JP2010249814A - Error compensation method and components measuring method using it - Google Patents

Error compensation method and components measuring method using it Download PDF

Info

Publication number
JP2010249814A
JP2010249814A JP2010091522A JP2010091522A JP2010249814A JP 2010249814 A JP2010249814 A JP 2010249814A JP 2010091522 A JP2010091522 A JP 2010091522A JP 2010091522 A JP2010091522 A JP 2010091522A JP 2010249814 A JP2010249814 A JP 2010249814A
Authority
JP
Japan
Prior art keywords
error
probe
measuring
guide
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010091522A
Other languages
Japanese (ja)
Inventor
Isamu Ko
偉 黄
Miaoan Ouyang
渺安 欧陽
Jun-Qi Li
軍旗 李
Qing Liu
慶 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Original Assignee
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hongfujin Precision Industry Shenzhen Co Ltd, Hon Hai Precision Industry Co Ltd filed Critical Hongfujin Precision Industry Shenzhen Co Ltd
Publication of JP2010249814A publication Critical patent/JP2010249814A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an error compensation method and components measuring method using this, which decrease a cost of a measuring device and secure a measurement precision. <P>SOLUTION: The error compensation method includes steps of: providing the measuring device equipped with a probe and a guide; measuring and compensating a straightness error of the guide; carrying out a fitting of mounting tilt angle of the probe, a step which calculates a shape error of the probe; and forming a systematic error compensation program. The components measuring method includes steps of forming the systematic error compensation program through the error compensation method; providing the components which have a curved surface or a curve; measuring the curved surface or the curve of the components by using the above measuring device; measuring and compensating the straightness error of the guide; compensating the error of the fitting tilt angle of the probe; compensating the shape error of the probe; and forming the measuring error by the program. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、誤差補正方法及びこれを用いた部品測定方法に関し、特にソフトウェアを使用する誤差補正方法及びこれを用いた部品測定方法に関するものである。   The present invention relates to an error correction method and a component measurement method using the same, and more particularly to an error correction method using software and a component measurement method using the same.

超精密測定分野においては、一般的にハードウェアの構成によって測定精度を高める。例えば、高い測定精度を有する接触式測定装置を使用して測定精度を高める。測定精度を保障するために、接触式測定装置は、一般的に高コストの精密部品、例えば、高精度のガイド、プローブやレーザ干渉計等を使用する。又、精確な測定結果を得るために、測定装置の機械伝動及び取付精度に対する要求も高くなっているため、測定装置の製造コストは更に増加していく傾向にある。そのため、従来の超精密測定装置全体の価格は高く、超精密測定装置の汎用性は低い。   In the ultra-precision measurement field, the measurement accuracy is generally increased by the hardware configuration. For example, the measurement accuracy is increased by using a contact-type measurement device having high measurement accuracy. In order to ensure measurement accuracy, a contact-type measuring apparatus generally uses high-cost precision parts such as high-precision guides, probes, and laser interferometers. In addition, in order to obtain an accurate measurement result, the demand for the mechanical transmission and the mounting accuracy of the measuring device is increasing, and therefore the manufacturing cost of the measuring device tends to further increase. Therefore, the price of the conventional ultraprecision measuring device is high, and the versatility of the ultraprecision measuring device is low.

以上の問題点に鑑みて、本発明は、測定装置のコストを低減することができ、且つ測定精度を保障できる誤差補正方法及びこれを用いた部品測定方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an error correction method capable of reducing the cost of a measuring apparatus and ensuring measurement accuracy, and a component measuring method using the same.

前記問題を解決するために、本発明に係る誤差補正方法は、プローブ及びガイドを備える測定装置を提供するステップと、前記ガイドの真直度誤差を測定して補正するステップと、前記プローブの取付傾斜角をフィッティングするステップと、前記プローブの形状誤差を計算するステップと、系統誤差補正プログラムを生成するステップと、を含む。   In order to solve the above problem, an error correction method according to the present invention includes a step of providing a measuring device including a probe and a guide, a step of measuring and correcting a straightness error of the guide, and a mounting inclination of the probe. Fitting a corner, calculating a shape error of the probe, and generating a systematic error correction program.

本発明に係る部品測定方法は、前記誤差補正方法を通して系統誤差補正プログラムを生成するステップと、曲面又は曲線を有する部品を提供するステップと、前記測定装置を使用して、前記部品の曲面又は曲線を測定するステップと、前記ガイドの真直度誤差を測定して補正するステップと、前記プローブの取付傾斜角による誤差を補正するステップと、前記プローブの形状誤差を補正するステップと、プログラムにより測定誤差を生成するステップと、を含む。   The component measurement method according to the present invention includes a step of generating a systematic error correction program through the error correction method, a step of providing a component having a curved surface or a curve, and a curved surface or curve of the component using the measuring device. Measuring the straightness error of the guide, correcting the error due to the mounting inclination angle of the probe, correcting the shape error of the probe, and a measurement error by a program Generating.

本発明に係る誤差補正方法及びこれを用いた部品測定方法は、測定装置の各種要因による誤差を補正することによって、高い測定精度を実現することができる。本発明は、ソフトウェアを使用して、各種誤差の測定精度に対する悪影響を低減することによって、測定装置の製造、取付及び伝動の精度に対する要求を適当に下げることができ、高コストの精密部品の使用量を減らして、測定装置の製造コストを大幅に低減することができる。   The error correction method and the component measurement method using the same according to the present invention can achieve high measurement accuracy by correcting errors due to various factors of the measurement apparatus. The present invention uses software to reduce the adverse effects of various errors on the measurement accuracy, thereby appropriately reducing the demands on the accuracy of manufacturing, mounting and transmission of the measuring device, and using high-precision components By reducing the amount, the manufacturing cost of the measuring device can be greatly reduced.

本発明の実施形態に係る誤差補正方法のフローチャートである。3 is a flowchart of an error correction method according to an embodiment of the present invention. 図1に示した誤差補正方法において基準球を測定するステップを示す図である。It is a figure which shows the step which measures a reference sphere in the error correction method shown in FIG. 本発明の実施形態に係る部品測定方法のフローチャートである。It is a flowchart of the components measurement method which concerns on embodiment of this invention. 図3に示した部品測定方法において部品を測定するステップを示す図である。It is a figure which shows the step which measures components in the component measurement method shown in FIG.

以下、図面に基づいて、本発明の実施形態に係る誤差補正方法及びこれを用いた部品測定方法について詳細に説明する。   Hereinafter, an error correction method according to an embodiment of the present invention and a component measurement method using the same will be described in detail with reference to the drawings.

図1及び図2を参照すると、本発明に係る誤差補正方法100は、以下のステップ(S102〜S110)を含む。   1 and 2, the error correction method 100 according to the present invention includes the following steps (S102 to S110).

ステップS102で、測定装置20を提供する。   In step S102, the measuring device 20 is provided.

前記測定装置20は、2つのプローブ21a,21b及びガイド23を備える接触式測定装置である。   The measuring device 20 is a contact-type measuring device including two probes 21 a and 21 b and a guide 23.

ステップS104で、前記ガイド23の真直度誤差eを測定して補正する。 In step S104, corrected by measuring the straightness error e 1 of the guide 23.

前記ガイド23の真直度誤差eは、以下の方法により測定と補正を行うことができる。 Linearity errors e 1 of the guide 23, can be measured and corrected by the following method.

先ず、前記測定装置20の両側に別々に配置される基準球40及び基準平面50を提供して、前記測定装置20の1つのプローブ21aを前記基準球40の表面に接触させて前記基準球40を測定し、前記測定装置20のもう1つのプローブ21bを前記基準平面50の表面に接触させて前記基準平面50を測定する。   First, a reference sphere 40 and a reference plane 50 that are separately arranged on both sides of the measuring device 20 are provided, and one probe 21 a of the measuring device 20 is brought into contact with the surface of the reference sphere 40 to thereby make the reference sphere 40. , And the reference plane 50 is measured by bringing another probe 21b of the measuring device 20 into contact with the surface of the reference plane 50.

次に、前記1つのプローブ21aで前記基準球40の表面をスキャンして前記基準球40の一連のスキャンデータ(Xn、dz1)(n=1、2、3…)を取得し、且つ前記もう1つのプローブ21bで前記基準平面50の表面をスキャンして前記ガイド23の位置ずれデータ(Xn、dz2)(n=1、2、3…)を取得する。 Next, the surface of the reference sphere 40 is scanned with the one probe 21a to obtain a series of scan data (Xn, dz1 n ) (n = 1, 2, 3,...) Of the reference sphere 40, and The surface of the reference plane 50 is scanned with the other probe 21b to acquire the positional deviation data (Xn, dz2 n ) (n = 1, 2, 3,...) Of the guide 23.

次に、前記位置ずれデータ(Xn、dz2)に基づいて直線フィッティング(Straight−line Fit)して、適合値(Fitted Values)k及び付加値bを取得する。 Next, a fitting value (Fitted Values) k and an additional value b are obtained by performing straight-line fitting based on the positional deviation data (Xn, dz2 n ).

前記基準平面50に取付傾斜誤差が存在する場合、前記基準平面50の傾斜角をθとすると、前記傾斜角は、公式(1):K=tanθにより算出することができる。   When there is an attachment inclination error in the reference plane 50, assuming that the inclination angle of the reference plane 50 is θ, the inclination angle can be calculated by the formula (1): K = tan θ.

前記ガイド23の真直度誤差eは、式(2):e=dz2−(k×Xn+b)により算出することができる。 The straightness error e 1 of the guide 23 can be calculated by the equation (2): e 1 = dz2 n − (k × Xn + b).

前記ガイド23の真直度誤差eで補正した後の補正値Lは、式(3):L=dz1+eにより算出することができる。 The correction value L 1 corrected with linearity errors e 1 of the guide 23, the formula (3): can be calculated by L 1 = dz1 n + e 1.

ステップS106で、前記プローブ21aの取付傾斜角αをフィッティングする。   In step S106, the mounting inclination angle α of the probe 21a is fitted.

取付傾斜角αが存在する場合、前記プローブ21と前記基準球40の接触点の切線と前記ガイド23の軸方向との夾角をβ、前記ガイド23の真直度誤差eで補正した後の測定値をLとすると、式(4):L=L×(cos(α)+sin(α)×tan(β))によりLを算出することができる。従って、非線形最小二乗法を使用して前記プローブ21の取付傾斜角αを算出することができる。なお、L及びLは、基準球40のスキャンデータを測定した後の補正値である。Lは、ガイド23の真直度誤差eで補正した後の測定値であるのに対して、Lは、ガイド23の真直度誤差eで補正した後の補正値Lを基準にして得られた測定値である。 When there is a mounting inclination angle α, measurement is performed after correcting the depression angle between the cutting line of the contact point of the probe 21 and the reference sphere 40 and the axial direction of the guide 23 with β and the straightness error e 1 of the guide 23. If the value and L 2, the formula (4): by L 2 = L 1 × (cos (α) + sin (α) × tan (β)) can be calculated L 2. Therefore, the mounting inclination angle α of the probe 21 can be calculated using a non-linear least square method. L 1 and L 2 are correction values after measuring the scan data of the reference sphere 40. L 1 is a measurement value after correction with the straightness error e 1 of the guide 23, whereas L 2 is based on the correction value L 1 after correction with the straightness error e 1 of the guide 23. It is the measured value obtained in this way.

ステップS108で、前記プローブ21の形状誤差eを計算する。 In step S108, it calculates the shape error e 2 of the probe 21.

前記プローブ21に取付傾斜角αが存在しない場合の理論値をL’とすると、上述したステップで前記ガイド23の真直度誤差e及び前記プローブ21の取付傾斜角αを取得した上で、公式(5):e=L−L’に基づいて前記プローブ21の形状誤差eを算出することができる。 Assuming that the theoretical value in the case where the probe 21 does not have the mounting inclination angle α is L ′, the straightness error e 1 of the guide 23 and the mounting inclination angle α of the probe 21 are obtained in the above-described steps. (5): The shape error e 2 of the probe 21 can be calculated based on e 2 = L 1 −L ′.

ステップS110で、系統誤差補正プログラムを生成する。   In step S110, a systematic error correction program is generated.

得られた形状誤差eを前記プローブ21と前記基準球40の各接触点の切線と前記ガイド23の軸方向との夾角βと一対一に対応させることによって、系統誤差補正プログラムを生成することができる。 The resulting shape error e 2 be one-to-one correspondence with the included angle β between the tangent to the axial direction of the guide 23 of each contact point of the reference sphere 40 and the probe 21, to produce a systematic error correction program Can do.

図1、図3及び図4を一緒に参照すると、本発明に係る部品測定方法200は、以下のステップ(S202〜S214)を含む。   Referring to FIGS. 1, 3 and 4 together, the component measuring method 200 according to the present invention includes the following steps (S202 to S214).

ステップS202で、前記誤差補正方法100を通して系統誤差補正プログラムを生成する。   In step S202, a systematic error correction program is generated through the error correction method 100.

ステップS204で、曲面又は曲線を有する部品60を提供する。   In step S204, the component 60 having a curved surface or a curve is provided.

ステップS206で、前記測定装置20を使用して、前記部品60の曲面又は曲線を測定する。   In step S206, the curved surface or curve of the component 60 is measured using the measuring device 20.

前記部品60の理論値をA、補正なしの測定値をAとする。 The theoretical value of the part 60 A, the measured value of the uncorrected and A 1.

ステップS208で前記ガイド23の真直度誤差eを測定して補正する。 The linearity errors e 1 of the guide 23 to correct measured at step S208.

前記ガイド23の真直度誤差eは測定する度に変化する可能性があるため、前記ステップS104と同じ方式で前記ガイド23の真直度誤差eを測定して補正する。 Since linearity errors e 1 of the guide 23 that may change each time the measurement is corrected by measuring the straightness error e 1 of the guide 23 in the same manner as in step S104.

ステップS210で、前記プローブ21の取付傾斜角αによる誤差を補正する。   In step S210, an error due to the mounting inclination angle α of the probe 21 is corrected.

前記プローブ21の取付傾斜角αは固定値であるため、前記ステップS208で前記ガイド23の真直度誤差eを測定した後に、コンピュータにより前記プローブ21の取付傾斜角αによる誤差を自動的に補正することができる。 Since the mounting inclination angle α of the probe 21 is a fixed value, the error due to the mounting inclination angle α of the probe 21 is automatically corrected by the computer after measuring the straightness error e 1 of the guide 23 in step S208. can do.

ステップS212で、前記プローブ21の形状誤差eを補正する。 In step S212, the correcting the shape error e 2 of the probe 21.

前記プローブ21の形状誤差eも固定値であるため、コンピュータによりそれを自動的に補正することができる。 Since the shape error e 2 of the probe 21 is also a fixed value, it is possible to automatically correct it by the computer.

ステップS214で、プログラムにより測定誤差Errを生成する。   In step S214, a measurement error Err is generated by a program.

式(6):A=(A+e)×(cos(α)+sin(α)×tan(β))−eに基づいて、上述したステップで各種誤差を補正した後の測定値Aを算出することができる。従って、式(7):Err=A−A=(A+e)×(cos(α)+sin(α)×tan(β))−e−Aに基づいて、測定誤差Errを算出することができる。なお、A及びAは、部品60の曲面又は曲線の測定値である。Aは補正なしの測定値であるのに対して、Aは各種誤差を補正した後の測定値である。 Measured value after correcting various errors in the above-described steps based on the formula (6): A 2 = (A 1 + e 1 ) × (cos (α) + sin (α) × tan (β)) − e 2 A 2 can be calculated. Therefore, the measurement error Err is calculated based on the equation (7): Err = A 2 −A = (A 1 + e 1 ) × (cos (α) + sin (α) × tan (β)) − e 2 −A can do. A 1 and A 2 are measured values of the curved surface or curve of the component 60. Whereas A 1 is a measure of the uncorrected, A 2 is the measured value after correction of the various errors.

本発明の実施形態においては、コンピュータで数理モデルを立てるソフトウェアで補正する方法を使用して測定時の各種誤差を補正することによって、高い測定精度を実現するとともに、測定装置20の製造、取付け及び伝動の精度に対する要求を減らすことによって、コストを低減することができる。   In the embodiment of the present invention, high measurement accuracy is achieved by correcting various errors at the time of measurement using a method of correcting by software that establishes a mathematical model by a computer, and the measurement apparatus 20 is manufactured, mounted, and Costs can be reduced by reducing demands on transmission accuracy.

以上、本発明の好適な実施形態について詳細に説明したが、本発明は前記実施形態に限定されるものではなく、本発明の範囲内で種々の変形又は修正が可能であり、該変形又は修正も又、本発明の特許請求の範囲内に含まれるものであることは、いうまでもない。   The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and various modifications or corrections are possible within the scope of the present invention. Needless to say, it is also included in the scope of the claims of the present invention.

θ 基準平面の傾斜角
α プローブの取付傾斜角
β プローブと基準球の接触点の切線とガイドの軸方向との夾角
20 測定装置
21a,21b プローブ
23 ガイド
40 基準球
50 基準平面
60 部品
100 誤差補正方法
200 部品測定方法
S102〜S110 誤差補正方法のステップ
S202〜S214 部品測定方法のステップ
θ Reference plane tilt angle α Probe mounting tilt angle β Angle between the cutting line of the contact point of the probe and the reference sphere and the guide axial direction 20 Measuring device 21a, 21b Probe 23 Guide 40 Reference sphere 50 Reference plane 60 Parts 100 Error correction Method 200 Component Measurement Method S102 to S110 Error Correction Method Steps S202 to S214 Component Measurement Method Steps

Claims (5)

プローブ及びガイドを備える測定装置を提供するステップと、
前記ガイドの真直度誤差を測定して補正するステップと、
前記プローブの取付傾斜角をフィッティングするステップと、
前記プローブの形状誤差を計算するステップと、
系統誤差補正プログラムを生成するステップと、
を含むことを特徴とする誤差補正方法。
Providing a measuring device comprising a probe and a guide;
Measuring and correcting straightness error of the guide;
Fitting a mounting inclination angle of the probe;
Calculating a shape error of the probe;
Generating a systematic error correction program;
An error correction method comprising:
前記測定装置は、2つのプローブを有し、
前記ガイドの真直度誤差を測定して補正するステップは、別々に前記測定装置の両側に配置される基準球及び基準平面を提供して、前記測定装置の1つのプローブを前記基準球の表面に接触させて前記基準球を測定するとともに、前記測定装置のもう1つのプローブを前記基準平面の表面に接触させて前記基準平面を測定することにより、前記ガイドの真直度誤差を算出することを特徴とする請求項1に記載の誤差補正方法。
The measuring device has two probes,
The step of measuring and correcting the straightness error of the guide provides a reference sphere and a reference plane that are separately arranged on both sides of the measuring device, so that one probe of the measuring device is placed on the surface of the reference sphere. The guide sphere is measured by bringing it into contact, and the straightness error of the guide is calculated by measuring the reference plane by bringing another probe of the measuring device into contact with the surface of the reference plane. The error correction method according to claim 1.
最小二乗法を使用して前記プローブの取付傾斜角をフィッティングすることを特徴とする請求項2に記載の誤差補正方法。   The error correction method according to claim 2, wherein fitting inclination angle of the probe is fitted using a least square method. 前記測定装置は接触式測定装置であることを特徴とする請求項1に記載の誤差補正方法。   The error correction method according to claim 1, wherein the measuring device is a contact-type measuring device. プローブ及びガイドを備える測定装置を提供するステップと、
前記ガイドの真直度誤差を測定して補正するステップと、
前記プローブの取付傾斜角をフィッティングするステップと、
前記プローブの形状誤差を計算するステップと、
系統誤差補正プログラムを生成するステップと、
曲面又は曲線を有する部品を提供するステップと、
前記測定装置を使用して前記部品の曲面又は曲線を測定するステップと、
前記ガイドの真直度誤差を測定して補正するステップと、
前記プローブの取付傾斜角による誤差を補正するステップと、
前記プローブの形状誤差を補正するステップと、
プログラムにより測定誤差を生成するステップと、
を含むことを特徴とする部品測定方法。
Providing a measuring device comprising a probe and a guide;
Measuring and correcting straightness error of the guide;
Fitting a mounting inclination angle of the probe;
Calculating a shape error of the probe;
Generating a systematic error correction program;
Providing a part having a curved surface or a curve;
Measuring the curved surface or curve of the part using the measuring device;
Measuring and correcting straightness error of the guide;
Correcting the error due to the mounting inclination angle of the probe;
Correcting the shape error of the probe;
Generating a measurement error programmatically;
A part measuring method comprising:
JP2010091522A 2009-04-10 2010-04-12 Error compensation method and components measuring method using it Pending JP2010249814A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910301481 CN101858739B (en) 2009-04-10 2009-04-10 Error compensating method and workpiece measuring method by using same

Publications (1)

Publication Number Publication Date
JP2010249814A true JP2010249814A (en) 2010-11-04

Family

ID=42944780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010091522A Pending JP2010249814A (en) 2009-04-10 2010-04-12 Error compensation method and components measuring method using it

Country Status (2)

Country Link
JP (1) JP2010249814A (en)
CN (1) CN101858739B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153786A (en) * 2015-02-16 2016-08-25 キヤノン株式会社 Shape measurement method, shape measurement device, program, recording medium, and optical element manufacturing method
CN109238198A (en) * 2018-08-28 2019-01-18 广西科技大学 The method for obtaining the maximum mismachining tolerance of the curved surface part of batch machining

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103376058A (en) * 2012-04-28 2013-10-30 鸿富锦精密工业(深圳)有限公司 Temperature compensation system and method
JP6447997B2 (en) * 2015-02-09 2019-01-09 株式会社ミツトヨ Test indicator
CN105783806B (en) * 2016-03-14 2018-06-15 合肥工业大学 Articulated coordinate machine sampling emulation mode based on virtual prototype

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587557A (en) * 1991-09-27 1993-04-06 Toyoda Mach Works Ltd Three dimensional measurement device
WO2000052419A1 (en) * 1999-03-03 2000-09-08 Riken Probe type shape measurement sensor, and nc machining device and shape measuring method using the sensor
JP2003114112A (en) * 2001-10-04 2003-04-18 Mitsutoyo Corp Calibration method and calibration program for profiling probe
JP2004286457A (en) * 2003-03-19 2004-10-14 Mitsutoyo Corp Jig, method, and program for calibrating surface property measuring instrument and recording medium recording calibration program
JP2006337076A (en) * 2005-05-31 2006-12-14 Jtekt Corp Shape-measuring instrument

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003232625A (en) * 2002-02-12 2003-08-22 Mitsutoyo Corp Method of measuring straightness
CN1499426A (en) * 2002-11-04 2004-05-26 力捷电脑股份有限公司 Method for improving dithering of scaning module and method for determining source of dithering module
JP2008076312A (en) * 2006-09-22 2008-04-03 Fine Tech Corp Length measurement instrument

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587557A (en) * 1991-09-27 1993-04-06 Toyoda Mach Works Ltd Three dimensional measurement device
WO2000052419A1 (en) * 1999-03-03 2000-09-08 Riken Probe type shape measurement sensor, and nc machining device and shape measuring method using the sensor
JP2003114112A (en) * 2001-10-04 2003-04-18 Mitsutoyo Corp Calibration method and calibration program for profiling probe
JP2004286457A (en) * 2003-03-19 2004-10-14 Mitsutoyo Corp Jig, method, and program for calibrating surface property measuring instrument and recording medium recording calibration program
JP2006337076A (en) * 2005-05-31 2006-12-14 Jtekt Corp Shape-measuring instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153786A (en) * 2015-02-16 2016-08-25 キヤノン株式会社 Shape measurement method, shape measurement device, program, recording medium, and optical element manufacturing method
CN109238198A (en) * 2018-08-28 2019-01-18 广西科技大学 The method for obtaining the maximum mismachining tolerance of the curved surface part of batch machining

Also Published As

Publication number Publication date
CN101858739A (en) 2010-10-13
CN101858739B (en) 2013-03-20

Similar Documents

Publication Publication Date Title
JP2010249814A (en) Error compensation method and components measuring method using it
US8330097B2 (en) Angular correction method for rotary encoder
US7765079B2 (en) Two-dimensional lattice calibrating device, two-dimensional lattice calibrating method, two-dimensional lattice calibrating program and recording medium
Yang et al. Projector distortion residual compensation in fringe projection system
CN109471333B (en) Galvanometer correction system and method
EP1892500A3 (en) Optical-axis deflection type laser interferometer, calibration method thereof, correction method thereof, and measuring method thereof
TW201514441A (en) System and method for adjusting line laser probes of measurement machine
CN109685744A (en) A kind of scanning galvanometer accuracy correcting method
CN108262953A (en) The scaling method of DLP three-dimensional printers and its projecting apparatus
KR20160108192A (en) shape measuring device, processing device and reforming method of shape measuring device
US20100209828A1 (en) Reticle manufacturing method, surface shape measuring apparatus and signal processor
CN113790689B (en) Calibration method of space coordinate measuring instrument
US8902405B2 (en) Stage apparatus, exposure apparatus and device fabrication method
CN113899335A (en) Method for correcting installation error of gear measured by using contourgraph
CN111649696B (en) High-precision calibration method for structured light measurement system
CN116503493B (en) Multi-camera calibration method, high-precision equipment and computer readable storage medium
US8227780B2 (en) Measuring apparatus and measuring method for measuring axis tilt of shaft of motor for polygon mirror
JP6524441B2 (en) Attitude correction method of inter-surface distance measuring device
TWI600492B (en) Compensation screw lead error method
JP4677810B2 (en) Dimensional measurement method for section steel
CN112810137B (en) Scanning galvanometer correction method and system for laser powder bed melting equipment
CN108073051B (en) Method for improving coordinate precision of photoetching machine
JP2008238196A (en) Centering device of press die, and centering method of press die using it
JP2010113001A (en) Direct exposure method and direct exposure device
TWI460567B (en) Method for error compensating and method for measuring workpiece using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140428