JP2010253658A - Non-contact workpiece holding device - Google Patents

Non-contact workpiece holding device Download PDF

Info

Publication number
JP2010253658A
JP2010253658A JP2009109824A JP2009109824A JP2010253658A JP 2010253658 A JP2010253658 A JP 2010253658A JP 2009109824 A JP2009109824 A JP 2009109824A JP 2009109824 A JP2009109824 A JP 2009109824A JP 2010253658 A JP2010253658 A JP 2010253658A
Authority
JP
Japan
Prior art keywords
flow path
contact
work holding
spiral
holding device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009109824A
Other languages
Japanese (ja)
Other versions
JP2010253658A5 (en
Inventor
Harumi Shimada
晴示 島田
Nobuyuki Asari
信之 浅里
Yasuaki Taniguchi
泰章 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Moore Co
Original Assignee
Nitta Moore Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Moore Co filed Critical Nitta Moore Co
Priority to JP2009109824A priority Critical patent/JP2010253658A/en
Publication of JP2010253658A publication Critical patent/JP2010253658A/en
Publication of JP2010253658A5 publication Critical patent/JP2010253658A5/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small type non-contact workpiece holding device having stable and high holding force with little energy. <P>SOLUTION: A connecting part 12A, a spiral passage forming part 12B, a diameter reducing part 12C, a turning flow forming part 12D and an opening part 12E are formed from an upper side in a housing 11 having a rotation symmetrical inner peripheral surface. A block member 13 provided with a spiral projecting line 14 on an outer peripheral surface is inserted into the spiral passage forming part 12B. A spiral passage is formed by contact of the spiral projecting line 14 and the spiral passage forming part 12B. High pressure gas is jetted to the diameter reducing part 12C through a spiral flow passage and a turning flow is formed in the turning flow forming part 12D. The formed turning flow is made to flow out of the opening part 12E. A workpiece W is arranged to face to the opening part 12E and the workpiece W is held by imparting floating force to the workpiece W by negative pressure at a center of the turning flow. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、流体を媒介して物体を非接触で保持する非接触保持装置に関する。   The present invention relates to a non-contact holding device for holding an object in a non-contact manner through a fluid.

半導体ウェハやガラス基板等の薄板状のワークを搬送するエンドエフェクタに代えて、流体を媒介としてワークを非接触で保持するベルヌーイチャックが提案されている(特許文献1)。ベルヌーイチャックでは、ワーク上方に配置された保持板に空気噴射口を設け、ワーク上面と保持板面との間に空気を高速で流したときのベルヌーイ効果によりワークを保持板に向けて吸引する。すなわち、ワークは、その重さと吸引力が釣り合う位置で保持板と非接触な状態で保持される。   A Bernoulli chuck that holds a workpiece in a non-contact manner using a fluid as a medium instead of an end effector that transports a thin plate-like workpiece such as a semiconductor wafer or a glass substrate has been proposed (Patent Document 1). In the Bernoulli chuck, an air injection port is provided in a holding plate arranged above the workpiece, and the workpiece is sucked toward the holding plate by the Bernoulli effect when air is flowed at a high speed between the upper surface of the workpiece and the holding plate surface. That is, the workpiece is held in a non-contact state with the holding plate at a position where the weight and the suction force are balanced.

特開平11−223521号公報JP-A-11-223521

しかし、ベルヌーイチャックでは、保持力が弱い上、保持力を維持するのに多くの流量を必要とする。また、ワーク上面と保持板面の間を流れる空気のベルヌーイ効果で保持力を得ているため、圧力回復に伴う減速流れのために境界層剥離や乱流遷移が発生し易く、保持力が安定しないと言う問題がある。   However, the Bernoulli chuck has a low holding force and requires a large flow rate to maintain the holding force. In addition, because the holding force is obtained by the Bernoulli effect of the air flowing between the workpiece upper surface and the holding plate surface, boundary layer separation and turbulent flow transition are likely to occur due to the deceleration flow accompanying pressure recovery, and the holding force is stable. There is a problem of not doing.

本発明は、少ないエネルギーで安定した高い保持力を有する小型の非接触ワーク保持装置を提供することを課題としている。   An object of the present invention is to provide a small non-contact workpiece holding device having a stable high holding force with a small amount of energy.

本発明の非接触ワーク保持装置は、回転対称の内周面を有し、頂部が気密されるとともに底部に円形の下部開口が設けられたハウジングと、ハウジングの内周面の周方向に沿って下向き成分を有する流速で気体をハウジング内に噴出して旋回流を形成する流路とを備え、内周面が下部開口方向に向けて縮径する縮径部を有することを特徴としている。   The non-contact workpiece holding device of the present invention has a rotationally symmetric inner peripheral surface, a housing in which a top portion is airtight and a circular lower opening is provided in a bottom portion, and a circumferential direction of the inner peripheral surface of the housing. And a flow path for jetting gas into the housing at a flow rate having a downward component to form a swirling flow, and the inner peripheral surface has a reduced diameter portion that is reduced in diameter toward the lower opening direction.

好ましくは、ハウジングの頂部にブロック部材が嵌入され、ブロック部材と内周面との間に、流路が螺旋状に形成される。このとき例えばブロックの外周面に螺旋状の凸条が設けられ、凸条が内周面に当接することにより螺旋状の流路が形成される。これにより、極めて簡略な構成で螺旋流路を形成することができ、組立て効率も向上する。更に、より効率的に旋回流を形成するには、ブロック部材は下部開口に向けて縮径する回転対称な突出部を備えることが好ましい。   Preferably, a block member is fitted into the top of the housing, and the flow path is formed in a spiral shape between the block member and the inner peripheral surface. At this time, for example, spiral ridges are provided on the outer peripheral surface of the block, and the spiral channels are formed by the ridges coming into contact with the inner peripheral surface. Thereby, a spiral flow path can be formed with a very simple configuration, and the assembly efficiency is also improved. Furthermore, in order to form a swirl flow more efficiently, it is preferable that the block member has a rotationally symmetric protrusion that is reduced in diameter toward the lower opening.

例えば、回転対称軸に沿ってブロック部材を連通する制御流路が設けられ、制御流路は更に制御弁を介してハウジング外部へと連通される。これにより、ワークの浮揚力を簡便に制御することができる。また、このときブロック部材の上部に気体を供給する供給流路がハウジングに気密的に接続され、例えば供給流路の内側に制御流路が配設される。これにより非接触ワーク保持装置の径をより小さくすることができる。   For example, a control flow path that communicates the block member along the rotational symmetry axis is provided, and the control flow path is further communicated to the outside of the housing via the control valve. Thereby, the levitation force of the workpiece can be easily controlled. At this time, a supply flow path for supplying gas to the upper portion of the block member is hermetically connected to the housing, and for example, a control flow path is disposed inside the supply flow path. Thereby, the diameter of a non-contact workpiece holding apparatus can be made smaller.

更に、下部開口から流出する旋回流の剥離や乱れを抑えるために、下部開口が下方に向けて拡径する領域を設けてもよい。また、螺旋状の流路は、例えば複数設けられる。これにより、より効率的に安定した旋回流を形成することが可能になる。   Furthermore, in order to suppress the separation and turbulence of the swirling flow flowing out from the lower opening, a region in which the lower opening expands downward may be provided. A plurality of spiral flow paths are provided, for example. Thereby, it becomes possible to form a stable swirl flow more efficiently.

更に、本発明の非接触ワーク保持装置ユニットは、上記非接触ワーク保持装置を偶数個備え、螺旋状の流路が右巻きのものの数と左向きのものの数が等しいことを特徴としている。   Furthermore, the non-contact work holding device unit according to the present invention is characterized in that an even number of the non-contact work holding devices are provided, and the number of the spiral-shaped flow paths that are clockwise is the same as the number of those that face left.

ワークへの旋回流のトルクの影響を低減するには、流路が右巻きと左巻きの非接触ワーク保持装置を1つの軸を中心に回転対称に交互に配置することが好ましい。   In order to reduce the influence of the torque of the swirl flow on the work, it is preferable to alternately arrange the non-contact work holding devices having the right-handed and left-handed flow paths with rotational symmetry about one axis.

本発明によれば、少ないエネルギーで安定した高い保持力を有する小型の非接触ワーク保持装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the small non-contact workpiece holding apparatus which has the stable high holding force with little energy can be provided.

本実施形態の非接触ワーク保持装置の側断面図である。It is a sectional side view of the non-contact workpiece holding device of this embodiment. 螺旋凸条を2条備えたブロック部材の頂面図である。It is a top view of the block member provided with two spiral ridges. 第2実施形態の非接触ワーク保持装置を左半分を断面図として示す図である。It is a figure which shows the left half as sectional drawing of the non-contact workpiece holding apparatus of 2nd Embodiment. 非接触ワーク保持装置の配置を示す第3実施形態の非接触ワーク保持ユニットの配置図である。It is a layout of the non-contact work holding unit of the third embodiment showing the layout of the non-contact work holding device. 第3実施形態の非接触ワーク保持ユニットの配置図の別の例である。It is another example of the layout of the non-contact workpiece holding unit of the third embodiment.

以下、本発明の実施の形態を、図面を参照して説明する。図1は、本発明の第1実施形態である非接触ワーク保持装置の構成を示す断面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a configuration of a non-contact work holding device according to a first embodiment of the present invention.

非接触ワーク保持装置10は、円筒形状を有するハウジング11を備え、ハウジング11には円筒軸Xに沿って上下を連通する回転対称な空洞12が設けられる。すなわち、ハウジング11内には、回転対称な内周面が形成される。   The non-contact work holding device 10 includes a housing 11 having a cylindrical shape, and the housing 11 is provided with a rotationally symmetric cavity 12 that communicates vertically along the cylindrical axis X. That is, a rotationally symmetric inner peripheral surface is formed in the housing 11.

空洞12は、上から順に、連結部12A、螺旋流路形成部12B、縮径部12C、旋回流形成部12D、開口部12Eで構成される。連結部12Aの内周面は、内径D1の円筒形状をなし、螺旋流路形成部12Bの内周面は、内径D1よりもひと回り小さい内径D2を有する円筒形状をなす。縮径部12Cは、その内周面が、内径D2よりもひと回り小さい内径D3を有する円筒形状をなす部分と、内径D3からこれよりも小さい内径D4の円筒形状をなす旋回流形成部12Dへと円筒軸Xに沿って漸次縮径(本実施形態では直線的に縮径)する部分とから形成される。また、開口部12Eは、旋回流形成部12Dから一旦僅かに縮径し、その後ハウジング11の下端面に向けて略内径D4にまで拡径する。なお、拡径を行わない構成や、更に縮径を行わず、旋回流形成部12Dをそのまま開口部とすることも可能である。   The cavity 12 includes a connecting part 12A, a spiral flow path forming part 12B, a reduced diameter part 12C, a swirl flow forming part 12D, and an opening part 12E in order from the top. The inner peripheral surface of the connecting portion 12A has a cylindrical shape with an inner diameter D1, and the inner peripheral surface of the spiral flow path forming portion 12B has a cylindrical shape with an inner diameter D2 that is slightly smaller than the inner diameter D1. The reduced diameter portion 12C has a cylindrical shape with an inner circumferential surface having an inner diameter D3 that is slightly smaller than the inner diameter D2, and a swirl flow forming portion 12D that has a smaller inner diameter D4 than the inner diameter D3. And a portion that gradually decreases along the cylindrical axis X (linearly decreases in the present embodiment). Further, the opening 12E is once slightly reduced in diameter from the swirl flow forming portion 12D, and then expanded to the substantially inner diameter D4 toward the lower end surface of the housing 11. In addition, it is also possible to make the swirl | flow flow formation part 12D into an opening part as it is, without performing the diameter expansion, or performing diameter reduction further.

螺旋流路形成部12Bには、ブロック部材13が嵌入される。ブロック部材13は、円筒部13Aと切頭円錐形の先端部13Bを備え、円筒部13Aの外周面には螺旋状の凸条14が一体的に設けられる。円筒部13Aの外径D5は螺旋流路形成部12Bの内径D2よりも小さく、その高さは螺旋流路形成部12Bに略等しい。また、螺旋状の凸条14の外径は螺旋流路形成部12Bの内径D2に略等しく、ブロック部材13が螺旋流路形成部12B内に嵌入されると、凸条14の下端部は螺旋流路形成部12Bと縮径部13Cの間の段部に係合して軸方向下向きへの運動が規制される。このとき円筒部13Aの外周面と螺旋流路形成部12Bの内周面に挟まれた空間には、螺旋流路形成部12Bの内周面に当接する凸条14により仕切られた螺旋状の流路が形成される。   The block member 13 is fitted into the spiral flow path forming portion 12B. The block member 13 includes a cylindrical portion 13A and a frustoconical tip portion 13B, and a spiral ridge 14 is integrally provided on the outer peripheral surface of the cylindrical portion 13A. The outer diameter D5 of the cylindrical portion 13A is smaller than the inner diameter D2 of the spiral flow path forming portion 12B, and its height is substantially equal to the spiral flow path forming portion 12B. Further, the outer diameter of the spiral ridge 14 is substantially equal to the inner diameter D2 of the spiral flow path forming portion 12B, and when the block member 13 is fitted into the spiral flow path forming portion 12B, the lower end of the ridge 14 is spiral. The downward movement in the axial direction is restricted by engaging the step portion between the flow path forming portion 12B and the reduced diameter portion 13C. At this time, in a space sandwiched between the outer peripheral surface of the cylindrical portion 13A and the inner peripheral surface of the spiral flow path forming portion 12B, a spiral shape partitioned by the ridges 14 in contact with the inner peripheral surface of the spiral flow path forming portion 12B. A flow path is formed.

円筒部13Aが螺旋流路形成部12Bに装着された状態において、切頭円錐状の先端部13Bは縮径部12C内に張り出して配置され、その先端は、略旋回流形成部12Dの入り口高さに達する。このとき、先端部13Bの外周面(錐面)と縮径部12Cの内周面との間には隙間が形成される。   In a state in which the cylindrical portion 13A is mounted on the spiral flow path forming portion 12B, the truncated conical tip portion 13B is disposed so as to protrude into the reduced diameter portion 12C, and the tip thereof is substantially the entrance height of the swirl flow forming portion 12D. Reach. At this time, a gap is formed between the outer peripheral surface (conical surface) of the tip portion 13B and the inner peripheral surface of the reduced diameter portion 12C.

また、連結部12Aには、固定部材15が気密的に嵌入され、ブロック部材13の螺旋状凸条14の上端部は、固定部材15の下端部と係合される。更に、この状態において、固定部材15の上端部は、連結部12Aの内周面に形成された環状の溝に嵌合されるCリング16により軸方向移動が規制される。これにより、ブロック部13、固定部材15は、ハウジング11に対して軸方向に固定される。   In addition, the fixing member 15 is airtightly fitted into the connecting portion 12 </ b> A, and the upper end portion of the spiral protrusion 14 of the block member 13 is engaged with the lower end portion of the fixing member 15. Furthermore, in this state, the axial movement of the upper end portion of the fixing member 15 is restricted by the C ring 16 fitted in an annular groove formed on the inner peripheral surface of the connecting portion 12A. Thereby, the block part 13 and the fixing member 15 are fixed to the housing 11 in the axial direction.

また、固定部材15の中央には上下を連通するネジ穴が設けられ、ネジ穴には、雄ネジを備えた連結部材17が気密的に螺着される。なお連結部材17にも、軸に沿って通路17Aが形成され、雄ネジと反対側には気体をハウジング11内へと供給するための供給流路18の一端が連結される。供給流路18の他端は、ポンプなどの気体供給装置(図示せず)に連結され、気体供給装置から例えば高圧の気体がハウジング11へと供給される。   Further, a screw hole that communicates with the upper and lower sides is provided in the center of the fixing member 15, and a connecting member 17 having a male screw is screwed into the screw hole in an airtight manner. The connecting member 17 is also formed with a passage 17A along the axis, and one end of a supply flow path 18 for supplying gas into the housing 11 is connected to the side opposite to the male screw. The other end of the supply flow path 18 is connected to a gas supply device (not shown) such as a pump, and high-pressure gas, for example, is supplied from the gas supply device to the housing 11.

また、供給流路18の内側には、軸Xに沿って制御流路19が配設される。制御流路19は、例えば供給流路18の所定の位置で、供給流路18の外側へと出され、その先端には制御弁20が設けられ、制御弁20の開閉は例えば図示しない制御装置により制御される。また、制御通路19は、連結部材17の通路17Aの内側を通り抜け、ブロック部材13の中心に形成され、軸Xに沿ってブロック部材13を貫通する穴13Dに気密的に嵌入される。すなわち、制御弁20が開かれると、旋回流形成部12Dの中心は、制御流路19を介して、ハウジング外部と連通される。   A control flow path 19 is disposed along the axis X inside the supply flow path 18. The control flow path 19 is extended to the outside of the supply flow path 18 at a predetermined position of the supply flow path 18, for example, and a control valve 20 is provided at the tip of the control flow path 19. Controlled by The control passage 19 passes through the inside of the passage 17 </ b> A of the connecting member 17, is formed at the center of the block member 13, and is hermetically fitted into a hole 13 </ b> D that penetrates the block member 13 along the axis X. That is, when the control valve 20 is opened, the center of the swirl flow forming portion 12 </ b> D is communicated with the outside of the housing via the control flow path 19.

次に、本実施形態の非接触ワーク保持装置10の作用について図1を参照して説明する。非接触ワーク保持装置10は、略水平に配置された薄板条のワークWと対峙して使用される。すなわち、円筒軸Xを略鉛直にし、開口部12EをワークWに対面させて使用される。ポンプから供給された高圧気体は供給通路18と通して、ブロック部材13の上部へと供給される。ブロック部材13の上部は、固定部材15と連結部材17により、外部に対して気密されているとともに、ブロック部材13の頂面を覆う空間21が形成される。   Next, the operation of the non-contact work holding device 10 of this embodiment will be described with reference to FIG. The non-contact work holding device 10 is used in opposition to a thin sheet work W arranged substantially horizontally. That is, the cylinder shaft X is set to be substantially vertical, and the opening 12E faces the workpiece W. The high-pressure gas supplied from the pump is supplied to the upper part of the block member 13 through the supply passage 18. The upper portion of the block member 13 is hermetically sealed with respect to the outside by the fixing member 15 and the connecting member 17, and a space 21 that covers the top surface of the block member 13 is formed.

空間21に供給された気体は、螺旋流路形成部12Bに形成された螺旋流路を下降し、縮径部13に噴出される。気体は、螺旋流路に沿って噴出されるので、縮径部12Cの内周面の周方向に沿って螺旋ピッチに対応する下向き成分を有する流速で噴出される。噴出された気体は、縮径する縮径部12Cの内周面とブロック部材13の先端部13Bの外周面との間の空間を、螺旋を描きながら下降し、径が小さくなるにしたがって、気体の回転速度は上昇する。   The gas supplied to the space 21 descends the spiral channel formed in the spiral channel forming part 12B and is ejected to the reduced diameter part 13. Since the gas is ejected along the spiral flow path, it is ejected at a flow velocity having a downward component corresponding to the spiral pitch along the circumferential direction of the inner circumferential surface of the reduced diameter portion 12C. The ejected gas descends while drawing a spiral in the space between the inner peripheral surface of the reduced diameter portion 12C and the outer peripheral surface of the tip end portion 13B of the block member 13, and as the diameter decreases, the gas decreases. The rotational speed of increases.

旋回流形成部12Dでは、高速化された旋回流が螺旋状に下降し、安定した旋回流が形成される。旋回流形成部12Dの下端に達した旋回流は、開口部12Eを通してハウジング11の外側へと流出し、ハウジング11の下端面とワークWの間の隙間を通して径方向外側へと流出する。なお、制御弁20は通常は閉じられた状態に維持される。   In the swirl flow forming unit 12D, the swirl flow that has been speeded up descends in a spiral manner, and a stable swirl flow is formed. The swirl flow that has reached the lower end of the swirl flow forming portion 12D flows out of the housing 11 through the opening 12E, and flows out radially outward through a gap between the lower end surface of the housing 11 and the workpiece W. The control valve 20 is normally maintained in a closed state.

旋回流が十分に発達する旋回流形成部12Dでは、円筒内の気体の回転速度分布は一定となり中央では負圧が発生する。このとき、ワークW表面とハウジング11の間における径方向の圧力分布は、円筒軸Xを中心に負圧が最大となり、外側に行くにしたがって圧力は上昇して、ハウジング11の端面とワークWの面との間の隙間では、正圧側に振れる。そして、ハウジング11よりも外側において圧力は外気圧へと収斂する。   In the swirl flow forming portion 12D where the swirl flow is sufficiently developed, the rotational speed distribution of the gas in the cylinder is constant, and negative pressure is generated in the center. At this time, the pressure distribution in the radial direction between the surface of the workpiece W and the housing 11 has a maximum negative pressure around the cylindrical axis X, and the pressure increases toward the outside, and the end surface of the housing 11 and the workpiece W are increased. In the gap with the surface, it swings to the positive pressure side. Then, the pressure converges to the outside air pressure outside the housing 11.

また、ワークWの上記旋回流による浮揚力は、ワークWとハウジング11との間の距離の関数となり、距離が所定の値のときに、ワークWの重量と浮揚力が釣り合う。なお、この位置は、安定な釣合い点でありこれ以上距離が近づくと、非接触ワーク保持装置はワークWを押し下げ、遠ざかると逆にワークを吸引して押し上げる。以上のように、本実施形態によれば、ハウジング11内に安定した旋回流を形成し、この旋回流により得られる負圧を用いてワークWを非接触で保持することができる。   Further, the levitation force due to the swirling flow of the workpiece W is a function of the distance between the workpiece W and the housing 11, and when the distance is a predetermined value, the weight of the workpiece W and the levitation force are balanced. In addition, this position is a stable balance point, and when the distance approaches further, the non-contact work holding device pushes down the work W, and when it moves away, the work is sucked up and pushed up. As described above, according to the present embodiment, a stable swirl flow can be formed in the housing 11, and the workpiece W can be held in a non-contact manner using the negative pressure obtained by the swirl flow.

なお、制御弁20が開かれると、旋回流形成部12Dは制御通路19を通して外部と連通されるため、旋回流形成部12Dの中心部における圧力は外気圧により上昇し、ワーク浮揚力が下がる。したがって、制御弁20の開閉を制御することにより、ワークWの保持を制御することが可能となる。なお、外気圧を導入するだけでなく、ポンプ等から積極的に気体を送ることで更に制御性を高めることも可能である。   When the control valve 20 is opened, the swirling flow forming portion 12D communicates with the outside through the control passage 19, so that the pressure at the central portion of the swirling flow forming portion 12D increases due to the external air pressure, and the work levitation force decreases. Therefore, the holding of the workpiece W can be controlled by controlling the opening and closing of the control valve 20. In addition to introducing the atmospheric pressure, controllability can be further enhanced by actively sending gas from a pump or the like.

以上のように、第1実施形態の非接触ワーク保持装置によれば、ハウジング内に安定した旋回流を形成し、この旋回流により得られる負圧を用いて例えば薄板状のワークを非接触で保持、搬送することができる。   As described above, according to the non-contact work holding device of the first embodiment, a stable swirl flow is formed in the housing, and, for example, a thin plate-like work is brought into non-contact using the negative pressure obtained by the swirl flow. It can be held and transported.

また、螺旋通路を利用して気体をハウジング内に噴出しているため旋回流の形成が効率的となる。更に、本実施形態では、縮径を行って旋回流を形成しているため、より効率的に安定した高速な旋回流を形成することができ、強い負圧を小型なハウジング内に発生させることができる。   Further, since the gas is ejected into the housing using the spiral passage, the swirl flow can be formed efficiently. Furthermore, in this embodiment, since the swirl flow is formed by reducing the diameter, a stable and high-speed swirl flow can be formed more efficiently, and a strong negative pressure can be generated in a small housing. Can do.

本実施形態ではブロック部を挿入するだけで、螺旋流路を形成することができ、組立て効率が高い。また、縮径部に、ハウジングの内周面の縮径に合わせて外径が縮径する先端部を配置することで、より効率的に旋回流を発生させることができる。   In this embodiment, it is possible to form a spiral flow path simply by inserting the block portion, and the assembly efficiency is high. Further, the swirling flow can be generated more efficiently by disposing a tip portion whose outer diameter is reduced in accordance with the reduced diameter of the inner peripheral surface of the housing in the reduced diameter portion.

また更に、本実施形態では、制御弁を介して外部と旋回流形成部を連通する制御通路が設けられているため、ポンプの出力を替えることなく、制御弁の開閉を制御するだけで、ワークに与えられる浮揚力を制御することが可能となる。   Furthermore, in this embodiment, since a control passage that communicates the swirl flow forming portion with the outside via the control valve is provided, it is possible to control the opening and closing of the control valve without changing the output of the pump. It is possible to control the levitation force applied to the.

なお、図1を参照する第1実施形態では、ブロック部材の外周に設けられる凸条が1条のときを例に図示したが、凸条の数は2条以上でもよい。また、ブロック部材の外周面を円筒面のままとし、螺旋流路形成部の内周面に凸条を設ける構成とすることも可能である。なお図2に、変形例としてのブロック部材30として、外周面に2つの凸条31A、31Bを備える場合(2重螺旋)の頂面図を示す。なお、螺旋の旋回方向は右巻きでも左巻きでもよい。   In addition, in 1st Embodiment with reference to FIG. 1, although illustrated when the number of the protruding item | line provided in the outer periphery of a block member was one example, the number of an protruding item | line may be two or more. Moreover, it is also possible to have a configuration in which the outer peripheral surface of the block member remains the cylindrical surface and the ridges are provided on the inner peripheral surface of the spiral flow path forming portion. In addition, in FIG. 2, the top view in the case of providing the two convex strips 31A and 31B in an outer peripheral surface as the block member 30 as a modification (double helix) is shown. The spiral turning direction may be right-handed or left-handed.

次に図3を参照して、本発明の第2実施形態について説明する。第2実施形態の非接触ワーク保持装置について説明する。なお図3は、第2実施形態の非接触ワーク保持装置を軸Xの左半分を断面図として示す図である。   Next, a second embodiment of the present invention will be described with reference to FIG. The non-contact workpiece holding device of the second embodiment will be described. In addition, FIG. 3 is a figure which shows the left half of the axis | shaft X as sectional drawing of the non-contact workpiece holding apparatus of 2nd Embodiment.

第2実施形態の非接触ワーク保持装置30は、第1実施形態のハウジング11に対応するハウジング31を備える。ハウジング31に形成された空洞32は、第1実施形態と略同様な、連結部32A、螺旋流路形成部縮径部32B、縮径部32C、旋回流形成部32D、開口部32Eを備える。ただし、連結部32Aには、第1実施形態の固定部15と連結部17が一体化された接続管33が螺着される。   The non-contact work holding device 30 of the second embodiment includes a housing 31 corresponding to the housing 11 of the first embodiment. The cavity 32 formed in the housing 31 includes a connection part 32A, a spiral flow path forming part reduced diameter part 32B, a reduced diameter part 32C, a swirl flow forming part 32D, and an opening part 32E, which are substantially the same as in the first embodiment. However, the connecting tube 33 in which the fixing portion 15 and the connecting portion 17 of the first embodiment are integrated is screwed to the connecting portion 32A.

すなわち、接続管33の連結部32Aに挿入される先端近傍には雄ネジが設けられ、連結部32Aの内周面に設けられた雌ネジと螺合される。なお、接続管33には、螺合作業のためにナット部33Aが一体的に設けられる。また、接続管33と連結部32Aの内周面の間には、気密のためのシール部材(ゴムパッキングなど)34が介装される。   That is, a male screw is provided in the vicinity of the tip inserted into the connecting portion 32A of the connecting pipe 33, and is screwed with a female screw provided on the inner peripheral surface of the connecting portion 32A. The connecting pipe 33 is integrally provided with a nut portion 33A for screwing work. Further, an airtight seal member (rubber packing or the like) 34 is interposed between the connection pipe 33 and the inner peripheral surface of the coupling portion 32A.

一方、接続管33において連結部32Aに挿入される側とは反対側の端部は、T字接続管35に連結される。接続管33は、T字接続管35のT字の縦棒に対応する管に接続される。例えば接続管33は、T字接続管34内に挿入され、T字接続管35の内周面に設けられた環状の溝に接続管33の外周面に設けられた環状の爪を引っ掛けることにより連結される。図3の例では、2組の溝と爪により接続管33とT字接続管35の連結が行われ、接続管33はT字接続管35と、軸Xの周りに回転自在に一体化される。なお、接続管33の外周面とT字接続管35の内周面の間には、気密のためのシール部材36が介装される。また、T字接続管35のT字の横棒に対応する管には、その両端に更に管を接続するための機構が設けられる。この接続機構は、従来周知の如何なる形式のものであってもよい。   On the other hand, the end of the connecting pipe 33 opposite to the side inserted into the connecting portion 32 </ b> A is connected to the T-shaped connecting pipe 35. The connecting pipe 33 is connected to a pipe corresponding to the T-shaped vertical bar of the T-shaped connecting pipe 35. For example, the connecting pipe 33 is inserted into the T-shaped connecting pipe 34, and an annular claw provided on the outer peripheral surface of the connecting pipe 33 is hooked on an annular groove provided on the inner peripheral surface of the T-shaped connecting pipe 35. Connected. In the example of FIG. 3, the connecting pipe 33 and the T-shaped connecting pipe 35 are connected by two sets of grooves and claws, and the connecting pipe 33 is integrated with the T-shaped connecting pipe 35 so as to be rotatable around the axis X. The An airtight seal member 36 is interposed between the outer peripheral surface of the connection pipe 33 and the inner peripheral surface of the T-shaped connection pipe 35. Further, the pipe corresponding to the T-shaped horizontal bar of the T-shaped connecting pipe 35 is provided with a mechanism for further connecting the pipe to both ends thereof. This connection mechanism may be of any known type.

また、第2実施形態の非接触ワーク30において、ハウジング31の外形は、相対的に径が大きい円筒形固定部31Aと、相対的に径が小さい円筒形先端部31Bから構成され、円筒形先端部31の外周面には雄ネジが設けられる。本実施形態では、円筒形先端部31Bの雄ネジは、円筒形固定部31Aと連携して、非接触ワーク保持装置30を板部材40に固定し支持するために用いられる。すなわち、円筒形先端部31Bは、その外径に略等しい穴が設けられた板部材40に挿通され、その後ナット41が円筒形先端部31Bの雄ネジに螺合される。これにより板部材40は、円筒形固定部31Aとナット41の間に挟まれ、非接触ワーク保持装置は、板部材40に固定される。   In the non-contact workpiece 30 of the second embodiment, the outer shape of the housing 31 includes a cylindrical fixing portion 31A having a relatively large diameter and a cylindrical tip portion 31B having a relatively small diameter. A male screw is provided on the outer peripheral surface of the portion 31. In the present embodiment, the male screw of the cylindrical tip portion 31B is used to fix and support the non-contact work holding device 30 on the plate member 40 in cooperation with the cylindrical fixing portion 31A. That is, the cylindrical tip portion 31B is inserted through the plate member 40 provided with a hole substantially equal to the outer diameter thereof, and then the nut 41 is screwed into the male screw of the cylindrical tip portion 31B. Accordingly, the plate member 40 is sandwiched between the cylindrical fixing portion 31A and the nut 41, and the non-contact work holding device is fixed to the plate member 40.

以上のように、第2実施形態においても、第1実施形態と同様の効果を得ることができる。また、第2実施形態では、T字接続管に一体化された接続管を螺合するだけで供給流路をハウジングに接続できる。また次に示す第3実施形態において説明されるように、非接触ワーク保持装置を複数用いる場合には、各非接触ワーク保持装置の供給流路を、T字接続管を介して連続的に接続することができる。また、ハウジングに連結される接続管は、T字接続管に回転自在に係合されているためハウジングとの連結作業が行い易く、また連結後もT字接続管がハウジングに対して自在に回転することが可能となる。なお、第2実施形態の非接触ワーク保持装置も、第1実施形態の変形例と組み合わせることが可能である。   As described above, also in the second embodiment, the same effect as that of the first embodiment can be obtained. Moreover, in 2nd Embodiment, a supply flow path can be connected to a housing only by screwing the connection pipe integrated with the T-shaped connection pipe. Further, as will be described in the following third embodiment, when a plurality of non-contact work holding devices are used, the supply flow paths of the respective non-contact work holding devices are continuously connected via a T-shaped connecting pipe. can do. Also, since the connecting pipe connected to the housing is rotatably engaged with the T-shaped connecting pipe, the connecting work with the housing can be easily performed, and the T-shaped connecting pipe can rotate freely with respect to the housing even after the connection. It becomes possible to do. Note that the non-contact workpiece holding device of the second embodiment can be combined with the modification of the first embodiment.

図4、5は、本発明の第3実施形態である非接触ワーク保持装置ユニットの配置を示す模式図である。第3実施形態は、第1または第2実施形態の非接触ワーク保持装置を複数用いてユニットとしたものである。図4の例では、ブロック部材に設けられた螺旋状の凸条が右巻き、左巻きの非接触保持装置10A、10Bを一対として用いている。また、図5の例では、右巻き、左巻きそれぞれを3台ずつ用い、これを同一円周上に右、左交互に配置した例である。なお、凸条の巻き方向以外は、第1実施形態や第2実施形態、あるいはそれらの変形例と同様である。   4 and 5 are schematic views showing the arrangement of the non-contact work holding device unit according to the third embodiment of the present invention. In the third embodiment, a plurality of non-contact work holding devices of the first or second embodiment are used as a unit. In the example of FIG. 4, the spiral ridges provided on the block member use right-handed and left-handed non-contact holding devices 10 </ b> A and 10 </ b> B as a pair. Further, in the example of FIG. 5, three each of right-handed and left-handed are used, and these are arranged alternately on the right and left on the same circumference. In addition, it is the same as that of 1st Embodiment, 2nd Embodiment, or those modifications except the winding direction of a protruding item | line.

以上のよう、第3実施形態においても第1、2実施形態と同様の効果が得られるとともに、複数用いることにより、より大きな、重量のあるワークを保持、搬送することが可能となる。また、右巻きと左巻きを1対として利用することにより、旋回流によるワークへのトルクの影響を低減することができる。   As described above, also in the third embodiment, the same effect as in the first and second embodiments can be obtained, and by using a plurality of the workpieces, it is possible to hold and transport a larger and heavy workpiece. Further, by using the right-handed winding and the left-handed winding as a pair, the influence of the torque on the workpiece due to the swirling flow can be reduced.

10 非接触ワーク保持装置
11 ハウジング
12 空洞
12A 連結部
12B 螺旋流路形成部
12C 縮径部
12D 旋回流形成部
12E 開口部
13 ブロック部材
14 螺旋凸条
15 固定部材
17 連結部材
18 供給流路
19 制御流路
20 制御弁
21 空間
DESCRIPTION OF SYMBOLS 10 Non-contact workpiece holding apparatus 11 Housing 12 Cavity 12A Connection part 12B Spiral flow path formation part 12C Reduced diameter part 12D Swirling flow formation part 12E Opening part 13 Block member 14 Spiral protrusion 15 Fixing member 17 Connection member 18 Supply flow path 19 Control Flow path 20 Control valve 21 Space

Claims (10)

回転対称の内周面を有し、頂部が気密されるとともに底部に円形の下部開口が設けられたハウジングと、前記ハウジングの内周面の周方向に沿って下向き成分を有する流速で気体を前記ハウジング内に噴出して旋回流を形成する流路とを備え、前記内周面が前記下部開口方向に向けて縮径する縮径部を有することを特徴とする非接触ワーク保持装置。   A housing having a rotationally symmetric inner peripheral surface, the top being hermetically sealed and having a circular lower opening at the bottom, and gas flowing at a flow rate having a downward component along the circumferential direction of the inner peripheral surface of the housing; A non-contact work holding device comprising: a flow path that ejects into a housing to form a swirling flow, and the inner peripheral surface includes a reduced diameter portion that decreases in diameter toward the lower opening direction. 前記ハウジングの頂部にブロック部材が嵌入され、前記ブロック部材と前記内周面との間に、前記流路が螺旋状に形成されることを特徴とする請求項1に記載の非接触ワーク保持装置。   The non-contact work holding device according to claim 1, wherein a block member is inserted into a top portion of the housing, and the flow path is formed in a spiral shape between the block member and the inner peripheral surface. . 前記ブロックの外周面に螺旋状の凸条が設けられ、前記凸条が前記内周面に当接することにより前記螺旋状の流路が形成されることを特徴とする請求項2に記載の非接触ワーク保持装置。   3. The non-circular flow path according to claim 2, wherein spiral ridges are provided on an outer peripheral surface of the block, and the spiral flow paths are formed by the ridges coming into contact with the inner peripheral surface. Contact workpiece holding device. 前記ブロック部材が、下部開口に向けて縮径する回転対称な突出部を備えることを特徴とする請求項3に記載の非接触ワーク保持装置。   The non-contact work holding apparatus according to claim 3, wherein the block member includes a rotationally symmetric protrusion that reduces in diameter toward the lower opening. 回転対称軸に沿って前記ブロック部材を連通する制御流路が設けられ、前記制御流路は更に制御弁を介してハウジング外部へと連通されることを特徴とする請求項4に記載の非接触ワーク保持装置。   The non-contact according to claim 4, wherein a control flow path that communicates the block member along a rotational symmetry axis is provided, and the control flow path is further communicated to the outside of the housing via a control valve. Work holding device. 前記ブロック部材の上部に前記気体を供給する供給流路がハウジングに気密的に接続され、前記供給流路の内側に前記制御流路が配設されることを特徴とする請求項5に記載の非接触ワーク保持装置。   The supply flow path for supplying the gas to an upper portion of the block member is hermetically connected to a housing, and the control flow path is disposed inside the supply flow path. Non-contact work holding device. 前記下部開口は、下方に向けて拡径する領域を有することを特徴とする請求項6に記載の非接触ワーク保持装置。   The non-contact work holding apparatus according to claim 6, wherein the lower opening has a region whose diameter is increased downward. 前記螺旋状の流路が複数設けられたことを特徴とする請求項1〜7の何れか一項に記載の非接触ワーク保持装置。   The non-contact work holding device according to any one of claims 1 to 7, wherein a plurality of the spiral flow paths are provided. 請求項1乃至請求項8の何れか一項に記載の非接触ワーク保持装置を偶数個備える非接触ワーク保持装置ユニットであって、前記螺旋状の流路が右巻きのものの数と左向きのものの数が等しいことを特徴とする非接触ワーク保持装置ユニット。   A non-contact work holding device unit comprising an even number of non-contact work holding devices according to any one of claims 1 to 8, wherein the spiral flow path has a right-handed number and a left-handed one. Non-contact work holding device unit characterized in that the numbers are equal. 前記流路が右巻きと左巻きの非接触ワーク保持装置が1つの軸を中心に回転対称に交互に配置されることを特徴とする請求項9に記載の非接触ワーク保持装置ユニット。
The non-contact work holding device unit according to claim 9, wherein the non-contact work holding devices having the right-handed and left-handed flow paths are alternately arranged in a rotationally symmetrical manner about one axis.
JP2009109824A 2009-04-28 2009-04-28 Non-contact workpiece holding device Withdrawn JP2010253658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009109824A JP2010253658A (en) 2009-04-28 2009-04-28 Non-contact workpiece holding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009109824A JP2010253658A (en) 2009-04-28 2009-04-28 Non-contact workpiece holding device

Publications (2)

Publication Number Publication Date
JP2010253658A true JP2010253658A (en) 2010-11-11
JP2010253658A5 JP2010253658A5 (en) 2012-01-05

Family

ID=43315171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009109824A Withdrawn JP2010253658A (en) 2009-04-28 2009-04-28 Non-contact workpiece holding device

Country Status (1)

Country Link
JP (1) JP2010253658A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049097A (en) * 2011-08-30 2013-03-14 Fuji Mach Mfg Co Ltd Component-mounting head
JP2013146837A (en) * 2012-01-20 2013-08-01 Murata Machinery Ltd Suction chuck and transfer device
CN103386689A (en) * 2012-05-11 2013-11-13 株式会社妙德 Conveying clamp and conveying holder
CN111673559A (en) * 2020-05-14 2020-09-18 夏惠 Silicon chip attenuate grinding mechanism based on air pressure formula

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049097A (en) * 2011-08-30 2013-03-14 Fuji Mach Mfg Co Ltd Component-mounting head
JP2013146837A (en) * 2012-01-20 2013-08-01 Murata Machinery Ltd Suction chuck and transfer device
CN103386689A (en) * 2012-05-11 2013-11-13 株式会社妙德 Conveying clamp and conveying holder
CN111673559A (en) * 2020-05-14 2020-09-18 夏惠 Silicon chip attenuate grinding mechanism based on air pressure formula
CN111673559B (en) * 2020-05-14 2022-07-15 瑟德莱伯(嘉兴)科技智造有限公司 Silicon chip attenuate grinding mechanism based on air pressure formula

Similar Documents

Publication Publication Date Title
JP5887469B2 (en) HOLDING DEVICE, HOLDING SYSTEM, CONTROL METHOD, AND CONVEYING DEVICE
JP4243766B2 (en) Non-contact transfer device
JP2010253658A (en) Non-contact workpiece holding device
CN202296379U (en) Discharging device for solar battery assembly line
US11008180B2 (en) Swirl flow-forming body and suction device
JP2010254463A (en) Non-contact workpiece supporting device
CN102361049A (en) Blanking device for solar cell production line
CN104930762A (en) Electronic expansion valve
CN105489527A (en) Bearing device and semiconductor processing equipment
US9863128B2 (en) Adjustable jet valve
JP4538849B2 (en) Non-contact holding device
JP2010064159A (en) Suction holding hand
CN110620031A (en) Wafer surface particle cleaning device
WO2015083609A1 (en) Conveyance device
JP2010016208A (en) Chuck device and suction holding hand
US20150118071A1 (en) Vacuum generator
KR100310334B1 (en) Coupling Device for Liquid Transfer
TWM488339U (en) Whirling foam breaking device
TWI698950B (en) Non-contact type sucker
JP2006114748A (en) Noncontact sucking fixture and noncontact chucking device
US20240159250A1 (en) Pressure difference generating apparatus
CN203998111U (en) A kind of pneumatic material conveyer
CN217927211U (en) Pneumatic diaphragm valve
CN210088843U (en) Coal feeding device for boiler and gas wall assembly thereof
CN106321906A (en) Self-settling ball check valve

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20101014

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

A621 Written request for application examination

Effective date: 20111111

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20121011