JP2010253360A - Method and apparatus for treating cooling water of refrigerator/cold and warm water machine - Google Patents

Method and apparatus for treating cooling water of refrigerator/cold and warm water machine Download PDF

Info

Publication number
JP2010253360A
JP2010253360A JP2009104686A JP2009104686A JP2010253360A JP 2010253360 A JP2010253360 A JP 2010253360A JP 2009104686 A JP2009104686 A JP 2009104686A JP 2009104686 A JP2009104686 A JP 2009104686A JP 2010253360 A JP2010253360 A JP 2010253360A
Authority
JP
Japan
Prior art keywords
cooling
cooling water
water
refrigerator
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009104686A
Other languages
Japanese (ja)
Inventor
Tomiyasu Okita
富安 沖田
Eiji Watabe
栄治 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Thermal Engineering Co Ltd
Original Assignee
Kawasaki Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Thermal Engineering Co Ltd filed Critical Kawasaki Thermal Engineering Co Ltd
Priority to JP2009104686A priority Critical patent/JP2010253360A/en
Publication of JP2010253360A publication Critical patent/JP2010253360A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively and surely prevent scale deposition without using chemicals and to perform a high concentration operation. <P>SOLUTION: In a cooling tower 12 for sending cooling water to a refrigerator/cold and warm water machine 10 and cooling discharged cooling water from the refrigerator/cold and warm water machine, a filtration apparatus 14 for introducing a part of the cooling water cooled in the cooling tower and performing the treatment of at least one of fine filtration and general filtration, and a cooling water circulation pump 16 provided between the cooling tower and the filtration apparatus are provided. By treating a part of the circulated cooling water of the refrigerator/cold and warm water machine 10 by at least one of the fine filtration and the general filtration, granular scale components in the cooling water are removed beforehand. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、冷凍機又は冷温水機(以下、冷凍機・冷温水機と記す)の冷却水の処理方法及び装置、詳しくは、冷凍機・冷温水機の冷却水系の水処理方法及び処理装置に係り、スケール特にシリカ系スケールの析出防止を行うことにより、冷却水の高濃縮運転を実現できるようにして、補給水コストの低減を図ることができるようにした冷却水の処理方法及び装置に関する。   TECHNICAL FIELD The present invention relates to a cooling water treatment method and apparatus for a refrigerator or a cold / hot water machine (hereinafter referred to as a freezer / cooling / hot water machine), and more particularly, a cooling water system water treatment method and treatment apparatus for a freezer / cooling / hot water machine. Therefore, the present invention relates to a cooling water treatment method and apparatus that can realize a highly concentrated operation of cooling water by preventing precipitation of scales, particularly silica-based scales, and can reduce the cost of makeup water. .

従来から、スケール成分の析出防止技術として、冷却水の濃縮管理、結晶成長阻害剤添加といった一般的な水処理方法の他、晶析法、逆浸透膜(NF膜、RO膜)による膜分離、磁場処理、電解装置、金属溶出、電気分解、超音波処理等、様々な処理方法が提案されているが、環境負荷を抑えて、安価に安定的にスケール析出防止効果が得られる冷却水処理方法・高濃縮運転方法は存在していない。   Conventionally, as a technique for preventing precipitation of scale components, in addition to general water treatment methods such as cooling water concentration management and addition of crystal growth inhibitors, crystallization methods, membrane separation by reverse osmosis membranes (NF membrane, RO membrane), Various treatment methods have been proposed such as magnetic field treatment, electrolysis equipment, metal elution, electrolysis, ultrasonic treatment, etc., but cooling water treatment method that suppresses environmental burden and stably provides scale precipitation prevention effect at low cost・ There is no highly concentrated operation method.

従来、一般的には、冷却水処理における固液分離処理は、除濁用途や限外ろ過の前処理等の補助的な処理として認識されており、スケール析出防止効果があることは全く認知されていない。従来は、懸濁物質及びスラッジの除去目的であり(例えば、特許文献1参照)、スケール析出防止効果はないとされている(例えば、特許文献2参照)。また、RO膜処理においても、本発明において用いられるMF膜(精密ろ過膜)等の膜は、RO膜の閉塞防止のためのSS(浮遊物質)除去用途のプレフィルターとして用いられており(例えば、特許文献3参照)、単独の処理でスケール析出防止効果は期待されていない。   Conventionally, in general, solid-liquid separation treatment in cooling water treatment has been recognized as an auxiliary treatment such as turbidity use or ultrafiltration pretreatment, and it has been completely recognized that it has an effect of preventing scale precipitation. Not. Conventionally, it is intended to remove suspended substances and sludge (see, for example, Patent Document 1), and has no effect of preventing scale precipitation (see, for example, Patent Document 2). Also in RO membrane treatment, a membrane such as an MF membrane (microfiltration membrane) used in the present invention is used as a prefilter for removing SS (floating matter) for preventing RO membrane blockage (for example, , See Patent Document 3), the effect of preventing the precipitation of scale is not expected by a single treatment.

特許第3512108号公報(第1頁)Japanese Patent No. 3512108 (first page) 特開2002−54894号公報(第2頁、図1)Japanese Patent Laid-Open No. 2002-54894 (2nd page, FIG. 1) 特許第3731555号公報(第2頁、図1)Japanese Patent No. 3731555 (second page, FIG. 1)

解決しようとする問題点は、環境負荷が低く、すなわち、薬品を用いずに、安価にかつ確実にスケール析出を防止して高濃縮運転を可能とする冷凍機・冷温水機の冷却水の処理方法及び装置は開発されていない点にある。   The problem to be solved is that the environmental load is low, that is, the treatment of cooling water in refrigerators / cooling / hot water machines that does not use chemicals and that prevents high-concentration operation at low cost and reliably prevents scale deposition. The method and apparatus are not developed.

本発明は、冷却水中のスケール成分が粒子として水中に存在する段階で捕集・除去することで、結晶として析出することを防ぎ、高濃縮運転を実現することを最も主要な特徴とする。本発明は、特に、薬品を用いてもスケール析出防止が困難なシリカに対して効果的である。すなわち、本発明は、冷却水系において、冷却水をスケール成分粒子除去装置であるろ過装置で処理することを特徴とする処理方法及び装置であり、精密〜一般ろ過レベルの粒子を捕集することで目的を達成する。   The main feature of the present invention is to prevent precipitation as crystals and realize high concentration operation by collecting and removing scale components in the water as particles in the water. The present invention is particularly effective for silica which is difficult to prevent scale precipitation even when chemicals are used. That is, this invention is a processing method and apparatus characterized by processing cooling water with the filtration apparatus which is a scale component particle removal apparatus in a cooling water system, By collecting the particle | grains of precision-general filtration level, Achieve the goal.

本発明の冷凍機・冷温水機の冷却水の処理方法は、冷凍機・冷温水機の循環冷却水の一部を精密ろ過及び一般ろ過の少なくともいずれかで処理することにより、冷却水中の粒子状スケール成分が凝集・沈澱を起こす前に除去することを特徴としている。   The cooling water treatment method of the refrigerator / cooling / heating device of the present invention is a method of treating particles in the cooling water by treating a part of the circulating cooling water of the refrigerator / cooling / heating device with at least one of microfiltration and general filtration. It is characterized by removing the scale component before aggregation and precipitation occur.

この方法において、粒径0.01μm、好ましくは0.1μm以上の粒子状スケール成分を除去することが望ましい。また、循環冷却水量の0.03〜5%を処理するすることが望ましい。   In this method, it is desirable to remove particulate scale components having a particle size of 0.01 μm, preferably 0.1 μm or more. Moreover, it is desirable to treat 0.03 to 5% of the circulating cooling water amount.

また、本発明の冷凍機・冷温水機の冷却水の処理装置は、冷凍機・冷温水機へ冷却水を送り、冷凍機・冷温水機からの排冷却水を冷却するための冷却塔において、冷却塔で冷却された冷却水の一部を導入して精密ろ過及び一般ろ過の少なくともいずれかの処理を行うためのろ過装置とを備えたことを特徴としている。なお、ろ過装置として、0.01μm以上の粒子状スケール成分を除去する精密ろ過装置を用いることが好ましい。   In addition, the cooling water treatment device for the refrigerator / cooling / heating device of the present invention is a cooling tower for sending cooling water to the refrigerator / cooling / heating device and cooling the exhaust cooling water from the refrigerator / cooling / heating device. And a filtration device for introducing at least one of microfiltration and general filtration by introducing a part of the cooling water cooled in the cooling tower. In addition, it is preferable to use the microfiltration apparatus which removes 0.01 micrometer or more of particulate scale components as a filtration apparatus.

本発明は上記のように構成されているので、つぎのような効果を奏する。
(1)スケール成分が粒子として水中に存在する段階で捕集・除去することで、結晶として析出することを防ぎ、高濃縮運転を実現することができる。
(2)精密〜一般ろ過レベルによる安価な処理で目的を達することができる。
(3)薬品を用いてもスケール析出防止が困難なシリカに対しても高い効果を有する。
(4)薬品を用いずに節水効果が得られることから、環境負荷を抑えてランニングコストの低減が可能である。
(5)プレフィルターの設置や薬品投入といった前処理が必ずしも必要では無く、装置の小型化や処理の簡素化が可能である。
Since this invention is comprised as mentioned above, there exist the following effects.
(1) By collecting and removing scale components as particles in the water, precipitation as crystals can be prevented and a high concentration operation can be realized.
(2) The objective can be achieved by an inexpensive process with precision to general filtration level.
(3) It has a high effect on silica, which is difficult to prevent scale precipitation even when chemicals are used.
(4) Since a water-saving effect can be obtained without using chemicals, it is possible to reduce environmental costs and reduce running costs.
(5) Pre-processing such as prefilter installation and chemical introduction is not always necessary, and the apparatus can be downsized and the processing can be simplified.

図1は本発明の実施の第1形態による冷凍機・冷温水機の冷却水の処理装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a cooling water treatment device of a refrigerator / cooling / heating device according to a first embodiment of the present invention. 図2は実験例に用いた循環冷却水系の概略構成図である。FIG. 2 is a schematic configuration diagram of the circulating cooling water system used in the experimental example. 図3は本発明の実施の第2形態による冷凍機・冷温水機の冷却水の処理装置の概略構成図である。FIG. 3 is a schematic configuration diagram of a cooling water treatment device of a refrigerator / cooling / heating device according to the second embodiment of the present invention.

冷却水系のスケールの析出を防止して、冷却水の高濃縮運転を可能とし、補給水コストの低減を図るという目的を、循環冷却水の一部を精密ろ過及び一般ろ過の少なくともいずれかで処理することにより、冷却水中の粒子状スケール成分を予め除去することにより実現した。   A part of circulating cooling water is treated with at least one of microfiltration and general filtration for the purpose of preventing the precipitation of scale of cooling water system, enabling high concentration operation of cooling water and reducing the cost of makeup water This was realized by previously removing the particulate scale component in the cooling water.

以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施できるものである。図1は、本発明の実施の第1形態による冷凍機・冷温水機の冷却水の処理装置の概略構成図である。   Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications. FIG. 1 is a schematic configuration diagram of a cooling water treatment device for a refrigerator / cooling / heating device according to a first embodiment of the present invention.

10は、冷凍機・冷温水機で、この冷凍機・冷温水機10へ冷却塔(クーリングタワー)12から冷却水を送り、冷凍機・冷温水機10からの排冷却水を冷却塔12で冷却する。14はろ過装置で冷却塔12で冷却された冷却水の一部を導入して精密ろ過及び一般ろ過の少なくともいずれかの処理を行うためのものである。また、冷却塔12とろ過装置14との間に冷却水循環ポンプ16が設けられている。18は冷却水、20はファンである。   Reference numeral 10 denotes a refrigerator / cooling / heating device, which sends cooling water from a cooling tower (cooling tower) 12 to cool the exhaust cooling water from the refrigerator / cooling / heating device 10 with the cooling tower 12. To do. 14 is a filtration device for introducing a part of the cooling water cooled by the cooling tower 12 and performing at least one of the microfiltration and the general filtration. A cooling water circulation pump 16 is provided between the cooling tower 12 and the filtration device 14. 18 is cooling water, and 20 is a fan.

ろ過装置14においては、ろ過精度0.01μm以上の精密ろ過膜及びろ過精度25μmまでの一般ろ過膜の少なくともいずれかが用いられる。   In the filtration device 14, at least one of a microfiltration membrane having a filtration accuracy of 0.01 μm or more and a general filtration membrane having a filtration accuracy of 25 μm is used.

上記のように構成された装置において、冷凍機・冷温水機10の循環冷却水の一部を精密ろ過及び一般ろ過の少なくともいずれかで処理することにより、冷却水中の粒子状スケール成分を予め除去する。   In the apparatus configured as described above, the particulate scale component in the cooling water is removed in advance by treating a part of the circulating cooling water of the refrigerator / cooling / hot water machine 10 with at least one of microfiltration and general filtration. To do.

この場合、粒径0.1μm以上の粒子状スケール成分を除去することが望ましい。粒径0.01μm未満の粒子状スケール成分は、比較的、安定的に水中浮遊して存在しており、直ちに結晶化して析出する傾向にない為、強いて除去する必要はなく、0.1μm以上となってから除去すればよい。
また、循環冷却水量の0.03〜5%を処理することが望ましい。循環冷却水量の0.03%未満を処理する場合は、処理水量が少なすぎて、冷却水中の粒子状スケール成分を充分に除去することができない。また、循環冷却水量の5%を超える量を処理する場合は、効果の割りには、循環ポンプ及びろ過装置が大型になりすぎる。循環冷却水量の5%を上限とすることで、十分効果を奏することができる。
使用する膜のろ過精度と冷却水の処理割合がこの条件の範囲内である場合、スケール析出防止効果が期待できるが、冷却水水質や冷凍機・冷温水機の運転条件によってスケール結晶の析出の程度が異なる為、上記の条件を外れた場合でも、スケール析出防止効果が得られることはあり得る。
In this case, it is desirable to remove particulate scale components having a particle size of 0.1 μm or more. The particulate scale component having a particle size of less than 0.01 μm is relatively stably suspended in water and does not tend to crystallize and precipitate immediately. It can be removed after becoming.
Moreover, it is desirable to treat 0.03 to 5% of the circulating cooling water amount. When processing less than 0.03% of the circulating cooling water amount, the processing water amount is too small to sufficiently remove the particulate scale component in the cooling water. Moreover, when processing the amount exceeding 5% of the circulating cooling water amount, the circulating pump and the filtration device become too large for the effect. By setting the upper limit to 5% of the circulating cooling water amount, a sufficient effect can be obtained.
If the filtration accuracy of the membrane used and the treatment rate of the cooling water are within the range of these conditions, the effect of preventing scale precipitation can be expected, but the precipitation of scale crystals may depend on the cooling water quality and the operating conditions of the refrigerator / cooling / heating machine. Since the degree is different, it is possible that the effect of preventing scale precipitation can be obtained even when the above conditions are not met.

循環冷却水において、カルシウム・マグネシウム・シリカ等のスケール成分は、当初、イオンとして水に溶けているが、冷凍機・冷温水機の運転に伴い、冷却水の水分が蒸発することで、スケール成分濃度が高くなる。それに伴い、スケール成分はイオンとして水に溶けている状態から水に不溶性の物質(微細な粒子として水中に浮遊)に変化し、最終的に、結晶化して機械内部にスケールとして析出する。従来の分離技術では、イオンの状態で除去することでスケール結晶の析出を防止するのに対し、本発明では、結晶として成長しつつある過程、つまり帯電微粒子として水中に浮遊している状態で捕集・除去する。従って、従来の膜分離技術の様に、凝集を促進させる前処理は省略することができ、処理装置の簡素化が図れる。
なお、本技術は、水の蒸発に伴う溶解成分の濃縮を生じる水の処理であれば、冷却水以外の水においても、スケール成分の析出防止に有効である。
In circulating cooling water, scale components such as calcium, magnesium, and silica are initially dissolved in water as ions, but the scale component is evaporated by the water in the cooling water evaporating with the operation of the refrigerator / cooling / heating device. The concentration becomes high. Along with this, the scale component changes from a state dissolved in water to an insoluble substance (floating in water as fine particles), and finally crystallizes and precipitates as scale inside the machine. In the conventional separation technique, the precipitation of the scale crystal is prevented by removing it in the form of ions, whereas in the present invention, the process of growing as a crystal, that is, in the state of floating in the water as charged fine particles. Collect and remove. Therefore, like the conventional membrane separation technique, the pretreatment for promoting aggregation can be omitted, and the processing apparatus can be simplified.
Note that the present technology is effective in preventing precipitation of scale components even in water other than cooling water as long as it is a treatment of water that causes concentration of dissolved components accompanying water evaporation.

本発明では、冷却水系においてスケール成分析出防止処理装置であるろ過装置により冷却水を処理し、高濃縮運転を可能にする。また、本発明は、シリカ、カルシウム等のスケール成分の多い補給水を用いる冷却水系統に適する。また、本発明に用いるスケール成分析出防止処理装置であるろ過装置は、一定粒径以上の粒子を捕集可能であれば良く、ろ材を用いるろ過方式、繊維ろ過、膜ろ過方式、遠心分離法式などの装置が利用できる。装置の具体例としては、中空糸膜を用いたろ過装置を挙げられる(装置フローは図1を参照)。この場合、内圧ろ過・外圧ろ過、吸引ろ過、クロスフローろ過・全量ろ過の何れの方式も適用可能である。また、ろ過装置には、膜の洗浄等による通水回復機能を設けることもできる。   In the present invention, cooling water is treated in a cooling water system by a filtration device that is a scale component precipitation prevention treatment device, thereby enabling high concentration operation. Moreover, this invention is suitable for the cooling water system | strain using makeup water with many scale components, such as a silica and calcium. In addition, the filtration device which is a scale component precipitation prevention treatment device used in the present invention is only required to collect particles having a certain particle diameter or more, and a filtration method using a filter medium, a fiber filtration method, a membrane filtration method, a centrifugal separation method method. Such devices can be used. A specific example of the apparatus is a filtration apparatus using a hollow fiber membrane (refer to FIG. 1 for the apparatus flow). In this case, any system of internal pressure filtration / external pressure filtration, suction filtration, cross flow filtration / total amount filtration is applicable. In addition, the filtration device can be provided with a water flow recovery function by washing the membrane or the like.

ろ過装置の設備は、冷却水系統にバイパスラインを設けて設置してもよく、又は、冷却塔に別系統を設けて設置しても良い。望ましくは、冷却水系統の二次側から取水し、処理水を一次側へ戻すことであるが、冷却塔の受水槽に循環できる系統を設けても良い。また、必要に応じて、スケール成分防止剤、防藻剤、スライム抑制剤、抗レジオネラ薬剤及び防食剤を併用しても良い。さらに、殺菌装置(過酸化水素・オゾン発生、紫外線照射、金属溶出等)との併用も可能である。安定的にスケールの析出防止効果を得るためには、自動フロー装置による冷却水の濃縮管理を併用することが好ましい。又、捕集物の凝集やろ過装置の安定処理を目的とした前処理工程を設けることもできる。   The equipment of the filtration device may be installed by providing a bypass line in the cooling water system, or may be installed by providing another system in the cooling tower. Desirably, water is taken from the secondary side of the cooling water system and the treated water is returned to the primary side, but a system that can circulate to the water receiving tank of the cooling tower may be provided. Moreover, you may use together a scale component inhibitor, an algae inhibitor, a slime inhibitor, an anti- Legionella agent, and a corrosion inhibitor as needed. Furthermore, it can be used in combination with a sterilizer (hydrogen peroxide / ozone generation, ultraviolet irradiation, metal elution, etc.). In order to stably obtain the effect of preventing the precipitation of scale, it is preferable to use cooling water concentration management by an automatic flow device in combination. In addition, a pretreatment step can be provided for the purpose of aggregating the collected material and stabilizing the filtration device.

冷房能力:200RTの一般空調用設備を用いた。水処理装置であるろ過装置の処理頻度は循環水量の0.6%とした。電気伝導度:13mS/m、カルシウム硬度:15mgCaCO3 /L、イオン状シリカ濃度:48mgSiO2 /L、塩化物イオン濃度:10mgCl/Lの地下水を補給水とし、導電率監視による濃縮管理を行い、導電率の上限値を45mS/mとして制御した。7〜8月の最盛期における一ケ月間の凝縮器の冷媒温度と冷却水出口温度差(L.T.D)の上昇は、0.15℃であった。
また、水分析結果では、カルシウム硬度およびイオン状シリカ濃度共にスケール析出を示す濃度低下は見られず、散水槽・充填材及び冷却塔内部へのスケール付着も、目視観察では確認されなかった。なお、ろ過装置内のろ過膜としてろ過精度0.85μmの中空糸膜を用いた。
Cooling capacity: 200 RT general air conditioning equipment was used. The treatment frequency of the filtration device, which is a water treatment device, was 0.6% of the amount of circulating water. Electrical conductivity: 13 mS / m, calcium hardness: 15 mg CaCO 3 / L, ionic silica concentration: 48 mg SiO 2 / L, chloride ion concentration: 10 mg Cl / L groundwater is used as make-up water, and concentration control is performed by conductivity monitoring. The upper limit of conductivity was controlled as 45 mS / m. The increase in the refrigerant temperature of the condenser and the cooling water outlet temperature difference (LTD) during the peak period of July to August was 0.15 ° C.
Further, in the water analysis results, neither calcium hardness nor ionic silica concentration showed a decrease in concentration indicating scale precipitation, and scale adhesion inside the watering tank / filler and cooling tower was not confirmed by visual observation. A hollow fiber membrane having a filtration accuracy of 0.85 μm was used as the filtration membrane in the filtration device.

冷房能力:210RTの一般空調用設備を用いた。水処理装置であるろ過装置の処理頻度は循環水量の0.1%とした。電気伝導度:13mS/m、カルシウム硬度:15mgCaCO3 /L、イオン状シリカ濃度:48mgSiO2 /L、塩化物イオン濃度:10mgCl/Lの地下水を補給水とし、導電率監視による濃縮管理を行い、導電率の上限値を45mS/mとして制御した。7〜8月の最盛期における一ケ月間の凝縮器の冷媒温度と冷却水出口温度差(L.T.D)の上昇は、0.22℃であった。
また、水分析結果では、カルシウム硬度およびイオン状シリカ濃度共にスケール析出を示す濃度低下は見られず、散水槽・充填材及び冷却塔内部へのスケール付着は、目視観察では確認されなかった。なお、ろ過装置内のろ過膜としてろ過精度0.1μmの中空糸膜を用いた。
Cooling capacity: 210RT general air conditioning equipment was used. The treatment frequency of the filtration device, which is a water treatment device, was 0.1% of the amount of circulating water. Electrical conductivity: 13 mS / m, calcium hardness: 15 mg CaCO 3 / L, ionic silica concentration: 48 mg SiO 2 / L, chloride ion concentration: 10 mg Cl / L groundwater is used as make-up water, and concentration control is performed by conductivity monitoring. The upper limit of conductivity was controlled as 45 mS / m. The rise in the refrigerant temperature of the condenser and the cooling water outlet temperature difference (LTD) during the peak period from July to August was 0.22 ° C.
Further, in the water analysis results, neither calcium hardness nor ionic silica concentration showed a decrease in concentration indicating scale precipitation, and scale adhesion to the inside of the watering tank / filler and the cooling tower was not confirmed by visual observation. A hollow fiber membrane having a filtration accuracy of 0.1 μm was used as the filtration membrane in the filtration device.

比較例1Comparative Example 1

冷房能力:210RTの一般空調用設備を用いた。カルシウム硬度:15mgCaCO3 /L、イオン状シリカ濃度:48mgSiO2 /L、塩化物イオン濃度:10mgCl/Lの地下水を補給水とし、セラミックボールによる水処理と、導電率監視による濃縮管理を行い、導電率の上限値を36mS/mとして制御した。7〜8月の最盛期における一ケ月間の凝縮器の冷媒温度と冷却水出口温度差(L.T.D)の上昇は、0.56℃であった。また、冷却塔内部でのスケールの析出が見られた。 Cooling capacity: 210RT general air conditioning equipment was used. Calcium hardness: 15 mg CaCO 3 / L, ionic silica concentration: 48 mg SiO 2 / L, chloride ion concentration: 10 mg Cl / L groundwater is used as make-up water, water treatment with ceramic balls and concentration management by conductivity monitoring are performed to conduct electricity The upper limit of the rate was controlled as 36 mS / m. The increase in the refrigerant temperature of the condenser and the cooling water outlet temperature difference (LTD) during the peak period of July to August was 0.56 ° C. In addition, precipitation of scale inside the cooling tower was observed.

つぎに、図2に示す装置を用いて実験を行った。22は水槽、24は循環ポンプ、26はフィルタ、28はガラス管、30はヒータである。
図2に示す循環冷却水系のミニチュアモデルを用いて、スケール付着防止効果の評価を行った。用いた冷却水系は、保有水量が5Lであり、内径30mmのガラス管28をヒータ30の中へ通し、熱負荷部とした。補給水は、市水に塩化カルシウムを加えて、カルシウム硬度として:5000mgCaCO3 /Lに調整し、循環水の流量を5L/分とした。循環水温度を35℃一定に調整し、210時間の運転終了後にガラス管28を取り外して、乾燥したのち秤量し、試験前後の重量差からスケールの付着量を求めた。結果を表1に示す。
Next, an experiment was performed using the apparatus shown in FIG. 22 is a water tank, 24 is a circulation pump, 26 is a filter, 28 is a glass tube, and 30 is a heater.
The scale adhesion prevention effect was evaluated using the miniature model of the circulating cooling water system shown in FIG. The cooling water system used had a water volume of 5 L, and a glass tube 28 having an inner diameter of 30 mm was passed through the heater 30 to form a heat load portion. The make-up water was adjusted to a calcium hardness of 5000 mg CaCO 3 / L by adding calcium chloride to city water, and the flow rate of circulating water was 5 L / min. The circulating water temperature was adjusted to 35 ° C., and after 210 hours of operation, the glass tube 28 was removed, dried and weighed, and the amount of scale adhered was determined from the weight difference before and after the test. The results are shown in Table 1.

Figure 2010253360
Figure 2010253360

表1より、ろ過精度を小さくし、又は/及びろ過頻度を大きくすることにより、スケール付着量が減少することがわかる。   It can be seen from Table 1 that the amount of scale adhesion decreases by reducing the filtration accuracy or / and increasing the filtration frequency.

図3は本発明の実施の第2形態による装置を示している。図3に示すように、循環ポンプを省略することも可能である。   FIG. 3 shows an apparatus according to a second embodiment of the present invention. As shown in FIG. 3, the circulation pump can be omitted.

冷凍機・冷温水機において、スケールの析出防止を行うことにより、補給水コストの低減を図ることができる。   In the refrigerator / cold hot / cold water machine, by preventing the precipitation of scale, it is possible to reduce the makeup water cost.

10 冷凍機・冷温水機
12 冷却塔
14 ろ過装置
16 循環ポンプ
18 冷却水
20 ファン
22 水槽
24 循環ポンプ
26 フィルタ
28 ガラス管
30 ヒータ
DESCRIPTION OF SYMBOLS 10 Refrigerator / Cold / Hot Water Machine 12 Cooling Tower 14 Filtration Device 16 Circulation Pump 18 Cooling Water 20 Fan 22 Water Tank 24 Circulation Pump 26 Filter 28 Glass Tube 30 Heater

Claims (5)

冷凍機・冷温水機の循環冷却水の一部を精密ろ過及び一般ろ過の少なくともいずれかで処理することにより、冷却水中の粒子状スケール成分が析出する前に予め除去することを特徴とする冷凍機・冷温水機の冷却水の処理方法。   Refrigeration characterized in that a part of the circulating cooling water of the refrigerator / cooling / warm water machine is treated in advance by at least one of microfiltration and general filtration, so that the particulate scale components in the cooling water are removed in advance before precipitation. Of cooling water for water heaters and hot / cold water heaters. 0.01μm以上の粒子状スケール成分を除去する請求項1記載の冷凍機・冷温水機の冷却水の処理方法。   The processing method of the cooling water of the refrigerator / cooling / heating device according to claim 1, wherein a particulate scale component of 0.01 μm or more is removed. 循環冷却水量の0.03〜5%を処理する請求項1又は2記載の冷凍機・冷温水機の冷却水の処理方法。   The processing method of the cooling water of the refrigerator / cooling / heating device according to claim 1 or 2, wherein 0.03 to 5% of the circulating cooling water amount is treated. 冷凍機・冷温水機へ冷却水を送り、冷凍機・冷温水機からの排冷却水を冷却するための冷却塔において、冷却塔で冷却された冷却水の一部を導入して精密ろ過及び一般ろ過の少なくともいずれかの処理を行うためのろ過装置とを備えたことを特徴とする冷凍機・冷温水機の冷却水の処理装置。   In the cooling tower for sending the cooling water to the refrigerator / cooling / hot water machine and cooling the exhaust cooling water from the refrigerator / cooling / heating machine, a part of the cooling water cooled by the cooling tower is introduced and microfiltration and A cooling water treatment apparatus for a refrigerator or a hot and cold water machine, comprising a filtration device for performing at least one of general filtration treatments. ろ過装置が0.01μm以上の粒子状スケール成分を除去する精密ろ過装置である請求項4記載の冷凍機・冷温水機の冷却水の処理装置。   5. The cooling water treatment device for a refrigerator / cooling / heating device according to claim 4, wherein the filtration device is a microfiltration device for removing particulate scale components of 0.01 μm or more.
JP2009104686A 2009-04-23 2009-04-23 Method and apparatus for treating cooling water of refrigerator/cold and warm water machine Pending JP2010253360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009104686A JP2010253360A (en) 2009-04-23 2009-04-23 Method and apparatus for treating cooling water of refrigerator/cold and warm water machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009104686A JP2010253360A (en) 2009-04-23 2009-04-23 Method and apparatus for treating cooling water of refrigerator/cold and warm water machine

Publications (1)

Publication Number Publication Date
JP2010253360A true JP2010253360A (en) 2010-11-11

Family

ID=43314929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009104686A Pending JP2010253360A (en) 2009-04-23 2009-04-23 Method and apparatus for treating cooling water of refrigerator/cold and warm water machine

Country Status (1)

Country Link
JP (1) JP2010253360A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176325A1 (en) * 2011-06-24 2012-12-27 三菱電機株式会社 Scale removal method and scale removal device
CN116589048A (en) * 2023-06-12 2023-08-15 岳阳绿盾环保科技有限公司 Descaling and sterilizing device for circulating cooling water treatment
CN116589048B (en) * 2023-06-12 2024-04-19 岳阳绿盾环保科技有限公司 Descaling and sterilizing device for circulating cooling water treatment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035752B1 (en) * 1970-10-22 1975-11-18
JPH1028849A (en) * 1996-07-19 1998-02-03 Kurita Water Ind Ltd Spiral type membrane module
JPH11197665A (en) * 1998-01-13 1999-07-27 Kurita Water Ind Ltd Circulating cooling water-treating apparatus
JP2001246203A (en) * 2000-03-06 2001-09-11 Kurita Water Ind Ltd Cooling water treatment apparatus
JP2003001256A (en) * 2001-06-25 2003-01-07 Kurita Water Ind Ltd Method for treating circulating cooling water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035752B1 (en) * 1970-10-22 1975-11-18
JPH1028849A (en) * 1996-07-19 1998-02-03 Kurita Water Ind Ltd Spiral type membrane module
JPH11197665A (en) * 1998-01-13 1999-07-27 Kurita Water Ind Ltd Circulating cooling water-treating apparatus
JP2001246203A (en) * 2000-03-06 2001-09-11 Kurita Water Ind Ltd Cooling water treatment apparatus
JP2003001256A (en) * 2001-06-25 2003-01-07 Kurita Water Ind Ltd Method for treating circulating cooling water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176325A1 (en) * 2011-06-24 2012-12-27 三菱電機株式会社 Scale removal method and scale removal device
CN116589048A (en) * 2023-06-12 2023-08-15 岳阳绿盾环保科技有限公司 Descaling and sterilizing device for circulating cooling water treatment
CN116589048B (en) * 2023-06-12 2024-04-19 岳阳绿盾环保科技有限公司 Descaling and sterilizing device for circulating cooling water treatment

Similar Documents

Publication Publication Date Title
JP2014210252A (en) Evaporation processing method of aqueous solution
JP5918110B2 (en) Water intake device and water intake method
CN104291511A (en) Method and device for zero-emission treatment of high-hardness waste water containing sulfate
JP6386338B2 (en) Ammonia-containing wastewater treatment apparatus and treatment method
US10407331B2 (en) Scale detection device and method for concentrating device, and water reclamation processing treatment system
US10766788B2 (en) Waste water treatment system with buffering device and waste water treatment method therefor
JP5959135B2 (en) Water intake device and water intake method
JP6186193B2 (en) Method for evaporating aqueous solution
US20160176739A1 (en) Water treatment device and water treatment method
JP2008006369A (en) Scale prevention method
EP2993159B1 (en) Water treatment device and water treatment method
CN101318716A (en) Film evaporating concentration liquid processing system and processing method
Kargari et al. Process intensification through magnetic treatment of seawater for production of drinking water by membrane distillation process: A novel approach for commercialization membrane distillation process
JP2010253360A (en) Method and apparatus for treating cooling water of refrigerator/cold and warm water machine
JP6427235B2 (en) Method of evaporation of aqueous solution
JP2010155182A (en) Water treatment apparatus
JP3366258B2 (en) Method and apparatus for evaporating and concentrating sulfuric acid-containing wastewater
JP2017064639A (en) Method and apparatus for recovering and using waste water from steam power plant
AU2016247882B2 (en) Method of cleaning an evaporator
JP2005254201A (en) Bacterium growth inhibition method in electric desalted water production device
JP6731515B1 (en) Wastewater treatment facility and wastewater treatment method
CN107188201B (en) Separation system and sodium salt and potassium salt separation method
JP4271640B2 (en) Water treatment apparatus and method for circulating operation of treated water in the water treatment apparatus
CN111423047A (en) Method and system for evaporating and concentrating percolate concentrated solution
KR20170044982A (en) Cleaning system for cooling water of cooling tower

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141118