂、未反応の水性重合性炭化水素などである。 When the water-based resin paint (j) of the present invention is a water-based electron beam curable resin paint and the high-hardness resin (J) is an electron beam-cured resin, the outermost layer is coated with the electron beam. The resin contains 50 to 95% by mass of the film and 5 to 35% by mass of silica fine particles (Cl). Among the constituent components of the outermost layer, components other than the electron beam cured resin and silica fine particles (Cl) are unreacted resin, unreacted aqueous polymerizable hydrocarbon, and the like.
前記の水性の電子線硬化型樹脂塗料に含まれる電子線硬化型樹脂は、本発明の複層皮膜の最下層皮膜形成の際に用いられる前記水性樹脂(a1)、または更に、紫外線硬化により最表層皮膜を形成する場合に用いられる前記水性重合性炭化水素(b1)からなる群から選ばれる1種又は2種以上である。樹脂の架橋反応に用いられる電子線のエネルギーは紫外線に比べ非常に高いため、前記水性樹脂(a1)や水性重合性炭化水素(b1)に電子線を照射すると、樹脂鎖や炭化水素鎖の結合が随所で切れ、その部位にラジカルが発生する。このようなラジカルによる重合反応には幾つかのケースがあり、例えば、異なる樹脂鎖や炭化水素鎖の随所に発生したラジカルどうしが結合すれば、樹脂鎖や炭化水素鎖が互いに結合した架橋高分子が生成する。多くのラジカルが一斉に分子間結合に与るため、生成した高分子は、もとの樹脂や炭化水素に比べ、非常に高い分子量を持つ。また、例えば、前記の水性重合性炭化水素(b1)の末端メチリデン基(H2C=)からなる二重結合基がこのようなラジカルの近傍にあれば、前記反応式2〜4と同様な連鎖反応によりラジカル重合し、高分子化する。この場合、樹脂鎖や炭化水素鎖のラジカル発生部位を起点とし、樹脂鎖や炭化水素鎖の側方に成長するグラフト重合鎖となる。以上のようなケースでは、共存する水性樹脂(a1)や水性重合性炭化水素(b1)の種類や存在比率等により、単一反応であったり、複雑に絡み合った複合反応であったりする。反応の終期には、樹脂鎖や炭化水素鎖の架橋、網目構造が発達し、電子線硬化済み樹脂となる。 The electron beam curable resin contained in the water-based electron beam curable resin coating is the water resin (a1) used in the formation of the lowermost layer film of the multilayer film of the present invention, or more preferably by ultraviolet curing. It is 1 type, or 2 or more types chosen from the group which consists of the said water-polymerizable hydrocarbon (b1) used when forming a surface layer membrane | film | coat. Since the energy of the electron beam used for the crosslinking reaction of the resin is much higher than that of ultraviolet rays, when the aqueous resin (a1) or the aqueous polymerizable hydrocarbon (b1) is irradiated with an electron beam, the resin chain or hydrocarbon chain is bonded. Cuts everywhere, and a radical is generated at that site. There are several cases of polymerization reactions using such radicals. For example, if radicals generated anywhere in different resin chains or hydrocarbon chains are combined, a crosslinked polymer in which resin chains and hydrocarbon chains are bonded to each other. Produces. Since many radicals are simultaneously exerted on intermolecular bonds, the resulting polymer has a very high molecular weight compared to the original resin or hydrocarbon. Further, for example, terminal methylidene double bond group consisting of group (H 2 C =) of the aqueous polymerizable hydrocarbon (b1) is, if in the vicinity of such radicals, similar to the reaction scheme 2-4 The polymer is radical polymerized by chain reaction and becomes high molecular weight. In this case, it becomes a graft polymerization chain starting from the radical generation site of the resin chain or hydrocarbon chain and growing to the side of the resin chain or hydrocarbon chain. In the case as described above, the reaction may be a single reaction or a complex reaction intricately entangled depending on the type and abundance of the aqueous resin (a1) and the aqueous polymerizable hydrocarbon (b1). At the end of the reaction, crosslinking of resin chains and hydrocarbon chains and a network structure are developed, resulting in an electron beam cured resin.
前記の電子線硬化済み樹脂は、前記水性樹脂(a1)、または更に、前記の水性重合性炭化水素(b1)を含む水性の電子線硬化型樹脂塗料を金属板表面に塗布、乾燥後、電子線照射して得られる樹脂である。本発明で用いる水性の電子線硬化型樹脂塗料は、前記水性樹脂(a1)と水性重合性炭化水素(b1)の合計を不揮発分の50〜95質量%、シリカ微粒子(Cl)を不揮発分の5〜35質量%含むが、その他に、紫外線硬化型樹脂塗料の説明の際に言及した硬質セラミックス微粒子、固体潤滑剤、架橋剤、ポリフェノール化合物(D)、りん酸及びヘキサフルオロ金属酸(E)、りん酸塩化合物(F)などを含んでいてもよい。 The electron beam cured resin is applied to the surface of the metal plate with an aqueous electron beam curable resin coating containing the aqueous resin (a1) or the aqueous polymerizable hydrocarbon (b1). It is a resin obtained by beam irradiation. The aqueous electron beam curable resin coating used in the present invention comprises a total of the aqueous resin (a1) and the aqueous polymerizable hydrocarbon (b1) of 50 to 95% by mass of non-volatile content and silica fine particles (Cl) of non-volatile content. 5 to 35% by mass, in addition, hard ceramic fine particles, solid lubricant, cross-linking agent, polyphenol compound (D), phosphoric acid and hexafluorometal acid (E) mentioned in the description of the ultraviolet curable resin coating , And may contain a phosphate compound (F).
電子線硬化型樹脂塗料へのシリカ微粒子(Cl)の添加理由、好適粒子径、塗料中のシリカ微粒子(Cl)の含有量を不揮発分の5〜35質量%とするのが好ましい理由、硬質セラミックス微粒子の最上層皮膜への添加を最少限にすべき理由、固体潤滑剤の含有量の好適範囲、架橋剤の添加目的は、いずれも、紫外線硬化型樹脂塗料の説明の際に言及した内容と同じである。 Reasons for adding silica fine particles (Cl) to electron beam curable resin coatings, suitable particle diameters, reasons why the content of silica fine particles (Cl) in the coatings is preferably 5 to 35% by mass, hard ceramics The reasons why the addition of fine particles to the uppermost layer film should be minimized, the preferred range of the content of the solid lubricant, and the purpose of the addition of the crosslinking agent are all the contents mentioned in the description of the ultraviolet curable resin coating. The same.
本発明において、電子線硬化により最表層皮膜を形成する場合に用いられる前記水性重合性炭化水素(b1)は、紫外線硬化時に用いられる(b1)の場合と同じ理由で、以下の一般式(IV)に示す構造でなければならない。
また、電子線硬化により最表層皮膜を形成する場合に用いられる前記水性重合性炭化水素(b1)は、紫外線硬化時に用いられる(b1)の場合と同様の理由で、以下の一般式(V)に示す構造が好ましい。
電子線硬化により最表層皮膜を形成する場合に用いられる前記水性重合性炭化水素(b1)について、前記以外の構造上の特徴は、紫外線硬化時に用いられる(b1)の場合と同じである。 Regarding the aqueous polymerizable hydrocarbon (b1) used when the outermost layer film is formed by electron beam curing, structural features other than those described above are the same as in the case of (b1) used during ultraviolet curing.
既に述べたように、前記水性樹脂(a1)や水性重合性炭化水素(b1)に電子線を照射すると、樹脂鎖や炭化水素鎖の結合が随所で切れてラジカルが発生するため、紫外線硬化の場合にラジカル発生源として必要な重合開始剤は、電子線硬化の場合では不要である。 As described above, when the aqueous resin (a1) or the aqueous polymerizable hydrocarbon (b1) is irradiated with an electron beam, the bond between the resin chain and the hydrocarbon chain is broken everywhere to generate radicals. In this case, a polymerization initiator necessary as a radical generating source is unnecessary in the case of electron beam curing.
本発明では、既に述べたように、樹脂の架橋時間が短くインライン塗工が容易であることから、水性樹脂塗料(j)が、水性の紫外線硬化型樹脂塗料または電子線硬化型樹脂塗料であることが好ましいが、水性樹脂塗料(j)として、水性の加熱成膜型樹脂塗料を用いることもできる。この場合、対応する高硬質樹脂(J)は、前記の加熱成膜型樹脂を200℃以上の温度で数十秒〜数十分間加熱して高度に架橋、硬質化させた樹脂であり、最表層の皮膜は、この樹脂を皮膜の50〜95質量%、シリカ微粒子(Cl)を5〜35質量%含有する。最表層の皮膜構成成分のうち、前記の加熱成膜済み樹脂、シリカ微粒子(Cl)以外の成分は、未反応の加熱成膜型樹脂などである。 In the present invention, as already described, since the crosslinking time of the resin is short and in-line coating is easy, the aqueous resin coating (j) is an aqueous ultraviolet curable resin coating or an electron beam curable resin coating. However, it is also possible to use an aqueous heating film-forming resin paint as the aqueous resin paint (j). In this case, the corresponding highly rigid resin (J) is a resin that has been highly crosslinked and hardened by heating the heat-deposited resin at a temperature of 200 ° C. or higher for several tens of seconds to several tens of minutes. The outermost layer film contains 50 to 95% by mass of this resin and 5 to 35% by mass of silica fine particles (Cl). Among the film constituent components of the outermost layer, the components other than the above-mentioned heat-deposited resin and silica fine particles (Cl) are unreacted heat-deposited resin.
ここで用いられる水性の加熱成膜型樹脂塗料は、本発明の複層皮膜の最下層皮膜形成の際に用いられる水性の加熱成膜型樹脂塗料(a)から選ばれる1種又は2種以上、及び、塗料に含まれる加熱成膜型樹脂は、本発明の複層皮膜の最下層皮膜形成の際に用いられる前記水性樹脂(a1)から選ばれる1種又は2種以上である。ただし、最下層と最表層への要求性能が異なるため(最下層に必要な性能は耐食性と加工密着性、最表層では耐擦傷性と耐摩耗性)、双方に同じ組成の塗料、同じ構造の加熱成膜型樹脂が用いられることは無い。 The aqueous heating film-forming resin coating used here is one or more selected from the aqueous heating film-forming resin coatings (a) used in forming the lowermost film of the multilayer coating of the present invention. And the heat-deposition type resin contained in the paint is one or more selected from the aqueous resin (a1) used in forming the lowermost layer film of the multilayer film of the present invention. However, because the required performance of the lowermost layer and the outermost layer is different (the performance required for the lowermost layer is corrosion resistance and work adhesion, and the outermost layer is scratch resistance and wear resistance), both have the same composition and the same structure. A heat-deposition type resin is never used.
樹脂の種類や構造、官能基の種類や含有量、反応触媒の有無や種類等にもよるが、加熱成膜型樹脂を高度に架橋、硬質化するためには、200℃以上の温度に数十秒〜数十分間保持し、加熱することが望ましい。ただし、そのような過酷な加熱条件下では、最表層皮膜だけでなく、最下層皮膜の形成に用いる水性樹脂(a1)の少なくとも一部も、過度に架橋したり、高熱に耐えられない樹脂構造の場合には熱分解、樹脂鎖切断、加熱酸化、緻密性低下や塑性流動変形等が生じる。そのため、最下層皮膜の耐食性や加工密着性等の性能が低下する恐れがあり、水性の加熱成膜型樹脂を本発明の複層皮膜の最表層形成に用いる場合には、最下層形成に用いる加熱成膜型樹脂の選択に特に留意する必要がある。 Depending on the type and structure of the resin, the type and content of the functional group, the presence and type of the reaction catalyst, etc. It is desirable to hold for 10 seconds to several tens of minutes and heat. However, under such severe heating conditions, not only the outermost layer film but also at least a part of the aqueous resin (a1) used for forming the lowermost layer film is excessively crosslinked or cannot withstand high heat. In this case, thermal decomposition, resin chain scission, thermal oxidation, reduction in denseness, plastic flow deformation and the like occur. Therefore, there is a risk that performance such as corrosion resistance and work adhesion of the lowermost layer film may be deteriorated. When an aqueous heating film forming resin is used for forming the outermost layer of the multilayer film of the present invention, it is used for forming the lowermost layer. Special attention needs to be paid to the selection of the heat-deposition type resin.
紫外線照射、電子線照射、200℃以上の高温加熱等のいずれの方法で最表層皮膜を形成する場合でも、シリカ微粒子(Cl)が皮膜の5質量%未満の場合、耐擦傷性、耐摩耗性、耐食性のいずれも不十分になる。シリカ微粒子(Cl)が35質量%を超える場合、樹脂(B1)に比べ微粒子の量が多すぎて、皮膜の織密性、靭性や強度が低下し、耐食性や加工密着性が不十分になる。 Even when the outermost layer film is formed by any method such as ultraviolet irradiation, electron beam irradiation, or high temperature heating at 200 ° C. or more, if the silica fine particle (Cl) is less than 5% by mass of the film, scratch resistance and abrasion resistance. Both of the corrosion resistance are insufficient. When the silica fine particles (Cl) exceeds 35% by mass, the amount of fine particles is too much compared to the resin (B1), and the wetting, toughness and strength of the film are lowered, and the corrosion resistance and work adhesion are insufficient. .
本発明の最表層皮膜には、シリカ微粒子(Cl)のほかに、シリカと同程度の硬さを持つZrO2(ジルコニア)やTiO2(チタニア)、及び、シリカより硬く、皮膜の耐擦傷性、耐摩耗性の向上に寄与する可能性が高いアルミナ、コランダム、サファイヤ、ルビー等のAl2O3(アルミナ)系鉱物、BeO(ベリリア)、SiC(炭化けい素、カーボランダム)、TiC(チタンカーバイド)、WC(タングステンカーバイド)、Si3N4(窒化けい素)等の硬質セラミックスの微粒子を添加してもよい。ただし、既に述べたように、後者の硬質セラミックス微粒子は高価なものが多く、また、シリカ微粒子より比重が高く皮膜を形成するための水性塗料への均一分散が困難であり、更に、シリカ微粒子ほど皮膜の耐食性改善効果が高くないため、最上層皮膜への添加は最少限にすべきである。 In the outermost layer film of the present invention, in addition to silica fine particles (Cl), ZrO 2 (zirconia) and TiO 2 (titania) having the same hardness as silica, harder than silica, and scratch resistance of the film Al 2 O 3 (alumina) -based minerals such as alumina, corundum, sapphire, ruby, BeO (beryllia), SiC (silicon carbide, carborundum), TiC (titanium) Hard ceramic fine particles such as carbide), WC (tungsten carbide), and Si 3 N 4 (silicon nitride) may be added. However, as already mentioned, the latter hard ceramic fine particles are often expensive, and the specific gravity is higher than that of the silica fine particles, and it is difficult to uniformly disperse them in an aqueous paint for forming a film. Since the effect of improving the corrosion resistance of the film is not high, the addition to the uppermost film should be minimized.
本発明の最表層皮膜には、更に、摺動性向上のため、固体潤滑剤を含有することが好ましい。固体潤滑剤を含有することで最表層皮膜の潤滑性が向上し、本発明の複層皮膜被覆金属板をプレス成形する際の加工性向上や疵付き防止、また、成形品やコイル輸送時の摩耗傷防止に効果がある。 The outermost layer film of the present invention preferably further contains a solid lubricant for improving slidability. By containing a solid lubricant, the lubricity of the outermost layer film is improved, workability is improved when the multi-layer film-coated metal sheet of the present invention is press-molded, and it is prevented from being wrinkled. It is effective in preventing abrasion scratches.
前記固体潤滑剤としては特に制限はなく、公知のふっ素系、炭化水素系、脂肪酸アミド系、エステル系、アルコール系、金属石鹸系及び無機系等の固体潤滑剤が挙げられる。加工性向上のための潤滑添加物の選択基準としては、成膜した最表層皮膜に分散して存在するよりも皮膜表面に存在するような潤滑剤を選択することが重要で、そのような潤滑剤であれば、プレス成形時に金属板表面と金型の摩擦を低減させ、潤滑効果を最大限に発揮させることができる。即ち、潤滑剤が最表層皮膜中に分散して存在する場合、表面摩擦係数が高くなるため皮膜が破壊され易く、粉状物質が剥離堆積してパウダリング現象と言われる外観不良、及び加工性低下を生じる。皮膜表面に存在するような潤滑剤としては、最表層皮膜の主体を構成する樹脂に相溶せず、かつ表面エネルギーの小さいものを選べばよい。 The solid lubricant is not particularly limited, and examples thereof include known fluorine-based, hydrocarbon-based, fatty acid amide-based, ester-based, alcohol-based, metal soap-based and inorganic solid lubricants. As a selection criterion for lubricating additives to improve workability, it is important to select a lubricant that exists on the surface of the film rather than being dispersed in the outermost layer film formed. If it is an agent, the friction between the metal plate surface and the mold can be reduced during press molding, and the lubricating effect can be maximized. That is, when the lubricant is dispersed and present in the outermost layer film, the surface friction coefficient is increased, so the film is easily broken, and powdery substances are peeled and deposited, resulting in poor appearance and processability. Cause a drop. As the lubricant that exists on the surface of the film, a lubricant that is incompatible with the resin constituting the main body of the outermost layer film and has a small surface energy may be selected.
このような観点から、ポリエチレンや酸化ポリエチレン等からなるポリオレフィンワックスは、皮膜表面の動摩擦係数を下げて加工性を高め、皮膜の破壊や剥離を抑えて加工後の耐食性も良好にするため、好適に用いられる。加工時には、素材の変形熱と摩擦熱によって皮膜温度が上昇するため、ワックスの融点は70〜160℃がより好ましい。融点が70℃未満では加工時に軟化溶融して固体潤滑剤としての優れた加工性向上効果が得られない場合がある。また、160℃を超える融点を持つワックス粒子は加工時に塑性変形しにくく、十分な加工性向上効果が得られない場合がある。 From this point of view, a polyolefin wax made of polyethylene, polyethylene oxide, or the like is preferable because it lowers the dynamic friction coefficient on the surface of the film to increase workability, and suppresses breakage or peeling of the film to improve post-processing corrosion resistance. Used. At the time of processing, since the film temperature rises due to the deformation heat and frictional heat of the material, the melting point of the wax is more preferably 70 to 160 ° C. If the melting point is less than 70 ° C., it may be softened and melted during processing and an excellent workability improvement effect as a solid lubricant may not be obtained. In addition, wax particles having a melting point exceeding 160 ° C. are difficult to plastically deform during processing, and a sufficient workability improvement effect may not be obtained.
これらのワックスの粒子径は、0.1〜5μmが好ましい。直径が0.1μm未満の場合は、十分な加工性向上効果が得られない可能性がある。5μmを超えるものは本発明の好ましい皮膜厚に対し大きすぎるため、皮膜表面付近でのワックス粒子の分布が不均一となったり、皮膜からの脱落が生じたりする可能性がある。 The particle diameter of these waxes is preferably 0.1 to 5 μm. When the diameter is less than 0.1 μm, there is a possibility that sufficient workability improvement effect cannot be obtained. If the thickness exceeds 5 μm, it is too large for the preferred film thickness of the present invention, so that there is a possibility that the distribution of wax particles in the vicinity of the film surface becomes non-uniform or drops off from the film.
前記固体潤滑剤は、最表層皮膜100質量部に対し、1〜40質量部含有することが好ましい。1質量部未満の場合、加工性向上効果が小さく、一方、40質量部を超えると皮膜中の潤滑剤量が多すぎて、皮膜の繊密性や密着性が損なわれ、耐食性や加工密着性などが低下する場合がある。 The solid lubricant is preferably contained in an amount of 1 to 40 parts by mass with respect to 100 parts by mass of the outermost layer film. If the amount is less than 1 part by mass, the effect of improving the workability is small. On the other hand, if the amount exceeds 40 parts by mass, the amount of lubricant in the film is too large, and the fineness and adhesion of the film are impaired, resulting in corrosion resistance and work adhesion. Etc. may decrease.
本発明の最表層皮膜の耐食性や加工密着性を改善するため、前記<最下層の皮膜>の項で説明した種々の架橋剤を、最表層皮膜を形成するための水性塗料に添加してもよい。ただし、添加量は、最表層皮膜に求められる耐擦傷性、耐摩耗性、その他の必要機能を保持する範囲に限られる。また、最表層皮膜の耐食性や加工密着性を底上げするため、前記<最下層の皮膜>の項で説明したポリフェノール化合物(D)、りん酸やヘキサフルオロ金属酸(E)、りん酸塩化合物(F)、またはこれら種々の化合物の2種以上を含んでいてもよい。なお、最表層皮膜中の前記高硬質樹脂(J)や、最下層皮膜中の樹脂(A1)、(A2)等、水性塗料中や塗布後の含水(ウェット)皮膜中では水性であるが、紫外線照射、電子線照射、加熱等により架橋、高分子化し、溶媒にも水にも溶けにくくなった樹脂の構造解析は、皮膜のFT-IRスペクトル(高感度反射法)や、皮膜の熱分解GC-MSなどを活用して行うことができる。これらのうち熱分解GC−MSは、皮膜中の有機化合物(樹脂や有機添加剤等)を熱分解することにより生じるフラグメントイオンをガスクロマトグラフで各分子量成分に分離し、これらのフラグメントイオンの質量分析による同定と定量を行う手法である。 In order to improve the corrosion resistance and work adhesion of the outermost layer film of the present invention, various crosslinking agents described in the section of <Lowermost layer film> may be added to the water-based paint for forming the outermost layer film. Good. However, the addition amount is limited to a range that maintains the scratch resistance, wear resistance, and other necessary functions required for the outermost layer film. In order to raise the corrosion resistance and work adhesion of the outermost layer film, the polyphenol compound (D), phosphoric acid, hexafluorometal acid (E), phosphate compound ( F), or two or more of these various compounds may be included. The high-hardness resin (J) in the outermost layer film and the resins (A1) and (A2) in the lowermost layer film, such as water-containing (wet) film after coating, Structural analysis of resins that have been cross-linked and polymerized by UV irradiation, electron beam irradiation, heating, etc., and have become difficult to dissolve in solvents and water, include FT-IR spectra (high sensitivity reflection method) of coatings and thermal decomposition of coatings. GC-MS can be used. Among these, pyrolysis GC-MS separates fragment ions generated by pyrolyzing organic compounds (resins, organic additives, etc.) in the film into their respective molecular weight components by gas chromatography, and mass analysis of these fragment ions This is a method for identification and quantification by means of.
分解生成ガスに含まれるフラグメントイオンは、樹脂などの有機化合物中の弱い部分の結合が選択的に切断、または更に開裂して生じ、それらの構造や相対質量はもとの有機化合物の骨格を反映するため、これらを手がかりに解析し、樹脂や有機添加剤等の同定や定量ができる。 Fragment ions contained in the decomposition product gas are generated by selective cleavage or further cleavage of weak bonds in organic compounds such as resins, and their structure and relative mass reflect the skeleton of the original organic compound. Therefore, these can be analyzed as clues, and identification and quantification of resins and organic additives can be performed.
本発明において、前記高硬質樹脂(J)を構成主成分とする最表層皮膜の付着量は、0.2〜3g/m2が好ましく、0.4〜2g/m2が特に好ましい。0.2g/m2未満では、皮膜が薄すぎて、所望の耐擦傷性、耐摩耗性が得られない可能性がある。また、3g/m2を超えると、硬質の最表層皮膜が厚すぎ、加工時に亀裂が生じ加工部耐食性が不足したり、コスト高となる可能性がある。 In the present invention, the adhesion amount of the outermost layer coating to adopt a configuration mainly composed of the high rigid resin (J) is preferably from 0.2~3g / m 2, 0.4~2g / m 2 is particularly preferred. If it is less than 0.2 g / m 2 , the film is too thin, and the desired scratch resistance and wear resistance may not be obtained. On the other hand, if it exceeds 3 g / m 2 , the hard outermost layer film is too thick, cracks may occur during processing, and the corrosion resistance of the processed part may be insufficient, or the cost may increase.
本発明における複層被覆金属板は、その表面に対し乾式スチールウール摺動試験を行った後、金属表面に達する深い擦傷が皆無であり、かつ、前記表面の別部位に対し湿式クレンザー摺動試験を行った後、金属表面に達する深い擦傷が皆無であり、かつ、エリクセン加工後の剥離試験による皮膜剥離面積が頂部面積の10%未満であることが好ましい。ここに記した乾式スチールウール摺動試験、湿式クレンザー摺動試験は、いずれも前記<最表層の皮膜>の項に記載の試験方法と同じものである。また、エリクセン加工後の剥離試験は、以下に示す方法で行う。 The multi-layer coated metal plate of the present invention has no deep scratches reaching the metal surface after performing a dry steel wool sliding test on the surface, and a wet cleanser sliding test on another part of the surface. It is preferable that no deep scratches reach the metal surface after performing the coating, and the film peeling area by the peeling test after the Erichsen processing is less than 10% of the top area. The dry steel wool sliding test and the wet cleanser sliding test described here are the same as the test methods described in the section <Film of outermost layer>. Moreover, the peeling test after Erichsen processing is performed by the method shown below.
前記金属板から50x100mmサイズの試験片を切り出し、エリクセン試験機で複層皮膜被覆面の裏側から7mm高さの張出し加工を行い、変形の激しい頂部にセロハン(登録商標)粘着テープ(ニチバン(株)製セロテープ(登録商標))を圧着して急激に剥離した。剥離後のテープを黒ケント紙に貼付して粘着面に付着した皮膜の有無を肉眼観察し、頂部面積に対する皮膜剥離面積を求める。 A test piece of 50 × 100 mm size was cut out from the metal plate and subjected to an overhang process of 7 mm height from the back side of the multi-layer coating surface with an Erichsen test machine, and the cellophane (registered trademark) adhesive tape (Nichiban Co., Ltd.) A cellophane tape (registered trademark)) was pressed and peeled off rapidly. The peeled tape is affixed to black Kent paper and the presence or absence of the film adhering to the adhesive surface is observed with the naked eye, and the film peeling area relative to the top area is determined.
<中間層の皮膜>
本発明において、高硬質樹脂(J)を構成主成分とする最表層皮膜が優れた耐擦傷性や耐摩耗性をもたらし、加熱成膜樹脂を主成分とする最下層皮膜が優れた耐食性、加工密着性を発現するが、これらの2層のみで必要な機能を分担しきれない場合、これらに挟まれる中間層の皮膜を設けてもよい。このような中間層の皮膜は、上下層の隣接皮膜と密着し、かつ、所望の機能を発現するものであれば、中間層皮膜の構成主成分の種類や組成、中間層の層数、中間層を含む複層皮膜の金属表面への形成方法を特に限定しない。ただし、中間層を含む複層皮膜を金属表面に形成する方法として、逐次塗装法ではなく、ウェット・オン・ウェット塗装法や多層同時塗装法を用いる場合、中間層形成用の水性塗料として、紫外線硬化型樹脂を含むものは本発明では望ましくない。何故なら、紫外線硬化型の中間層を含む場合、逐次塗装法では十分に紫外線硬化できるが、ウェット・オン・ウェット塗装法や多層同時塗装法では、以下に述べるように十分に紫外線硬化できない可能性があるためである。逐次塗装法では、最下層から中間層を経て最表層まで、一層塗布する毎に加熱乾燥または更に紫外線照射を行って塗膜を塗り重ねていくため、紫外線硬化型の中間層に紫外線を直接当てることができ、十分な紫外線硬化が可能である。ところが、ウェット・オン・ウェット塗装法や多層同時塗装法では、最下層から最表層までの積層状態を含水(ウェット)状態で金属板上に形成してから全層を一括して加熱乾燥するため、紫外線硬化型の層を含む場合は、乾燥後の最表層の上から紫外線を照射しなければならない。そのため、特に、紫外線硬化型の中間層を含む場合、最表面に照射した紫外線が中間層に到達するまでに一部が吸収されて紫外線エネルギーが減衰し、中間層の紫外線硬化が不十分になる可能性がある。ただし、電子線硬化では、工業的な電子線照射で用いる電子線のエネルギーは紫外線照射の場合の数千〜数万倍で、電子線が樹脂皮膜を浸透する深さが数十〜数百g/m2もあるため、本発明の複層被覆金属板にて電子線硬化型の中間層を含む場合でも、最表面からの電子線照射で中間層は十分に硬化する。ここで、多層同時塗装法とは、既に述べたように、スライドカーテンコーターやスロットダイコーター等により、複数層の塗液を積層状態で同時に金属表面に塗布後、積層塗液中の溶媒を同時に乾燥、成膜する方法である。また、ウェット・オン・ウェット塗装法とは、金属板上に塗液を塗布後、この塗液が乾燥する前のウェット状態のうちに、その上に他の塗液を塗布し、積層塗液中の溶媒を同時に乾燥、成膜する方法である。
<Intermediate layer film>
In the present invention, the outermost layer film comprising the high-hardness resin (J) as the main component provides excellent scratch resistance and wear resistance, and the lowermost layer film comprising the heat-deposited resin as the main component provides excellent corrosion resistance and processing. In the case where the adhesiveness is exhibited but the necessary functions cannot be shared by only these two layers, an intermediate layer film sandwiched between them may be provided. As long as such a film of the intermediate layer is in close contact with the adjacent films of the upper and lower layers and expresses a desired function, the type and composition of the main constituent components of the intermediate layer film, the number of intermediate layers, The formation method in particular on the metal surface of the multilayer film containing a layer is not limited. However, when using a wet-on-wet coating method or a multi-layer simultaneous coating method instead of a sequential coating method as a method for forming a multilayer film including an intermediate layer on a metal surface, an ultraviolet coating is used as an aqueous coating for forming the intermediate layer. Those containing a curable resin are undesirable in the present invention. This is because when UV-curing intermediate layers are included, UV coating can be sufficiently cured by sequential coating methods, but wet-on-wet coating methods and multilayer simultaneous coating methods may not be sufficiently UV-cured as described below. Because there is. In the sequential coating method, from the bottom layer to the top layer through the intermediate layer, each layer is heated and dried or further irradiated with ultraviolet rays to coat the coating, so UV rays are directly applied to the UV curable intermediate layer. And sufficient UV curing is possible. However, in the wet-on-wet coating method and multilayer simultaneous coating method, the laminated state from the lowest layer to the outermost layer is formed on a metal plate in a wet (wet) state, and then all layers are heated and dried together. When an ultraviolet curable layer is included, it is necessary to irradiate ultraviolet rays from above the outermost layer after drying. Therefore, in particular, when an ultraviolet curable intermediate layer is included, a part of the ultraviolet rays irradiated to the outermost surface is absorbed until the intermediate layer is absorbed, the ultraviolet energy is attenuated, and the ultraviolet curing of the intermediate layer becomes insufficient. there is a possibility. However, in electron beam curing, the energy of the electron beam used for industrial electron beam irradiation is several thousand to several tens of thousands times that of ultraviolet irradiation, and the depth at which the electron beam penetrates the resin film is several tens to several hundreds g. because the / m 2 also, even if in multilayer-coated metal sheet according to the present invention including an intermediate layer of electron beam curing, the intermediate layer by electron beam irradiation from the top surface is sufficiently cured. Here, as described above, the multi-layer simultaneous coating method is a method in which a plurality of layers of coating liquid are simultaneously applied to a metal surface in a laminated state using a slide curtain coater or a slot die coater, and then the solvent in the multilayer coating liquid is simultaneously applied. This is a method of drying and film formation. The wet-on-wet coating method is a method of applying a coating liquid on a metal plate and then applying another coating liquid on the wet state before the coating liquid dries, In this method, the solvent inside is simultaneously dried to form a film.
本発明において中間層を設ける場合、中間層皮膜の耐食性や加工密着性を底上げするため、<最下層の皮膜>の項で説明した種々の架橋剤を、中間層を形成するための水性塗料に添加してもよい。ただし、添加量は、中間層に求められる皮膜機能を保持する範囲に限られる。また、耐食性や加工密着性を底上げするため、中間層皮膜は、<最下層の皮膜>の項で説明したポリフェノール化合物(D)、りん酸及びヘキサフルオロ金属酸(E)、りん酸塩化合物(F)や、Si、Ti、Al、Zrの1種または2種以上からなる金属酸化物微粒子(G)、またはこれら種々の化合物の2種以上を含んでいてもよい。 In the case of providing an intermediate layer in the present invention, in order to raise the corrosion resistance and work adhesion of the intermediate layer film, the various crosslinking agents described in the section of <Lowermost layer film> are applied to the water-based paint for forming the intermediate layer. It may be added. However, the addition amount is limited to a range that maintains the film function required for the intermediate layer. Further, in order to raise the corrosion resistance and work adhesion, the intermediate layer film is composed of the polyphenol compound (D), phosphoric acid, hexafluorometal acid (E), and phosphate compound (described in the section of the lowermost layer film). F), metal oxide fine particles (G) composed of one or more of Si, Ti, Al, and Zr, or two or more of these various compounds may be contained.
本発明において、中間層皮膜の付着量は、中間層全体の総付着量として0〜3g/m2が好ましく、0.05〜2g/m2が特に好ましい。3g/m2を超えると、皮膜が厚すぎてコスト高となる可能性がある。 In the present invention, the adhesion amount of the intermediate layer film is preferably 0 to 3 g / m 2 , particularly preferably 0.05 to 2 g / m 2 as the total adhesion amount of the entire intermediate layer. If it exceeds 3 g / m 2 , the film may be too thick and the cost may increase.
<水性塗料の調製>
本発明の複層皮膜の各層を形成するのに用いる水性樹脂を含有する水性塗料には、必要に応じ、塗料の水性や塗工性を損なわない範囲で種々の添加剤を添加してもよい。例えば、有機溶剤、及び、消泡剤、沈降防止剤、レベリング剤、濡れ剤などの界面活性剤、及び、増粘剤等などを添加してもよい。また、溶接性向上のために導電性顔料など、意匠性向上のために着色顔料や染料などを添加してもよい。
<Preparation of water-based paint>
Various additives may be added to the water-based paint containing the water-based resin used to form each layer of the multilayer coating of the present invention as long as the water-based property and coating property of the paint are not impaired. . For example, an organic solvent, a defoaming agent, an anti-settling agent, a leveling agent, a surfactant such as a wetting agent, a thickener, and the like may be added. Moreover, you may add a coloring pigment, dye, etc. for improving designability, such as a conductive pigment for weldability improvement.
本発明の複層皮膜を形成するために用いる塗料は、水性塗料であるため、溶剤系塗料に比較して表面張力が高く被塗表面への濡れ性に劣り、被塗表面に所定量の塗布を行う場合、均一な塗装性が得られないことがある。しかし、高度の加工密着性及び耐食性等の性能を確保するためには、被塗表面に均一な塗布が行われることが不可欠である。このため、前記添加剤の中で、濡れ剤または増粘剤を添加するのが好ましい。濡れ剤としては、表面張力を低下させるふっ素系、シリコン系等の公知の表面張力を低下させる界面活性剤が挙げられる。これらの化合物の中で、付加エチレンオキサイドのモル数が0〜20のアセチレングリコール−アルコール型界面活性剤を、水性塗料100質量部に対し、0.05〜0.5質量部添加するのが特に好ましい。なお、アセチレングリコール−アルコール型界面活性剤は、濡れ速度が大きく、かつ、消泡効果を同時に有することが特徴である。一方、ふっ素系及びシリコン系の界面活性剤は,表面張力低下能力は優れているが、濡れ速度は小さく消泡性に劣り、更には、上塗り塗装密着性も低下させるため、本発明の皮膜形成に用いる水性塗料には適切でない。 Since the paint used to form the multilayer film of the present invention is an aqueous paint, it has a high surface tension and poor wettability to the coated surface compared to the solvent-based paint, and a predetermined amount of coating is applied to the coated surface. In some cases, uniform paintability may not be obtained. However, in order to ensure high processing adhesion and performance such as corrosion resistance, it is indispensable that uniform coating is performed on the surface to be coated. For this reason, it is preferable to add a wetting agent or a thickener among the additives. Examples of the wetting agent include known surfactants that lower the surface tension, such as fluorine and silicon. Among these compounds, it is particularly preferable to add 0.05 to 0.5 parts by mass of an acetylene glycol-alcohol type surfactant having 0 to 20 moles of added ethylene oxide with respect to 100 parts by mass of the aqueous paint. preferable. The acetylene glycol-alcohol surfactant is characterized by a high wetting rate and a defoaming effect at the same time. On the other hand, fluorine-based and silicon-based surfactants are excellent in surface tension reducing ability, but have low wetting speed and inferior defoaming property. It is not suitable for the water-based paint used in the above.
増粘剤は、被塗表面のはじき箇所に対して濡れ剤だけでは十分な表面被覆性が得られない場合、または、水性塗料の粘度が低すぎて必要な塗膜厚が確保されない場合の対策として添加することがある。本発明の皮膜形成に用いる水性塗料は、通常、高速で被塗物に塗装されるため、セルロース系に代表されるチクソトロピックな(揺変性の)増粘剤では、高速剪断応力を受ける塗装条件では効果が小さい。このような塗装条件では、ニュートン粘性を示す増粘剤が適切であることは公知である。本発明の皮膜形成に用いる水性塗料に増粘剤を添加する場合、分子量が1000〜20000のエーテル−ウレタン骨格を有する増粘剤が特に好ましい。通常、塗料に添加剤を配合する場合、本来の性能を低下させることが多いが、この増粘剤は加水分解しにくいため、成膜後の皮膜に残存した場合の影響が非常に小さい。添加量は塗装条件により決まり、通常、水性塗料の樹脂100質量部に対し0.01〜0.2質量部である。0.01質量部未満では増粘効果が小さく、一方、0.2質量部を超える量では塗料粘度が高くなりすぎ、塗工性に支障が生じるだけでなく、その結果、皮膜の加工密着性と耐食性が低下する可能性が高くなる。 Thickener is a measure for when sufficient surface coverage cannot be obtained with only a wetting agent on the surface of the surface to be coated, or when the required coating thickness cannot be ensured because the viscosity of the water-based paint is too low. May be added as. Since the water-based paint used for film formation of the present invention is usually applied to an object to be coated at high speed, a thixotropic (thixotropic) thickener typified by a cellulose-based coating condition is subject to high-speed shear stress. Then the effect is small. It is known that thickeners exhibiting Newtonian viscosity are suitable under such coating conditions. When adding a thickener to the water-based paint used for film formation of the present invention, a thickener having an ether-urethane skeleton having a molecular weight of 1000 to 20000 is particularly preferred. Usually, when an additive is added to a paint, the original performance is often lowered. However, since this thickener is difficult to hydrolyze, the influence when remaining in a film after film formation is very small. The amount added depends on the coating conditions, and is usually 0.01 to 0.2 parts by mass with respect to 100 parts by mass of the resin of the aqueous paint. If the amount is less than 0.01 parts by weight, the thickening effect is small. On the other hand, if the amount exceeds 0.2 parts by weight, the coating viscosity becomes too high, which not only hinders the coatability, but also results in the processing adhesion of the film. And there is a high possibility that the corrosion resistance will decrease.
本発明の複層皮膜形成に用いる水性塗料の性状は、最下層、中間層、最表層それぞれの塗装条件によって異なるが、不揮発分濃度は15〜30質量%、粘度は10〜50cps、表面張力は80dyne/cm以下に調整することが望ましい。何故なら、狙いの皮膜付着量に制御しやすく、外観むらや塗料はじきのない均一な膜厚を得やすいためである。 The properties of the water-based paint used to form the multilayer film of the present invention vary depending on the coating conditions of the lowermost layer, the intermediate layer, and the outermost layer, but the non-volatile content concentration is 15 to 30% by mass, the viscosity is 10 to 50 cps, and the surface tension is It is desirable to adjust to 80 dyne / cm or less. This is because it is easy to control the target coating amount, and it is easy to obtain a uniform film thickness with no unevenness in appearance and paint.
<複層皮膜の形成方法>
本発明では、金属板への複層皮膜の形成方法を特に限定しないが、推奨すべき方法がある。複層皮膜の具体的な形成方法や塗装条件、それらのうち好ましいものについて、水性塗料の塗装、乾燥工程と、乾燥後の複層皮膜の最表層を紫外線または電子線でラジカル重合し硬化する紫外線または電子線照射工程に分けて説明する。
<Method for forming multilayer coating>
In the present invention, the method for forming the multilayer coating on the metal plate is not particularly limited, but there is a method to be recommended. Specific coating methods and coating conditions for multilayer coatings, and preferable ones among them, aqueous coating and drying processes, and ultraviolet rays that radicalize and cure the outermost layer of multilayer coatings after drying with ultraviolet rays or electron beams Or it divides and demonstrates to an electron beam irradiation process.
(水性塗料の塗装、乾燥)
本発明において、水性塗料の塗装、乾燥方法として、例えば、ロールコート、グルーブロールコート、カーテンフローコート、ローラーカーテンコート、浸漬(ディップ)、エアナイフ絞り等の公知の塗装方法で金属板上に最下層を塗布し、含水(ウェット)皮膜の水分を乾燥後、同様の方法で、(中間層を設ける場合は中間層の塗布と乾燥を経て、)最表層まで1層ずつ塗り重ねと乾燥を繰返すことにより複層皮膜を形成してもよいが、好ましい方法は、最下層から最表層まですべて含水(ウェット)状態の複層皮膜(必要な場合は含水中間層も含む)を形成後、これらを同時に乾燥するウェット・オン・ウェット塗装法または多層同時塗装法である。何故なら、複層被覆金属板の性能面では、ウェット・オン・ウェット塗装法または多層同時塗装法で成膜すると、含水(ウェット)状態の各層の界面にて、層内の樹脂鎖の一部が互いに隣接する層内に拡散し絡み合うため、乾燥成膜後の層間密着力が強大になる。そのため、本発明の複層被覆金属板に厳しい加工変形を与えても、硬くて伸びにくい高硬質樹脂(J)を主体とする最表層が、(最表層と最下層の間に中間層がある場合は、互いに密着したそれらを介し、)金属への加工密着性に優れる最下層の変形によく追従し、結果として、複層皮膜全体が優れた加工変形性を発現する。また、ウェット・オン・ウェット塗装法または多層同時塗装法では、複層皮膜の層数に関わらず、全ての層に対し同じ加熱条件、入熱履歴で成膜できる。そのため、加熱乾燥を繰返す逐次塗装法ではしばしば見られる入熱過多による性能低下(熱分解、樹脂鎖切断、加熱酸化等の熱劣化による強度低下、皮膜の緻密性低下による耐食性低下、皮膜の黄変など)が僅少で、逐次塗装法の場合より高性能の複層被覆金属板が得られる。
(Water-based paint painting and drying)
In the present invention, as a method for painting and drying a water-based paint, for example, a lowermost layer on a metal plate by a known coating method such as roll coating, groove roll coating, curtain flow coating, roller curtain coating, dipping (dip), air knife drawing, etc. Apply the coating and dry the water-containing (wet) film, and then repeat the coating and drying one layer at a time until the outermost layer (through the application and drying of the intermediate layer if an intermediate layer is provided). A multi-layered film may be formed by the above method, but a preferable method is to form a multi-layered film (wet) including a water-containing intermediate layer from the lowermost layer to the outermost layer. It is a dry wet-on-wet coating method or a multilayer simultaneous coating method. This is because, in terms of the performance of the multi-layer coated metal sheet, when wet-on-wet coating method or multilayer simultaneous coating method is used to form a film, a part of the resin chain in the layer at the interface of each layer containing water (wet) Diffuses and entangles in layers adjacent to each other, so that the interlayer adhesion after dry film formation becomes strong. Therefore, even if severe processing deformation is given to the multi-layer coated metal sheet of the present invention, the outermost layer mainly composed of a hard resin that is hard and difficult to stretch (J is an intermediate layer between the outermost layer and the lowermost layer) In some cases, through those closely contacting each other), the deformation of the lowermost layer having excellent work adhesion to metal is well followed, and as a result, the entire multilayer film exhibits excellent work deformability. In addition, in the wet-on-wet coating method or the multilayer simultaneous coating method, all layers can be formed under the same heating condition and heat input history regardless of the number of layers of the multilayer coating. For this reason, performance degradation due to excessive heat input, which is often seen with sequential coating methods that repeat heating and drying (decrease in strength due to thermal degradation such as thermal decomposition, resin chain breakage, and heat oxidation), decrease in corrosion resistance due to decrease in film density, and yellowing of the film Etc.), and a multi-layer coated metal plate with higher performance than the sequential coating method can be obtained.
また、製造プロセス面では、ウェット・オン・ウェット塗装法または多層同時塗装法で成膜すると、複層皮膜の層数に関わらず1回の乾燥工程で成膜できるため、1層の形成毎に塗装と乾燥が必要な逐次塗装法に比べ、製造工程を大幅に短縮、簡略化でき、設備費やランニングコストを大幅に節減できる。 In terms of manufacturing process, if the film is formed by wet-on-wet coating method or multi-layer simultaneous coating method, it can be formed in one drying process regardless of the number of layers in the multilayer coating. Compared to the sequential coating method that requires painting and drying, the manufacturing process can be greatly shortened and simplified, and the equipment and running costs can be greatly reduced.
本発明にて用いることができるウェット・オン・ウェット塗装法として、例えば、前記ロールコート、グルーブロールコート、カーテンフローコート、ローラーカーテンコート、浸漬(デイップ)、エアナイフ絞り等の公知の塗装方法で金属板上に最下層を塗布し、この含水(ウェット)層を乾燥せずに、その上に、被塗面に接触せずに塗布できるカーテンフローコート、ローラーカーテンコート、スライド式カーテンコート、スロットダイコート等の公知の塗装方法で次々に塗り重ね、得られた含水積層皮膜を同時に加熱乾燥、成膜する方法を用いることができる。また、多層同時塗装法として、例えば多層スライド式カーテンコートのように、コーダーのスライド(滑り台)面上に、複数の水性塗料薄膜をスロット(細長い溝)から順次押出して含水状態のまま安定な複層流を形成し、これを金属表面に塗布後、全層を同時に加熱乾燥、硬化させ成膜する方法を用いることができる。本発明の複層被覆金属板の製造に適用できる多層スライド式カーテンコーダーの例として、3層スライド式カーテンコーダーの模式図を図1に示す。3種の水性塗料1をギアポンプ2により定量送液し、スライド面3の流下方向に沿って一定間隔で設けられたスロット4から順次押出し、スライド面上で安定な3層流5を形成し、スライド部先端の唇部6からカーテン7として走行する金属板8上に落下させる。従って、本発明の複層皮膜を金属表面に形成する方法としては、金属表面に接する最下層から最表層までの各層の皮膜を、含水(ウェット)状態で、順次、または同時に複層被覆する工程(水性塗料のウェット・オン・ウェット塗装または多層同時塗装工程)と、含水状態の複層皮膜の水分や揮発分を同時に加熱乾燥させる乾燥工程と、乾燥後の複層皮膜の最表層皮膜を紫外線または電子線でラジカル重合し成膜する紫外線または電子線照射工程を、列記した順序で含む方法で形成することが好ましい。 As a wet-on-wet coating method that can be used in the present invention, for example, a metal by a known coating method such as the roll coat, groove roll coat, curtain flow coat, roller curtain coat, dipping (dip), air knife drawing, etc. Curtain flow coat, roller curtain coat, sliding curtain coat, slot die coat that can be applied on the board without drying the water-containing (wet) layer without contacting the coated surface. It is possible to use a method in which the obtained water-containing laminated film is simultaneously heated and dried to form a film at the same time by a known coating method such as the above. Also, as a multi-layer simultaneous coating method, a plurality of water-based paint thin films are sequentially extruded from a slot (elongated groove) on a slid (slide) surface of a coder, for example, as in a multi-layer slide curtain coat, and a stable composite in a water-containing state. A method can be used in which a laminar flow is formed and applied to a metal surface, and then all layers are heated and dried and cured simultaneously to form a film. FIG. 1 shows a schematic diagram of a three-layer sliding curtain coder as an example of a multilayer sliding curtain coder applicable to the production of the multilayer coated metal sheet of the present invention. Three types of water-based paints 1 are metered by a gear pump 2 and extruded sequentially from slots 4 provided at regular intervals along the flow direction of the slide surface 3 to form a stable three-layer flow 5 on the slide surface. The lip 6 at the tip of the slide part is dropped onto the metal plate 8 that travels as the curtain 7. Therefore, as a method of forming the multilayer film of the present invention on the metal surface, the coating of each layer from the lowermost layer to the outermost layer in contact with the metal surface in a wet (wet) state, sequentially or simultaneously, a process of multilayer coating (Water-based wet-on-wet coating or multi-layer simultaneous coating process), drying process that heats and drys moisture and volatile components of water-containing multi-layer film at the same time, and the outermost layer film of the multi-layer film after drying Or it is preferable to form by the method of including the ultraviolet-ray or electron beam irradiation process which carries out radical polymerization with an electron beam and forms into a film in the order listed.
本発明では、乾燥後の複層皮膜の総付着量が0.3〜6g/m2の範囲となるように、水性塗料を塗布するのが好ましい。総付着量が0.3g/m2未満では、加工部耐食性が不十分となる可能性が高い。6g/m2を超えると耐擦傷性、耐摩耗性、加工密着性が飽和し、水性塗料の使用量が多く不経済である。また、本発明の複層被覆金属板を重ねて保管している間にブロッキングし易くなる。 In the present invention, it is preferable to apply the water-based paint so that the total adhesion amount of the multilayer coating after drying is in the range of 0.3 to 6 g / m 2 . If the total adhesion amount is less than 0.3 g / m 2 , there is a high possibility that the processed portion corrosion resistance will be insufficient. If it exceeds 6 g / m 2 , the scratch resistance, abrasion resistance, and work adhesion are saturated, and the amount of water-based paint used is large, which is uneconomical. Moreover, it becomes easy to block while storing the multilayer coating metal plate of this invention in piles.
本発明では、水性塗料を塗布後、直ちに、熱風炉、近赤外線炉、遠赤外線炉、電気炉、燃焼炉、誘導加熱炉等で加熱乾燥するのが好ましい。 In the present invention, it is preferable to heat and dry in a hot air furnace, a near infrared furnace, a far infrared furnace, an electric furnace, a combustion furnace, an induction heating furnace or the like immediately after applying a water-based paint.
ウェット・オン・ウェット塗装法や多層同時塗装法で塗布する場合、各層に含まれる前記水性樹脂や架橋剤、シランカップリング剤等を反応させて所望の性能を持つ複層皮膜にするため、加熱時の金属表面到達温度(Peak Metal Temperature)は80〜200℃の範囲に調整すべきで、120〜160℃とするのが好ましい。到達板温が80℃を下回る場合、最下層皮膜の形成に用いる水性樹脂(a1)の融解、リフローと架橋反応が不十分となり、所望の皮膜性能が得られない可能性がある。また、200℃を超えると、最下層皮膜の形成に用いる水性樹脂(a1)や、最表層皮膜の形成に用いる水性重合性炭化水素(b1)の多くが熱分解したり、加熱酸化したりするため、皮膜の性能が低下する。金属表面到達温度が120〜160℃の範囲では、多くの樹脂にて融解と架橋反応が好適に進み、所望の皮膜性能が得られる。本発明の複層皮膜をウェット・オン・ウェット塗装法や多層同時塗装法で塗布した場合は、通常、皮膜を加熱乾燥後、最表層皮膜に紫外線または電子線を照射して硬化し、水冷、空冷等の方法により冷却する。 When applying by wet-on-wet coating method or multi-layer simultaneous coating method, heating is performed to react with the aqueous resin, crosslinking agent, silane coupling agent, etc. contained in each layer to form a multilayer film with the desired performance. The metal surface temperature at the time (Peak Metal Temperature) should be adjusted in the range of 80 to 200 ° C, preferably 120 to 160 ° C. When the ultimate plate temperature is lower than 80 ° C., the melting, reflow and crosslinking reaction of the aqueous resin (a1) used for forming the lowermost layer film is insufficient, and the desired film performance may not be obtained. When the temperature exceeds 200 ° C., many of the aqueous resin (a1) used for forming the lowermost layer film and the aqueous polymerizable hydrocarbon (b1) used for forming the outermost layer film are thermally decomposed or thermally oxidized. For this reason, the performance of the film is reduced. When the metal surface temperature is in the range of 120 to 160 ° C., melting and crosslinking reactions proceed favorably with many resins, and desired film performance is obtained. When the multilayer coating of the present invention is applied by a wet-on-wet coating method or a multilayer simultaneous coating method, usually the coating is heated and dried, and then cured by irradiating the outermost layer coating with ultraviolet rays or an electron beam, water-cooled, Cool by air cooling or other methods.
ロールコート、グルーブロールコート、カーテンフローコート、ローラーカーテンコート、浸漬(ディップ)、エアナイフ絞り等の塗装方法で1層ずつ塗布する場合、各層塗布後の乾燥成膜工程では、最下層、中間層、最表層の乾燥成膜に適した金属表面到達温度にそれぞれ設定可能である。最下層皮膜は、主に加熱成膜型樹脂の架橋反応により成膜するため、乾燥成膜工程にて金属表面到達温度を120〜160℃として十分に架橋反応させるのが好ましい。一方、最表層皮膜は、主に紫外線または電子線照射で生成するラジカルを起点に硬化成膜するため、加熱成膜型樹脂の場合より低い乾燥温度でよい。最表層皮膜の乾燥成膜工程にて、80〜120℃程度の比較的低い金属表面到達温度で水分や揮発分の多くを蒸発させてから紫外線または電子線照射するのが好ましい。また、最下層と最表層皮膜の間に中間層皮膜を介在させる場合、中間層の構成主成分が加熱成膜型樹脂であれば、最下層皮膜の場合と同様に、120〜160℃として十分に架橋反応させるのが好ましい。 When applying one layer at a time by coating methods such as roll coat, groove roll coat, curtain flow coat, roller curtain coat, dipping (dip), air knife drawing, etc., in the dry film formation process after each layer application, the bottom layer, intermediate layer, It is possible to set the metal surface temperature suitable for the dry film formation of the outermost layer. Since the lowermost layer film is mainly formed by a cross-linking reaction of a heat-deposited resin, it is preferable to sufficiently cross-link at a metal surface arrival temperature of 120 to 160 ° C. in the dry film forming step. On the other hand, since the outermost layer film is cured and formed mainly from radicals generated by irradiation with ultraviolet rays or electron beams, the drying temperature may be lower than that in the case of a heat-deposited resin. In the dry film-forming step of the outermost layer film, it is preferable to irradiate ultraviolet rays or electron beams after evaporating most of moisture and volatile components at a relatively low metal surface arrival temperature of about 80 to 120 ° C. Also, when an intermediate layer film is interposed between the lowermost layer and the outermost layer film, 120 to 160 ° C. is sufficient as in the case of the lowermost layer film if the main component of the intermediate layer is a heat-deposited resin. It is preferable to carry out a crosslinking reaction.
(紫外線照射による最表層の硬化)
紫外線硬化型樹脂を紫外線でラジカル重合し硬化する紫外線照射は、通常、大気雰囲気中、不活性ガス雰囲気中、大気と不活性ガスの混合雰囲気中等で行うが、本発明の最表層皮膜の紫外線硬化では、酸素濃度を10体積%以下に調整した大気と不活性ガスの混合雰囲気や、不活性ガス雰囲気中で紫外線照射するのが好ましい。何故なら、酸素はラジカル重合の禁止剤となるため、紫外線照射時の雰囲気酸素濃度が低い場合、生成ラジカルへの酸素付加による失活や架橋反応阻害が少なく、本発明に用いる水性重合性炭化水素(b1)がラジカル重合や架橋を経て十分に高分子化し、樹脂(B1)の生成が促進され、結果として、大気雰囲気中での紫外線硬化の場合より最表層皮膜の耐擦傷性、耐摩耗性が向上するからである。
(Curing the outermost layer by UV irradiation)
The UV irradiation for curing the UV curable resin by radical polymerization with UV is usually performed in an air atmosphere, an inert gas atmosphere, a mixed atmosphere of air and an inert gas, etc. Then, it is preferable to irradiate with ultraviolet rays in an atmosphere and inert gas mixed atmosphere in which the oxygen concentration is adjusted to 10% by volume or less, or in an inert gas atmosphere. This is because oxygen is an inhibitor of radical polymerization, and therefore, when the atmospheric oxygen concentration at the time of ultraviolet irradiation is low, there is little deactivation or inhibition of crosslinking reaction due to addition of oxygen to the generated radical, and the aqueous polymerizable hydrocarbon used in the present invention. (B1) is sufficiently polymerized through radical polymerization and crosslinking, and the formation of the resin (B1) is promoted. As a result, the outermost layer film is more resistant to scratches and abrasion than in the case of ultraviolet curing in the air atmosphere. This is because it improves.
ここで用いる不活性ガスとしては、窒素ガス、炭酸ガス、アルゴンガス、及びこれらの混合ガス等を例示できる。 Examples of the inert gas used here include nitrogen gas, carbon dioxide gas, argon gas, and mixed gas thereof.
紫外光源としては、例えば、金属蒸気放電方式の高圧水銀ランプ、メタルハライドランプ等、希ガス放電方式のキセノンランプ等、マイクロ波を用いた無電極ランプ等を用いることにより、紫外線を照射できる。本発明の複層皮膜の最表層を十分に硬化でき、所望の耐擦傷性、耐摩耗性が得られるものであれば、どのようなランプを用いてもよい。また、一般に、皮膜が受光する紫外線のピーク照度や積算光量は皮膜の硬化性を左右するが、本発明の複層皮膜の最表層を十分に硬化でき、所望の耐擦傷性、耐摩耗性が得られるものであれば、紫外線の照射条件を特に限定しない。 The ultraviolet light source can be irradiated with ultraviolet rays by using, for example, a metal vapor discharge high pressure mercury lamp, a metal halide lamp, a rare gas discharge xenon lamp, an electrodeless lamp using microwaves, or the like. Any lamp may be used as long as the outermost layer of the multilayer coating of the present invention can be sufficiently cured and desired scratch resistance and abrasion resistance can be obtained. In general, the peak illuminance and integrated light intensity of ultraviolet rays received by the film influence the curability of the film, but the outermost layer of the multilayer film of the present invention can be sufficiently cured, and the desired scratch resistance and abrasion resistance can be obtained. If it can be obtained, the irradiation condition of ultraviolet rays is not particularly limited.
(電子線照射による最表層、中間層の硬化)
本発明の最表層皮膜の電子線硬化、または最表層皮膜と中間層皮膜の電子線同時硬化には、印刷、塗装、フィルムコーティング、包装、滅菌等の分野で用いられている通常の電子線照射装置を用いることができる。これらは、高真空中で熱フィラメントから発生した熱電子に高電圧をかけて加速し、得られた電子流を不活性ガス雰囲気中に取り出し、重合性物質に照射するものである。本発明の複層皮膜被覆金属板において、電子線硬化型の最表層、または更に電子線硬化型の中間層を十分に硬化でき、所望の耐擦傷性、耐摩耗性が得られるものであれば、どのような装置を用いてもよい。また、一般に、樹脂皮膜が吸収する電子線の加速電圧は、電子線が樹脂皮膜を浸透する深さを左右し、吸収線量は重合速度(皮膜の硬化性)を左右するが、本発明の複層皮膜の最表層を十分に硬化でき、所望の耐擦傷性、耐摩耗性が得られるものであれば、電子線の照射条件を特に限定しない。ただし、電子線によるラジカル重合の場合、微量の酸素が存在しても、生成ラジカルへの酸素付加による失活や架橋反応阻害が生じ、硬化が不十分になるため、酸素濃度が500ppm以下の不活性ガス雰囲気中で電子線照射するのが好ましい。ここで用いる不活性ガスとしては、窒素ガス、炭酸ガス、アルゴンガス、及びこれらの混合ガス等を例示できる。
(Curing outermost layer and intermediate layer by electron beam irradiation)
In the electron beam curing of the outermost layer film of the present invention, or the electron beam simultaneous curing of the outermost layer film and the intermediate layer film, normal electron beam irradiation used in the fields of printing, painting, film coating, packaging, sterilization, etc. An apparatus can be used. These are accelerated by applying a high voltage to thermoelectrons generated from a hot filament in a high vacuum, and the resulting electron flow is taken out in an inert gas atmosphere and irradiated to a polymerizable substance. In the multi-layer coated metal sheet of the present invention, the outermost layer of the electron beam curable type or the intermediate layer of the electron beam curable type can be sufficiently cured, and desired scratch resistance and abrasion resistance can be obtained. Any device may be used. In general, the acceleration voltage of the electron beam absorbed by the resin film affects the depth of penetration of the electron beam through the resin film, and the absorbed dose affects the polymerization rate (curability of the film). The irradiation condition of the electron beam is not particularly limited as long as the outermost layer of the layer film can be sufficiently cured and desired scratch resistance and wear resistance can be obtained. However, in the case of radical polymerization using an electron beam, even if a small amount of oxygen is present, deactivation or cross-linking reaction inhibition occurs due to addition of oxygen to the generated radical, and curing becomes insufficient, so that the oxygen concentration is less than 500 ppm. It is preferable to perform electron beam irradiation in an active gas atmosphere. Examples of the inert gas used here include nitrogen gas, carbon dioxide gas, argon gas, and mixed gas thereof.
以下、実施例により本発明を具体的に説明する。
[被覆用金属板]
以下の亜鉛系めっき鋼板M1〜M4を準備し、水性脱脂剤(日本パーカライジング(株)製FC-4480)の水溶液に浸漬して表面を脱脂した後、水洗、乾燥して複層皮膜被覆用の金属板とした。
Hereinafter, the present invention will be described specifically by way of examples.
[Metal plate for coating]
Prepare the following galvanized steel sheets M1 to M4, immerse them in an aqueous solution of an aqueous degreasing agent (FC-4480 manufactured by Nihon Parkerizing Co., Ltd.), degrease the surface, and then wash and dry to coat the multilayer coating. A metal plate was used.
M1:電気亜鉛めっき鋼板
(新日本製鐵(株)製ジンコート、板厚0.8mm、めっき厚約2.8μm)
M2:電気Zn-Ni合金めっき鋼板
(新日本製鐵(株)製 ジンクライト、板厚0.8mm、めっき厚約2.8μm)
M3:溶融亜鉛めっき鋼板
(新日本製鐵(株)製 シルバージンク、板厚0.8mm、めっき厚約7μm)
M4:溶融Zn-11%Al-3%Mg-0.2%Si合金めっき鋼板
(新日本製鐵(株)製スーパーダイマ、板厚0.8mm、めっき厚約6μm)
[最下層皮膜形成用の水性塗料]
M1: Electrogalvanized steel sheet (Shin Nippon Steel Co., Ltd. gin coat, thickness 0.8mm, plating thickness approx. 2.8μm)
M2: Electric Zn-Ni alloy plated steel sheet (Zinclite manufactured by Nippon Steel Corp., thickness 0.8mm, plating thickness approx. 2.8μm)
M3: Hot dip galvanized steel sheet (Shin Nippon Steel Co., Ltd. silver zinc, plate thickness 0.8mm, plating thickness about 7μm)
M4: Molten Zn-11% Al-3% Mg-0.2% Si alloy-plated steel sheet (Shin Nippon Steel Co., Ltd. Superdimer, thickness 0.8mm, plating thickness approx. 6μm)
[Water-based paint for forming the bottom film]
最下層皮膜形成用の水性塗料として、以下に示す水性樹脂(a1)、シランカップリング剤(s)、ポリフェノール化合物(D)、りん酸またはヘキサフルオロ金属酸(E)、りん酸塩化合物(F)、金属酸化物微粒子(G)を組合せ、最下層皮膜形成用の水性塗料を調合した。 As the water-based paint for forming the lowermost layer film, the following water-based resin (a1), silane coupling agent (s), polyphenol compound (D), phosphoric acid or hexafluorometal acid (E), phosphate compound (F ) And metal oxide fine particles (G) were combined to prepare an aqueous paint for forming the lowermost layer film.
(水性樹脂(a1))
a11:水性エポキシ樹脂((株)ADEKA製アデカレジンEM-0436)
a12:水性ポリエステル樹脂(DIC(株)製ファインテックスES-850)
a13:水性ポリウレタン樹脂((株)ADEKA製アデカボンタイターHUX680)
a14:水性アクリル樹脂(DIC(株)製 ボンコートSFC-65)
(シランカップリング剤(s))
sl:3−グリシドキシプロピルトリメトキシシラン(信越化学工業(株)製KBM-403)
s2:3−アミノプロピルトリメトキシシラン(信越化学工業(株)製KBM-903)
s3:3−メルカプトプロピルトリメトキシシラン(信越化学工業(株)製KBM-803)
(ポリフェノール化合物(D))
D1:タンニン酸(富士化学工業(株)製タンニン酸AD
D2:没食子酸(関東化学(株)鹿1級試薬 没食子酸一水和物)
(りん酸またはヘキサフルオロ金属酸(E))
E1:オルトりん酸
(関東化学(株)特級試薬 純度85%りん酸)
E2:ヘキサフルオロチタン酸
(和光純薬工業(株)試薬 へキサフルオロチタン酸60%水溶液)
E3:ヘキサフルオロジルコン酸
(和光純薬工業(株)試薬 へキサフルオロジルコン酸20%水溶液)
(りん酸塩化合物(F))
F1:りん酸二水素アルミニウム(米山化学工業(株)製 重りん酸アルミニウム)
F2:りん酸二水素マグネシウム(米山化学工業(株)製 重りん酸マグネシウム)
F3:りん酸二水素マンガン(米山化学工業(株)製 重りん酸マンガン)
(金属酸化物微粒子(G))
G1:シリカ微粒子(日産化学工業(株)製スノーテックスーO)
G2:ジルコニア微粒子(第一稀元素化学工業(株)製ZSL-10T)
G3:アルミナ微粒子(日産化学工業(株)製アルミナゾル−100)
表1に、最下層皮膜形成用の水性塗料(a)に含まれる各薬剤の種類と含有量を示す。薬剤の含有量は、水性樹脂(a1)の不揮発分100質量部に対し、他薬剤の不揮発分がどれだけ含まれるかを質量部単位で示した。最下層皮膜形成用の水性塗料(a)に含まれる不揮発分濃度は、皮膜乾燥後に狙い通りの最下層皮膜付着量としたり、多層同時塗装時に含水(ウェット)最下層の流れを安定にするため、適宜調整した。なお、本明細書における「不揮発分」とは、〔背景技術〕の項で述べたように、塗料や組成物に溶媒として配合されている低分子量化合物(水や溶剤類など)を揮発させた後に残る成分のことを意味する。
(Water-based resin (a1))
a11: Water-based epoxy resin (Adeka Resin EM-0436 manufactured by ADEKA Co., Ltd.)
a12: Water-based polyester resin (DIC Corporation Finetex ES-850)
a13: Water-based polyurethane resin (Adekabon titer HUX680 manufactured by ADEKA Co., Ltd.)
a14: Aqueous acrylic resin (Boncoat SFC-65, manufactured by DIC Corporation)
(Silane coupling agent (s))
sl: 3-glycidoxypropyltrimethoxysilane (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.)
s2: 3-aminopropyltrimethoxysilane (KBM-903 manufactured by Shin-Etsu Chemical Co., Ltd.)
s3: 3-mercaptopropyltrimethoxysilane (KBM-803 manufactured by Shin-Etsu Chemical Co., Ltd.)
(Polyphenol compound (D))
D1: Tannic acid (tannic acid AD manufactured by Fuji Chemical Industry Co., Ltd.)
D2: Gallic acid (Kanto Chemical Co., Ltd. Deer grade 1 gallic acid monohydrate)
(Phosphoric acid or hexafluorometal acid (E))
E1: Orthophosphoric acid (Kanto Chemical Co., Ltd. special grade reagent purity 85% phosphoric acid)
E2: Hexafluorotitanic acid (Wako Pure Chemical Industries, Ltd. Reagent Hexafluorotitanic acid 60% aqueous solution)
E3: Hexafluorozirconic acid (Wako Pure Chemical Industries, Ltd. Reagent Hexafluorozirconic acid 20% aqueous solution)
(Phosphate compound (F))
F1: Aluminum dihydrogen phosphate (Aluminum biphosphate manufactured by Yoneyama Chemical Co., Ltd.)
F2: Magnesium dihydrogen phosphate (magnesium biphosphate manufactured by Yoneyama Chemical Co., Ltd.)
F3: Manganese dihydrogen phosphate (manufactured by Yoneyama Chemical Co., Ltd.)
(Metal oxide fine particles (G))
G1: Silica fine particles (Snowtex-O, manufactured by Nissan Chemical Industries, Ltd.)
G2: Zirconia fine particles (ZSL-10T manufactured by Daiichi Rare Element Chemical Industry Co., Ltd.)
G3: Alumina fine particles (Alumina sol-100 manufactured by Nissan Chemical Industries, Ltd.)
Table 1 shows the type and content of each drug contained in the water-based paint (a) for forming the lowermost layer film. The content of the drug indicates how much non-volatile content of the other drug is contained with respect to 100 parts by mass of the nonvolatile content of the aqueous resin (a1). The concentration of non-volatiles contained in the water-based paint (a) for forming the lowermost layer film is set to the desired lower layer film adhesion amount after drying the film, or to stabilize the flow of the water-containing (wet) lowermost layer during simultaneous multi-layer coating , Adjusted as appropriate. In addition, as described in the section of “Background Art”, “nonvolatile content” in the present specification volatilizes low molecular weight compounds (such as water and solvents) blended as a solvent in paints and compositions. It means the component that remains afterwards.
表1に示した塗料のうち、5b、20b、21b、26bは、水性樹脂(a1)とシランカップリング剤(s)の含有量の合計が塗料不揮発分全体の50質量%未満である。そのため、これらの塗料を金属板に塗布して得られる皮膜では、生成する樹脂(A1)、(A2)の合計が皮膜の50質量%未満となるため、本発明の最下層皮膜にならない。 Among the paints shown in Table 1, 5b, 20b, 21b, and 26b have a total content of the aqueous resin (a1) and the silane coupling agent (s) of less than 50% by mass of the whole paint non-volatile content. Therefore, in the film obtained by applying these paints to the metal plate, the total amount of the resins (A1) and (A2) to be produced is less than 50% by mass of the film, so that it is not the lowermost film of the present invention.
[紫外線硬化による最表層皮膜形成用の水性塗料]
紫外線硬化による最表層皮膜形成用の水性塗料として、以下に示す水性重合性炭化水素(b1)、光開裂型重合開始剤(P)、または更にシリカ微粒子(Cl)、固体潤滑剤(H)を組合せ、最表層皮膜形成用の水性塗料を調合した。
[Water-based paint for forming the outermost layer film by UV curing]
As the water-based paint for forming the outermost layer film by ultraviolet curing, the following water-soluble polymerizable hydrocarbon (b1), photocleavable polymerization initiator (P), or silica fine particles (Cl) and solid lubricant (H) are used. A combination and a water-based paint for forming the outermost layer film were prepared.
(水性重合性炭化水素(b1))
b11:メチリデン基を持つ炭素-炭素二重結合基を有する水性アクリル系樹脂
(BASF社製Laromer LR8765、脂肪族エポキシアクリレート)
b12:メチリデン基を持つ炭素−炭素二重結合基を有する水性ポリウレタン系樹脂
(BASF社製Laromer LR8949、脂肪族ウレタンデイスパージヨン)
(光開裂型重合開始剤(P))
P5:1−ヒドロキシシクロヘキシルフェニルケトン
(Ciba Specialty Chemicals社製Irgacurel84)
P6:2,2−ジメチル−2−ヒドロキシアセトフェノン
(Ciba Specialty Chemicals社製Darocur1173)
P9:2−メチル−1−[4−(メチルチオ)フェニル]−2−(4−モルフォリニル)−1−プロパノン
(Aqueous polymerizable hydrocarbon (b1))
b11: Aqueous acrylic resin having a carbon-carbon double bond group having a methylidene group (Laromer LR8765, aliphatic epoxy acrylate manufactured by BASF)
b12: Aqueous polyurethane-based resin having a carbon-carbon double bond group having a methylidene group (Laromer LR8949, aliphatic urethane disperse rayon manufactured by BASF)
(Photocleavable polymerization initiator (P))
P5: 1-hydroxycyclohexyl phenyl ketone (Irgacurel 84 manufactured by Ciba Specialty Chemicals)
P6: 2,2-dimethyl-2-hydroxyacetophenone (Darocur 1173 manufactured by Ciba Specialty Chemicals)
P9: 2-methyl-1- [4- (methylthio) phenyl] -2- (4-morpholinyl) -1-propanone
(Ciba Specialty Chemicals社製Irgacure907)
Pl0:ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド(Ciba Specialty Chemicals社製Irgacure819)
(Irgacure907 manufactured by Ciba Specialty Chemicals)
Pl0: Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (Irgacure 819 manufactured by Ciba Specialty Chemicals)
なお、上記P5、P6、P9、P10は、前記<最表層の皮膜>の項に記載の構造式(P5)、(P6)、(P9)、(P10)の構造を持つ光開裂型重合開始剤にそれぞれ対応する。これらは、本発明で用いる光開裂型重合開始剤(P)のうち、使用が特に好ましいものの−部である。 The above P5, P6, P9, and P10 are photocleavage-type polymerization initiations having the structures of the structural formulas (P5), (P6), (P9), and (P10) described in the section <Film of outermost layer>. It corresponds to each agent. These are the -parts of the photocleavable polymerization initiator (P) used in the present invention that are particularly preferred for use.
(シリカ微粒子(Cl))
C11:シリカ微粒子(日産化学工業(株)製スノーテックス-N)
(固体潤滑剤(H))
H1:ポリエチレンワックス(三井化学(株)製ケミパールW500、粒径約2.5μm)
H2:ポリエチレンワックス(三井化学(株)製ケミパールWF640、粒径約1.0μm)
表2に、紫外線硬化による最表層皮膜形成用の水性塗料に含まれる各薬剤の種類と含有量を示す。薬剤の含有量は、水性樹脂(b1)の不揮発分100質量部に対し、他薬剤の不揮発分がどれだけ含まれるかを質量部単位で示した。最表層皮膜形成用の水性塗料に含まれる不揮発分濃度は、皮膜乾燥後に狙い通りの皮膜付着量としたり、多層同時塗装時に含水(ウェット)最表層の流れを安定にするため、適宜調整した。
(Silica fine particles (Cl))
C11: Silica fine particles (Snowtex-N manufactured by Nissan Chemical Industries, Ltd.)
(Solid lubricant (H))
H1: Polyethylene wax (Chemipearl W500 manufactured by Mitsui Chemicals, Inc., particle size of about 2.5 μm)
H2: Polyethylene wax (Chemical WF640 manufactured by Mitsui Chemicals, Inc., particle size of about 1.0 μm)
Table 2 shows the type and content of each drug contained in the water-based paint for forming the outermost layer film by ultraviolet curing. The content of the drug indicates how much non-volatile content of the other drug is contained with respect to 100 parts by mass of the non-volatile content of the aqueous resin (b1). The concentration of non-volatile components contained in the water-based paint for forming the outermost layer film was appropriately adjusted in order to obtain a desired film adhesion amount after the film was dried, or to stabilize the flow of the wet (wet) outermost layer during multilayer simultaneous coating.
表2に示した塗料のうち、14t、16t、30t、32tではシリカ微粒子(Cl)が塗料に含まれず、また、15t、31tではシリカ微粒子(C1)が塗料不揮発分の35質量%を超える。そのため、これらの塗料を塗布して得られる最表層皮膜では、シリカ微粒子(Cl)の含有量が皮膜の5〜35質量%の範囲から外れ、本発明にて規定する最表層皮膜にならない。 Of the paints shown in Table 2, silica fine particles (Cl) are not included in the paints at 14t, 16t, 30t, and 32t, and the silica fine particles (C1) exceed 35% by mass of the paint non-volatile content at 15t and 31t. Therefore, in the outermost layer film obtained by applying these paints, the content of silica fine particles (Cl) is out of the range of 5 to 35% by mass of the film, and does not become the outermost layer film defined in the present invention.
[電子線硬化による最表層皮膜形成用の水性塗料]
電子線硬化による最表層皮膜形成用の水性塗料として、前記の[紫外線硬化による最表層皮膜形成用の水性塗料]の項で用いた水性重合性炭化水素(b1)、または更にシリカ微粒子(Cl)、固体潤滑剤(H)を組合せ、最表層皮膜形成用の水性塗料を調合した。
[Water-based paint for forming outermost layer film by electron beam curing]
As the water-based paint for forming the outermost layer film by electron beam curing, the aqueous polymerizable hydrocarbon (b1) used in the section of [Water-based paint for forming the outermost layer film by ultraviolet curing], or further silica fine particles (Cl) The solid lubricant (H) was combined to prepare an aqueous coating for forming the outermost layer film.
表7に、電子線硬化による最表層皮膜形成用の水性塗料に含まれる各薬剤の種類と含有量を示す。薬剤の含有量は、水性樹脂(b1)の不揮発分100質量部に対し、他薬剤の不揮発分がどれだけ含まれるかを質量部単位で示した。最表層皮膜形成用の水性塗料に含まれる不揮発分濃度は、皮膜乾燥後に狙い通りの皮膜付着量としたり、多層同時塗装時に含水(ウェット)最表層の流れを安定にするため、適宜調整した。 Table 7 shows the types and contents of the respective drugs contained in the water-based paint for forming the outermost layer film by electron beam curing. The content of the drug indicates how much non-volatile content of the other drug is contained with respect to 100 parts by mass of the non-volatile content of the aqueous resin (b1). The concentration of non-volatile components contained in the water-based paint for forming the outermost layer film was appropriately adjusted in order to obtain a desired film adhesion amount after the film was dried, or to stabilize the flow of the wet (wet) outermost layer during multilayer simultaneous coating.
表7に示した塗料のうち、40t、42t、50t、52tではシリカ微粒子(Cl)が塗料に含まれず、また、41t、51tではシリカ微粒子(C1)が塗料不揮発分の35質量%を超える。そのため、これらの塗料を塗布して得られる最表層皮膜では、シリカ微粒子(Cl)の含有量が皮膜の5〜35質量%の範囲から外れ、本発明にて規定する最表層皮膜にならない。 Of the paints shown in Table 7, silica fine particles (Cl) are not included in the paints at 40t, 42t, 50t, and 52t, and the silica fine particles (C1) exceed 35% by mass of the paint non-volatile content at 41t and 51t. Therefore, in the outermost layer film obtained by applying these paints, the content of silica fine particles (Cl) is out of the range of 5 to 35% by mass of the film, and does not become the outermost layer film defined in the present invention.
[中間層皮膜形成用の水性塗料]
本発明の複層皮膜の加工部耐食性を更に良くするため、前記表1に示した最下層皮膜形成用の水性塗料のうち、水性ポリウレタン樹脂a13を構成主成分とする水性塗料34bを、中間層皮膜形成用の水性塗料としても用いた。
[Water-based paint for forming intermediate layer film]
In order to further improve the corrosion resistance of the processed part of the multilayer coating of the present invention, among the aqueous coatings for forming the lowermost layer shown in Table 1, an aqueous coating 34b mainly composed of an aqueous polyurethane resin a13 is used as an intermediate layer. It was also used as a water-based paint for film formation.
[複層皮膜の形成方法]
(A法:形成プロセス概要は、多層同時塗装→乾燥→紫外線または電子線硬化の順)
最下層及び中間層形成用塗料(表1)、最表層形成用塗料(表2、表7)の不揮発分濃度を多層同時塗装向けに適宜調整後、前記金属板に、多層スライドカーテンコーター用いて最下層と最表層の2層、あるいは、最下層、中間層1層、最表層の計3層を同時塗布し、熱風炉にて、金属表面到達温度150℃で乾燥し、複層皮膜を成膜した。多層スライドカーテンコーターのスライド面上の複層流とカーテン形成後の複層流の両方が安定となり、かつ、乾燥後の各層の付着量が概ね狙い通りになるように、水性塗料の不揮発分濃度、塗料に添加する界面活性剤や増粘剤の種類と量、コーダーの送液速度、カーテンガイド材質等を選んだ。
[Method of forming a multilayer coating]
(Method A: The outline of the forming process is multilayer simultaneous coating → drying → UV or electron beam curing)
After adjusting the non-volatile concentration of the lowermost layer and intermediate layer forming paint (Table 1) and the outermost layer forming paint (Table 2, Table 7) as appropriate for multi-layer simultaneous coating, use the multi-layer slide curtain coater on the metal plate. Two layers, the bottom layer and the top layer, or a total of three layers, the bottom layer, one intermediate layer, and the top layer, are applied simultaneously and dried in a hot air oven at a metal surface temperature of 150 ° C to form a multi-layer coating. Filmed. Non-volatile concentration of water-based paint so that both the multi-layer flow on the slide surface of the multi-layer slide curtain coater and the multi-layer flow after curtain formation are stable, and the amount of adhesion of each layer after drying is almost as intended. The types and amounts of surfactants and thickeners to be added to the paint, the feeding speed of the coder, and the curtain guide material were selected.
紫外線硬化の場合は、上記の成膜後、窒素ガスパージが可能な無電極マイクロ波方式の紫外線照射装置にて、紫外線照射ランプ直下の通板コンベヤ上の酸素濃度を約5体積%に調整後、ランプ出力240W/c m、金属板の通板速度を20m/分として、前記複層皮膜被覆金属板をコンベヤに載せて通板し、複層皮膜の最表層を紫外線硬化した。この時、金属板上の紫外線受光部位が受ける積算光量は約200mJ/c m2であった。電子線硬化の場合は、上記の成膜後、電子線照射室内の窒素ガスパージが可能なカーテンビーム型電子線照射装置にて、電子線照射室内の酸素濃度を約200ppmに調整後、照射線量40kGy、金属板の搬送速度を20m/分として、前記複層皮膜被覆金属板をトレイに載せて通板し、複層皮膜の最表層を電子線硬化した。 In the case of UV curing, after the above film formation, the oxygen concentration on the plate conveyor directly under the UV irradiation lamp is adjusted to about 5% by volume with an electrodeless microwave UV irradiation apparatus capable of purging with nitrogen gas. The multi-layer coating coated metal plate was placed on a conveyor with a lamp output of 240 W / cm and a metal plate passing speed of 20 m / min, and the outermost layer of the multi-layer coating was UV cured. At this time, the accumulated amount of light ultraviolet light receiving portions on the metal plate is subjected is about 200mJ / c m 2. In the case of electron beam curing, after the above film formation, the oxygen concentration in the electron beam irradiation chamber is adjusted to about 200 ppm with a curtain beam type electron beam irradiation apparatus capable of purging nitrogen gas in the electron beam irradiation chamber, and then an irradiation dose of 40 kGy. The multi-layer coating coated metal plate was placed on a tray and passed through at a metal plate conveyance speed of 20 m / min, and the outermost layer of the multi-layer coating was electron beam cured.
最下層の皮膜付着量(g/m2単位)は、前記A法の多層同時塗装に用いた多層スライドカーテンコーター、塗料、塗装条件、加熱乾燥条件にて最下層のみを塗布し、塗布前と乾燥成膜後の金属板の質量差から計算した。中間層の皮膜付着量(g/m2単位)は、前記と同様にして最下層のみを塗布成膜した金属板と、同一塗装条件で最下層と中間層の2層を同時塗布、成膜した金属板の質量差から計算した。最表層の皮膜付着量も同様にして計算した。 The coating amount of the lowermost layer (g / m 2 unit) is determined by applying only the lowermost layer in the multi-layer slide curtain coater, paint, coating conditions, and heat drying conditions used for the multi-layer simultaneous coating of Method A, It calculated from the mass difference of the metal plate after dry film formation. The coating amount (g / m 2 unit) of the intermediate layer is the same as described above, and a metal plate coated with only the lowermost layer and the two layers of the lowermost layer and the intermediate layer are simultaneously coated and formed under the same coating conditions. It calculated from the mass difference of the obtained metal plate. The coating amount on the outermost layer was calculated in the same manner.
表3〜5、表8、表9に、A法による塗装に用いた金属板、最下層、中間層、最表層形成用の各塗料の組合せ、成膜後の各層の皮膜付着量(g/m2単位)を示す。 In Tables 3 to 5, Table 8, and Table 9, the metal plate used for coating by the A method, the lowermost layer, the intermediate layer, the combination of coating materials for forming the outermost layer, and the coating amount of each layer after film formation (g / m 2 unit).
(B法:形成プロセス概要は、ウェット・オン・ウェット塗装→乾燥→紫外線または電子線硬化の順)
最下層及び中間層形成用塗料(表1)、最表層形成用塗料(表2、表7)の不揮発分濃度をウェット・オン・ウェット塗装向けに適宜調整し、前記金属板に、ロールコーターを用いて最下層皮膜形成用の水性塗料を塗布し、これを乾燥せずに、カーテンコーターを用いて最表層皮膜形成用の水性塗料を上塗り塗布後、熱風炉にて、金属表面到達温度150℃で乾燥し、2層皮膜を成膜した。最下層と最表層皮膜の間に中間層皮膜(1層)を介在させる場合は、ロールコーターを用いて最下層皮膜形成用の水性塗料を塗布し、これを乾燥せずに、カーテンコーターを用いて中間層皮膜形成用の水性塗料を上塗り塗布した。これを乾燥せずに、別のカーテンコーターを用いて最表層皮膜形成用の水性塗料を上塗り塗布後、熱風炉にて、金属表面到達温度150℃で乾燥し、3層皮膜を成膜した。
(Method B: The outline of the forming process is wet-on-wet coating → drying → UV or electron beam curing)
The non-volatile concentration of the lowermost layer and intermediate layer forming paint (Table 1) and the outermost layer forming paint (Tables 2 and 7) is appropriately adjusted for wet-on-wet coating, and a roll coater is applied to the metal plate. Apply the water-based paint for forming the lowermost layer film using it, and after applying the water-based paint for forming the outermost layer film using a curtain coater, without drying, use a hot air oven to reach the metal surface at 150 ° C. And dried to form a two-layer coating. When interposing an intermediate layer film (one layer) between the lowermost layer and the outermost layer film, apply a water-based paint for forming the lowermost layer film using a roll coater, and use a curtain coater without drying it. Then, a water-based paint for forming an intermediate layer film was overcoated. Without drying, this was coated with a water-based paint for forming the outermost layer film using another curtain coater, and then dried in a hot air oven at a metal surface temperature of 150 ° C. to form a three-layer film.
次に、A法の場合と同じ紫外線または電子線の照射条件で、複層皮膜の最表層を硬化した。
最下層の皮膜付着量(g/m2単位)は、前記B法のウェット・オン・ウェット塗装に用いたロールコーター、塗料、塗装条件、加熱乾燥条件にて最下層のみを塗布し、塗布前と乾燥成膜後の金属板の質量差から計算した。中間層の皮膜付着量(g/m2単位)は、前記のウェット・オン・ウェット塗装に用いたロールコーター、カーテンコーター、塗料、塗装条件、加熱乾燥条件にて最下層のみを塗布成膜して秤量後、中間層を上塗りし、中間層塗布前と中間層成膜後の金属板の質量差から計算した。最表層の皮膜付着量も同様にして計算した。
Next, the outermost layer of the multilayer coating was cured under the same ultraviolet or electron beam irradiation conditions as in Method A.
The coating amount of the lowermost layer (g / m 2 unit) is determined by applying only the lowermost layer using the roll coater, paint, coating conditions, and heating / drying conditions used in the wet-on-wet coating of the B method. And the mass difference between the dried metal plate and the metal plate. The coating amount of the intermediate layer (g / m 2 unit) is applied to the roll coater, curtain coater, paint, coating conditions, and heating / drying conditions used in the wet-on-wet coating described above. After weighing, the intermediate layer was overcoated and calculated from the difference in mass between the metal plates before the intermediate layer application and after the intermediate layer was formed. The coating amount on the outermost layer was calculated in the same manner.
表6、表10に、B法による塗装に用いた金属板、最下層、中間層、最表層形成用の各塗料の組合せ、成膜後の各層の皮膜付着量(g/m2単位)を示す。 Tables 6 and 10 show the metal plate used for coating by the B method, the lowermost layer, the intermediate layer, the combination of coating materials for forming the outermost layer, and the film adhesion amount (g / m 2 unit) of each layer after film formation. Show.
(C法:形成プロセス概要は、最下層塗布→乾燥(→中間層塗布→乾燥)→最表層塗布→乾燥→紫外線または電子線硬化の順)
最下層及び中間層形成用塗料(表1)、最表層形成用塗料(表2)の不揮発分濃度を逐次塗装向けに適宜調整し、まず、前記金属板に、ロールコーターを用いて最下層皮膜形成用の水性塗料を塗布し、これを熱風炉にて金属表面到達温度150℃で乾燥し、水冷、風乾した。次に、この単層被覆金属板に、別のロールコーターを用いて最表層皮膜形成用の水性塗料を上塗り塗布後、金属表面到達温度80℃で乾燥し、2層皮膜を成膜した。最下層と最表層皮膜の間に中間層皮膜(1層)を介在させる場合は、まず、ロールコーターを用いて最下層皮膜形成用の水性塗料を塗布し、金属表面到達温度120℃で乾燥し、水冷、風乾後、別のロールコーターを用いて中間層皮膜形成用の水性塗料を上塗り塗布し、再度金属表面到達温度150℃で乾燥し、水冷、風乾した。次に、この2層被覆金属板に、別のロールコーターを用いて最表層皮膜形成用の水性塗料を上塗り塗布後、金属表面到達温度80℃で乾燥し、3層皮膜を成膜した。
(Method C: The outline of the formation process is the lowermost layer coating → drying (→ intermediate layer coating → drying) → the outermost layer coating → drying → ultraviolet or electron beam curing)
The non-volatile content of the lowermost layer and intermediate layer forming coating (Table 1) and the outermost layer forming coating (Table 2) is adjusted appropriately for sequential coating. First, the lowermost layer film is applied to the metal plate using a roll coater. A water-based paint for forming was applied, and this was dried at a metal surface temperature of 150 ° C. in a hot air oven, water-cooled and air-dried. Next, an aqueous coating for forming the outermost layer film was applied onto this single-layer coated metal plate using another roll coater and then dried at a metal surface temperature of 80 ° C. to form a two-layer film. When interposing an intermediate layer film (one layer) between the lowermost layer and the outermost layer film, first apply a water-based paint for forming the lowermost layer film using a roll coater, and dry at a metal surface temperature of 120 ° C. After water-cooling and air-drying, a water-based paint for forming an intermediate layer film was applied on top using another roll coater, dried again at a metal surface temperature of 150 ° C., water-cooled and air-dried. Next, an aqueous coating for forming the outermost layer film was applied onto the two-layer coated metal plate using another roll coater and then dried at a metal surface temperature of 80 ° C. to form a three-layer film.
次に、A法の場合と同じ紫外線または電子線の照射条件で、複層皮膜の最表層を硬化した。
各層の皮膜付着量(g/m2単位)は、前記C法の逐次塗装に用いたロールコーター、塗料、塗装条件、加熱乾燥条件にて1層ずつ塗布、乾燥成膜し、各皮膜の塗布前と乾燥成膜後の金属板の質量差から計算した。
Next, the outermost layer of the multilayer coating was cured under the same ultraviolet or electron beam irradiation conditions as in Method A.
The coating amount of each layer (g / m 2 unit) is applied to each layer according to the roll coater, paint, coating conditions, and heat drying conditions used for sequential coating of the above-mentioned method C. It calculated from the mass difference of the metal plate before and after dry film formation.
表6、表10に、C法による塗装に用いた金属板、最下層、中間層、最表層形成用の各塗料の組合せ、成膜後の各層の皮膜付着量(g/m2単位)を示す。 Tables 6 and 10 show the metal plate used for painting by the C method, the lowermost layer, the intermediate layer, the combination of coating materials for forming the outermost layer, and the coating amount (g / m 2 unit) of each layer after film formation. Show.
[樹脂(A2)中の−C−Si−O−結合を形成するSi原子の定量]]
金属板上に、本発明例、比較例の最下層皮膜の塗装、成膜に用いたコーター、塗料、塗装条件、加熱乾燥条件にて最下層皮膜のみを成膜し、高感度反射法にて得られた皮膜のFT-IR吸収スペクトルの−C−Si−O−結合の吸光度(Absorbance)から、−C−Si−O−結合中のSi原子を定量した。−C−Si−O−結合を形成するSi量は、最下層皮膜に含まれる樹脂(A1)と(A2)の合計100質量部に対する相対質量(質量部単位)で表した。これらの結果を表3〜6、表8〜10に示す。
[Quantification of Si Atoms Forming —C—Si—O— Bond in Resin (A2)]
On the metal plate, only the lowermost layer film is formed by coating the lowermost layer film of the present invention example and the comparative example, the coater used for the film formation, the paint, the coating conditions, and the heating and drying conditions. Si atoms in the —C—Si—O— bond were quantified from the absorbance of the —C—Si—O— bond in the FT-IR absorption spectrum of the obtained film. The amount of Si forming a —C—Si—O— bond was expressed as a relative mass (unit of parts by mass) with respect to a total of 100 parts by mass of the resins (A1) and (A2) contained in the lowermost layer film. These results are shown in Tables 3-6 and Tables 8-10.
[高硬質樹脂(J)の定量]
金属板上に、本発明例の複層塗装に用いたコーター、塗料、塗装条件、加熱乾燥条件、硬化条件にて最下層、(中間層、)最表層皮膜からなる複層皮膜を成膜した。複層皮膜をMEK(メチルエチルケトン)で1時間リフラックスし、最下層皮膜に残る未反応の水性樹脂(a1)、最表層皮膜に残る未反応の水性重合性炭化水素(b1)、最表層皮膜に残る未反応の光開裂型重合開始剤(P)の一部など、皮膜中のMEK可溶成分を除いた。残渣を更にn-ヘキサンで1時間リフラックスし、MEKで抽出されなかった光開裂型重合開始剤(P)の残りなど、n−へキサン可溶成分を除いた。リフラックス後の残渣の熱分解GC-MSにより、最表層皮膜中の高硬質樹脂(J)を定量した。最表層皮膜を紫外線硬化で得ている場合は、光開始剤ラジカル(Rad・)の紫外線硬化済み樹脂(B1)末端のRadや、(B1)樹脂鎖を構成する繰り返し単位((B1)樹脂鎖の架橋構造に組込まれている水性重合性炭化水素(b1))を定量し、最表層皮膜中の紫外線硬化済み樹脂(B1)を定量した。最表層皮膜を電子線硬化で得ている場合も同様の方法で最表層皮膜中の電子線硬化済み樹脂を定量した。これらの結果を表3〜6、表8〜10に示す。
[Quantification of highly rigid resin (J)]
On the metal plate, a multi-layer coating consisting of the lowermost layer (intermediate layer) and the outermost layer coating was formed on the metal plate with the coater, paint, coating conditions, heat drying conditions, and curing conditions used in the multi-layer coating of the example of the present invention. . Reflux the multi-layer coating with MEK (methyl ethyl ketone) for 1 hour, unreacted aqueous resin (a1) remaining in the lowermost layer coating, unreacted aqueous polymerizable hydrocarbon (b1) remaining in the outermost layer coating, MEK-soluble components in the film such as a part of the remaining unreacted photocleavable polymerization initiator (P) were removed. The residue was further refluxed with n-hexane for 1 hour to remove n-hexane soluble components such as the remainder of the photocleavable polymerization initiator (P) that was not extracted with MEK. The highly rigid resin (J) in the outermost layer film was quantified by pyrolysis GC-MS of the residue after reflux. When the outermost layer film is obtained by UV curing, Rad of the photocured radical (Rad.) Of the UV-cured resin (B1) and (B1) a repeating unit constituting the resin chain ((B1) resin chain The aqueous polymerizable hydrocarbon (b1)) incorporated in the crosslinked structure was quantified, and the ultraviolet curable resin (B1) in the outermost layer film was quantified. Even when the outermost layer film was obtained by electron beam curing, the electron beam cured resin in the outermost layer film was quantified by the same method. These results are shown in Tables 3-6 and Tables 8-10.
熱分解GC-MSは、既に述べたように、皮膜中の有機化合物(樹脂や有機添加剤等)を熱分解することにより生じるフラグメントイオンをガスクロマトグラフで各分子量成分に分離し、これらのフラグメントイオンの同定と定量を行う手法である。分解生成ガスに含まれるフラグメントイオンは、樹脂などの有機化合物中の弱い部分の結合が選択的に切断、または更に開裂して生じ、それらの構造や相対質量はもとの有機化合物の骨格を反映するため、これらを手がかりに解析し、樹脂や有機添加剤等の同定や定量ができる。 As described above, pyrolysis GC-MS separates fragment ions generated by pyrolyzing organic compounds (resins, organic additives, etc.) in the film into their respective molecular weight components using a gas chromatograph. This is a method for identifying and quantifying. Fragment ions contained in the decomposition product gas are generated by selective cleavage or further cleavage of weak bonds in organic compounds such as resins, and their structure and relative mass reflect the skeleton of the original organic compound. Therefore, these can be analyzed as clues, and identification and quantification of resins and organic additives can be performed.
[性能評価]
前記の方法で作成した複層皮膜被覆金属板を用い、耐擦傷性、耐摩耗性評価のため、乾式でのスチールウール摺動試験と湿式でのクレンザー摺動試験を行った。また、加工密着性評価、耐食性評価のため、それぞれ、エリクセン加工試験、平板部とエリクセン加工部の塩水噴霧試験を行った。以下に、各試験と評価の方法を示す。また、表3〜6、表8〜10に評価結果を示す。
[Performance evaluation]
Using the multilayer coating-coated metal plate prepared by the above method, a steel wool sliding test in a dry type and a cleanser sliding test in a wet type were performed for evaluation of scratch resistance and abrasion resistance. In addition, for processing adhesion evaluation and corrosion resistance evaluation, an Erichsen processing test and a salt spray test of a flat plate portion and an Erichsen processing portion were performed, respectively. Below, each test and the method of evaluation are shown. Tables 3 to 6 and Tables 8 to 10 show the evaluation results.
(耐擦傷性、耐摩耗性評価1:乾式でのスチールウール摺動試験)
前記金属板から、32×100mmサイズの試験片を切り出した。#0000スチールウールを50mm角に切出し、ラビングテスター(理研工学(株)製 DIC式ラビングテスター1型)のヘッドに取付けたゴム栓(20mm径)に貼付し、1.56N/cm2の荷重で前記試験片に押付け、乾式で、摺動距離60mm、60往復/分、100往復の摺動試験を行った。皮膜樹脂を染色して摺動を受けた面の擦傷を肉眼観察し、以下の評価基準にて3以上を合格とした。
(Abrasion resistance, abrasion resistance evaluation 1: dry steel wool sliding test)
A test piece of 32 × 100 mm size was cut out from the metal plate. Cut # 0000 steel wool into a 50mm square and affix it to a rubber stopper (20mm diameter) attached to the head of a rubbing tester (DIC type rubbing tester type 1 manufactured by Riken Engineering Co., Ltd.) with a load of 1.56N / cm 2 The test piece was pressed against the test piece, and a dry test was conducted with a sliding distance of 60 mm, 60 reciprocations / min, and 100 reciprocations. The surface of the surface that had been slid by dyeing the coating resin was visually observed, and a score of 3 or more was accepted according to the following evaluation criteria.
5:擦傷が皆無
4:皮膜樹脂を染色しないと確認しにくい非常に浅い擦傷がある
3:金属表面に達しない浅い擦傷があるが、金属表面に達する深い擦傷は皆無
2:浅い擦傷と金属表面に達する深い擦傷が混在
1:摺動を受けた面全体に金属板表面に達する深い擦傷がある
5: No scratches 4: Very shallow scratches that are difficult to identify without staining the coating resin 3: There are shallow scratches that do not reach the metal surface, but no deep scratches that reach the metal surface
2: Mixing shallow scratches and deep scratches reaching the metal surface
1: There is a deep scratch that reaches the surface of the metal plate over the entire sliding surface
(耐擦傷性、耐摩耗性評価2:湿式でのクレンザー摺動試験)
前記金属板から、32×100mmサイズの試験片を切り出した。フェルト(ユザワヤ商事(株)取扱ワンタッチフェルトRN-01)を40mm角に切出し、ラビングテスター(理研工学(株)製DIC式ラビングテスター1型)のヘッドに取付けたゴム栓(20mm径)に貼付し、輪ゴムで固定後、フェルト部分に蒸留水を十分に含ませ、垂れる水を軽く拭き取った。前記試験片に、シリカ系鉱物研磨剤5%液(花王(株)製ホーミングクレンザーを蒸留水で10倍に薄めたもの)を0.5cc滴下し、1.56N/cm2の荷重で前記試験片に押付け、湿式で、摺動距離60mm、60往復/分、100往復の摺動試験を行った。試験片を洗浄後、皮膜樹脂を染色して摺動を受けた面の擦傷を肉眼観察し、以下の評価基準にて3以上を合格とした。
(Abrasion resistance, abrasion resistance evaluation 2: wet cleanser sliding test)
A test piece of 32 × 100 mm size was cut out from the metal plate. Cut out felt (Yuzawaya Shoji Co., Ltd. one-touch felt RN-01) into a 40mm square and affix it to a rubber plug (20mm diameter) attached to the head of a rubbing tester (DIC type rubbing tester type 1 manufactured by Riken Engineering Co., Ltd.). After fixing with rubber bands, distilled water was sufficiently contained in the felt part, and dripping water was gently wiped off. To the test piece, 0.5 cc of a 5% silica-based mineral abrasive (a Kao Corporation homing cleanser diluted 10-fold with distilled water) was dropped, and the test piece was loaded at a load of 1.56 N / cm 2. A sliding test was performed by pressing the material into a wet type, sliding distance of 60 mm, 60 reciprocations / minute, and 100 reciprocations. After the test piece was washed, the film resin was stained and the scratches on the sliding surface were observed with the naked eye.
5:擦傷が皆無
4:皮膜樹脂を染色しないと確認しにくい非常に浅い擦傷がある
3:金属表面に達しない浅い擦傷があるが、金属表面に達する深い擦傷は皆無
2:浅い擦傷と金属表面に達する深い擦傷が混在
1:摺動を受けた面全体に金属板表面に達する深い擦傷がある
5: No scratches 4: Very shallow scratches that are difficult to identify without staining the coating resin 3: There are shallow scratches that do not reach the metal surface, but no deep scratches that reach the metal surface 2: Shallow scratches and the metal surface Mixed deep scratches that reach the surface 1: Deep scratches that reach the surface of the metal plate over the entire surface
(加工密着性評価:エリクセン加工試験)
前記金属板から50×100mmサイズの試験片を切り出し、エリクセン試験機で複層皮膜被覆面の裏側から7mm高さの張出し加工を行い、変形の激しい頂部にセロハン(登録商標)粘着テープ(ニチバン(株)製セロテープ(登録商標))を圧着して急激に剥離した。剥離後のテープを黒ケント紙に貼付して粘着面に付着した皮膜の有無を肉眼観察し、頂部の皮膜の剥離面積が頂部面積の10%未満のものを合格、10%以上剥離したものを不合格とした。
(Processing adhesion evaluation: Eriksen processing test)
A test piece of 50 × 100 mm size was cut out from the metal plate and subjected to an overhang process of 7 mm height from the back side of the multi-layer coating surface with an Erichsen tester, and the cellophane (registered trademark) adhesive tape (Nichiban ( A cellophane tape (registered trademark) manufactured by Co., Ltd.) was pressed and peeled off rapidly. The peeled tape is affixed to black Kent paper, and the presence or absence of the film adhering to the adhesive surface is observed with the naked eye. If the peeled area of the top film is less than 10% of the top area, it passes and 10% or more is peeled off. Passed.
(耐食性評価1:平板部SST)
前記金属板から50×100mmサイズの試験片を切り出し、板の端部をシール後、JIS-Z2371に準拠した塩水噴霧試験を行い、以下の評価基準にて72時間後の白錆発生面積率を測定し、3以上を合格とした。
(Corrosion resistance evaluation 1: Flat part SST)
Cut out a 50 x 100 mm size test piece from the metal plate, seal the end of the plate, perform a salt spray test in accordance with JIS-Z2371, and determine the area ratio of white rust after 72 hours according to the following evaluation criteria Measured and passed 3 or more.
6:白錆発生なし
5:白錆発生面積率3%未満
4:白錆発生面積率3%以上5%未満
3:白錆発生面積率5%以上10%未満
2:白錆発生面積率10%以上20%未満
1:白錆発生面積率20%以上
6: No white rust generation 5: White rust generation area rate of less than 3% 4: White rust generation area rate of 3% or more and less than 5% 3: White rust generation area rate of 5% or more and less than 10% 2: White rust generation area rate of 10 % To less than 20% 1: White rust generation area ratio of 20% or more
(耐食性評価1:加工部SST)
前記金属板から50×100mmサイズの試験片を切り出し、エリクセン試験機で複層皮膜被覆面の裏側から7mm高さの張出し加工を行い、板の端部をシール後、JIS-Z2371に準拠した塩水噴霧試験を行った。以下の評価基準にて、72時間後の凸部の白錆発生面積率を測定し、3以上を合格とした。
(Corrosion resistance evaluation 1: Processing part SST)
Cut out a test piece of 50 x 100 mm size from the metal plate, apply an overhang process 7 mm high from the back side of the multi-layer coating surface with an Erichsen tester, seal the end of the plate, and then salt water in accordance with JIS-Z2371 A spray test was performed. Based on the following evaluation criteria, the white rust occurrence area ratio of the convex portion after 72 hours was measured, and 3 or more was regarded as acceptable.
6:白錆発生なし
5:白錆発生面積率5%未満
4:白錆発生面積率5%以上10%未満
3:白錆発生面積率10%以上20%未満
2:白錆発生面積率20%以上30%未満
1:白錆発生面積率30%以上
6: No white rust generation 5: White rust generation area ratio less than 5% 4: White rust generation area ratio 5% or more and less than 10% 3: White rust generation area ratio 10% or more and less than 20% 2: White rust generation area ratio 20 % To less than 30% 1: White rust generation area rate of 30% or more
表3〜6、表8〜10に記載の本発明例の被覆金属板では、金属板種類、各層の皮膜種類、複層皮膜の形成方法に関わらず、優れた耐擦傷性、耐摩耗性が得られ、かつ、優れた加工密着性と耐食性が得られることがわかる。これは、硬質の最表層皮膜、繊密な最下層皮膜がうまく機能分担し、それぞれ、耐擦傷性と耐摩耗性の向上、加工密着性と耐食性の向上に貢献しているためと考えられる。 In the coated metal plates of the examples of the present invention described in Tables 3 to 6 and Tables 8 to 10, excellent scratch resistance and wear resistance are provided regardless of the metal plate type, the coating type of each layer, and the formation method of the multilayer coating. It can be seen that excellent process adhesion and corrosion resistance can be obtained. This is presumably because the hard outermost layer film and the finest lowermost layer film share the functions well and contribute to the improvement of scratch resistance and wear resistance, and the improvement of work adhesion and corrosion resistance, respectively.
一方、最表層皮膜そのものが形成されていない場合(比較例No.10,47,79,119,137)は、耐擦傷性、耐摩耗性が不良であり、また、最下層皮膜そのものが形成されていない場合(比較例No.6、43、77、115、133、151、201、215)は、加工密着性と耐食性がいずれも不良である。 On the other hand, when the outermost layer film itself is not formed (Comparative Example No. 10, 47, 79, 119, 137), the scratch resistance and wear resistance are poor, and when the lowermost layer film itself is not formed ( Comparative Examples Nos. 6, 43, 77, 115, 133, 151, 201, and 215) are poor in both processing adhesion and corrosion resistance.
最表層皮膜、最下層皮膜の両方が形成されている場合でも、いずれかが本発明が特定する皮膜でなければ、性能評価が不合格となる。例えば、最表層皮膜にシリカ微粒子(Cl)が全く含まれない場合(比較例No.91、93、107、109、186、188、196、198)では、耐擦傷性、耐摩耗性が不足して不合格となる。シリカ微粒子(Cl)含量が皮膜の35質量%を上回る場合(比較例No.92、108、187、197)では、加工密着性が不足する。また、表1に示した塗料のうち、5b、20b、21b、26bは、水性樹脂(a1)の含有量が塗料不揮発分全体の50質量%未満のため、これらの塗料を金属板に塗布して得られる最下層皮膜(比較例No.21、36、37、58、171、172)は、成膜時に生成する樹脂(A1)、(A2)の合計が皮膜の50質量%未満となるため、結果として複層皮膜の耐食性が不十分で、不合格となる。 Even when both the outermost layer film and the lowermost layer film are formed, if any one of the films is not specified by the present invention, the performance evaluation fails. For example, when the outermost layer film does not contain silica fine particles (Cl) at all (Comparative Examples No. 91, 93, 107, 109, 186, 188, 196, 198), the scratch resistance and wear resistance are insufficient. Fail. When the silica fine particle (Cl) content exceeds 35% by mass of the coating (Comparative Examples No. 92, 108, 187, 197), the work adhesion is insufficient. Of the paints shown in Table 1, 5b, 20b, 21b, and 26b have a water-based resin (a1) content of less than 50% by mass of the whole paint non-volatile content. In the lowermost layer film (Comparative Examples No. 21, 36, 37, 58, 171 and 172) obtained in this way, the total of the resins (A1) and (A2) generated during film formation is less than 50% by mass of the film. As a result, the corrosion resistance of the multi-layer coating is insufficient, resulting in a failure.
本発明例にて、最下層、最表層皮膜の間に中間層を持つ3層皮膜の場合、中間層を持たない場合に比べ、耐食性が更に良くなる場合があった(例えば、発明例 No.42と55の比較、発明例No.76と82の比較、発明例No.112と125、No.113と126、No.114と127の比較、発明例No.147と158、No.150と159の比較、No.200と209、No.214と223の比較など)。これは、中間層形成に用いた塗料34bに含まれていたシランカップリング剤が、共存樹脂(a1)との高架橋構造形成や、上下皮膜層との界面接着強化に大いに貢献し、結果として、複層皮膜全体の耐食性を底上げしたためと考えられる。 In the present invention example, in the case of a three-layer film having an intermediate layer between the lowermost layer and the outermost layer film, the corrosion resistance may be further improved as compared to the case without an intermediate layer (for example, Invention Example No. 42 and 55, Invention Examples No. 76 and 82, Invention Examples No. 112 and 125, No. 113 and 126, No. 114 and 127, Invention Examples No. 147 and 158, No. 150 159, No. 200 and 209, No. 214 and 223, etc.). This is because the silane coupling agent contained in the paint 34b used for forming the intermediate layer greatly contributed to the formation of a highly crosslinked structure with the coexisting resin (a1) and the enhancement of the interfacial adhesion with the upper and lower coating layers. This is probably because the corrosion resistance of the entire multilayer film has been raised.
最下層皮膜の付着量が好ましい範囲の0.01〜3g/m2を超えても、加工部耐食性は依然として合格レベルであるが、好ましい範囲にある場合に比べ、やや低下する傾向があった(例えば、発明例No.9(付着量3.5g/m2)とNo.2やNo.8との比較、発明例No.46(付着量3.7g/m2)とNo.39やNo.45との比較、発明例 No.118(付着量3.5g/m2)とNo.111やNo.117との比較、発明例No.154(付着量3.5g/m2)とNo.147やNo.153との比較、No.204(付着量3.5g/m2)とNo.200やNo.203との比較など)。これは、皮膜付着量が3g/m2を超えると、加工時に母材金属板の変形に皮膜が追従できず、金属表面から一部が剥離したり亀裂が生じたりし、それに伴い加工部耐食性もやや低下するため、と考えられる。なお、付着量がやや厚い場合でも、前記No.9、46、118、154、204などの性能評価結果に示したように、加工密着性は依然として本発明の合格レベルである。 Even if the adhesion amount of the lowermost layer film exceeds the preferable range of 0.01 to 3 g / m 2 , the processed portion corrosion resistance is still at the acceptable level, but there was a tendency to slightly decrease compared to the case where it is in the preferable range (for example, Comparison of Invention Example No. 9 (adhesion amount 3.5 g / m 2 ) with No. 2 and No. 8, Invention Example No. 46 (adhesion amount 3.7 g / m 2 ) and No. 39 and No. 45 Comparative, Inventive example No.118 comparison with (adhesion amount 3.5 g / m 2) and No.111 and No.117, the invention examples No.154 and (deposition amount 3.5g / m 2) No.147 and No.153 Comparison of No. 204 (adhesion amount 3.5 g / m 2 ) with No. 200 and No. 203). This is because if the coating amount exceeds 3 g / m 2 , the coating cannot follow the deformation of the base metal plate during processing, and part of the metal surface peels off or cracks occur, resulting in corrosion resistance of the processed part. It is thought that it is somewhat lower. Even when the adhesion amount is slightly thick, as shown in the performance evaluation results of Nos. 9, 46, 118, 154, 204 and the like, the processing adhesion is still at the acceptable level of the present invention.
同様に、最表層皮膜の付着量が好ましい範囲の0.2〜3g/m2を超えても、加工部耐食性は依然として合格レベルであるが、好ましい範囲にある場合に比べ、やや低下する傾向があった(例えば、発明例No.14(付着量3.6g/m2)とNo.2、12、13との比較、発明例No.51(付着量3.8g/m2)とNo.39、49、50との比較、発明例No.123(付着量3.5g/m2)とNo.111、121、122との比較、No.157(付着量3.5g/m2)とNo.147との比較など)。これは、皮膜付着量が3g/m2を超えると、加工時、高硬質の最表層皮膜に亀裂が生じやすくなり、それに伴い加工部耐食性もやや低下するため、と考えられる。なお、付着量が前記のようにやや厚い場合でも、前記No.14、51、123、157などの性能評価結果に示したように、加工密着性は依然として本発明の合格レベルである。 Similarly, beyond the 0.2 to 3 g / m 2 in the range amount of adhering outermost layer coating is preferred, although the processing unit corrosion resistance is still acceptable level, compared to the case in the preferred range, it tends slightly to decrease (For example, Comparison between Invention Example No. 14 (adhesion amount 3.6 g / m 2 ) and No. 2 , 12, 13; Invention Example No. 51 (adhesion amount 3.8 g / m 2 ) and No. 39, Comparison with 49, 50, Comparison with Invention Example No. 123 (adhesion amount 3.5 g / m 2 ) and No. 111, 121, 122, No. 157 (adhesion amount 3.5 g / m 2 ) and No. 147 Comparison). This is presumably because, when the coating amount exceeds 3 g / m 2 , cracks are likely to occur in the hardest outermost layer coating during processing, and the corrosion resistance of the processed portion is slightly reduced accordingly. Even when the adhesion amount is slightly thick as described above, as shown in the performance evaluation results of No. 14, 51, 123, 157, etc., the work adhesion is still at the acceptable level of the present invention.
最表層皮膜の付着量が好ましい範囲の0.2〜3g/m2を下回る場合、耐擦傷性、耐摩耗性は依然として合格レベルであるが、好ましい範囲にある場合に比べ、やや低下する傾向があった(例えば、発明例No.11(付着量0.15g/m2)とNo.2,12,13との比較、発明例No.48(付着量0.15g/m2)とNo.39、49、50との比較、発明例No.120(付着量0.15g/m2)とNo.111、121、122との比較、No.155(付着量0.15g/m2)とNo.147の比較など)。これは、最表層皮膜の付着量が0.2g/m2を下回ると、皮膜が薄く、高いレベルの耐擦傷性、耐摩耗性を保つのが困難となるためと考えられる。なお、付着量が前記のようにやや薄い場合でも、前記No.11、48、120、155などの性能評価結果に示したように、耐擦傷性、耐摩耗性は依然として本発明の合格レベルである。 When the adhesion amount of the outermost layer film is less than the preferable range of 0.2 to 3 g / m 2 , the scratch resistance and the wear resistance are still acceptable levels, but there was a tendency to slightly decrease compared to the preferable range. (For example, comparison between Invention Example No. 11 (adhesion amount 0.15 g / m 2 ) and No. 2 , 12, 13; Invention Example No. 48 (adhesion amount 0.15 g / m 2 ) and No. 39, 49, Comparison with No. 50, Comparison between Invention Example No. 120 (adhesion amount 0.15 g / m 2 ) and No. 111, 121, 122, Comparison between No. 155 (adhesion amount 0.15 g / m 2 ) and No. 147, etc. ). This is presumably because when the adhesion amount of the outermost layer film is less than 0.2 g / m 2 , the film is thin and it is difficult to maintain a high level of scratch resistance and wear resistance. Even when the adhesion amount is slightly thin as described above, as shown in the performance evaluation results of No. 11, 48, 120, 155, etc., the scratch resistance and wear resistance are still at the pass level of the present invention. is there.
以上述べてきたように、本発明によれば、硬い異物により強い摺動を受けても表面に擦傷がつきにくく、摩耗しにくく、かつ、耐食性、加工密着性に優れる複層皮膜被覆金属板を提供することができる。これまで、耐擦傷性、耐摩耗性、耐食性、加工密着性のすべてに優れる薄膜被覆金属板は製造困難であったため、例えば、耐擦傷性や耐摩耗性に優れていても、すぐに錆びて表面外観や構造部材としての強度を損なうため適用できなかった用途や、反対に、耐食性や加工密着性に優れていても、表面がすぐに傷付いたり摩耗して意匠性を損なうため適用できなかった用途に広く活用できる。 As described above, according to the present invention, there is provided a multi-layer coating-coated metal plate that is less likely to be scratched and worn even when subjected to strong sliding with a hard foreign object, and that is excellent in corrosion resistance and work adhesion. Can be provided. Until now, it has been difficult to produce thin film coated metal sheets with excellent scratch resistance, wear resistance, corrosion resistance, and work adhesion.For example, even if they have excellent scratch resistance and wear resistance, they can rust immediately. Applications that could not be applied due to loss of surface appearance and strength as structural members, and conversely, even if they have excellent corrosion resistance and work adhesion, they cannot be applied because the surface is immediately scratched or worn and damages the design. Can be widely used for various purposes.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010079147A JP5617309B2 (en) | 2009-03-30 | 2010-03-30 | Multilayer-coated metal sheet and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009083622 | 2009-03-30 | ||
JP2009083622 | 2009-03-30 | ||
JP2010079147A JP5617309B2 (en) | 2009-03-30 | 2010-03-30 | Multilayer-coated metal sheet and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010253942A true JP2010253942A (en) | 2010-11-11 |
JP5617309B2 JP5617309B2 (en) | 2014-11-05 |
Family
ID=43315413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010079147A Expired - Fee Related JP5617309B2 (en) | 2009-03-30 | 2010-03-30 | Multilayer-coated metal sheet and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5617309B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016204691A (en) * | 2015-04-20 | 2016-12-08 | 関西ペイント株式会社 | Aqueous metal surface treatment agent |
CN109055926A (en) * | 2018-07-05 | 2018-12-21 | 四川大学 | A kind of magnesium-base metal material conversion film and preparation method thereof |
KR20190072082A (en) * | 2017-12-15 | 2019-06-25 | 현대자동차주식회사 | Composition for surface-treating a plated steel sheet, surface-treated plated steel sheet using the same and the method for surface-treatenting using the same |
WO2021097659A1 (en) * | 2019-11-19 | 2021-05-27 | 南京先进生物材料与过程装备研究院有限公司 | Method for preparing epoxy-modified waterborne polyurethane resin anticorrosive coating |
CN113559146A (en) * | 2021-07-28 | 2021-10-29 | 西北农林科技大学 | Method for efficiently extracting walnut green husk polyphenol substances by electron beam irradiation |
CN115228704A (en) * | 2022-07-28 | 2022-10-25 | 广州通泽机械有限公司 | Composite method and equipment for coating in different modes and controlling coating amount in linkage mode |
WO2024142549A1 (en) * | 2022-12-26 | 2024-07-04 | 日本ペイント・インダストリアルコーティングス株式会社 | Method for producing multilayer coating film |
WO2024142551A1 (en) * | 2022-12-26 | 2024-07-04 | 日本ペイント・インダストリアルコーティングス株式会社 | Method for producing multilayer coating film |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000107686A (en) * | 1998-10-02 | 2000-04-18 | Nippon Steel Corp | Low-toxicity precoated metallic sheet having excellent corrosion resistance and coating film adhesion property |
JP2000167482A (en) * | 1998-11-30 | 2000-06-20 | Nippon Steel Corp | Precoated metal sheet having excellent adhesion property with coating film |
JP2003055776A (en) * | 2001-08-17 | 2003-02-26 | Nippon Steel Corp | Non-film removal type lubricating plated steel sheet having excellent corrosion resistance in worded part and little environmental load |
JP2006265622A (en) * | 2005-03-23 | 2006-10-05 | Jfe Steel Kk | Surface treated steel sheet having excellent corrosion resistance and scratch resistance and method for producing the same |
-
2010
- 2010-03-30 JP JP2010079147A patent/JP5617309B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000107686A (en) * | 1998-10-02 | 2000-04-18 | Nippon Steel Corp | Low-toxicity precoated metallic sheet having excellent corrosion resistance and coating film adhesion property |
JP2000167482A (en) * | 1998-11-30 | 2000-06-20 | Nippon Steel Corp | Precoated metal sheet having excellent adhesion property with coating film |
JP2003055776A (en) * | 2001-08-17 | 2003-02-26 | Nippon Steel Corp | Non-film removal type lubricating plated steel sheet having excellent corrosion resistance in worded part and little environmental load |
JP2006265622A (en) * | 2005-03-23 | 2006-10-05 | Jfe Steel Kk | Surface treated steel sheet having excellent corrosion resistance and scratch resistance and method for producing the same |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016204691A (en) * | 2015-04-20 | 2016-12-08 | 関西ペイント株式会社 | Aqueous metal surface treatment agent |
KR20190072082A (en) * | 2017-12-15 | 2019-06-25 | 현대자동차주식회사 | Composition for surface-treating a plated steel sheet, surface-treated plated steel sheet using the same and the method for surface-treatenting using the same |
KR102496653B1 (en) | 2017-12-15 | 2023-02-07 | 현대자동차주식회사 | Composition for surface-treating a plated steel sheet, surface-treated plated steel sheet using the same and the method for surface-treatenting using the same |
CN109055926A (en) * | 2018-07-05 | 2018-12-21 | 四川大学 | A kind of magnesium-base metal material conversion film and preparation method thereof |
WO2021097659A1 (en) * | 2019-11-19 | 2021-05-27 | 南京先进生物材料与过程装备研究院有限公司 | Method for preparing epoxy-modified waterborne polyurethane resin anticorrosive coating |
CN113559146A (en) * | 2021-07-28 | 2021-10-29 | 西北农林科技大学 | Method for efficiently extracting walnut green husk polyphenol substances by electron beam irradiation |
CN115228704A (en) * | 2022-07-28 | 2022-10-25 | 广州通泽机械有限公司 | Composite method and equipment for coating in different modes and controlling coating amount in linkage mode |
WO2024142549A1 (en) * | 2022-12-26 | 2024-07-04 | 日本ペイント・インダストリアルコーティングス株式会社 | Method for producing multilayer coating film |
WO2024142551A1 (en) * | 2022-12-26 | 2024-07-04 | 日本ペイント・インダストリアルコーティングス株式会社 | Method for producing multilayer coating film |
Also Published As
Publication number | Publication date |
---|---|
JP5617309B2 (en) | 2014-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5617309B2 (en) | Multilayer-coated metal sheet and method for producing the same | |
JP5021107B2 (en) | Painted metal plate with excellent conductivity and corrosion resistance | |
US7083831B1 (en) | Chromium-free corrosion preventive and corrosion prevention method | |
US20050186442A1 (en) | Coating method and coating mixture | |
AU2004203920B2 (en) | Method for coating metallic surfaces, coating composition, and coatings produced in said manner | |
JP5032111B2 (en) | Method of coating metal surface using silane high concentration composition | |
KR101449359B1 (en) | Surface-treated metal material and aqueous metal surface treatment agent | |
EP0659855A2 (en) | Water-based coating composition | |
JP5512981B2 (en) | Water-based paint composition and coating method using the composition | |
JP4980470B2 (en) | Surface-treated metal material and manufacturing method thereof | |
JP5913429B2 (en) | Electrodeposition coating composition, electrodeposition coating method, and fluorine-containing coating film | |
JPWO2006038651A1 (en) | Active energy ray-curable coating composition and coating film forming method | |
JP4389066B2 (en) | Water-dispersed rust-proof coating composition | |
JP2009191284A (en) | Metal surface treatment agent | |
MXPA06006712A (en) | Process for applying a coating to a coiled metal sheet. | |
JP2003532776A (en) | Coating method of thin plate | |
TW200307056A (en) | Heat-resistance-treated metal sheet, organic coated metal sheet and phosphate treated zinc-based plated metal sheet each excellent in corrosion resistance | |
US20120237694A1 (en) | Aluminum alloy coating process and method | |
TWI490285B (en) | Paint coating system and method of producing multilayered paint coating | |
KR20180073388A (en) | Coating Composition Having Superior Corrosion-Resistance and Lubricity and Coated Steel Sheet Using the Same | |
JP6367462B2 (en) | Metal surface treatment agent for galvanized steel or zinc-base alloy plated steel, coating method and coated steel | |
JP2007260541A (en) | Pre-coat metal plate and its manufacturing method | |
KR101762340B1 (en) | Resin composition, the black resin coated steel sheet using the same, and the method of preparing the same | |
JP2003155452A (en) | Aqueous coating agent for steel, coating method, and coated steel | |
JPH07179813A (en) | Water-based coating composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120209 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140121 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140313 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140819 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140901 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5617309 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |