JP6731515B1 - Wastewater treatment facility and wastewater treatment method - Google Patents

Wastewater treatment facility and wastewater treatment method Download PDF

Info

Publication number
JP6731515B1
JP6731515B1 JP2019085163A JP2019085163A JP6731515B1 JP 6731515 B1 JP6731515 B1 JP 6731515B1 JP 2019085163 A JP2019085163 A JP 2019085163A JP 2019085163 A JP2019085163 A JP 2019085163A JP 6731515 B1 JP6731515 B1 JP 6731515B1
Authority
JP
Japan
Prior art keywords
evaporative
solid content
concentrated water
water
evaporative concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019085163A
Other languages
Japanese (ja)
Other versions
JP2020179364A (en
Inventor
村瀬 功
功 村瀬
義和 高井
義和 高井
浩二 金澤
浩二 金澤
年博 松田
年博 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2019085163A priority Critical patent/JP6731515B1/en
Application granted granted Critical
Publication of JP6731515B1 publication Critical patent/JP6731515B1/en
Publication of JP2020179364A publication Critical patent/JP2020179364A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

【課題】 固形分生成部への移送時にトラブルを起こしにくい蒸発濃縮水であって、固形分生成部において効率的に析出物を生成できる蒸発濃縮水を得ることができる排水処理設備などを提供することを課題としている。【解決手段】 排水に対して蒸発濃縮処理を施して蒸発濃縮水を得る蒸発濃縮部と、蒸発濃縮水から固形分を生成させる固形分生成部と、を備え、蒸発濃縮部から固形分生成部へ蒸発濃縮水が移送されるように構成され、排水は、濃縮によって析出物となる溶解成分を含み、固形分生成部では、析出物を含む固形分が生成され、蒸発濃縮部では、蒸発濃縮処理が行われている蒸発濃縮水の比重、含水率、又は導電率の少なくとも1つによって蒸発濃縮処理の終了時が決定される、排水処理設備などを提供する。【選択図】 図1PROBLEM TO BE SOLVED: To provide a wastewater treatment facility or the like which can obtain evaporated concentrated water which is less likely to cause a trouble when being transferred to a solid content generation unit and which can efficiently generate a precipitate in the solid content generation unit. That is the issue. SOLUTION: An evaporative concentration section for subjecting waste water to an evaporative concentration treatment to obtain an evaporative concentrated water and a solid content producing section for producing a solid content from the evaporative concentrated water are provided. The wastewater contains a dissolved component that becomes a precipitate by concentration, solids containing precipitates are generated in the solid content generation unit, and evaporation concentration is evaporated in the evaporation concentration unit. Provided is a wastewater treatment facility or the like in which the end time of the evaporative concentration treatment is determined by at least one of the specific gravity, water content, and conductivity of the evaporative concentration water being treated. [Selection diagram]

Description

本発明は、排水処理設備、及び、例えば該排水処理設備で実施する排水処理方法に関する。 TECHNICAL FIELD The present invention relates to wastewater treatment equipment and, for example, a wastewater treatment method implemented in the wastewater treatment equipment.

従来、排水処理設備としては、例えば、有機性廃棄物を嫌気性処理して汚泥を得て、さらに、嫌気性処理を経た排水を逆浸透膜で膜分離し、逆浸透膜によって膜濃縮された排水と汚泥とをともに蒸発濃縮処理するように構成された設備が知られている(特許文献1)。 Conventionally, as a wastewater treatment facility, for example, organic waste is anaerobically treated to obtain sludge, and the wastewater that has undergone anaerobic treatment is subjected to membrane separation with a reverse osmosis membrane and then concentrated with a reverse osmosis membrane. There is known a facility configured to evaporate and concentrate both waste water and sludge (Patent Document 1).

特許文献1に記載の排水処理設備においては、上記逆浸透膜によって膜濃縮された排水と、上記汚泥とを蒸発濃縮処理した蒸発濃縮水が、リン酸イオン、マグネシウムイオン、又はアンモニウムイオン等の溶解成分を含む。このような溶解成分は、溶解した状態で存在するものの、水分をさらに減少させて濃縮を進行させると、析出して析出物となる。析出物を含む固形分は、肥料等の用途で使用できる有用物となるか、又は、不要物となって廃棄され得る。 In the waste water treatment facility described in Patent Document 1, the waste water membrane-concentrated by the reverse osmosis membrane and the evaporative concentrated water obtained by evaporating and condensing the sludge are dissolved in phosphate ions, magnesium ions, ammonium ions, or the like. Including ingredients. Although such a dissolved component exists in a dissolved state, it precipitates when the water content is further reduced and the concentration proceeds. The solid content containing the precipitate becomes a useful material that can be used in applications such as fertilizers, or can be discarded as an unnecessary material.

特開2015−192953号公報JP, 2005-192953, A

ところで、特許文献1に記載の排水処理設備において、蒸発濃縮処理が終了した蒸発濃縮水を固形分生成部へ移送して、蒸発濃縮水に含まれる溶解成分を析出させて、析出物を含む固形分を得ることが考えられる。
ここで、単に蒸発濃縮処理を実施した蒸発濃縮水は、濃縮され過ぎたり、濃縮が不十分であったりする。例えば、濃縮され過ぎた蒸発濃縮水は、比較的多量の析出物を含むため、固形分生成部への移送時に析出物が移送経路等を詰まらせる等のトラブルを起こし得る。一方で、濃縮が不十分である蒸発濃縮水は、析出物をあまり含まないため、上記のようなトラブルを移送時にほとんど起こさないものの、蒸発濃縮水に含まれる溶解成分の濃度が低いため、移送された固形分生成部において効率的に析出物を生じさせることができない。
このように、蒸発濃縮処理によって単に濃縮された蒸発濃縮水は、移送されるときの析出物によるトラブルを抑制しつつ、移送後の固形分生成部において析出物を効率的に生じさせることが困難であるという問題がある。
By the way, in the wastewater treatment facility described in Patent Document 1, the evaporative concentrated water after the evaporative concentrating treatment is transferred to the solid content generation unit to precipitate dissolved components contained in the evaporative concentrated water, and solids containing precipitates. It is possible to get a minute.
Here, the evaporative concentrated water that has been simply subjected to the evaporative concentrating treatment may be excessively concentrated or insufficiently concentrated. For example, the excessively concentrated evaporated concentrated water contains a relatively large amount of precipitates, so that the precipitates may cause troubles such as clogging of the transfer route during the transfer to the solid content generation unit. On the other hand, evaporative concentrated water that is insufficiently concentrated does not contain many precipitates, so it hardly causes the above problems at the time of transfer, but since the concentration of dissolved components in the evaporative concentrated water is low, it cannot be transferred. Precipitates cannot be efficiently generated in the solid content generating part.
As described above, it is difficult for the evaporated concentrated water simply concentrated by the evaporative concentration treatment to efficiently generate the precipitates in the solid content generation portion after the transfer while suppressing the troubles caused by the precipitates when the water is transferred. There is a problem that is.

本発明は、上記の問題点等に鑑み、移送時にトラブルを起こしにくい蒸発濃縮水であって、移送後において効率的に析出物を生じる蒸発濃縮水を得ることができる排水処理設備及び排水処理方法を提供することを課題とする。 In view of the above problems and the like, the present invention is a wastewater treatment facility and a wastewater treatment method capable of obtaining evaporative concentrated water that is less likely to cause trouble during transfer, and that efficiently produces precipitates after transfer. The challenge is to provide.

上記課題を解決すべく、本発明に係る排水処理設備は、排水に対して蒸発濃縮処理を施して蒸発濃縮水を得る蒸発濃縮部と、
前記蒸発濃縮水から固形分を生成させる固形分生成部と、を備え、
前記蒸発濃縮部から前記固形分生成部へ前記蒸発濃縮水が移送されるように構成され、
前記排水は、濃縮によって析出物となる溶解成分を含み、
前記固形分生成部では、前記析出物を含む前記固形分が生成され、
前記蒸発濃縮部では、前記蒸発濃縮処理が行われている前記蒸発濃縮水の比重、含水率、又は導電率の少なくとも1つによって前記蒸発濃縮処理の終了時が決定される。
In order to solve the above problems, the wastewater treatment facility according to the present invention, an evaporative concentration section for performing evaporative concentration treatment on wastewater to obtain evaporative concentrated water,
A solid content generation unit for generating a solid content from the evaporated concentrated water,
The evaporation concentrated water is configured to be transferred from the evaporation concentration unit to the solid content generation unit,
The waste water contains a dissolved component that becomes a precipitate by concentration,
In the solid content generation unit, the solid content containing the precipitate is generated,
In the evaporative concentration section, the end time of the evaporative concentration processing is determined by at least one of the specific gravity, the water content, and the conductivity of the evaporative concentrated water on which the evaporative concentration processing is performed.

上記の排水処理設備においては、蒸発濃縮処理によって水分が減少して濃縮された蒸発濃縮水の比重、含水率、又は導電率の少なくとも1つを指標にして、蒸発濃縮処理の終了時が決定される。斯かる比重、含水率、又は導電率は、事前に実施する実験によって設定できる。蒸発濃縮水において析出物が理論上生じ始める比重、含水率、又は導電率に近い値を、上記の設定値として採用することによって、蒸発濃縮処理が終了した蒸発濃縮水は、析出物を生じ得る状態であるものの、移送されるときの撹拌力によって、析出物が生じることが抑制される。従って、移送時における移送経路の詰まり等のトラブルを起こしにくい。しかも、設定した比重、含水率、又は導電率で蒸発濃縮処理が終了した蒸発濃縮水を、固形分生成部において例えば静置したり冷却したりすることによって、効率的に溶解成分を析出させ、析出物を含む固形分を得ることができる。
従って、上記の排水処理設備においては、固形分生成部への移送時にトラブルを起こしにくい蒸発濃縮水であって、固形分生成部において効率的に析出物を生成できる蒸発濃縮水を得ることができる。
In the above wastewater treatment equipment, the end time of the evaporative concentration treatment is determined by using at least one of the specific gravity, water content, and conductivity of the evaporative concentrated water whose water content has been reduced and concentrated by the evaporative concentration treatment. It Such specific gravity, water content, or conductivity can be set by an experiment conducted in advance. By adopting a specific gravity, a water content, or a value close to the conductivity at which the precipitate theoretically begins to be generated in the evaporative concentrated water as the above-mentioned set value, the evaporative concentrated water after the evaporative concentration treatment may generate a precipitate. Although it is in a state, the stirring force at the time of transfer suppresses the generation of precipitates. Therefore, troubles such as clogging of the transfer path during transfer are unlikely to occur. Moreover, the specific gravity, the water content, or the evaporative concentrated water that has been evaporatively concentrated at the electrical conductivity is set, for example, by allowing it to stand still or cooling in the solid content generation section to efficiently precipitate dissolved components, A solid content containing a precipitate can be obtained.
Therefore, in the above wastewater treatment facility, it is possible to obtain evaporative concentrated water that is less likely to cause troubles when transferred to the solid content generating unit and that can efficiently generate a precipitate in the solid content generating unit. ..

上記の排水処理設備では、前記蒸発濃縮部では、前記蒸発濃縮水において前記析出物が生じるまで前記蒸発濃縮処理が行われてもよい。
これにより、蒸発濃縮処理が終了した蒸発濃縮水は、析出物が生成する状態になっている。このような蒸発濃縮水が固形分生成部に移送されて静置又は冷却等されることによって、より効率的に析出物を生成させることができる。しかも、蒸発濃縮水において析出物が生じることは、上述したように、移送時の撹拌力によって抑制されるため、移送時のトラブルを起こしにくい。
In the above wastewater treatment facility, the evaporative concentration section may perform the evaporative concentration treatment until the deposits are generated in the evaporative concentrated water.
As a result, the evaporative concentrated water that has undergone the evaporative concentrating process is in a state where precipitates are generated. By transporting such evaporated concentrated water to the solid content generation unit and allowing it to stand or cool, a precipitate can be generated more efficiently. Moreover, as described above, the occurrence of precipitates in the evaporated concentrated water is suppressed by the stirring force at the time of transfer, and therefore troubles at the time of transfer are less likely to occur.

本発明の排水処理方法は、排水に対して蒸発濃縮処理を施して蒸発濃縮水を得る蒸発濃縮工程と、
前記蒸発濃縮水から固形分を生成させる固形分生成工程と、を備え、
前記蒸発濃縮工程を経た前記蒸発濃縮水を移送して前記固形分生成工程を実施し、
前記排水は、濃縮によって析出物となる溶解成分を含み、
前記固形分生成工程では、前記析出物を含む前記固形分が生成され、
前記蒸発濃縮工程では、前記蒸発濃縮処理が行われている前記蒸発濃縮水の比重、含水率、又は導電率の少なくとも1つによって前記蒸発濃縮処理の終了時を決定する。
The wastewater treatment method of the present invention comprises an evaporative concentration step of subjecting wastewater to an evaporative concentration treatment to obtain evaporative concentrated water,
A solid content generation step of generating solid content from the evaporated concentrated water,
The evaporative concentrated water that has passed through the evaporative concentration step is transferred to perform the solid content generation step,
The waste water contains a dissolved component that becomes a precipitate by concentration,
In the solid content generation step, the solid content containing the precipitate is generated,
In the evaporative concentration step, the end time of the evaporative concentration processing is determined by at least one of the specific gravity, the water content and the conductivity of the evaporative concentrated water on which the evaporative concentration processing is performed.

本発明の排水処理方法及び排水処理設備は、固形分生成部への移送時にトラブルを起こしにくい蒸発濃縮水であって、移送された固形分生成部において効率的に析出物を生成できる蒸発濃縮水を得ることができるという効果を奏する。 The wastewater treatment method and the wastewater treatment facility of the present invention are evaporative concentrates that are less likely to cause troubles when transferred to a solid content generation unit, and are capable of efficiently forming precipitates in the transferred solid content generation unit. There is an effect that can be obtained.

本実施形態の排水処理設備の概略を表す概略図。The schematic diagram showing the outline of the wastewater treatment equipment of this embodiment.

以下、本発明に係る排水処理設備の一実施形態について、図面を参照しつつ詳しく説明する。 Hereinafter, one embodiment of the wastewater treatment facility according to the present invention will be described in detail with reference to the drawings.

本実施形態の排水処理設備1は、例えば図1に示すように、水分減少に伴って析出物となる溶解成分を含む排水Aに対して蒸発濃縮処理を施して蒸発濃縮水Bを得る蒸発濃縮部10を備える。
本実施形態の排水処理設備1は、蒸発濃縮処理によって濃縮された蒸発濃縮水Bから、析出物を含む固形分Cを生成させる固形分生成部20をさらに備える。
本実施形態の排水処理設備1は、蒸発濃縮処理が終了した蒸発濃縮水Bを蒸発濃縮部10から固形分生成部20へ移送するように構成されている。
本実施形態の排水処理設備1の蒸発濃縮部10は、蒸発濃縮処理が行われている蒸発濃縮水Bの比重、含水率、又は導電率の少なくとも1つによって蒸発濃縮処理の終了時が決定される構成を有する。
In the wastewater treatment facility 1 of the present embodiment, for example, as shown in FIG. 1, the wastewater A containing a dissolved component that becomes a precipitate due to a decrease in water content is subjected to an evaporative concentration process to obtain an evaporative concentrated water B. The unit 10 is provided.
The wastewater treatment facility 1 of the present embodiment further includes a solid content generation unit 20 that generates a solid content C containing a precipitate from the evaporated concentrated water B concentrated by the evaporation concentration processing.
The wastewater treatment facility 1 of the present embodiment is configured to transfer the evaporative concentrated water B, which has been subjected to the evaporative concentration processing, from the evaporative concentration section 10 to the solid content generation section 20.
In the evaporative concentration section 10 of the wastewater treatment facility 1 of the present embodiment, the end time of the evaporative concentration processing is determined by at least one of the specific gravity, water content, and conductivity of the evaporative concentrated water B on which the evaporative concentration processing is performed. Has a configuration.

本実施形態の排水処理設備1は、排水Aを蒸発濃縮部10へ供給する排水供給経路30を有する。また、蒸発濃縮部10で水分が減った蒸発濃縮水Bを固形分生成部20へ送る蒸発濃縮水移送経路40を備える。
また、本実施形態の排水処理設備1は、固形分生成部20において生成した固形分Cを取り出せる構成を有する。また、本実施形態の排水処理設備1は、貯まった固形分Cと分離した液分Dを、固形分生成部20から取り出す液分取り出し経路50を有する。
また、本実施形態の排水処理設備1は、蒸発濃縮部10において蒸発濃縮処理されている蒸発濃縮水Bの比重を断続的に測定する比重計70を備える。また、蒸発濃縮部10において蒸発濃縮処理されている蒸発濃縮水Bの含水率を断続的に測定する含水率計80を備える。蒸発濃縮部10において蒸発濃縮処理されている蒸発濃縮水Bの導電率を断続的に測定する導電率計(図示せず)を備えてもよい。
The wastewater treatment facility 1 of the present embodiment has a wastewater supply path 30 that supplies the wastewater A to the evaporative concentration section 10. Further, an evaporation/concentration water transfer path 40 for sending the evaporation/concentration water B whose water content is reduced in the evaporation/concentration unit 10 to the solid content generation unit 20 is provided.
In addition, the wastewater treatment facility 1 of the present embodiment has a configuration in which the solid content C generated in the solid content generation unit 20 can be taken out. Further, the wastewater treatment facility 1 of the present embodiment has a liquid content take-out path 50 for taking out the stored solid content C and the separated liquid content D from the solid content generation unit 20.
Further, the wastewater treatment facility 1 of the present embodiment includes a hydrometer 70 that intermittently measures the specific gravity of the evaporated concentrated water B that has been subjected to the evaporative concentration processing in the evaporative concentration section 10. Further, a water content meter 80 for intermittently measuring the water content of the evaporatively concentrated water B that has been evaporatively concentrated in the evaporative concentration section 10 is provided. A conductivity meter (not shown) that intermittently measures the conductivity of the evaporative concentrated water B that has been evaporatively concentrated in the evaporative concentration section 10 may be provided.

本実施形態の排水処理設備1は、蒸発濃縮部10において蒸発した水分を凝縮させる構成を有する。凝縮された水分は、凝縮水Eとなる。
本実施形態の排水処理設備1は、排水Aを蒸発濃縮部10へ供給するための第1ポンプ61と、蒸発濃縮部10の蒸発濃縮水Bを固形分生成部20へ送るための第2ポンプ62と、固形分生成部20の液分Dを固形分生成部20から取り出すための第3ポンプ63とを有する。これらポンプとしては、市販されている製品を使用できる。
The wastewater treatment facility 1 of the present embodiment has a configuration for condensing the water vapor evaporated in the evaporative concentration section 10. The condensed water becomes condensed water E.
The wastewater treatment facility 1 of the present embodiment includes a first pump 61 for supplying the wastewater A to the evaporative concentration section 10 and a second pump for sending the evaporative concentrated water B of the evaporative concentration section 10 to the solid content generation section 20. It has 62 and the 3rd pump 63 for taking out the liquid content D of the solid content production|generation part 20 from the solid content production|generation part 20. As these pumps, commercially available products can be used.

本実施形態の排水処理設備1は、蒸発濃縮部10における蒸発濃縮処理が終了した蒸発濃縮水Bの少なくとも一部を固形分生成部20へ移送して、固形分生成部20において固形分Cを沈殿させる回分式(バッチ式)の設備であってもよい。
一方、本実施形態の排水処理設備1は、蒸発濃縮部10において蒸発濃縮処理を行いつつ間欠的に蒸発濃縮部10の蒸発濃縮水Bを固形分生成部20へ移送する半回分式(半連続式)の設備であってもよい。
また、本実施形態の排水処理設備1は、蒸発濃縮部10において蒸発濃縮処理を行いつつ連続的に蒸発濃縮部10の蒸発濃縮水Bを固形分生成部20へ移送する連続式の設備であってもよい。
The wastewater treatment facility 1 of the present embodiment transfers at least a part of the evaporative concentrated water B, which has been subjected to the evaporative concentration processing in the evaporative concentration section 10, to the solid content generation section 20, and the solid content generation section 20 removes the solid content C. It may be a batch-type equipment for precipitation.
On the other hand, the wastewater treatment equipment 1 of the present embodiment is a semi-batch type (semi-continuous type) in which the evaporative concentration water in the evaporative concentration section 10 is intermittently transferred to the solid content generation section 20 while performing the evaporative concentration processing in the evaporative concentration section 10. Equation) equipment.
Further, the wastewater treatment equipment 1 of the present embodiment is a continuous equipment for continuously transferring the evaporative concentrated water B of the evaporative concentration section 10 to the solid content generation section 20 while performing the evaporative concentration processing in the evaporative concentration section 10. May be.

蒸発濃縮部10へ供給される排水Aとしては、特に限定されず、例えば、無機酸又は無機アルカリを含む無機系排水、有機物を比較的多く含む有機系排水などが採用される。具体的には、液晶パネルなどを製造する電子部品製造工場などから排出される工場排水などが採用される。
斯かる排水Aは、例えば、活性汚泥法やメタン発酵処理などの生物処理を経た排水であってもよい。その後、さらに逆浸透膜による膜分離によって膜濃縮された排水(膜分離濃縮排水)であってもよい。
The wastewater A supplied to the evaporative concentration section 10 is not particularly limited, and for example, an inorganic wastewater containing an inorganic acid or an inorganic alkali, an organic wastewater containing a relatively large amount of organic matter, or the like is adopted. Specifically, factory wastewater discharged from an electronic component manufacturing factory that manufactures liquid crystal panels and the like is used.
Such wastewater A may be, for example, wastewater that has undergone a biological treatment such as an activated sludge method or a methane fermentation treatment. Then, the waste water further concentrated by membrane separation by a reverse osmosis membrane (membrane separation concentrated waste water) may be used.

蒸発濃縮部10へ供給される排水Aは、様々な溶解成分を含む。溶解成分は、排水Aにおいて溶解した状態であるが、水分の減少に伴って溶解状態を維持できなくなって析出し得る成分である。溶解成分は、温度の変化、流動停止なども原因となって析出し、析出物となり得る。 The wastewater A supplied to the evaporative concentration section 10 contains various dissolved components. The dissolved component is a component that is in a dissolved state in the wastewater A, but the dissolved state cannot be maintained due to the decrease in water content and can be deposited. The dissolved component may be deposited due to a change in temperature, stoppage of flow, etc., and may be a deposit.

溶解成分としては、無機イオン、又は、水溶性有機物などが挙げられる。
無機イオンとしては、ナトリウムイオン、カリウムイオン、マグネシウムイオン、アンモニウムイオン、硫酸イオン、リン酸イオン、硝酸イオン、塩化物イオン、フッ素イオン、又は、ホウ酸イオンなどが挙げられる。
水溶性有機物としては、イソプロピルアルコール(IPA)、ジメチルスルホキシドなどが挙げられる。
Examples of soluble components include inorganic ions and water-soluble organic substances.
Examples of the inorganic ion include sodium ion, potassium ion, magnesium ion, ammonium ion, sulfate ion, phosphate ion, nitrate ion, chloride ion, fluorine ion, and borate ion.
Examples of water-soluble organic substances include isopropyl alcohol (IPA) and dimethyl sulfoxide.

析出物としては、例えば、硫酸ナトリウム、リン酸マグネシウムアンモニウム、ホウ酸ナトリウムなどが挙げられる。 Examples of the precipitate include sodium sulfate, magnesium ammonium phosphate, sodium borate and the like.

排水Aのナトリウムイオン含有量は、少なくとも0.1質量%であることが好ましい。また、硫酸イオンの含有量は、少なくとも0.05質量%であることが好ましい。これにより、析出物に含まれる硫酸ナトリウムがより多くなり、析出物を有用物として利用できるという利点がある。なお、ナトリウムイオン及び硫酸イオンの含有量は、通常、硫酸ナトリウム換算で5質量%未満である。 The sodium ion content of the wastewater A is preferably at least 0.1% by mass. Further, the content of sulfate ions is preferably at least 0.05% by mass. As a result, the amount of sodium sulfate contained in the precipitate is increased, and there is an advantage that the precipitate can be used as a useful substance. The content of sodium ions and sulfate ions is usually less than 5 mass% in terms of sodium sulfate.

また、排水Aのカルシウム含有量は、100mg/L以下であることが好ましい。これにより、析出物を含む固形分Cが硬い岩石状になることを抑制できる。固形分Cが硬い岩石状でなく、例えばスラリー状であることによって、固形分Cの取り扱い性がより良好になることから、析出物を含む固形分Cをより効率的に取り出すことができる。
斯かる理由と同様の理由により、排水Aのマグネシウム含有量は、100mg/L以下であることが好ましい。
Further, the calcium content of the wastewater A is preferably 100 mg/L or less. As a result, it is possible to suppress the solid content C containing the precipitate from becoming hard rock. When the solid content C is not in the form of hard rock and is in the form of, for example, a slurry, the handleability of the solid content C is improved, and thus the solid content C containing precipitates can be taken out more efficiently.
For the same reason as above, the magnesium content of the wastewater A is preferably 100 mg/L or less.

排水Aの全有機炭素量(TOC量)は、100mg/L以下であることが好ましい。これにより、固形分Cを再利用する場合に利用する析出物の純度をより高くすることができる。また、有機物由来の固形分Cの着色を抑えることができる。 The total organic carbon amount (TOC amount) of the wastewater A is preferably 100 mg/L or less. Thereby, the purity of the precipitate used when reusing the solid content C can be further increased. Further, it is possible to suppress the coloring of the solid content C derived from an organic substance.

蒸発濃縮部10は、気化槽11を有する。蒸発濃縮部10では、気化槽11の内部に排水Aを貯めつつ排水A中の水分を蒸発させる。詳しくは、排水Aを槽内で流動させつつ水分を蒸発させる。仮に、蒸発濃縮水Bの比重、含水率、又は導電率が、析出物を析出させ得る比重、含水率、又は導電率に達したとしても、蒸発濃縮水Bが流動しているため、蒸発濃縮部10においては、析出物の析出が抑制される。 The evaporative concentration section 10 has a vaporization tank 11. In the evaporative concentration section 10, the water in the wastewater A is evaporated while the wastewater A is stored inside the vaporization tank 11. Specifically, water is evaporated while the wastewater A is made to flow in the tank. Even if the specific gravity, the water content, or the conductivity of the evaporated concentrated water B reaches the specific gravity, the water content, or the conductivity with which precipitates can be deposited, the evaporated concentrated water B is still flowing, so In part 10, the precipitation of precipitates is suppressed.

本実施形態の排水処理設備1は、蒸発濃縮処理が行われている蒸発濃縮水Bの比重、含水率、又は導電率の少なくとも1つに基づいて、蒸発濃縮処理の終了時を決定するように構成されている。蒸発濃縮処理が行われている蒸発濃縮水Bの比重は、比重計70によって測定できる。蒸発濃縮処理が行われている蒸発濃縮水Bの含水率は、含水率計80によって測定できる。そして、蒸発濃縮処理が終了した蒸発濃縮水Bを、蒸発濃縮部10から固形分生成部20へ移送するように構成されている。
本実施形態の排水処理設備1の蒸発濃縮部10では、蒸発濃縮水Bにおいて析出物が生じるまで蒸発濃縮処理が行われてもよい。
The wastewater treatment facility 1 of the present embodiment determines the end time of the evaporative concentration processing based on at least one of the specific gravity, water content, and conductivity of the evaporative concentrated water B on which the evaporative concentration processing is performed. It is configured. The specific gravity of the evaporated concentrated water B that has been subjected to the evaporative concentration treatment can be measured by the hydrometer 70. The water content of the evaporative concentrated water B which has been subjected to the evaporative concentration treatment can be measured by a water content meter 80. Then, the evaporative concentrated water B that has been subjected to the evaporative concentration processing is configured to be transferred from the evaporative concentration section 10 to the solid content generation section 20.
In the evaporative concentration section 10 of the wastewater treatment facility 1 of the present embodiment, the evaporative concentration processing may be performed until a precipitate is generated in the evaporative concentrated water B.

上記の排水処理設備1においては、蒸発濃縮処理の終了時を決定すべく、1つの比重、1つの含水率、又は1つの導電率が設定される。比重、含水率、導電率の2つ以上をそれぞれ設定してもよい。上記の比重、含水率、導電率を設定するときに、蒸発濃縮水Bにおいて析出物が理論上生じ始める比重、含水率、導電率に近い値を、上記の設定値として採用する。これにより、蒸発濃縮処理が終了した蒸発濃縮水Bは、析出物を生じ得る状態であるものの、移送されるときの撹拌力によって、析出物が生じることが抑制される。従って、移送時における移送経路の詰まり等のトラブルを起こしにくい。しかも、設定した比重、含水率、又は導電率で蒸発濃縮処理が終了した蒸発濃縮水Bを、固形分生成部20において例えば静置したり冷却したりすることによって、効率的に溶解成分を析出させ、析出物を含む固形分Cを得ることができる。
従って、上記の排水処理設備1においては、固形分生成部20への移送時にトラブルを起こしにくい蒸発濃縮水Bであって、固形分生成部20において効率的に析出物を生成できる蒸発濃縮水Bを得ることができる。
In the waste water treatment facility 1 described above, one specific gravity, one water content, or one conductivity is set in order to determine the end time of the evaporative concentration treatment. Two or more of specific gravity, water content and conductivity may be set respectively. When setting the above-mentioned specific gravity, water content, and electric conductivity, values close to the specific gravity, water content, and electric conductivity at which precipitates theoretically start to occur in the evaporated concentrated water B are adopted as the above-mentioned set values. As a result, although the evaporative concentrated water B that has been subjected to the evaporative concentration treatment is in a state where a precipitate can be generated, the stirring force at the time of transfer suppresses the generation of a precipitate. Therefore, troubles such as clogging of the transfer path during transfer are unlikely to occur. Moreover, the dissolved component is efficiently precipitated by, for example, leaving the evaporative concentrated water B, which has been evaporatively concentrated with the set specific gravity, water content, or conductivity, in the solid content generation unit 20 for cooling. Then, the solid content C containing the precipitate can be obtained.
Therefore, in the wastewater treatment facility 1, the evaporated concentrated water B is less likely to cause a trouble when being transferred to the solid content generation unit 20, and the evaporated concentrated water B is capable of efficiently forming a precipitate in the solid content generation unit 20. Can be obtained.

上記の比重、含水率、導電率の設定値としては、蒸発濃縮水Bにおいて析出物が理論上生じ始める比重、含水率、導電率に近い値を、採用することが好ましく、析出物が理論上わずかに生じる設定値を採用することがより好ましい。斯かる比重、含水率、導電率は、事前に実施する実験によって設定できる。 As the set values of the specific gravity, the water content, and the conductivity, it is preferable to adopt values close to the specific gravity, the water content, and the conductivity at which the precipitate theoretically begins to be generated in the evaporated concentrated water B, and the precipitate is theoretically It is more preferable to adopt a set value that occurs slightly. Such specific gravity, water content, and conductivity can be set by experiments conducted in advance.

蒸発濃縮部10は、蒸発濃縮処理が行われている蒸発濃縮水Bの温度を計測する温度計(図示せず)と、蒸発濃縮処理中の圧力を計測する圧力計(図示せず)とを有することが好ましい。これにより、蒸発濃縮処理における圧力と、蒸発濃縮水Bの温度とを計測できる。事前に、温度条件及び圧力条件ごとに上記の各設定値を求めておくことによって、計測された温度及び圧力ごとの各設定値を採用することができる。このようにして各設定値を採用することによって、蒸発濃縮処理を終了させるための設定値の信頼性がより高くなる。 The evaporative concentration section 10 includes a thermometer (not shown) that measures the temperature of the evaporative concentrated water B that has been subjected to the evaporative concentration processing, and a pressure gauge (not shown) that measures the pressure during the evaporative concentration processing. It is preferable to have. Thereby, the pressure in the evaporative concentration processing and the temperature of the evaporative concentrated water B can be measured. By obtaining the above-mentioned set values for each temperature condition and pressure condition in advance, it is possible to adopt each set value for each measured temperature and pressure. By adopting each set value in this way, the reliability of the set value for ending the evaporative concentration process becomes higher.

例えば、本実施形態の排水処理設備1は、蒸発濃縮部10において蒸発濃縮水Bの比重が特定の比重設定値となった(特定の比重設定値まで上昇した)ときに、蒸発濃縮処理を終了する構成を有することが好ましい。
比重設定値は、事前に実施する予備実験によって求められる。具体的には、蒸発濃縮部10において実施する蒸発濃縮処理と同条件(排水、温度、圧力等)で蒸発濃縮水Bを濃縮しつつ、析出物が生じたときの比重(理論比重値)を測定する。
上記の比重設定値は、上記の理論比重値の0.9倍以上1.5倍以下の1つの値であることが好ましく、0.9倍以上1.3倍以下の1つの値であることがより好ましく、1.0倍よりも大きく1.2倍以下の1つの値であることがさらに好ましい。
上記の比重設定値が理論比重値の0.9倍以上の1つの値であることによって、固形分生成部20へ移送された蒸発濃縮水Bにおいて、より効率的に析出物を生じさせることができる。
上記の比重設定値が理論比重値の1.5倍以下の1つの値であることによって、固形分生成部20へ移送される蒸発濃縮水Bに含まれ得る析出物が、蒸発濃縮水移送経路40の内部を詰まらせる等のトラブルをより抑制できる。
より具体的には、比重設定値としては、例えば1.05g/cm以上1.50g/cm以下、好ましくは1.175g/cm以上1.375g/cm以下の範囲における1数値を採用することができる。
For example, the wastewater treatment facility 1 of the present embodiment ends the evaporative concentration processing when the specific gravity of the evaporative concentrated water B in the evaporative concentration section 10 reaches a specific gravity set value (up to a specific gravity set value). It is preferable to have a configuration.
The specific gravity setting value is obtained by a preliminary experiment conducted in advance. Specifically, the specific gravity (theoretical specific gravity value) when a precipitate is generated while concentrating the evaporative concentrated water B under the same conditions (drainage, temperature, pressure, etc.) as the evaporative concentration processing performed in the evaporative concentration section 10. taking measurement.
It is preferable that the specific gravity set value is one value of 0.9 times or more and 1.5 times or less, and one value of 0.9 times or more and 1.3 times or less of the theoretical specific gravity value. Is more preferable, and it is even more preferable that the value is one more than 1.0 times and 1.2 times or less.
When the specific gravity set value is one value equal to or more than 0.9 times the theoretical specific gravity value, it is possible to more efficiently generate a precipitate in the evaporated concentrated water B transferred to the solid content generation unit 20. it can.
Since the specific gravity set value is one value equal to or less than 1.5 times the theoretical specific gravity value, the precipitates that may be contained in the evaporated concentrated water B transferred to the solid content generation unit 20 may be included in the evaporated concentrated water transfer path. Trouble such as clogging the inside of 40 can be further suppressed.
More specifically, the specific gravity of a set value, for example 1.05 g / cm 3 or more 1.50 g / cm 3 or less, preferably 1 numbers in the range of 1.175g / cm 3 or more 1.375 g / cm 3 or less Can be adopted.

例えば、本実施形態の排水処理設備1は、蒸発濃縮処理が行われている蒸発濃縮水Bの導電率に基づいて、蒸発濃縮処理の終了時を決定するように構成されている。蒸発濃縮処理が行われている蒸発濃縮水Bの導電率は、導電率計(図示せず)によって測定できる。
本実施形態の排水処理設備1は、蒸発濃縮部10において蒸発濃縮水Bの導電率が特定の導電率設定値となった(特定の導電率設定値まで上昇した)ときに、蒸発濃縮処理を終了する構成を有してもよい。この場合、導電率設定値は、上記の比重設定値と同様にして求めることができ、導電率設定値は、理論導電率値に基づいた値(上述した理論比重値に対する倍数値と同様の値)であることが好ましい。
For example, the wastewater treatment facility 1 of this embodiment is configured to determine the end time of the evaporative concentration processing based on the conductivity of the evaporative concentrated water B on which the evaporative concentration processing is being performed. The conductivity of the evaporated concentrated water B that has been subjected to the evaporative concentration treatment can be measured by a conductivity meter (not shown).
The wastewater treatment facility 1 of the present embodiment performs the evaporative concentration processing when the electric conductivity of the evaporative concentrated water B in the evaporative concentration section 10 reaches a specific conductivity set value (increases to a specific conductivity set value). It may have a configuration to end. In this case, the conductivity set value can be obtained in the same manner as the specific gravity set value described above, and the conductivity set value is a value based on the theoretical conductivity value (a value similar to a multiple value for the theoretical specific gravity value described above). ) Is preferable.

また、例えば、本実施形態の排水処理設備1は、蒸発濃縮部10において蒸発濃縮水Bの含水率が特定の含水率設定値となった(特定の含水率設定値まで低下した)ときに、蒸発濃縮処理を終了する構成を有することが好ましい。
含水率設定値は、事前に実施する予備実験によって求められる。具体的には、蒸発濃縮部10において実施する蒸発濃縮処理と同条件(排水、温度、圧力等)で蒸発濃縮水Bを濃縮しつつ、析出物が生じたときの含水率(理論含水率値)を測定する。
上記の含水率設定値は、上記の理論含水率値の0.7倍以上1.3倍以下の1つの値であることが好ましく、0.8倍以上1.2倍以下の1つの値であることがより好ましく、0.9倍以上1.0倍未満の1つの値であることがさらに好ましい。
上記の含水率設定値が理論含水率値の0.7倍以上の1つの値であることによって、固形分生成部20へ移送される蒸発濃縮水Bに含まれ得る析出物が、蒸発濃縮水移送経路40の内部を詰まらせる等のトラブルをより抑制できる。
上記の含水率設定値が理論含水率値の1.3倍以下の1つの値であることによって、固形分生成部20へ移送された蒸発濃縮水Bにおいて、より効率的に析出物を生じさせることができる。
より具体的には、含水率設定値としては、例えば30%以上95%以下の範囲における1数値を採用することができる。
Further, for example, in the wastewater treatment equipment 1 of the present embodiment, when the water content of the evaporative concentrated water B in the evaporative concentration section 10 reaches a specific water content set value (decreases to a specific water content set value), It is preferable to have a configuration for ending the evaporative concentration treatment.
The water content setting value is obtained by preliminary experiments conducted in advance. Specifically, while evaporating and concentrating water B is concentrated under the same conditions (drainage, temperature, pressure, etc.) as the evaporating and concentrating process performed in the evaporative concentrating unit 10, the water content (theoretical water content value) when a precipitate is formed. ) Is measured.
The above-mentioned water content setting value is preferably one value of 0.7 times or more and 1.3 times or less of the above theoretical water content value, and one value of 0.8 times or more and 1.2 times or less. It is more preferable that the value is 0.9 times or more and less than 1.0 times.
When the above-mentioned water content set value is one value equal to or more than 0.7 times the theoretical water content value, the precipitates that may be contained in the evaporative concentrated water B transferred to the solid content producing unit 20 are the evaporative concentrated water. Trouble such as clogging the inside of the transfer path 40 can be further suppressed.
Since the above-mentioned water content set value is one value equal to or less than 1.3 times the theoretical water content value, the evaporative concentrated water B transferred to the solid content producing section 20 produces precipitates more efficiently. be able to.
More specifically, as the water content set value, for example, one numerical value in the range of 30% or more and 95% or less can be adopted.

蒸発濃縮部10は、内部の蒸発濃縮水Bを循環させつつ水分を蒸発させる構成を有する。詳しくは、蒸発濃縮部10は、内部の蒸発濃縮水Bを循環させる循環経路12を有し、該循環経路12によって蒸発濃縮水Bを気化槽11内で循環させつつ、水分を蒸発させる。 The evaporative concentration section 10 is configured to evaporate water while circulating the evaporative concentrated water B inside. Specifically, the evaporative concentration section 10 has a circulation path 12 for circulating the evaporative concentrated water B therein, and causes the evaporative concentrated water B to circulate in the vaporization tank 11 while evaporating water.

蒸発濃縮部10は、例えば、排水A(蒸発濃縮水B)を減圧下で所定の処理温度に加熱することによって水分を蒸発させる。減圧条件は、例えば20hPa以上45hPa以下であり、処理温度は、例えば50℃以上85℃以下である。
なお、排水Aにスケール防止剤を添加することによって、蒸発濃縮部10において固形分Cが過剰に生成することを抑制してもよい。
The evaporative concentration section 10 evaporates water by heating the wastewater A (evaporated concentrated water B) to a predetermined treatment temperature under reduced pressure, for example. The reduced pressure condition is, for example, 20 hPa or more and 45 hPa or less, and the treatment temperature is, for example, 50° C. or more and 85° C. or less.
In addition, by adding a scale inhibitor to the wastewater A, the solid content C may be prevented from being excessively generated in the evaporative concentration section 10.

蒸発濃縮部10において蒸発していったん気体となった水分は、大気圧条件下において室温で凝縮して、凝縮水Eとなる。凝縮水Eは、例えば、工場内で設備用水として使用される。 Moisture that has once been vaporized in the evaporative concentration section 10 is condensed at room temperature under atmospheric pressure conditions to become condensed water E. The condensed water E is used as equipment water in a factory, for example.

蒸発濃縮水移送経路40は、蒸発濃縮部10から固形分生成部20へ蒸発濃縮水Bを移送する経路である。蒸発濃縮水移送経路40は、例えば図1に示すように、蒸発濃縮部10における蒸発濃縮水Bの取り出し口から分岐まで上記の循環経路12の一部と経路を共有している。蒸発濃縮水移送経路40は、通常、配管によって構成される。 The evaporative concentrated water transfer path 40 is a path for transferring the evaporative concentrated water B from the evaporative concentrating section 10 to the solid content generating section 20. For example, as shown in FIG. 1, the evaporative concentrated water transfer path 40 shares a path with a part of the circulation path 12 from the outlet of the evaporative concentrated water B in the evaporative concentration section 10 to the branch. The evaporative concentrated water transfer path 40 is usually constituted by a pipe.

蒸発濃縮水移送経路40では、蒸発濃縮水Bは、移送されるときに撹拌力を受ける。従って、移送時の温度が蒸発濃縮処理時の温度よりも低かったとしても、また、移送される蒸発濃縮水Bの比重、含水率、又は導電率が、理論上析出物が生じる上記のような理論値であったとしても、析出物が生じることは撹拌力によって抑制される。 In the evaporated concentrated water transfer path 40, the evaporated concentrated water B is subjected to a stirring force when being transferred. Therefore, even if the temperature at the time of transfer is lower than the temperature at the time of evaporative concentration treatment, the specific gravity, water content, or conductivity of the evaporative concentrated water B to be transferred is theoretically such that precipitates are generated as described above. Even if it is a theoretical value, the generation of precipitates is suppressed by the stirring force.

本実施形態の排水処理設備1は、蒸発濃縮水移送経路40及び上記の循環経路12の共有部分に配置された第2ポンプ62を有する。斯かる第2ポンプ62と上記の循環経路12とによって、蒸発濃縮部10の蒸発濃縮水Bを循環させることができる。また、斯かる第2ポンプ62と蒸発濃縮水移送経路40とによって、蒸発濃縮水Bを固形分生成部20へ移送することができる。 The wastewater treatment facility 1 of the present embodiment has an evaporated concentrated water transfer path 40 and a second pump 62 arranged in a shared portion of the circulation path 12 described above. By the second pump 62 and the circulation path 12 described above, the evaporative concentrated water B in the evaporative concentrating unit 10 can be circulated. Further, the evaporative concentrated water B can be transferred to the solid content generation unit 20 by the second pump 62 and the evaporative concentrated water transfer path 40.

本実施形態の排水処理設備1は、上記の循環経路12及び上記の蒸発濃縮水移送経路40の分岐よりも下流側にそれぞれ取り付けられた弁を有し、これら複数の弁の各操作によって、蒸発濃縮部10の排水Aを循環させたり、蒸発濃縮部10からの蒸発濃縮水Bを固形分生成部20へ移送させたりすることができる構成を有する。なお、第2ポンプ62は、各弁よりも上流側(経路を共有している部分)に取り付けられている。 The wastewater treatment facility 1 of the present embodiment has valves installed on the downstream sides of the branches of the circulation path 12 and the evaporative concentrated water transfer path 40, and the evaporation is performed by each operation of the plurality of valves. It has a configuration in which the wastewater A of the concentrating unit 10 can be circulated and the evaporated concentrated water B from the evaporative concentrating unit 10 can be transferred to the solid content generating unit 20. The second pump 62 is attached to the upstream side of the valves (portion sharing the path).

固形分生成部20は、析出沈殿槽21を有する。固形分生成部20は、析出沈殿槽21の槽内において、生成した固形分Cを沈殿させる構成を有する。 The solid content generation unit 20 has a precipitation settling tank 21. The solid content generation unit 20 has a configuration that precipitates the generated solid content C in the tank of the precipitation settling tank 21.

固形分生成部20では、蒸発濃縮部10から移送された蒸発濃縮水Bを静置する。蒸発濃縮水Bが静置されることによって、析出物を含む固形分Cが、沈殿して析出沈殿槽21の底部に貯まる。
固形分生成部20における蒸発濃縮水Bの温度条件は、蒸発濃縮部10における蒸発濃縮水Bの温度条件よりも、10℃以上低いことが好ましい。斯かる温度条件が10℃以上低く設定されることによって、析出物が生じることがさらに促進され、固形分Cの沈殿をさらに促進させることができる。斯かる温度条件の差は、通常、80℃以下である。
In the solid content generation unit 20, the evaporated concentrated water B transferred from the evaporation concentration unit 10 is left standing. When the evaporated concentrated water B is allowed to stand, the solid content C containing the precipitate is precipitated and stored in the bottom of the precipitation settling tank 21.
The temperature condition of the evaporated concentrated water B in the solid content generation unit 20 is preferably 10° C. or more lower than the temperature condition of the evaporated concentrated water B in the evaporation concentration unit 10. By setting the temperature condition to be lower than 10° C., the generation of precipitates is further promoted, and the precipitation of the solid content C can be further promoted. The difference in such temperature conditions is usually 80° C. or less.

固形分生成部20において沈殿した固形分Cは、結晶状の固体になり得る。また、ペースト状にもなり得る。
析出沈殿槽21の底部に貯まった固形分Cは、例えば、液分Dを槽外に取り出した後、作業者(人力)によって槽外に取り出される。液分Dは、例えば吸入ポンプを備えたタンクローリ車によって槽外へ取り出される。
The solid content C precipitated in the solid content generation unit 20 can become a crystalline solid. It can also be pasty.
The solid content C stored in the bottom of the deposition/precipitation tank 21 is taken out of the tank by an operator (manpower) after the liquid content D is taken out of the tank. The liquid component D is taken out of the tank by, for example, a tank truck equipped with a suction pump.

本実施形態の排水処理設備1においては、蒸発濃縮部10において蒸発濃縮処理が終了した蒸発濃縮水Bを固形分生成部20において静置することによって、析出物を含む固形分Cを沈殿させる。又は、固形分生成部20における蒸発濃縮水Bの温度条件を、蒸発濃縮部10における蒸発濃縮処理の温度条件よりも下げることによって、析出物を含む固形分Cを沈殿させる。これにより、各種用途において有用物となるか、又は、不要物として廃棄される析出物を含む固形分Cを、効率的に得ることができる。斯かる固形分Cは、液分Dと分離して下に貯まるため、簡便に採取することができる。 In the wastewater treatment facility 1 of the present embodiment, the solidified content C including the precipitate is precipitated by allowing the solidified-evaporated water B, which has been evaporated and concentrated in the solidified and concentrated section 10, to stand still in the solid content generation section 20. Alternatively, by lowering the temperature condition of the evaporative concentrated water B in the solid content generation unit 20 to be lower than the temperature condition of the evaporative concentration processing in the evaporative concentration unit 10, the solid content C containing the precipitate is precipitated. This makes it possible to efficiently obtain a solid content C containing a precipitate that becomes a useful material in various applications or is discarded as an unnecessary material. Since the solid content C is separated from the liquid content D and stored below, the solid content C can be easily collected.

本実施形態の排水処理設備1は、蒸発濃縮水移送経路40を経た蒸発濃縮水Bが、固形分生成部20の析出沈殿槽21の上部において、固形分生成部20(析出沈殿槽21)に流入する構成を有することが好ましい。また、蒸発濃縮水移送経路40を経た蒸発濃縮水Bが、析出沈殿槽21における液面よりも上方から、固形分生成部20(析出沈殿槽21)に流入する構成を有することがより好ましい。
斯かる構成によって、流入する蒸発濃縮水Bの水流によって、下に貯まった固形分Cが液分D中に分散されてしまうことを抑制できる。
In the wastewater treatment facility 1 of the present embodiment, the evaporated concentrated water B that has passed through the evaporated concentrated water transfer path 40 is transferred to the solid content generation unit 20 (precipitation precipitation tank 21) in the upper portion of the precipitation settling tank 21 of the solid content generation unit 20. It is preferable to have an inflow configuration. Further, it is more preferable to have a configuration in which the evaporated concentrated water B that has passed through the evaporated concentrated water transfer path 40 flows into the solid content generation unit 20 (precipitation precipitation tank 21) from above the liquid surface in the precipitation settling tank 21.
With such a configuration, it is possible to prevent the solid content C stored below from being dispersed in the liquid content D due to the inflow of the evaporated concentrated water B.

本実施形態の排水処理設備1は、蒸発濃縮水移送経路40を逆洗できる構成を有する。詳しくは、蒸発濃縮水移送経路40の途中(図1においてGで示す)から、加圧水を逆向きで供給し、供給部分よりも上流側(蒸発濃縮部10側)に配置された排出用配管を経由させて外部へ排出する(図1においてHで示す)。斯かる構成によって、蒸発濃縮水移送経路40の配管内部に付着した汚れ等を洗い流すことができる。配管内部に付着した汚れとしては、例えば、蒸発濃縮水Bにおいて生じた少量の析出物などが挙げられる。 The wastewater treatment facility 1 of this embodiment has a configuration capable of backwashing the evaporated concentrated water transfer path 40. Specifically, the pressurized water is supplied in the reverse direction from the middle of the evaporative concentrated water transfer path 40 (indicated by G in FIG. 1), and the discharge pipe arranged on the upstream side (evaporative concentrating section 10 side) of the supply portion is connected. It is discharged to the outside via the route (shown by H in FIG. 1). With such a configuration, it is possible to wash away dirt and the like adhering to the inside of the piping of the evaporated concentrated water transfer path 40. Examples of the dirt attached to the inside of the pipe include a small amount of precipitate generated in the evaporated concentrated water B.

固形分生成部20は、固形分Cが沈殿した後の液分Dを撹拌するための撹拌用経路22を有する。撹拌用経路22は、析出沈殿槽21の外部に配置されている。撹拌用経路22は、固形分生成部20から取り出した液分Dを上方へ上げて、取り出し位置よりも高い位置から、析出沈殿槽21の槽内に液分Dを供給する構成を有する。撹拌用経路22は、通常、配管で構成されている。
斯かる構成の撹拌用経路22によって析出沈殿槽21における液分Dを循環させつつ撹拌することができる。これにより、液分Dを均一な液に近づけることができる。そして、均一な液に近づいた液分Dを、上記の液分取り出し経路50によって、固形分生成部20から取り出すことができる。
The solid content generation unit 20 has a stirring path 22 for stirring the liquid content D after the solid content C is precipitated. The stirring path 22 is arranged outside the precipitation settling tank 21. The stirring path 22 has a configuration that raises the liquid content D taken out from the solid content generation unit 20 and supplies the liquid content D into the tank of the precipitation settling tank 21 from a position higher than the take-out position. The stirring path 22 is usually composed of piping.
With the stirring path 22 having such a configuration, the liquid component D in the precipitation tank 21 can be circulated and stirred. As a result, the liquid component D can be brought close to a uniform liquid. Then, the liquid content D approaching a uniform liquid can be taken out from the solid content production section 20 through the liquid content take-out path 50.

固形分生成部20は、撹拌用経路22を経た液分Dが、水平方向又は水平よりも上向き方向で、固形分生成部20の内部に流入する構成を有することが好ましい。
斯かる構成によって、下に貯まった固形分Cが、流入する液分Dの液流によって液分D中に分散されてしまうことを抑制できる。
It is preferable that the solid content generation unit 20 has a configuration in which the liquid content D that has passed through the stirring path 22 flows into the solid content generation unit 20 in the horizontal direction or in the upward direction relative to the horizontal direction.
With such a configuration, it is possible to prevent the solid content C accumulated below from being dispersed in the liquid content D by the liquid flow of the inflowing liquid content D.

図1に示すように、本実施形態の排水処理設備1において、液分取り出し経路50は、固形分生成部20における蒸発濃縮水Bの取り出し口から分岐まで、撹拌用経路22の一部と経路を共有している。分岐よりも下流側において、撹拌用経路22と液分取り出し経路50とに弁がそれぞれ取り付けられている。これら複数の弁の各操作によって、析出沈殿槽21における液分Dの撹拌操作と、析出沈殿槽21からの液分Dの排出操作とを切り替えることができる。なお、液分Dを固形分生成部20から取り出すための第3ポンプ63が、各弁よりも上流側(経路を共有している部分)に取り付けられている。 As shown in FIG. 1, in the wastewater treatment facility 1 of the present embodiment, the liquid content withdrawal path 50 is a part of the agitation path 22 from the outlet of the evaporated concentrated water B in the solid content generation section 20 to the branch, and the path. To share. Valves are attached to the stirring path 22 and the liquid extraction path 50, respectively, on the downstream side of the branch. The operation of stirring the liquid component D in the precipitation-precipitation tank 21 and the operation of discharging the liquid component D from the precipitation-precipitation tank 21 can be switched by each operation of the plurality of valves. A third pump 63 for taking out the liquid content D from the solid content generation unit 20 is attached to the upstream side of the valves (portion sharing the route).

固形分生成部20では、撹拌用経路22における液分Dを取り出す位置は、固形分生成部20において沈殿した固形分Cの最高位置よりも高い(上方である)。
斯かる構成によって、固形分Cが撹拌用経路22に誤って入り込むことを抑制できる。固形分Cが入り込むと、撹拌用経路22の詰まりの原因となるが、斯かる詰まりを抑制することができる。
In the solid content generation unit 20, the position for taking out the liquid content D in the stirring path 22 is higher than the highest position of the solid content C precipitated in the solid content generation unit 20 (above).
With such a configuration, it is possible to prevent the solid content C from accidentally entering the stirring path 22. When the solid content C enters, it causes clogging of the stirring path 22, but such clogging can be suppressed.

本実施形態の排水処理設備1において、撹拌用経路22及び液分取り出し経路50の途中に取り付けられた第3ポンプ63としては、渦巻ポンプ等のターボ形ポンプ、ダイヤフラムポンプ等の往復ポンプなどを使用できる。
第3ポンプ63は、マグネットポンプ等よりも外部注水式シール方式の渦巻ポンプであることが好ましい。斯かるポンプは、注水構造を有することから、液分Dに含まれる微細な固形物質によって故障することがほとんどない。
In the wastewater treatment facility 1 of the present embodiment, a turbo pump such as a centrifugal pump or a reciprocating pump such as a diaphragm pump is used as the third pump 63 attached in the middle of the stirring path 22 and the liquid extraction path 50. it can.
The third pump 63 is preferably a spiral pump of an external water injection type seal system rather than a magnet pump or the like. Since such a pump has a water injection structure, it hardly breaks down due to fine solid substances contained in the liquid D.

固形分生成部20の析出沈殿槽21は、例えば、作業者が立位で内部に入れる内部空間高さを有する。また、析出沈殿槽21は、例えば、作業者が立位で内部に入れる内容積を有する。
上記のごとく液分Dのほとんどが排出された析出沈殿槽21において、作業者が内部空間に入り込み、沈殿した底部の固形分Cを砕いて小さくし、砕かれた固形分Cを作業者が析出沈殿槽21の外へ運び出すことができる。
The precipitation settling tank 21 of the solid content generation unit 20 has, for example, an internal space height that an operator puts inside in a standing position. Further, the precipitation settling tank 21 has, for example, an internal volume that an operator puts inside in a standing position.
In the precipitation settling tank 21 in which most of the liquid content D has been discharged as described above, the operator enters the internal space and crushes the solid content C at the bottom that has settled to reduce it, and the operator precipitates the crushed solid content C. It can be carried out of the settling tank 21.

沈殿した上記の固形分Cは、溶解成分が析出した析出物を含有する。析出物が硫酸ナトリウムであれば、析出物は、例えば浴用剤、乾燥剤、ガラス製造、パルプ製造、洗剤の助剤などの用途における有用物として使用され得る。なお、上記の固形分Cは、精製処理された後に使用されることが好ましい。
一方、析出物が有用物でない場合などは、沈殿した固形分Cは、廃棄され得る。
The above-mentioned precipitated solid content C contains a precipitate in which dissolved components have been precipitated. When the deposit is sodium sulfate, the deposit can be used as a useful substance in applications such as a bath agent, a desiccant, a glass manufacturing process, a pulp manufacturing process, and a detergent auxiliary agent. The solid content C is preferably used after being purified.
On the other hand, when the precipitate is not a useful substance, the precipitated solid content C can be discarded.

これに対して、固形分生成部20において沈殿した固形分C以外の液分Dは、例えば、廃棄処理されることとなる。あるいは、斯かる液分Dに対して、例えば、生物処理、又は、凝集沈殿処理を施すことができる。なお、液分Dは、沈殿せずに浮遊する微小な固形分Cを含み得る。 On the other hand, the liquid content D other than the solid content C precipitated in the solid content generation unit 20 will be discarded, for example. Alternatively, for example, a biological treatment or a coagulating sedimentation treatment can be applied to the liquid component D. The liquid component D may include a minute solid component C that floats without being precipitated.

固形分生成部20の析出沈殿槽21から、固形分C及び液分Dを取り出した後、槽の内壁に付着した残存する固形分Cを、洗浄処理によって取り除くことができる。洗浄処理としては、高圧水洗浄などを採用できる。 After the solid content C and the liquid content D are taken out from the precipitation settling tank 21 of the solid content generation unit 20, the residual solid content C attached to the inner wall of the tank can be removed by a cleaning process. As the cleaning treatment, high-pressure water cleaning or the like can be adopted.

次に、本発明に係る排水処理方法の一実施形態について説明する。 Next, an embodiment of the wastewater treatment method according to the present invention will be described.

本実施形態の排水処理方法は、
排水に対して蒸発濃縮処理を施して蒸発濃縮水Bを得る蒸発濃縮工程と、
蒸発濃縮水Bから固形分Cを生成させる固形分生成工程と、を備え、
蒸発濃縮工程を経た蒸発濃縮水Bを移送して固形分生成工程を実施し、
排水Aは、濃縮によって析出物となる溶解成分を含み、
固形分生成工程では、析出物を含む固形分Cが生成され、
蒸発濃縮工程では、蒸発濃縮処理が行われている蒸発濃縮水Bの比重、含水率、又は導電率の少なくとも1つによって蒸発濃縮処理の終了時を決定する。
The wastewater treatment method of this embodiment is
An evaporative concentration step of subjecting the wastewater to an evaporative concentration treatment to obtain an evaporative concentrated water B;
A solid content producing step of producing a solid content C from the evaporated concentrated water B,
The evaporative concentrated water B that has passed through the evaporative concentration step is transferred to carry out the solid content generation step,
Wastewater A contains a dissolved component that becomes a precipitate by concentration,
In the solid content generation step, solid content C containing a precipitate is generated,
In the evaporative concentration step, the end time of the evaporative concentration processing is determined by at least one of the specific gravity, the water content, and the conductivity of the evaporative concentrated water B that has been subjected to the evaporative concentration processing.

本実施形態の排水処理方法においては、蒸発濃縮処理によって水分が減少して濃縮された蒸発濃縮水Bの比重、含水率、又は導電率の少なくとも1つを指標にして、蒸発濃縮処理の終了時を決定する。斯かる比重、含水率、又は導電率は、事前に実施する実験によって設定できる。蒸発濃縮水Bにおいて析出物が理論上生じ始める比重、含水率、又は導電率に近い値を、上記の設定値として採用することによって、蒸発濃縮処理が終了した蒸発濃縮水Bは、析出物を生じ得る状態であるものの、移送されるときの撹拌力によって、析出物が生じることが抑制される。従って、移送時における移送経路の詰まり等のトラブルを起こしにくい。しかも、設定した比重、含水率、又は導電率で蒸発濃縮処理が終了した蒸発濃縮水Bを、移送後に例えば静置したり冷却したりすることによって、効率的に溶解成分を析出させ、析出物を含む固形分Cを得ることができる。
従って、上記の排水処理方法においては、移送時にトラブルを起こしにくい蒸発濃縮水Bであって、移送後に効率的に析出物を生成できる蒸発濃縮水Bを得ることができる。
In the wastewater treatment method of the present embodiment, at the end of the evaporative concentration process, at least one of the specific gravity, the water content, and the conductivity of the evaporative concentrated water B concentrated by reducing the water content by the evaporative concentration process is used as an index. To decide. Such specific gravity, water content, or conductivity can be set by an experiment conducted in advance. By adopting a value close to the specific gravity, the water content, or the conductivity at which the precipitate theoretically begins to occur in the evaporated concentrated water B as the above-mentioned set value, the evaporated concentrated water B after the evaporative concentration treatment finishes the precipitate. Although it is in a state that can occur, the stirring force during transfer suppresses the generation of precipitates. Therefore, troubles such as clogging of the transfer path during transfer are unlikely to occur. Moreover, the evaporatively concentrated water B, which has been evaporatively concentrated at the set specific gravity, water content, or conductivity, is allowed to efficiently precipitate the dissolved components by, for example, allowing the evaporative concentrated water B to stand or cool after the transfer. It is possible to obtain a solid content C containing.
Therefore, in the above-mentioned wastewater treatment method, it is possible to obtain the evaporated concentrated water B which is less likely to cause a trouble at the time of transfer and which can efficiently generate the precipitate after the transfer.

詳しくは、本実施形態の排水処理方法は、蒸発濃縮処理を終了させるときの蒸発濃縮水Bの比重、含水率、又は導電率の各設定値を決める設定値決定工程と、上記の蒸発濃縮工程と、蒸発濃縮処理を終了した蒸発濃縮水Bを蒸発濃縮部10から固形分生成部20へ移送する蒸発濃縮水移送工程と、上記の固形分生成工程と、を備える。 Specifically, the wastewater treatment method of the present embodiment has a set value determination step of determining each set value of specific gravity, water content, or conductivity of the evaporative concentrated water B when the evaporative concentration processing is finished, and the evaporative concentration step described above. And an evaporation/concentration water transfer step of transferring the evaporation/concentration water B that has undergone the evaporation/concentration process from the evaporation/concentration section 10 to the solid content generation section 20, and the above solid content generation step.

本実施形態の排水処理方法は、例えば、上述した排水処理設備1を用いて上記のごとく実施することができる。 The wastewater treatment method of this embodiment can be carried out as described above using the wastewater treatment facility 1 described above, for example.

本実施形態の排水処理方法において、蒸発濃縮工程を経た蒸発濃縮水Bの少なくとも一部に対して固形分生成工程を実施してもよく、蒸発濃縮工程を経た蒸発濃縮水Bの一部を間欠的に補給しつつ固形分生成工程を実施してもよい。また、蒸発濃縮工程を経た蒸発濃縮水Bの一部を連続的に補給しつつ固形分生成工程を実施してもよい。
なお、蒸発濃縮工程、蒸発濃縮水移送工程、及び固形分生成工程は、同時に実施してもよく、それぞれ別々に(例えば交互に)実施してもよい。
設定値決定工程は、蒸発濃縮工程よりも前に実施することが好ましい。蒸発濃縮水移送工程は、設定値決定工程の後に実施することが好ましい。
In the wastewater treatment method of the present embodiment, the solid content generation step may be performed on at least a part of the evaporated concentrated water B that has undergone the evaporative concentration step, and a part of the evaporated concentrated water B that has undergone the evaporative concentration step may be intermittent. The solid content generation step may be carried out while replenishing the material. Moreover, you may implement a solid content formation process, supplying a part of evaporation concentrated water B which passed the evaporation concentration process continuously.
The evaporative concentration step, the evaporative concentrated water transfer step, and the solid content generation step may be performed at the same time or separately (for example, alternately).
The set value determination step is preferably performed before the evaporative concentration step. The evaporative concentrated water transfer step is preferably performed after the set value determination step.

設定値決定工程では、蒸発濃縮処理を終了させるときの蒸発濃縮水Bの比重、含水率、又は導電率の設定値として、理論上、析出物が生じる設定値を採用することが好ましく、理論上、析出物がわずかに生じる設定値を採用することがより好ましい。
上記の各設定値は、蒸発濃縮処理において計測される所定温度及び所定圧力のときの設定値であることが好ましい。詳しくは、上記の各設定値は、好ましくは、蒸発濃縮処理の条件下における蒸発濃縮水Bの温度毎及び圧力毎に決められたものであり、事前に、蒸発濃縮水Bの比重、含水率、又は導電率を、温度毎及び圧力毎に測定することによって求められる。
In the set value determination step, as a set value of the specific gravity, water content, or conductivity of the evaporative concentrated water B when the evaporative concentration treatment is finished, it is theoretically preferable to adopt a set value at which a precipitate is generated. It is more preferable to adopt a set value at which a slight amount of precipitate is generated.
Each of the above set values is preferably a set value at a predetermined temperature and a predetermined pressure measured in the evaporative concentration process. Specifically, the above-mentioned set values are preferably determined for each temperature and pressure of the evaporative concentrated water B under the conditions of the evaporative concentrating treatment, and the specific gravity and water content of the evaporative concentrated water B are previously set. , Or by measuring the conductivity for each temperature and each pressure.

設定値決定工程では、例えば、蒸発濃縮処理を終了するときの蒸発濃縮水Bの比重設定値を決める。
比重設定値は、事前に(蒸発濃縮工程よりも前に)実施する予備実験によって求められる。具体的には、蒸発濃縮部10において実施する蒸発濃縮処理と同条件(排水、温度、圧力等)で蒸発濃縮水Bを濃縮しつつ、析出物が生じたときの比重(理論比重値)を測定する。
上記の比重設定値は、上記の理論比重値の0.9倍以上1.5倍以下の1つの値であることが好ましく、0.9倍以上1.3倍以下の1つの値であることがより好ましく、1.0倍よりも大きく1.2倍以下の1つの値であることがさらに好ましい。
上記の比重設定値が理論比重値の0.9倍以上の1つの値であることによって、固形分生成部20へ移送された蒸発濃縮水Bにおいて、より効率的に析出物を生じさせることができる。
上記の比重設定値が理論比重値の1.5倍以下の1つの値であることによって、固形分生成部20へ移送される蒸発濃縮水Bに含まれ得る析出物が、蒸発濃縮水移送経路40の内部を詰まらせる等のトラブルをより抑制できる。
より具体的には、比重設定値としては、例えば1.175g/cm以上1.375g/cm以下の範囲における1数値を採用することができる。
In the set value determination step, for example, the specific gravity set value of the evaporated concentrated water B when the evaporative concentration process is finished is determined.
The specific gravity set value is obtained by a preliminary experiment conducted in advance (before the evaporative concentration step). Specifically, the specific gravity (theoretical specific gravity value) when a precipitate is generated while concentrating the evaporative concentrated water B under the same conditions (drainage, temperature, pressure, etc.) as the evaporative concentration processing performed in the evaporative concentration section 10. taking measurement.
It is preferable that the specific gravity set value is one value of 0.9 times or more and 1.5 times or less, and one value of 0.9 times or more and 1.3 times or less of the theoretical specific gravity value. Is more preferable, and it is even more preferable that the value is one more than 1.0 times and 1.2 times or less.
When the specific gravity set value is one value equal to or more than 0.9 times the theoretical specific gravity value, it is possible to more efficiently generate a precipitate in the evaporated concentrated water B transferred to the solid content generation unit 20. it can.
Since the specific gravity set value is one value equal to or less than 1.5 times the theoretical specific gravity value, the precipitates that may be contained in the evaporated concentrated water B transferred to the solid content generation unit 20 may be included in the evaporated concentrated water transfer path. Trouble such as clogging the inside of 40 can be further suppressed.
More specifically, as the specific gravity set value, for example, one numerical value in the range of 1.175 g/cm 3 or more and 1.375 g/cm 3 or less can be adopted.

また、設定値決定工程では、例えば、蒸発濃縮処理を終了するときの蒸発濃縮水Bの含水率設定値を決める。
含水率設定値は、事前に(蒸発濃縮工程よりも前に)実施する予備実験によって求められる。具体的には、蒸発濃縮部10において実施する蒸発濃縮処理と同条件(排水、温度、圧力等)で蒸発濃縮水Bを濃縮しつつ、析出物が生じたときの含水率(理論含水率値)を測定する。
上記の含水率設定値は、上記の理論含水率値の0.7倍以上1.3倍以下の1つの値であることが好ましく、0.8倍以上1.2倍以下の1つの値であることがより好ましく、0.9倍以上1.0倍未満の1つの値であることがさらに好ましい。なお、これら倍数の数値は、百分率で表した含水率ではなく、1質量部の蒸発濃縮水Bを基準として表した数値である。
上記の含水率設定値が理論含水率値の0.7倍以上の1つの値であることによって、固形分生成部20へ移送される蒸発濃縮水Bに含まれ得る析出物が、蒸発濃縮水移送経路40の内部を詰まらせる等のトラブルをより抑制できる。
上記の含水率設定値が理論含水率値の1.3倍以下の1つの値であることによって、固形分生成部20へ移送された蒸発濃縮水Bにおいて、より効率的に析出物を生じさせることができる。
より具体的には、含水率設定値としては、例えば30%以上95%以下の範囲における1数値を採用することができる。
Further, in the set value determination step, for example, the water content set value of the evaporated concentrated water B at the time of ending the evaporation concentration process is determined.
The water content set value is obtained by a preliminary experiment conducted in advance (before the evaporative concentration step). Specifically, while evaporating and concentrating water B is concentrated under the same conditions (drainage, temperature, pressure, etc.) as the evaporating and concentrating process performed in the evaporative concentrating unit 10, the water content (theoretical water content value) when a precipitate is formed ) Is measured.
The above-mentioned water content setting value is preferably one value of 0.7 times or more and 1.3 times or less of the above theoretical water content value, and one value of 0.8 times or more and 1.2 times or less. It is more preferable that the value is 0.9 times or more and less than 1.0 times. In addition, the numerical values of these multiples are not the water content expressed as a percentage, but the values expressed based on 1 part by mass of the evaporated concentrated water B.
When the above-mentioned water content set value is one value equal to or more than 0.7 times the theoretical water content value, the precipitates that may be contained in the evaporative concentrated water B transferred to the solid content producing unit 20 are the evaporative concentrated water. Trouble such as clogging the inside of the transfer path 40 can be further suppressed.
Since the above-mentioned water content set value is one value equal to or less than 1.3 times the theoretical water content value, the evaporative concentrated water B transferred to the solid content producing section 20 produces precipitates more efficiently. be able to.
More specifically, as the water content set value, for example, one numerical value in the range of 30% or more and 95% or less can be adopted.

設定値決定工程では、蒸発濃縮処理を終了するときの蒸発濃縮水Bの導電率設定値を決めてもよい。この場合、導電率設定値は、理論導電率値を基にして、上記の比重設定値と同様にして設定される。 In the setting value determining step, the conductivity setting value of the evaporated concentrated water B when the evaporation concentration process is terminated may be determined. In this case, the conductivity set value is set based on the theoretical conductivity value in the same manner as the specific gravity set value described above.

蒸発濃縮工程では、例えば、上記の循環経路12を使用して、20hPa以上45hPa以下の減圧条件下、及び、50℃以上85℃以下の温度条件下で排水Aを撹拌することによって、水分を蒸発させて減らし、排水Aを濃縮する。
蒸発濃縮工程において、必ずしも加熱及び減圧の両方が必要ではなく、いずれか一方によって水分の蒸発を実施してもよい。
In the evaporative concentration step, for example, the circulation route 12 is used to evaporate water by stirring the wastewater A under a reduced pressure condition of 20 hPa or more and 45 hPa or less and a temperature condition of 50° C. or more and 85° C. or less. To reduce the wastewater A and concentrate the wastewater A.
In the evaporative concentration step, both heating and depressurization are not necessarily required, and evaporation of water may be performed by either one.

蒸発濃縮工程においては、蒸発濃縮水Bの比重、含水率、又は導電率の少なくとも1つが、上記設定値に達したときに、該工程を終了する。
例えば、蒸発濃縮工程において、時間間隔を空けて蒸発濃縮水Bの比重を比重計70によって測定し、斯かる比重が上記の比重設定値まで上昇する間、該工程を継続してもよい。
例えば、蒸発濃縮工程において、時間間隔を空けて蒸発濃縮水Bの含水率を含水率計80によって測定し、斯かる含水率が上記の含水率設定値まで低下する間、該工程を継続してもよい。
例えば、蒸発濃縮工程において、時間間隔を空けて蒸発濃縮水Bの導電率を導電率計によって測定し、斯かる導電率が上記の導電率設定値まで上昇する間、該工程を継続してもよい。
蒸発濃縮工程では、蒸発濃縮水Bにおいて析出物が生じるまで蒸発濃縮処理が行われることが好ましい。
蒸発濃縮工程は、所定時間が経過したのちに終了してもよい。
In the evaporative concentration step, the step is terminated when at least one of the specific gravity, the water content, and the conductivity of the evaporative concentrated water B reaches the set value.
For example, in the evaporative concentration step, the specific gravity of the evaporative concentrated water B may be measured with a hydrometer 70 at intervals, and the step may be continued while the specific gravity increases to the specific gravity set value.
For example, in the evaporative concentration step, the water content of the evaporative concentrated water B is measured with a water content meter 80 at intervals, and the step is continued while the water content falls to the above water content set value. Good.
For example, in the evaporative concentration step, the electric conductivity of the evaporative concentrated water B is measured with a conductivity meter at intervals, and the step is continued while the electric conductivity rises to the electric conductivity set value. Good.
In the evaporative concentration step, it is preferable that the evaporative concentration treatment is performed until a precipitate is formed in the evaporative concentrated water B.
The evaporative concentration step may be terminated after a predetermined time has elapsed.

蒸発濃縮工程において、水分を蒸発させつつ蒸発濃縮水BのpHを7.0以上12.5以下に調整してもよい。蒸発濃縮水BのpHは、例えば、水酸化カリウムなどのアルカリ剤、塩酸などの酸を添加することによって調整できる。 In the evaporative concentration step, the pH of the evaporative concentrated water B may be adjusted to 7.0 or more and 12.5 or less while evaporating the water. The pH of the evaporated concentrated water B can be adjusted, for example, by adding an alkaline agent such as potassium hydroxide or an acid such as hydrochloric acid.

蒸発濃縮水移送工程では、蒸発濃縮工程を経た蒸発濃縮水Bを、例えば、上記の複数の弁の開閉操作によって、蒸発濃縮水移送経路40へ送り、さらに固形分生成部20へ移送する。
蒸発濃縮水移送工程では、蒸発濃縮水移送経路40を通って移送される蒸発濃縮水Bが、撹拌力を受ける。従って、移送時の温度が蒸発濃縮処理時の温度よりも低かったとしても、また、移送される蒸発濃縮水Bの比重、含水率又は導電率が、理論上析出物が生じる上記のような理論値であったとしても、析出物が生じることが撹拌力によって抑制される。
In the evaporative concentrated water transfer step, the evaporative concentrated water B that has undergone the evaporative concentrated step is sent to the evaporative concentrated water transfer path 40 and further transferred to the solid content generation unit 20 by opening and closing the plurality of valves, for example.
In the evaporative concentrated water transfer step, the evaporative concentrated water B transferred through the evaporative concentrated water transfer path 40 receives a stirring force. Therefore, even if the temperature at the time of transfer is lower than the temperature at the time of evaporative concentration treatment, the theoretical value of the specific gravity, water content or conductivity of the evaporative concentrated water B to be transferred is theoretically the same as that of the above-mentioned theory. Even if it is a value, generation of precipitates is suppressed by the stirring force.

固形分生成工程では、移送されてきた蒸発濃縮水Bを上記の固形分生成部20において静置する。固形分生成工程において、蒸発濃縮水Bの温度条件を、蒸発濃縮工程における処理温度条件よりも低くすることが好ましく、10℃以上低くすることがより好ましい。斯かる温度条件の差は、通常、80℃以下である。 In the solid content producing step, the transferred evaporated concentrated water B is allowed to stand in the solid content producing unit 20. In the solid content producing step, the temperature condition of the evaporative concentrated water B is preferably lower than the treatment temperature condition in the evaporative concentrating step, and more preferably 10° C. or more. The difference in such temperature conditions is usually 80° C. or less.

固形分生成工程において、蒸発濃縮水Bを静置する期間は、例えば1日間以上30日間以下である。 In the solid content producing step, the period in which the evaporated concentrated water B is allowed to stand is, for example, 1 day or more and 30 days or less.

固形分生成工程では、析出沈殿槽21において生じた水蒸気Fを、ベント弁等によって外気へ排出させることが好ましい。 In the solid content generation step, it is preferable that the steam F generated in the precipitation settling tank 21 be discharged to the outside air by a vent valve or the like.

本実施形態の排水処理方法は、固形分生成工程によって沈殿した固形分Cと、固形分以外の液分Dとそれぞれ取り出す取出工程をさらに備える。 The wastewater treatment method of the present embodiment further includes an extraction step of extracting the solid content C precipitated in the solid content generation step and the liquid content D other than the solid content.

取出工程においては、例えば、固形分生成部20から液分Dを取り出した後に、固形分Cを取り出す。
具体的には、まず上記の撹拌用経路22を使用して液分Dを撹拌することによって、液分Dを均一な液に近づける。均一に近づいた液分Dを、液分取り出し経路50を介して固形分生成部20から取り出す。次に、固形分生成部20の析出沈殿槽21内に作業者が入り込み、底部に貯まった固形分Cを必要に応じて砕き、固形分Cを作業者が固形分生成部20から取り出す。例えばこのようにして、固形分Cと液分Dとをそれぞれ取り出す。
In the extraction step, for example, the solid content C is extracted after the liquid content D is extracted from the solid content generation unit 20.
Specifically, first, the liquid content D is approximated to a uniform liquid by stirring the liquid content D using the above-mentioned stirring path 22. The liquid content D that has approached the uniform content is taken out from the solid content production section 20 through the liquid content taking-out path 50. Next, an operator enters the precipitation settling tank 21 of the solid content generation unit 20, the solid content C stored at the bottom is crushed as necessary, and the solid content C is taken out by the operator from the solid content generation unit 20. For example, in this way, the solid content C and the liquid content D are respectively taken out.

取り出された固形分Cは、上述したように、各種の用途で使用されるか、又は、廃棄処分される。液分Dは、上述したように、例えば廃棄処分される。
析出物が固形分Cに含まれる分、液分Dに含まれる無機イオン等が少なくなっている。固形分Cを各種用途で使用する場合であっても、また、固形分Cを廃棄処分する場合であっても、固形分Cに析出物が生じている分、固形分Cを効率的に利用又は廃棄処分できる。一方、液分Dの無機イオン等が少ない分、廃棄する際の負荷が少なくなり、液分Dを効率的に廃棄処分できる。
The solid content C thus taken out is used for various purposes or discarded as described above. The liquid component D is, for example, discarded as described above.
As the precipitate is contained in the solid content C, the inorganic ions and the like contained in the liquid content D are reduced. Even when the solid content C is used for various purposes, or even when the solid content C is disposed of, the solid content C is efficiently used as much as the precipitates are generated in the solid content C. Or it can be disposed of. On the other hand, since the amount of inorganic ions and the like in the liquid component D is small, the load at the time of discarding is reduced, and the liquid component D can be efficiently disposed of.

上記実施形態の排水処理設備及び排水処理方法は、上記例示の通りであるが、本発明は、上記例示の排水処理設備及び排水処理方法に限定されるものではない。
また、一般の排水処理設備及び排水処理方法において用いられる種々の態様を、本発明の効果を損ねない範囲において、採用することができる。
The wastewater treatment facility and the wastewater treatment method of the above-described embodiment are as described above, but the present invention is not limited to the wastewater treatment facility and the wastewater treatment method described above.
Further, various modes used in general wastewater treatment facilities and wastewater treatment methods can be adopted within a range that does not impair the effects of the present invention.

1:排水処理設備、
10:蒸発濃縮部、 11:気化槽、 12:循環経路、
20:固形分生成部、 21:析出沈殿槽、 22:撹拌用経路、
30:排水供給経路、
40:蒸発濃縮水移送経路、
50:液分取り出し経路、
61:第1ポンプ、 62:第2ポンプ、 63:第3ポンプ、
70:比重計、
80:含水率計、
A:排水、 B:蒸発濃縮水、 C:固形分、 D:液分、 E:凝縮水、 F:水蒸気。
1: Wastewater treatment facility,
10: Evaporative Concentration Section, 11: Vaporization Tank, 12: Circulation Route,
20: Solid content generation part, 21: Precipitation settling tank, 22: Stirring path,
30: Wastewater supply route,
40: Evaporative concentrated water transfer route,
50: liquid extraction path,
61: 1st pump, 62: 2nd pump, 63: 3rd pump,
70: hydrometer,
80: Water content meter,
A: waste water, B: evaporated concentrated water, C: solid content, D: liquid content, E: condensed water, F: steam.

Claims (4)

排水に対して蒸発濃縮処理を施して蒸発濃縮水を得る蒸発濃縮部と、
前記蒸発濃縮水から固形分を生成させる固形分生成部と、を備え、
前記蒸発濃縮部から前記固形分生成部へ前記蒸発濃縮水が移送されるように構成され、
前記排水は、濃縮によって析出物となる溶解成分を含み、
前記固形分生成部は、
前記移送された前記蒸発濃縮水から生じた前記析出物を含む前記固形分を底部に貯める析出沈殿槽と、
該析出沈殿槽の底部に貯まることにより前記固形分と分離した液分を、循環させることによって撹拌する撹拌用経路と、を有し、
下記の(1)〜(3)のうち少なくとも1つの構成を有する、排水処理設備。
(1)
前記蒸発濃縮処理が行われている前記蒸発濃縮水の比重によって前記蒸発濃縮処理の終了時が決定される構成であって、
前記蒸発濃縮部において前記析出物が理論上生じ始める理論比重値の0.9倍以上1.5倍以下の1つの比重設定値まで、前記蒸発濃縮水の前記比重が上昇したときに、前記蒸発濃縮処理を終了する構成、
(2)
前記蒸発濃縮処理が行われている前記蒸発濃縮水の含水率によって前記蒸発濃縮処理の終了時が決定される構成であって、
前記蒸発濃縮部において前記析出物が理論上生じ始める理論含水率値の0.7倍以上1.3倍以下の1つの含水率設定値まで、前記蒸発濃縮水の前記含水率が低下したときに、前記蒸発濃縮処理を終了する構成、
(3)
前記蒸発濃縮処理が行われている前記蒸発濃縮水の導電率によって前記蒸発濃縮処理の終了時が決定される構成であって、
前記蒸発濃縮部において前記析出物が理論上生じ始める理論導電率値の0.9倍以上1.5倍以下の1つの導電率設定値まで、前記蒸発濃縮水の前記導電率が上昇したときに、前記蒸発濃縮処理を終了する構成。
An evaporative concentration section that performs evaporative concentration processing on wastewater to obtain evaporative concentrated water,
A solid content generation unit for generating a solid content from the evaporated concentrated water,
The evaporation concentrated water is configured to be transferred from the evaporation concentration unit to the solid content generation unit,
The waste water contains a dissolved component that becomes a precipitate by concentration,
The solid content generation unit,
A precipitation settling tank for storing the solid content containing the precipitate generated from the transferred concentrated evaporated water at the bottom,
A stirring path for stirring by circulating the liquid content separated from the solid content by being stored in the bottom of the precipitation settling tank,
Wastewater treatment equipment having at least one configuration of the following (1) to (3).
(1)
A configuration in which the end time of the evaporative concentration processing is determined by the specific gravity of the evaporative concentrated water on which the evaporative concentration processing is performed,
When the specific gravity of the evaporated concentrated water rises to a specific gravity set value of 0.9 times or more and 1.5 times or less of a theoretical specific gravity value at which the precipitate theoretically starts to occur in the evaporation concentration section, the evaporation A configuration that ends the concentration process,
(2)
A configuration in which the end time of the evaporative concentration processing is determined by the water content of the evaporative concentrated water on which the evaporative concentration processing is performed,
When the water content of the evaporative concentrated water decreases to one water content set value of 0.7 times or more and 1.3 times or less of the theoretical water content value at which the precipitate theoretically starts to occur in the evaporative concentration section. A configuration for ending the evaporative concentration processing,
(3)
A configuration in which the end time of the evaporative concentration processing is determined by the conductivity of the evaporative concentrated water on which the evaporative concentration processing is performed,
When the conductivity of the evaporated concentrated water rises to one conductivity set value of 0.9 times or more and 1.5 times or less of the theoretical conductivity value at which the precipitate theoretically begins to occur in the evaporation concentration part A configuration for ending the evaporative concentration processing.
前記析出沈殿槽は、作業者が内部で前記固形分の取り出し作業ができる内容積を有する、請求項に記載の排水処理設備。 The wastewater treatment facility according to claim 1 , wherein the deposition/sedimentation tank has an internal volume that allows a worker to take out the solid content therein. 排水に対して蒸発濃縮処理を施して蒸発濃縮水を得る蒸発濃縮工程と、
前記蒸発濃縮水から固形分を生成させる固形分生成工程と、を備え、
前記蒸発濃縮工程を経た前記蒸発濃縮水を移送して前記固形分生成工程を実施し、
前記排水は、濃縮によって析出物となる溶解成分を含み、
前記蒸発濃縮処理を終了させるときの前記蒸発濃縮水の比重、含水率、又は導電率の各設定値を決める設定値決定工程をさらに備え、
前記蒸発濃縮水の前記比重、前記含水率、又は前記導電率の少なくとも1つが、前記各設定値に達したときに、前記蒸発濃縮処理を終了し、
下記の(A)、(B)、及び(C)のうち少なくとも1つが採用され
(A)
前記蒸発濃縮処理が行われている前記蒸発濃縮水の前記比重によって前記蒸発濃縮処理の終了時を決定し、
前記析出物が理論上生じ始める理論比重値の0.9倍以上1.5倍以下の1つの比重設定値まで、前記蒸発濃縮水の前記比重が上昇したときに、前記蒸発濃縮処理を終了する
(B)
前記蒸発濃縮処理が行われている前記蒸発濃縮水の前記含水率によって前記蒸発濃縮処理の終了時を決定し、
前記析出物が理論上生じ始める理論含水率値の0.7倍以上1.3倍以下の1つの含水率設定値まで、前記蒸発濃縮水の前記含水率が低下したときに、前記蒸発濃縮処理を終了する
(C)
前記蒸発濃縮処理が行われている前記蒸発濃縮水の前記導電率によって前記蒸発濃縮処理の終了時を決定し、
前記析出物が理論上生じ始める理論導電率値の0.9倍以上1.5倍以下の1つの導電率設定値まで、前記蒸発濃縮水の前記導電率が上昇したときに、前記蒸発濃縮処理を終了する
前記固形分生成工程では、前記移送された前記蒸発濃縮水から前記固形分を生成させる析出沈殿槽において、前記析出物を含む前記固形分を底部に貯め、
前記底部に貯まった前記固形分と、該固形分と分離した液分と、を前記析出沈殿槽内からそれぞれ取り出す取出工程をさらに備え、
前記取出工程では、前記析出沈殿槽から取り出す前の前記液分を循環させることによって撹拌してから前記液分を取り出した後、前記底部に貯まった前記固形分を取り出す、排水処理方法。
An evaporative concentration step of subjecting wastewater to an evaporative concentration process to obtain evaporative concentrated water;
A solid content generation step of generating solid content from the evaporated concentrated water,
The evaporative concentrated water that has passed through the evaporative concentration step is transferred to perform the solid content generation step,
The waste water contains a dissolved component that becomes a precipitate by concentration,
Further comprising a set value determining step of determining each set value of the specific gravity of the evaporated concentrated water, the water content, or the conductivity when the evaporative concentration processing is terminated,
At least one of the specific gravity of the evaporative concentrated water, the water content, or the conductivity, when the respective set value is reached, the evaporative concentration process is terminated,
At least one of the following (A), (B), and (C) is adopted ,
(A)
The end time of the evaporative concentration processing is determined by the specific gravity of the evaporative concentrated water on which the evaporative concentration processing is performed,
When the specific gravity of the evaporative concentrated water rises to a specific gravity set value of 0.9 times or more and 1.5 times or less of the theoretical specific gravity value at which the precipitate theoretically starts to be generated, the evaporative concentration processing is terminated. ;
(B)
The end of the evaporative concentration process is determined by the water content of the evaporative concentrated water on which the evaporative concentration process is performed,
The evaporative concentration treatment is performed when the water content of the evaporative concentrated water decreases to one water content set value of 0.7 times or more and 1.3 times or less of the theoretical water content value at which the precipitate theoretically begins to occur. To end ;
(C)
The end of the evaporative concentration process is determined by the conductivity of the evaporative concentrated water on which the evaporative concentration process is performed,
The evaporative concentration treatment is performed when the electric conductivity of the evaporative concentrated water increases to one electric conductivity set value that is 0.9 times or more and 1.5 times or less of the theoretical electric conductivity value at which the precipitate theoretically begins to occur. To end ;
In the solid content producing step, in a precipitation settling tank for producing the solid content from the transferred evaporated concentrated water, the solid content containing the precipitate is stored in a bottom portion,
The solid content stored in the bottom portion, and a liquid content separated from the solid content, further comprising a take-out step of taking out from the precipitation settling tank,
In the extraction step, a method for treating wastewater , wherein the liquid content before being taken out from the precipitation settling tank is agitated by circulating and then the liquid content is taken out, and then the solid content stored in the bottom part is taken out .
前記析出沈殿槽は、作業者が内部で前記固形分の取り出し作業ができる内容積を有し、
前記取出工程では、前記液分を前記析出沈殿槽から取り出した後、前記析出沈殿槽内に入り込んだ作業者によって、前記底部に貯まった前記固形分を前記析出沈殿槽から取り出す、請求項に記載の排水処理方法。
The precipitation settling tank has an internal volume that allows an operator to take out the solid content inside,
In the extraction step, after removing the liquid component from the precipitation sedimentation tank, the intruded operator to the deposition-precipitation tank, removing said solids accumulated in the bottom portion of the deposition-precipitation tank, in claim 3 Wastewater treatment method described.
JP2019085163A 2019-04-26 2019-04-26 Wastewater treatment facility and wastewater treatment method Active JP6731515B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019085163A JP6731515B1 (en) 2019-04-26 2019-04-26 Wastewater treatment facility and wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019085163A JP6731515B1 (en) 2019-04-26 2019-04-26 Wastewater treatment facility and wastewater treatment method

Publications (2)

Publication Number Publication Date
JP6731515B1 true JP6731515B1 (en) 2020-07-29
JP2020179364A JP2020179364A (en) 2020-11-05

Family

ID=71738576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019085163A Active JP6731515B1 (en) 2019-04-26 2019-04-26 Wastewater treatment facility and wastewater treatment method

Country Status (1)

Country Link
JP (1) JP6731515B1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817438B2 (en) * 1979-06-19 1983-04-07 株式会社荏原製作所 Waste liquid treatment method
JPS63224786A (en) * 1987-03-14 1988-09-19 Toshiba Corp Waste liquid concentrator
JPH0859555A (en) * 1994-08-26 1996-03-05 Osaka Gas Co Ltd Method for purifying dimethyl 4,4-biphenyldicarboxylate
JP2591921B2 (en) * 1994-12-05 1997-03-19 東曹産業株式会社 Method for producing alkali metal phosphate
JP4238458B2 (en) * 2000-03-31 2009-03-18 栗田工業株式会社 Organic drainage treatment method and apparatus
US10005678B2 (en) * 2007-03-13 2018-06-26 Heartland Technology Partners Llc Method of cleaning a compact wastewater concentrator

Also Published As

Publication number Publication date
JP2020179364A (en) 2020-11-05

Similar Documents

Publication Publication Date Title
JP6186240B2 (en) Method for evaporating aqueous solution
US10407331B2 (en) Scale detection device and method for concentrating device, and water reclamation processing treatment system
CN101336211A (en) Plant for the desalination/purification of brackish water and industrial waste with zero liquid discharge
CN104926011B (en) The evaporative crystallization zero-discharge treatment system and processing method of a kind of high-COD waste water
JP2007117874A (en) Method and apparatus for treating wastewater containing component to be crystallized
WO2016063578A1 (en) Ammonia-containing wastewater treatment apparatus and treatment method
CN103657122A (en) Sextuple-effect evaporation device
CN102381786B (en) Zero-discharge treatment system for industrial circulating water
CN109534584A (en) A kind of organic silicon wastewater processing system and method
CN203591603U (en) Sextuple-effect evaporator
JP6186193B2 (en) Method for evaporating aqueous solution
CN109153047A (en) The starting method of Ultrapure Water Purifiers
JP3148664B2 (en) Evaporative concentration method and apparatus
CN205241427U (en) Desulfurization wastewater treatment system
KR100507598B1 (en) Method for preventing scaling in wet-process waste gas treatment equipment
JP4264950B2 (en) Evaporative concentration apparatus for aqueous waste liquid and aqueous cleaning apparatus using the same
JP3663634B2 (en) Operation method of circulating cooling water system
CN209619100U (en) A kind of organic silicon wastewater processing system
JP6731515B1 (en) Wastewater treatment facility and wastewater treatment method
CN105080935B (en) A kind of garbage flying ash cement kiln synergic processing and recycling of water resource utilize system
JPH0919678A (en) Structure of tank
CN113354008A (en) Landfill leachate evaporation mother liquor treatment process
JP6686210B1 (en) Wastewater treatment method and wastewater treatment facility
CN117247198A (en) System and method for treating landfill leachate and removing scaling substances of evaporation heat exchanger
CN213416572U (en) Evaporation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190607

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190607

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200408

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200408

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200420

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200706

R150 Certificate of patent or registration of utility model

Ref document number: 6731515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250