JP2010249610A - Constant pressure mechanism - Google Patents

Constant pressure mechanism Download PDF

Info

Publication number
JP2010249610A
JP2010249610A JP2009098299A JP2009098299A JP2010249610A JP 2010249610 A JP2010249610 A JP 2010249610A JP 2009098299 A JP2009098299 A JP 2009098299A JP 2009098299 A JP2009098299 A JP 2009098299A JP 2010249610 A JP2010249610 A JP 2010249610A
Authority
JP
Japan
Prior art keywords
tube
end plate
fluid
preheating container
sample water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009098299A
Other languages
Japanese (ja)
Inventor
Akitomo Nakamori
明興 中森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2009098299A priority Critical patent/JP2010249610A/en
Publication of JP2010249610A publication Critical patent/JP2010249610A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive constant pressure mechanism for a fluid, supplying the fluid within a prescribed pressure fluctuation by using a simple structure. <P>SOLUTION: The mechanism is provided with: a preliminary heating container 23 forming a sealed space in its hollow part by using a heat conductor block 22, a first end plate 20 and a second end plate 24; and a resistance tube 28 configured so as to keep one end fixed to a tube inlet attaching part 26 disposed at the second end plate 24, to pass through the outside of the preliminary heating container 23 from the tube inlet attaching part 26, to penetrate a tube support part 27 of the second end plate 24, to be introduced into the preliminary heating container 23 and to keep the other end fixed to a tube outlet attaching part 29 disposed at the first end plate 20. The fluid is injected in the preliminary heating container 23 from an inlet port 25, and after being preliminarily heated by the preliminary heating container 23, it is sent from the tube inlet attaching part 26 into the resistance tube 28 and sent out of the tube outlet attaching part 29 to the outside of the preliminary heating container 23, so that the fluid is controlled at the constant pressure. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水質分析計等に使用可能な流体の定圧力機構に関する。   The present invention relates to a fluid constant pressure mechanism that can be used in a water quality analyzer or the like.

導電率方式のTOC計では、採取した状態で測定された試料水の導電率と、試料水にUV(紫外線)を照射して有機物を分解した後に測定された導電率との差分から、有機性汚濁物に係るCO量を決定し、試料水に含まれるTOC値を算出する。この導電率方式のTOC計に試料水を供給する場合、一般には、減圧弁を備えたレギュレータによって、試料水の圧力の変動を低減し、試料水の流量を略一定に保つという方法がとられていた(特許文献1参照)。 In the conductivity type TOC meter, the difference between the conductivity of the sample water measured in the collected state and the conductivity measured after irradiating the sample water with UV (ultraviolet rays) to decompose the organic matter, The amount of CO 2 related to the pollutant is determined, and the TOC value contained in the sample water is calculated. When supplying sample water to this conductivity type TOC meter, generally, a method of reducing the fluctuation in the pressure of the sample water and keeping the flow rate of the sample water substantially constant by a regulator having a pressure reducing valve is taken. (See Patent Document 1).

しかしながら、特許文献1に記載の方法では、TOC計の周囲温度の変化等に起因する試料水圧力変化に対応して試料水の圧力・流量を制御するものではなく、「略一定」の圧力・流量設定しかできない。一方、レギュレータやオリフィスを使用せずに、抵抗チューブを用いて、チューブ内を流れる流体の圧力損失を利用して流量又は圧力を制御する方法が知られている。周囲温度、流体温度が変化すると、抵抗チューブの内径及び流体の粘性抵抗が変化するので、抵抗チューブの温度調節が必要になる。   However, in the method described in Patent Document 1, the pressure / flow rate of the sample water is not controlled in response to a change in the sample water pressure caused by a change in the ambient temperature of the TOC meter. Only the flow rate can be set. On the other hand, a method is known in which a resistance tube is used without using a regulator or an orifice, and the flow rate or pressure is controlled using the pressure loss of the fluid flowing in the tube. When the ambient temperature and the fluid temperature change, the inner diameter of the resistance tube and the viscous resistance of the fluid change. Therefore, it is necessary to adjust the temperature of the resistance tube.

特開2004-177164号公報JP 2004-177164 A

しかしながら、従来の方法では、抵抗チューブ中の水の流速が速いので、温度調節した熱伝導体ブロックに抵抗チューブを接触しても、抵抗チューブ内を通る水の温度が熱伝導体ブロックの温度まで十分到達しきらないうちに抵抗チューブを通り過ぎてしまい、圧力や流量の制御が困難である。一方、マスフローコントローラを用いて試料水流量を制御する方法もあるが、装置が高価になる上、流体を定圧力に制御するのは困難である。   However, in the conventional method, since the flow rate of water in the resistance tube is high, even if the resistance tube is brought into contact with the temperature-controlled heat conductor block, the temperature of the water passing through the resistance tube reaches the temperature of the heat conductor block. It will pass through the resistance tube before it reaches enough, and it is difficult to control the pressure and flow rate. On the other hand, there is a method of controlling the sample water flow rate using a mass flow controller, but the apparatus becomes expensive and it is difficult to control the fluid to a constant pressure.

上記問題点を鑑み、本発明は、簡単な構造で流体を所定圧力変動内で供給することができる、安価な流体の定圧力機構を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an inexpensive fluid constant pressure mechanism that can supply a fluid within a predetermined pressure fluctuation with a simple structure.

本発明の態様は、(イ)中空の熱伝導体ブロック、入口ポートを有し、熱伝導体ブロックの中空部の一方の端部に固定された第1の端板、中空部の他方の端部に固定された第2の端板を有し、熱伝導体ブロック、第1及び第2の端板で、中空部に密閉空間を構成した予備加熱容器と、(ロ)熱伝導体ブロックを加熱温調するヒータと、(ハ)第2の端板に設けられたチューブ入口取付部に一方の端部を固定し、チューブ入口取付部から予備加熱容器の外部を経由して、第2の端板のチューブ支持部を貫通して、予備加熱容器の内部に導入され、第1の端板に設けられたチューブ出口取付部に他方の端部を固定した抵抗チューブとを備える流体の定圧力機構に関する。即ち、本発明の態様に係る定圧力機構においては、流体が入口ポートから予備加熱容器の内部に注入され、予備加熱容器で予備加熱された後、チューブ入口取付部から、抵抗チューブに送り込まれ、チューブ出口取付部から予備加熱容器の外に送り出されることにより、流体が一定圧力に制御される。   Aspects of the present invention include: (a) a first end plate having a hollow heat conductor block and an inlet port, which is fixed to one end of the hollow portion of the heat conductor block, and the other end of the hollow portion. A preheating container having a second end plate fixed to the part, a heat conductor block, a first and a second end plate, and forming a sealed space in the hollow part, and (b) a heat conductor block A heater for adjusting the heating temperature, and (c) one end fixed to a tube inlet mounting portion provided on the second end plate, and the second inlet via the outside of the preheating container from the tube inlet mounting portion. A constant fluid pressure comprising a resistance tube penetrating the tube support portion of the end plate, introduced into the preheating container, and having the other end portion fixed to the tube outlet mounting portion provided in the first end plate Regarding the mechanism. That is, in the constant pressure mechanism according to the aspect of the present invention, the fluid is injected from the inlet port into the preheating container, preheated in the preheating container, and then sent from the tube inlet mounting portion to the resistance tube. The fluid is controlled to a constant pressure by being sent out of the preheating container from the tube outlet mounting portion.

本発明によれば、簡単な構造で流体を所定圧力変動内で供給することができる、安価な流体の定圧力機構を提供することができる。   According to the present invention, it is possible to provide an inexpensive fluid constant pressure mechanism that can supply a fluid within a predetermined pressure fluctuation with a simple structure.

本発明の実施の形態に係る定圧力機構を有する連続水質分析システムを示す模式図である。It is a mimetic diagram showing a continuous water quality analysis system which has a constant pressure mechanism concerning an embodiment of the invention. 本発明の実施例に係る定圧力機構を用いた場合の、抵抗チューブ出口における試料水の周囲温度依存性を比較例と比較した図である。It is the figure which compared the ambient temperature dependence of the sample water in the resistance tube exit at the time of using the constant pressure mechanism which concerns on the Example of this invention with the comparative example.

次に、図面を参照して、本発明の実施の形態を説明する。図面は模式的なものであり、同一の部分には同一の符号を付してある。又、以下に示す本発明の実施の形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに限定するものではない。本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。   Next, embodiments of the present invention will be described with reference to the drawings. The drawings are schematic, and the same reference numerals are given to the same parts. The following embodiments of the present invention exemplify apparatuses and methods for embodying the technical idea of the present invention. The technical idea of the present invention is based on the material and shape of component parts. However, the structure and arrangement are not limited to the following. The technical idea of the present invention can be variously modified within the technical scope described in the claims.

図1に示すように、本発明の実施の形態に係る定圧力機構を有するTOC測定システムは、試料導入系1と、試料導入系1から導入された流体(試料水)の圧力を一定にする定圧力機構2と、定圧力機構2で圧力を一定にされた流体のTOC量を測定するTOC計3とを備える。なお、図1では、定圧力機構2とTOC計3とを接続する配管15eに圧力センサ4を設けているが、圧力センサ4は、本発明の実施の形態に係る定圧力機構2の効果を実証するために用いているのであって、安価なシステムを目的とする場合は省略可能である。 As shown in FIG. 1, the TOC measurement system having the constant pressure mechanism according to the embodiment of the present invention makes the pressure of the sample introduction system 1 and the fluid (sample water) introduced from the sample introduction system 1 constant. A constant pressure mechanism 2 and a TOC meter 3 that measures the amount of TOC of a fluid whose pressure is made constant by the constant pressure mechanism 2 are provided. In FIG. 1, the pressure sensor 4 is provided in the pipe 15 e that connects the constant pressure mechanism 2 and the TOC meter 3, but the pressure sensor 4 has the effect of the constant pressure mechanism 2 according to the embodiment of the present invention. It is used for demonstration, and can be omitted if the purpose is an inexpensive system.

試料導入系1は、試料水採取ダクト11と、試料水採取ダクト11の壁を貫通して一方の端部を取り付けた配管15aと、配管15aの他方の端部が上部から内部に向って挿入固定されたドレンポット12と、ドレンポット12の上部に一方の端部を接続した配管15bと、配管15bの他方の端部を上部から内部に向って挿入固定した吸引用気密容器13と、吸引用気密容器13の上部に一方の端部を接続した配管15cと、配管15cの他方の端部に吸入側を接続した吸引モータ14と、吸引モータ14の吐出側に一方の端部を接続した配管15dとを有する。   The sample introduction system 1 includes a sample water collection duct 11, a pipe 15a having one end attached through the wall of the sample water collection duct 11, and the other end of the pipe 15a inserted from the top to the inside. A fixed drain pot 12, a pipe 15 b having one end connected to the top of the drain pot 12, a suction airtight container 13 in which the other end of the pipe 15 b is inserted and fixed from the top to the inside, and a suction A pipe 15c having one end connected to the upper portion of the airtight container 13, a suction motor 14 having a suction side connected to the other end of the pipe 15c, and one end connected to the discharge side of the suction motor 14. And a pipe 15d.

定圧力機構2は、筒状の熱伝導体ブロック22と、熱伝導体ブロック22の外側表面に接して設けられ、熱伝導体ブロック22を加熱する筒状のヒータ21と、熱伝導体ブロック22の内部の中空部分に設けられた抵抗チューブ28を有する。熱伝導体ブロック22は、アルミニウム等の熱伝導率の高い材料が好ましい。    The constant pressure mechanism 2 is provided in contact with the outer surface of the cylindrical heat conductor block 22, the heat conductor block 22, the cylindrical heater 21 that heats the heat conductor block 22, and the heat conductor block 22. It has the resistance tube 28 provided in the hollow part inside. The heat conductor block 22 is preferably made of a material having high thermal conductivity such as aluminum.

熱伝導体ブロック22の中空部分の一方の端部(左側端部)には、外部に向って凸形状をなす入口ポート25、外部に向って凸形状をなすチューブ出口取付部29を有する第1の端板20が熱伝導体ブロック22の中空部分を塞ぐように設けられている。一方、熱伝導体ブロック22の中空部分の他方の端部(右側端部)には、外部に向って凸形状をなすチューブ入口取付部26、外部に向って凸形状をなすチューブ支持部27を有する第2の端板24が熱伝導体ブロック22の中空部分を塞ぐように設けられている。第1の端板20と第2の端板24とで中空部分を両側から挟む密閉空間を構成して、試料水を貯蔵して加熱する予備加熱容器23が形成されている。   The first end portion (left end portion) of the hollow portion of the heat conductor block 22 has an inlet port 25 having a convex shape toward the outside and a tube outlet mounting portion 29 having a convex shape toward the outside. The end plate 20 is provided so as to close the hollow portion of the heat conductor block 22. On the other hand, at the other end (right end) of the hollow portion of the heat conductor block 22, a tube inlet mounting portion 26 having a convex shape toward the outside and a tube support portion 27 having a convex shape toward the outside are provided. A second end plate 24 is provided so as to close the hollow portion of the heat conductor block 22. The first end plate 20 and the second end plate 24 form a sealed space that sandwiches the hollow portion from both sides, and a preheating container 23 that stores and heats sample water is formed.

図1に示すように、配管15dの一方の端部は、入口ポート25に接続され、入口ポート25を介して流体としての試料水が予備加熱容器23の内部に導入可能に構成されている。抵抗チューブ28の一方の端部は、チューブ入口取付部26に予備加熱容器23の外側(図1において右側)から内側(図1において左側)に向って固定されている。抵抗チューブ28は、チューブ入口取付部26から予備加熱容器23の外側(図1において第2の端板24の右側)を経由して、再度、第2の端板24の方向に向かい、チューブ支持部27を貫通して予備加熱容器23の内部に入り、予備加熱容器23の内部を右側から左側へ進み、チューブ出口取付部29を貫通して予備加熱容器23の外(図1において第1の端板20の左側)に出ている。チューブ出口取付部29を貫通して予備加熱容器23の外側に出た抵抗チューブ28の他の端部は、圧力センサ4に接続されている。抵抗チューブ28の長さは、予備加熱容器23に収納されている部分をらせん状等の立体形状にすることによって調整できる。   As shown in FIG. 1, one end of the pipe 15 d is connected to an inlet port 25 so that sample water as a fluid can be introduced into the preheating vessel 23 through the inlet port 25. One end of the resistance tube 28 is fixed to the tube inlet mounting portion 26 from the outer side (right side in FIG. 1) to the inner side (left side in FIG. 1). The resistance tube 28 supports the tube again from the tube inlet mounting portion 26 through the outside of the preheating vessel 23 (on the right side of the second end plate 24 in FIG. 1) toward the second end plate 24 again. 1 enters the inside of the preheating vessel 23 through the portion 27, proceeds from the right side to the left side through the inside of the preheating vessel 23, penetrates the tube outlet mounting portion 29, and is located outside the preheating vessel 23 (in FIG. It appears on the left side of the end plate 20. The other end of the resistance tube 28 that passes through the tube outlet attachment portion 29 and comes out of the preheating container 23 is connected to the pressure sensor 4. The length of the resistance tube 28 can be adjusted by making the part accommodated in the preheating container 23 into a three-dimensional shape such as a spiral.

圧力センサ4の出口には、TOC計3に接続された配管15eの一方の端部が接続されている。TOC計3は、配管15eの他方の端部に接続され、有機物を分解する前の導電率を測定する第1導電率計31と、第1導電率計31に接続され、有機物を分解するUV酸化分解装置32と、UV酸化分解装置32に接続され、有機物を分解した後の導電率を測定する第2導電率計33とを備える。   One end of a pipe 15 e connected to the TOC meter 3 is connected to the outlet of the pressure sensor 4. The TOC meter 3 is connected to the other end of the pipe 15e and is connected to the first conductivity meter 31 for measuring the conductivity before decomposing the organic matter, and the UV for decomposing the organic matter is connected to the first conductivity meter 31. An oxidative decomposition apparatus 32 and a second conductivity meter 33 that is connected to the UV oxidative decomposition apparatus 32 and measures the electrical conductivity after decomposing organic substances are provided.

図1に示す構成において、試料水(流体)がダクト11から配管15aを通してドレンポット12に導入され、配管15bを通して吸引用気密容器13に溜めこまれる。吸引用気密容器13に溜めこまれた試料水は、吸引用気密容器13から配管15cを通して吸引モータ14によって吸引され、吸引モータ14のあらかじめ設定した吐出量で配管15dに吐出され、試料水入口凸部25から予備加熱容器23の内側に入る。試料水(流体)は予備加熱容器23を充たして所定の温度に加熱温調された後、チューブ入口取付部26から抵抗チューブ28に送り込まれる。   In the configuration shown in FIG. 1, sample water (fluid) is introduced from the duct 11 into the drain pot 12 through the pipe 15a and is stored in the suction airtight container 13 through the pipe 15b. The sample water stored in the suction airtight container 13 is sucked by the suction motor 14 from the suction airtight container 13 through the pipe 15c, and is discharged to the pipe 15d by a preset discharge amount of the suction motor 14, and the sample water inlet is convex. The inside of the preheating container 23 enters from the part 25. The sample water (fluid) is supplied to the resistance tube 28 from the tube inlet mounting portion 26 after the preheating container 23 is filled and heated to a predetermined temperature.

ここで、抵抗チューブ28としては、例えば内径0.25〜0.75mmφ程度で、長さ500〜1000mm程度のものが好ましく、この程度の内径と長さの場合、吸引モータ14の吐出量にもよるが、試料水流量は例えば10〜15mL/min程度の範囲の値に、抵抗チューブ28の配管抵抗から設定することが可能となる。予備加熱容器23内に充たされた試料水は、ヒータ21によって熱伝導体ブロック22が加熱温調されることにより温度制御される。その際、端板24の中に埋め込むようにして、或いは端板24を貫通する等により、端板24の予備加熱容器23内部の試料水近くに、温度センサを設けることで、試料水の温度制御を直接行うことができ、より応答性の良い温度制御が行える。予備加熱容器23の内部に収納された抵抗チューブ28は、予備加熱容器23に充たされた試料水に、流速の低い状態で浸漬されている。抵抗チューブ28内を通過する試料水は、抵抗チューブ28に導入される前に、流速の低い状態で予備加熱容器23に充たされているので、容易に熱伝導体ブロック22と同じ温度に予備加熱される。   Here, the resistance tube 28 preferably has, for example, an inner diameter of about 0.25 to 0.75 mmφ and a length of about 500 to 1000 mm. In the case of such an inner diameter and length, the discharge amount of the suction motor 14 is also considered. However, the sample water flow rate can be set from the piping resistance of the resistance tube 28 to a value in the range of about 10 to 15 mL / min, for example. The temperature of the sample water filled in the preheating container 23 is controlled by adjusting the temperature of the heat conductor block 22 by the heater 21. At that time, the temperature of the sample water is set by providing a temperature sensor near the sample water inside the preheating container 23 of the end plate 24 by being embedded in the end plate 24 or penetrating the end plate 24. Control can be performed directly, and more responsive temperature control can be performed. The resistance tube 28 accommodated in the preheating container 23 is immersed in the sample water filled in the preheating container 23 at a low flow rate. Since the sample water passing through the resistance tube 28 is filled in the preheating vessel 23 at a low flow rate before being introduced into the resistance tube 28, the sample water is easily reserved at the same temperature as the heat conductor block 22. Heated.

予備加熱の効率を考慮すると、予備加熱容器23の流速方向に垂直の断面積は、抵抗チューブ28の断面積より30倍以上大きく設計するのが好ましい。予備加熱容器23を充たした試料水全部が抵抗チューブ28中の流速よりも30倍以上遅い状態で所定の温度に予備加熱された後、試料水が抵抗チューブ28に導入されるようにすれば、抵抗チューブ28の内部を通過する試料水の温度は、流速が速くなっても一定に保たれる。予備加熱容器23の流速方向に垂直の断面積は、抵抗チューブ28の断面積より30倍以上大きくなればなるほど加熱効率が向上するが、実用上、予備加熱容器23のサイズの増大を考慮すれば、予備加熱容器23の流速方向に垂直の断面積は、抵抗チューブ28の断面積より10000倍程度までとすれば良い。   Considering the efficiency of the preheating, it is preferable that the cross sectional area perpendicular to the flow velocity direction of the preheating container 23 is designed to be 30 times or more larger than the cross sectional area of the resistance tube 28. If all the sample water filled with the preheating container 23 is preheated to a predetermined temperature in a state that is 30 times or more slower than the flow rate in the resistance tube 28, then the sample water is introduced into the resistance tube 28. The temperature of the sample water passing through the inside of the resistance tube 28 is kept constant even when the flow rate is increased. As the cross-sectional area perpendicular to the flow velocity direction of the preheating vessel 23 is larger by 30 times or more than the cross-sectional area of the resistance tube 28, the heating efficiency is improved. However, in practice, if the size of the preheating vessel 23 is increased, The cross-sectional area perpendicular to the flow velocity direction of the preheating vessel 23 may be about 10000 times the cross-sectional area of the resistance tube 28.

抵抗チューブ28を通過した試料水は、チューブ出口取付部29から予備加熱容器23の外に出て、配管15eを通してTOC計3に供給され、UV酸化分解装置32によって有機物を分解する前後の導電率を、第1導電率計31と、第2導電率計33で測定し、それらの差分から試料水中の有機性汚濁物に係るCO量を決定し、TOC量が算出される。 The sample water that has passed through the resistance tube 28 exits from the tube outlet mounting portion 29 to the outside of the preheating vessel 23, is supplied to the TOC meter 3 through the pipe 15e, and the conductivity before and after the organic matter is decomposed by the UV oxidative decomposition apparatus 32. Is measured by the first conductivity meter 31 and the second conductivity meter 33, the CO 2 amount related to the organic pollutant in the sample water is determined from the difference therebetween, and the TOC amount is calculated.

本発明の実施の形態に係る定圧力機構によれば、レギュレータ、圧力計、オリフィス、マスフローコントローラ等の、流体の圧力、流量制御装置を使用せずに、図1に示したような簡便な装置構成を用いることにより、周囲温度が変化しても流体温度や抵抗チューブ28が変化しない安価な流体の定圧力機構を実現できる。このため、本発明の実施の形態に係る定圧力機構によれば、抵抗チューブ28の内径及び流体の粘性抵抗が変化しないようにできるため、一定圧力の流体をTOC計3等の外部機器に送り込むことができる。   According to the constant pressure mechanism according to the embodiment of the present invention, a simple device as shown in FIG. 1 is used without using a fluid pressure and flow rate control device such as a regulator, a pressure gauge, an orifice, and a mass flow controller. By using the configuration, it is possible to realize an inexpensive fluid constant pressure mechanism in which the fluid temperature and the resistance tube 28 do not change even when the ambient temperature changes. For this reason, according to the constant pressure mechanism according to the embodiment of the present invention, since the inner diameter of the resistance tube 28 and the viscous resistance of the fluid can be prevented from changing, a fluid having a constant pressure is fed into an external device such as the TOC meter 3. be able to.

(実施例)
図1に例示した定圧力機構100を用いて、周囲温度を7℃,25℃,43℃にそれぞれ設定して、熱伝導体の材料としてアルミニウムを用いた熱伝導体ブロック22を50±2.5℃に温調し、予備加熱容器23に流体として試料水を注入し、試料水を予熱した。チューブ入口取付部26から抵抗チューブ28に入った試料水は、チューブ支持部27から予備加熱容器23に収納された抵抗チューブ28を通って、チューブ出口取付部29から予備加熱容器23の外に出て、出口で抵抗チューブ28の端部に接続された圧力センサ4によって試料水圧力を測定した。ここで、抵抗チューブ28はポリテトラフロロエチレン(PTFE)製の内径0.5mmφ、長さ750mmのものを用いた。この際、吸引モータ4の吐出量を試料水流量の初期値が12.5ml/minとなるように設定した。
(Example)
Using the constant pressure mechanism 100 illustrated in FIG. 1, the ambient temperature is set to 7 ° C., 25 ° C., and 43 ° C., respectively, and the heat conductor block 22 using aluminum as the material of the heat conductor is 50 ± 2. The temperature was adjusted to 5 ° C., sample water was injected as a fluid into the preheating container 23, and the sample water was preheated. The sample water that has entered the resistance tube 28 from the tube inlet mounting portion 26 passes through the resistance tube 28 accommodated in the preheating container 23 from the tube support portion 27, and exits from the tube outlet mounting portion 29 to the outside of the preheating container 23. Then, the water pressure of the sample was measured by the pressure sensor 4 connected to the end of the resistance tube 28 at the outlet. Here, the resistance tube 28 made of polytetrafluoroethylene (PTFE) having an inner diameter of 0.5 mmφ and a length of 750 mm was used. At this time, the discharge amount of the suction motor 4 was set so that the initial value of the sample water flow rate was 12.5 ml / min.

(比較例)
周囲温度を7℃,25℃,43℃にそれぞれ設定して、流体として試料水を、50±2.5℃に温調したアルミニウムブロックに接触させたPTFE製抵抗チューブに直接送り込んだ。抵抗チューブの試料水出口の試料水圧力を圧力センサによって測定した。ここで、抵抗チューブの内径寸法と長さ、及び試料水流量は実施例と同様とした。
(Comparative example)
Ambient temperatures were set to 7 ° C., 25 ° C., and 43 ° C., respectively, and sample water as a fluid was directly fed into a PTFE resistance tube brought into contact with an aluminum block that had been adjusted to 50 ± 2.5 ° C. The sample water pressure at the sample water outlet of the resistance tube was measured by a pressure sensor. Here, the inner diameter and length of the resistance tube, and the sample water flow rate were the same as in the example.

表1は、周囲温度7℃、25℃、43℃の場合の、圧力センサ4によって測定した抵抗チューブ28の試料水出口の試料水圧力測定値を示したものである。試料水圧力測定値は、周囲温度25℃での試料水圧力測定値を100%として規格化した。

Figure 2010249610
Table 1 shows sample water pressure measurement values at the sample water outlet of the resistance tube 28 measured by the pressure sensor 4 when the ambient temperature is 7 ° C, 25 ° C, and 43 ° C. The sample water pressure measurement was normalized with the sample water pressure measurement at an ambient temperature of 25 ° C. being 100%.
Figure 2010249610

図2は、表1の結果を図示したものである。表1、図2から、実施例の、試料水を50℃に予熱してから50℃に温調した抵抗チューブ28に送り込んだ場合には、抵抗チューブ28の出口での試料水圧力は、周囲温度25℃での試料水圧力に対して、周囲温度7℃の場合には99.9〜10.4%とほとんど変らず、周囲温度が43℃になっても試料水圧力は103.3〜103.4%と変動が小さく±5%の仕様範囲に保たれているのが明らかである。   FIG. 2 illustrates the results of Table 1. From Table 1 and FIG. 2, when the sample water of the example was preheated to 50 ° C. and then sent to the resistance tube 28 adjusted to 50 ° C., the sample water pressure at the outlet of the resistance tube 28 was When the ambient temperature is 7 ° C., the sample water pressure is almost 99.9 to 10.4% with respect to the sample water pressure at 25 ° C. Even if the ambient temperature reaches 43 ° C., the sample water pressure is 103.3. It is clear that the fluctuation is as small as 103.4% and is kept within the specification range of ± 5%.

一方、比較例の、予熱していない試料水を、熱伝導体ブロック22に接触させて50℃に温調した抵抗チューブ28に直接送り込んだ場合には、周囲温度が7℃又は43℃になると、抵抗チューブ28の出口での試料水圧力は、周囲温度25℃での試料水圧力に対して、ともに10%以上変動している。   On the other hand, when the sample water in the comparative example which has not been preheated is directly sent to the resistance tube 28 which is brought into contact with the heat conductor block 22 and is adjusted to 50 ° C., the ambient temperature becomes 7 ° C. or 43 ° C. The sample water pressure at the outlet of the resistance tube 28 fluctuates 10% or more with respect to the sample water pressure at the ambient temperature of 25 ° C.

実施例では、試料水を50±2.5℃に温調された予備加熱容器23に送り込むだけで、50℃より低い温度で周囲温度が変動しても、抵抗チューブ28の出口における圧力変動は十分小さく、±5%の仕様範囲に保つことができることが分かる。   In the embodiment, even if the ambient temperature fluctuates at a temperature lower than 50 ° C. by simply feeding the sample water into the preheating vessel 23 adjusted to 50 ± 2.5 ° C., the pressure fluctuation at the outlet of the resistance tube 28 is It can be seen that it is sufficiently small and can be kept within the specification range of ± 5%.

(その他の実施の形態)
上記のように、本発明の実施の形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものではない。この開示から、当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As described above, the embodiments of the present invention have been described. However, the description and the drawings, which form a part of this disclosure, do not limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

例えば、上記の実施の形態では、抵抗チューブ28の一部が予備加熱容器23の外側に出ているが、この予備加熱容器23の外側に露出した抵抗チューブ28を含めて、定圧力機構2全体を断熱材で覆うことにより、抵抗チューブ28の温度変動を周囲の温度変動から遮断できるので、流体の圧力変動を更に小さくすることができる。    For example, in the above embodiment, a part of the resistance tube 28 protrudes outside the preheating container 23, but the entire constant pressure mechanism 2 includes the resistance tube 28 exposed outside the preheating container 23. Since the temperature fluctuation of the resistance tube 28 can be cut off from the surrounding temperature fluctuation by covering with a heat insulating material, the pressure fluctuation of the fluid can be further reduced.

又、上記の実施の形態で説明した定圧力機構は、上記の説明から明らかなように、レギュレータやマスフローコントローラ等の流体の流量制御装置を使用せずに、抵抗チューブ28を用いて一定流量に制御することが可能であり、周囲温度が変化しても流体温度や抵抗チューブ28が変化しないため、抵抗チューブ28の内径及び流体の粘性抵抗が変化しないので、簡単な構成で、流体の定流量機構としても機能することは明らかである。   In addition, as is clear from the above description, the constant pressure mechanism described in the above embodiment has a constant flow rate using the resistance tube 28 without using a fluid flow rate control device such as a regulator or a mass flow controller. Since the fluid temperature and the resistance tube 28 do not change even if the ambient temperature changes, the inner diameter of the resistance tube 28 and the viscous resistance of the fluid do not change. Obviously, it also functions as a mechanism.

従って、本発明の技術的範囲は、上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   Therefore, the technical scope of the present invention is determined only by the invention specifying matters according to the scope of claims reasonable from the above description.

本発明の定圧力機構は、流体の1つである、排水、環境水、水道水、下水、純水、各種用水等の水の定圧力機構として採用可能であり、TOC計等の水質分析計の分野に本発明の定圧力機構を用いれば、所定の流量の試料水を所定の圧力変動内で供給することができるので、高精度の水質分析が可能となる。   The constant pressure mechanism of the present invention can be adopted as a constant pressure mechanism of water such as drainage, environmental water, tap water, sewage, pure water, various types of water, which is one of fluids, and a water quality analyzer such as a TOC meter. If the constant pressure mechanism of the present invention is used in the above field, sample water at a predetermined flow rate can be supplied within a predetermined pressure fluctuation, so that highly accurate water quality analysis is possible.

1…試料水導入系
11…ダクト
12…ドレンポット
13…吸引用気密容器
14…吸引モータ
15a,15b,15c,15d,15e…配管
2…定圧力機構
20…第1の端板
21…ヒータ
22…アルミニウムブロック
23…予備加熱容器
24…第2の端板
25…入口ポート
26…チューブ入口取付部
27…チューブ支持部
28…抵抗チューブ
29…チューブ出口取付部
3…TOC計
31…第1導電率計
32…UV酸化分解装置
33…第2導電率計
4…圧力センサ
DESCRIPTION OF SYMBOLS 1 ... Sample water introduction system 11 ... Duct 12 ... Drain pot 13 ... Airtight container 14 for suction ... Suction motors 15a, 15b, 15c, 15d, 15e ... Piping 2 ... Constant pressure mechanism 20 ... First end plate 21 ... Heater 22 ... Aluminum block 23 ... Preheating container 24 ... Second end plate 25 ... Inlet port 26 ... Tube inlet mounting part 27 ... Tube support part 28 ... Resistance tube 29 ... Tube outlet mounting part 3 ... TOC meter 31 ... First conductivity Total 32 ... UV oxidative decomposition apparatus 33 ... Second conductivity meter 4 ... Pressure sensor

Claims (3)

中空の熱伝導体ブロック、入口ポートを有し、前記熱伝導体ブロックの中空部の一方の端部に固定された第1の端板、前記中空部の他方の端部に固定された第2の端板を有し、前記熱伝導体ブロック、前記第1及び第2の端板で、前記中空部に密閉空間を構成した予備加熱容器と、
前記熱伝導体ブロックを加熱温調するヒータと、
前記第2の端板に設けられたチューブ入口取付部に一方の端部を固定し、前記チューブ入口取付部から前記予備加熱容器の外部を経由して、前記第2の端板のチューブ支持部を貫通して、前記予備加熱容器の内部に導入され、前記第1の端板に設けられたチューブ出口取付部に他方の端部を固定した抵抗チューブ
とを備え、流体が前記入口ポートから前記予備加熱容器の内部に注入され、前記予備加熱容器で予備加熱された後、前記チューブ入口取付部から、前記抵抗チューブに送り込まれ、前記チューブ出口取付部から前記予備加熱容器の外に送り出されることにより、前記流体を一定圧力に制御することを特徴とする定圧力機構。
A first end plate having a hollow heat conductor block, an inlet port, fixed to one end of the hollow portion of the heat conductor block, and a second end plate fixed to the other end of the hollow portion A preheating container having a sealed space in the hollow portion with the heat conductor block and the first and second end plates;
A heater for heating and adjusting the heat conductor block;
One end is fixed to a tube inlet mounting portion provided on the second end plate, and the tube support portion of the second end plate is passed from the tube inlet mounting portion to the outside of the preheating container. And a resistance tube having the other end fixed to a tube outlet mounting portion provided in the first end plate and introduced into the inside of the preheating container, and fluid flows from the inlet port to the tube. After being injected into the preheating container and preheated in the preheating container, the tube is attached from the tube inlet mounting portion to the resistance tube, and is sent out from the tube outlet mounting portion to the outside of the preheating container. The constant pressure mechanism is characterized in that the fluid is controlled to a constant pressure.
前記予備加熱容器の外部を経由して前記予備加熱容器から露出した前記抵抗チューブの部分を含めて、前記予備加熱容器全体を、断熱材で覆ったことを特徴とする請求項1に記載の定圧力機構。   2. The constant temperature according to claim 1, wherein the entire preheating container is covered with a heat insulating material, including the portion of the resistance tube exposed from the preheating container via the outside of the preheating container. Pressure mechanism. 前記予備加熱容器の前記流体の進行方向に垂直な断面積が、前記抵抗チューブの長手方向に垂直な断面積に比して30倍以上大きいことを特徴とする請求項1又は2に記載の定圧力機構。   3. The constant value according to claim 1, wherein a cross-sectional area perpendicular to the fluid traveling direction of the preheating container is 30 times or more larger than a cross-sectional area perpendicular to the longitudinal direction of the resistance tube. Pressure mechanism.
JP2009098299A 2009-04-14 2009-04-14 Constant pressure mechanism Withdrawn JP2010249610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009098299A JP2010249610A (en) 2009-04-14 2009-04-14 Constant pressure mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098299A JP2010249610A (en) 2009-04-14 2009-04-14 Constant pressure mechanism

Publications (1)

Publication Number Publication Date
JP2010249610A true JP2010249610A (en) 2010-11-04

Family

ID=43312117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098299A Withdrawn JP2010249610A (en) 2009-04-14 2009-04-14 Constant pressure mechanism

Country Status (1)

Country Link
JP (1) JP2010249610A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105547509A (en) * 2016-01-29 2016-05-04 青岛科技大学 Falling film absorption experiment device through adoption of distributive solution sampling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105547509A (en) * 2016-01-29 2016-05-04 青岛科技大学 Falling film absorption experiment device through adoption of distributive solution sampling
CN105547509B (en) * 2016-01-29 2018-06-01 青岛科技大学 A kind of falling film absorption experimental provision using distributed solution sampling

Similar Documents

Publication Publication Date Title
US4940667A (en) Apparatus for monitoring the quality of water
US5932791A (en) Method and apparatus for the continuous determination of gaseous oxidation products
US20170276589A1 (en) Compact condensation particle counter technology
JP6648018B2 (en) Apparatus and method for detecting gas
US20110107813A1 (en) Breath Test Simulator and Method
US4192836A (en) Respiratory gas humidifier
US4977094A (en) Process for monitoring the quality of water
EP2450938A1 (en) Doping gas generator
JP2009541732A (en) Dopant delivery and detection system
WO2020054172A1 (en) Automated analyzer
JP2006234650A (en) Degasifier
CN106032932B (en) Heating device and local flushing device using same
EP0730153A2 (en) Water impurity analyzer
JP2010249610A (en) Constant pressure mechanism
US3028965A (en) Dialysis apparatus
JP2007326098A (en) Heatable pipette
JP2008111721A (en) Method and instrument for continuously measuring concentration of total organic carbon
CA3109321A1 (en) Analysis of a gas dissolved in an insulating medium of a high-voltage device
KR100395657B1 (en) Mass flow controller
JP2001153828A (en) Method and device for measuring organic carbon content
GB2280510A (en) Method and apparatus for fluid analysis
JP2005246255A (en) Ozone thermal decomposition method and ozone thermal decomposition apparatus
US5994146A (en) Water impurity analysis method
JP2010175418A (en) Detector for liquid chromatograph using flow cell and liquid chromatograph
GB2158235A (en) Water pollutant monitor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120703