JP2010249208A - In-wheel motor drive unit and motor drive device for vehicle - Google Patents

In-wheel motor drive unit and motor drive device for vehicle Download PDF

Info

Publication number
JP2010249208A
JP2010249208A JP2009098343A JP2009098343A JP2010249208A JP 2010249208 A JP2010249208 A JP 2010249208A JP 2009098343 A JP2009098343 A JP 2009098343A JP 2009098343 A JP2009098343 A JP 2009098343A JP 2010249208 A JP2010249208 A JP 2010249208A
Authority
JP
Japan
Prior art keywords
eccentric
revolving
gravity
center
revolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009098343A
Other languages
Japanese (ja)
Inventor
Tomoaki Makino
智昭 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2009098343A priority Critical patent/JP2010249208A/en
Publication of JP2010249208A publication Critical patent/JP2010249208A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To provide an in-wheel motor drive unit capable of eliminating dynamic unbalance as well as static unbalance. <P>SOLUTION: A first eccentric member 25I and a third eccentric member 25n are eccentrically arranged in the same phase. A second eccentric member 25m arranged between these first eccentric member 25I and the third eccentric member 25n is eccentrically arranged in a phase different at 180 degrees from these members. Thus, the optimized weight balance can eliminate the dynamic unbalance as well as the static unbalance. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、サイクロイド減速機構を備えたインホイールモータ駆動装置および車両用モータ駆動装置に関し、特にサイクロイド減速機構の回転要素の配置に関する。   The present invention relates to an in-wheel motor drive device and a vehicle motor drive device including a cycloid reduction mechanism, and more particularly to the arrangement of rotating elements of a cycloid reduction mechanism.

従来のインホイールモータ駆動装置は、例えば、特開2006−258289号公報(特許文献1)に記載されている。特許文献1のインホイールモータ駆動装置は、駆動モータと、この駆動モータから駆動力を入力されて回転数を減速して車輪側に出力する減速機と、減速機の出力軸と結合する車輪のハブ部材とが同軸かつ直列に配列されている。この減速機はサイクロイド減速機構であることから、従来の減速機として一般的な遊星歯車式減速機構と比較して高減速比が得られる。したがって、駆動モータの要求トルクを小さくすることができ、インホイールモータ駆動装置のサイズおよび重量を低減することができるという点で頗る有利である。   A conventional in-wheel motor drive device is described in, for example, Japanese Patent Application Laid-Open No. 2006-258289 (Patent Document 1). The in-wheel motor drive device of Patent Document 1 includes a drive motor, a speed reducer that receives a driving force from the drive motor and decelerates the number of rotations to output to the wheel side, and a wheel coupled to the output shaft of the speed reducer. The hub members are arranged coaxially and in series. Since this speed reducer is a cycloid speed reduction mechanism, a high speed reduction ratio can be obtained as compared with a planetary gear speed reduction mechanism that is general as a conventional speed reducer. Therefore, the required torque of the drive motor can be reduced, which is advantageous in that the size and weight of the in-wheel motor drive device can be reduced.

また、このインホイールモータ駆動装置のサイクロイド減速機構は、回転軸線方向に離隔して配置された2枚の曲線板を有する。これら曲線板は公転部材に相当し、高回転数で公転しながら低回転数で自転することから、バランスを考慮して取り付けることが望ましい。そこで特許文献1に記載された2枚の曲線板は、回転軸線を中心として周方向に180度異なる偏心位置に取り付けられて、バランスが釣り合うよう配置される。   Further, the cycloid reduction mechanism of the in-wheel motor drive device has two curved plates that are spaced apart from each other in the rotation axis direction. These curved plates correspond to revolving members, and rotate at a low rotational speed while revolving at a high rotational speed. Therefore, it is desirable to attach them in consideration of balance. Therefore, the two curved plates described in Patent Document 1 are attached to eccentric positions that differ by 180 degrees in the circumferential direction around the rotation axis, and are arranged so that the balance is balanced.

特開2006−258289号公報JP 2006-258289 A

上記従来のサイクロイド減速機構にあっては、2枚の曲線板の位相が180度異なるよう配置されているため、半径方向の遠心力を釣り合わせることができる。この状態を静釣り合いという。しかし、上記従来のようなインホイールモータ駆動装置にあっては、更に改善すべき点があることを本発明者は見出した。つまり、静不釣り合いは解消されるものの、回転軸線と直交する軸線回りのモーメントが0にならないため動不釣り合いであった。この動不釣り合いはサイクロイド減速機構の振動を増大させ、モータ回転数が上昇するほど、この振動が顕著になる。   In the conventional cycloid reduction mechanism, since the two curved plates are arranged so that the phases of the two curved plates are different by 180 degrees, the centrifugal force in the radial direction can be balanced. This state is called static balance. However, the present inventor has found that there is a further improvement in the conventional in-wheel motor drive device. That is, although the static imbalance is eliminated, the moment around the axis perpendicular to the rotation axis does not become zero, so that the dynamic imbalance is present. This dynamic imbalance increases the vibration of the cycloid reduction mechanism, and this vibration becomes more prominent as the motor speed increases.

本発明は、上述の実情に鑑み、静不釣り合いを解消することができる他、動不釣り合いも解消することができるインホイールモータ駆動装置および車両用モータ駆動装置を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide an in-wheel motor drive device and a vehicle motor drive device that can eliminate static imbalance as well as dynamic imbalance.

この目的のため本発明によるインホイールモータ駆動装置は、モータ側回転部材を回転駆動するモータ部と、モータ側回転部材の回転を減速して車輪側回転部材に伝達する減速部と、車輪側回転部材に固定連結された車輪ハブとを備え、減速部は、モータ側回転部材の回転軸線から偏心してモータ側回転部材に結合した3個の円盤形状の偏心部材と、内周が3個の偏心部材の外周にそれぞれ相対回転自在に取り付けられてモータ側回転部材の回転に伴って回転軸線を中心とする公転運動を行う3個の公転部材と、公転部材の外周部に係合して公転部材の自転運動を生じさせる外周係合部材と、車輪側回転部材と結合して公転部材の自転運動を取り出す内側係合部材とを有することを前提とする。   For this purpose, an in-wheel motor driving device according to the present invention includes a motor unit that rotationally drives a motor-side rotating member, a speed-reducing unit that decelerates the rotation of the motor-side rotating member and transmits the rotation to the wheel-side rotating member, and wheel-side rotation. A wheel hub fixedly connected to the member, and the speed reducer is decentered from the rotation axis of the motor side rotating member and is coupled to the motor side rotating member, and the inner periphery is decentered from three. Three revolving members which are attached to the outer periphery of the member so as to be relatively rotatable and perform a revolving motion around the rotation axis along with the rotation of the motor side rotating member, and the revolving member engaged with the outer peripheral portion of the revolving member It is premised on having an outer peripheral engagement member that causes the rotation movement of the outer periphery and an inner engagement member that is coupled to the wheel-side rotation member and extracts the rotation movement of the revolution member.

この前提のもと、3個の公転部材は、第1公転部材と、第1公転部材の軸線方向一方側に配置された第2公転部材と、第2公転部材のさらに軸線方向一方側に配置された第3公転部材とを含む。3個の偏心部材は、第1公転部材を相対回転自在に支持するとともに回転軸線から軸線直角方向に偏心して配置される第1偏心部材と、第2公転部材を相対回転自在に支持するとともに第1偏心部材の軸線方向一方側で第1偏心部材と180度異なる周方向位置に偏心して配置される第2偏心部材と、第3公転部材を相対回転自在に支持するとともに第2偏心部材のさらに軸線方向一方側で第2偏心部材と180度異なる周方向位置に偏心して配置される第3偏心部材とを含む。   Under this premise, the three revolving members are arranged on the first revolving member, the second revolving member arranged on the one axial side of the first revolving member, and further on the one axial side of the second revolving member. And a third revolving member. The three eccentric members support the first revolving member so as to be relatively rotatable, and support the first eccentric member disposed eccentrically from the rotation axis in the direction perpendicular to the axis, and the second revolving member so as to be relatively rotatable. A second eccentric member disposed eccentrically at a circumferential position 180 degrees different from the first eccentric member on one axial direction side of the first eccentric member; and a third revolving member that is relatively rotatable and further supports the second eccentric member. And a third eccentric member arranged eccentrically at a circumferential position that is 180 degrees different from the second eccentric member on one side in the axial direction.

そして、第1公転部材および第1偏心部材の重量和をMSl、回転軸線から第1公転部材および第1偏心部材の重心までの偏心距離をESlとし、第2公転部材および第2偏心部材の重量和をMSm、回転軸線から第2公転部材および第2偏心部材の重心までの偏心距離をESmとし、第3公転部材および第3偏心部材の重量和をMSn、回転軸線から第3公転部材および第3偏心部材の重心までの偏心距離をESnとして、
SlSl+MSnSn=MSmSmを満足する。
The sum of weights of the first revolving member and the first eccentric member is M Sl , and the eccentric distance from the rotation axis to the center of gravity of the first revolving member and the first eccentric member is E Sl, and the second revolving member and the second eccentric member M Sm , the eccentric distance from the rotation axis to the center of gravity of the second revolving member and the second eccentric member is E Sm, and the weight sum of the third revolving member and the third eccentric member is M Sn , 3 an eccentric distance to the center of gravity of the revolving member, and the third eccentric member as E Sn,
M S1 E S1 + M Sn E Sn = M Sm E Sm is satisfied.

さらに、公転部材と偏心部材の重心が一致するように各々の公転部材と偏心部材を設置し、第1公転部材および第1偏心部材の重心と、第2公転部材および第2偏心部材の重心との軸線方向距離をLSlmとし、第2公転部材および第2偏心部材の重心と、第3公転部材および第3偏心部材の重心との軸線方向距離をLSmnとして、
SlSlSlm=MSnSnSmnを満足する。
Furthermore, each revolution member and the eccentric member are installed so that the centers of gravity of the revolution member and the eccentric member coincide with each other, the center of gravity of the first revolution member and the first eccentric member, the center of gravity of the second revolution member and the second eccentric member, L Slm is the axial direction distance of L 2, and L Smn is the axial distance between the center of gravity of the second revolving member and the second eccentric member and the center of gravity of the third revolving member and the third eccentric member.
To satisfy the M Sl E Sl L Slm = M Sn E Sn L Smn.

かかる本発明によれば、第1偏心部材および第3偏心部材が同位相に偏心配置され、これら第1偏心部材と第3偏心部材との間に配置された第2偏心部材が、これらと180度異なる位相で偏心配置され、重量バランスが最適なものとなる。したがって、静不釣り合いを解消することができる他、動不釣り合いも解消することができる。   According to the present invention, the first eccentric member and the third eccentric member are eccentrically arranged in the same phase, and the second eccentric member arranged between the first eccentric member and the third eccentric member is 180 with them. It is eccentrically arranged at different phases, and the weight balance is optimal. Accordingly, static imbalance can be eliminated and dynamic imbalance can also be eliminated.

なお、ここでいう重量和とは、各公転部材と各偏心部材との間に転がり軸受が設けられる場合において、転がり軸受の構成部品、例えば内外輪、転動体、保持器、を含むと理解されたい。かかる転がり軸受も、各公転部材または各偏心部材の構成部品であるためである。   Note that the weight sum here is understood to include components of the rolling bearing, such as inner and outer rings, rolling elements, and cages, when a rolling bearing is provided between each revolution member and each eccentric member. I want. This is because such a rolling bearing is also a component of each revolution member or each eccentric member.

ここで好ましくは、MSl=MSnおよび2MSl=MSmを満足する。かかる実施形態によれば、ESl+ESn=2ESmを実現するとともに、ESlSlm=ESnSmnを実現することが可能となり、同一の部品を、第1公転部材および第1偏心部材と、第3公転部材および第3偏心部材に使用することができる。したがって、製作コスト上有利なインホイールモータ駆動装置を提供することができる。 Here, preferably, M S1 = M Sn and 2M S1 = M Sm are satisfied. According to this embodiment, while realizing E Sl + E Sn = 2E Sm , E Sl L Slm = it is possible to realize the E Sn L Smn, the same parts, the first revolving member and a first eccentric member And can be used for the third revolving member and the third eccentric member. Therefore, it is possible to provide an in-wheel motor drive device that is advantageous in terms of manufacturing cost.

より好ましくは、ESl=ESnを満足する。かかる実施形態によれば、公転部材および偏心部材の偏心距離を、ESl=ESm=ESnとすることが可能になり、減速部の軸線直角方向寸法を均一にすることができる。 More preferably, E S1 = E Sn is satisfied. According to this embodiment, the eccentric distance between the revolution member and the eccentric member can be set to E S1 = E Sm = E Sn, and the axis perpendicular direction dimension of the speed reduction portion can be made uniform.

本発明は、各公転部材および各偏心部材の重量和が第1〜第3のそれぞれにおいて上述した式を満足するとともに、各公転部材および各偏心部材の重心が第1〜第3のそれぞれにおいて上述した式を満足することによって成立するものであり、第1〜第3偏心部材自身の重量と、偏心距離と、軸線方向距離については限定限定されない。   In the present invention, the sum of the weights of the revolution members and the eccentric members satisfies the above-described formulas in the first to third, respectively, and the centers of gravity of the revolution members and the eccentric members are the same in the first to third, respectively. The above formula is satisfied, and the weight, eccentric distance, and axial distance of the first to third eccentric members themselves are not limited.

このように、本発明は1実施例に限定されないが、第1〜第3公転部材自身も、上述した式と同様に構成されてもよい。すなわち、第1公転部材の重量をMAl、回転軸線から第1公転部材の重心までの偏心距離をEAlとし、第2公転部材の重量をMAm、回転軸線から第2公転部材の重心までの偏心距離をEAmとし、第3公転部材の重量をMAn、回転軸線から第3公転部材の重心までの偏心距離をEAnとして、
AlAl+MAnAn=MAmAmを満足する。
Thus, although this invention is not limited to 1 Example, 1st-3rd revolution member itself may be comprised similarly to the type | formula mentioned above. That is, the weight of the first revolution member is M Al , the eccentric distance from the rotation axis to the center of gravity of the first revolution member is E Al , the weight of the second revolution member is M Am , and from the rotation axis to the center of gravity of the second revolution member the eccentricity and E Am of the weight of the third revolving member M an, the eccentricity from the axis of rotation to the center of gravity of the third revolving member as E an,
Satisfying M Al E Al + M An E An = M Am E Am.

さらに、第1公転部材の重心と第2公転部材の重心との軸線方向距離をLAlmとし、第2公転部材の重心と第3公転部材の重心との軸線方向距離をLAmnとして、
AlAlAlm=MAnAnAmnを満足する。
Further, the axial distance between the center of gravity of the first revolution member and the center of gravity of the second revolution member is L Alm , and the axial distance between the center of gravity of the second revolution member and the center of gravity of the third revolution member is L Amn ,
M Al E Al L Alm = M An E An L Amn is satisfied.

かかる実施形態によれば、静釣り合いおよび動釣り合いを好適に実現することができる。   According to this embodiment, static balance and dynamic balance can be suitably realized.

ここで好ましくは、MAl=MAnおよび2MAl=MAmを満足する。かかる実施形態によれば、EAl+EAn=2EAmを実現するとともに、EAlAlm=EAnAmnを実現することが可能となり、同一の部品を、第1公転部材と、第3公転部材に使用することができる。したがって、製作コスト上有利なインホイールモータ駆動装置を提供することができる。 Here, preferably, M Al = M An and 2M Al = M Am are satisfied. According to such an embodiment, E Al + E An = 2E Am and E Al L Alm = E An L Amn can be realized, and the same component can be used for the first revolution member and the third revolution. Can be used for members. Therefore, it is possible to provide an in-wheel motor drive device that is advantageous in terms of manufacturing cost.

より好ましくは、第2公転部材の軸線方向厚みは、第1公転部材の軸線方向厚みの2倍である。かかる実施形態によれば、外径および内径が等しい第1公転部材、第2公転部材、および第3公転部材を共通する材料で形成することが可能となり、製作工程上およびコスト上有利となる。   More preferably, the axial thickness of the second revolution member is twice the axial thickness of the first revolution member. According to such an embodiment, the first revolution member, the second revolution member, and the third revolution member having the same outer diameter and inner diameter can be formed of a common material, which is advantageous in terms of manufacturing process and cost.

好ましくは、EAl=EAnを満足する。かかる実施形態によれば、公転部材の偏心距離を、EAl=EAm=EAnとすることが可能になり、減速部の軸線直角方向寸法を均一にすることができる。 Preferably, E Al = E An is satisfied. According to such an embodiment, the eccentric distance of the revolution member can be set to E Al = E Am = E An, and the axial perpendicular direction dimension of the speed reduction portion can be made uniform.

本発明において、公転部材を回転自在に支持する偏心部材自身は特に限定されないが、第1〜第3偏心部材自身も上述した式と同様に構成されてもよい。すなわち、第1偏心部材の重量をMBl、回転軸線から第1偏心部材の重心までの偏心距離をEBlとし、第2偏心部材の重量をMBm、回転軸線から第2偏心部材の重心までの偏心距離をEBmとし、第3偏心部材の重量をMBn、回転軸線から第3偏心部材の重心までの偏心距離をEBnとして、
BlBl+MBnBn=MBmBmを満足する。
In the present invention, the eccentric member itself that rotatably supports the revolution member is not particularly limited, but the first to third eccentric members themselves may be configured in the same manner as the above-described formula. That is, the weight of the first eccentric member is M B1 , the eccentric distance from the rotation axis to the center of gravity of the first eccentric member is E Bl , the weight of the second eccentric member is M Bm , and from the rotation axis to the center of gravity of the second eccentric member E Bm , the weight of the third eccentric member is M Bn , and the eccentric distance from the rotation axis to the center of gravity of the third eccentric member is E Bn .
M B1 E B1 + M Bn E Bn = M Bm E Bm is satisfied.

さらに、第1偏心部材の重心と第2偏心部材の重心との軸線方向距離をLBlmとし、第2偏心部材の重心と第3偏心部材の重心との軸線方向距離をLBmnとして、
BlBlBlm=MBnBnBmnを満足する。
Further, an axial distance between the center of gravity of the centroid and the second eccentric member of the first eccentric member and L Blm, the axial distance between the center of gravity of the centroid and the third eccentric members of the second eccentric member as L Bmn,
To satisfy the M Bl E Bl L Blm = M Bn E Bn L Bmn.

かかる実施形態によれば、静釣り合いおよび動釣り合いを好適に実現することができる。   According to this embodiment, static balance and dynamic balance can be suitably realized.

ここで好ましくは、MBl=MBnおよび2MBl=MBmを満足する。かかる実施形態によれば、EBl+EBn=2EBmを実現するとともに、EBlBlm=EBnBmnを実現することが可能となり、同一の部品を、第1偏心部材と、第3偏心部材に使用することができる。したがって、製作コスト上有利なインホイールモータ駆動装置を提供することができる。 Here, preferably, M B1 = M Bn and 2M B1 = M Bm are satisfied. According to this embodiment, while realizing E Bl + E Bn = 2E Bm , it becomes possible to realize the E Bl L Blm = E Bn L Bmn, the same parts, and a first eccentric member, a third eccentric Can be used for members. Therefore, it is possible to provide an in-wheel motor drive device that is advantageous in terms of manufacturing cost.

より好ましくは、第2偏心部材の軸線方向厚みは、第1偏心部材の軸線方向厚みの2倍である。かかる実施形態によれば、外径および内径が等しい第1偏心部材、第2偏心部材、および第3偏心部材を共通する材料で形成することが可能となり、製作工程上およびコスト上有利となる。   More preferably, the axial thickness of the second eccentric member is twice the axial thickness of the first eccentric member. According to such an embodiment, the first eccentric member, the second eccentric member, and the third eccentric member having the same outer diameter and inner diameter can be formed of a common material, which is advantageous in terms of manufacturing process and cost.

好ましくは、EBl=EBnを満足する。かかる実施形態によれば、偏心部材の偏心距離を、EBl=EBm=EBnとすることが可能になり、減速部の軸線直角方向寸法を均一にすることができる。 Preferably, E Bl = E Bn is satisfied. According to such an embodiment, the eccentric distance of the eccentric member can be set to E B1 = E Bm = E Bn, and the axis perpendicular direction dimension of the speed reduction portion can be made uniform.

好ましくは、第1偏心部材は第1公転部材を玉軸受で回転自在に支持し、第2偏心部材は第2公転部材をころ軸受で回転自在に支持し、第3偏心部材は第3公転部材を玉軸受で回転自在に支持する。かかる実施形態によれば、荷重容量が小さな玉軸受で第1公転部材および第3公転部材を回転自在に支持するとともに荷重容量が大きなころ軸受で第2公転部材を回転自在に支持することから、3個の公転部材のうち軸受荷重が最も大きな第2公転部材を好適に支持することが可能になり、減速部の耐久性が向上する。   Preferably, the first eccentric member rotatably supports the first revolution member by a ball bearing, the second eccentric member rotatably supports the second revolution member by a roller bearing, and the third eccentric member is a third revolution member. Is supported rotatably by ball bearings. According to such an embodiment, the first and third revolving members are rotatably supported by the ball bearing having a small load capacity, and the second revolving member is rotatably supported by the roller bearing having a large load capacity. It becomes possible to favorably support the second revolution member having the largest bearing load among the three revolution members, and the durability of the speed reduction portion is improved.

また本発明による車両用モータ駆動装置は、モータ側回転部材を回転駆動するモータ部と、モータ側回転部材の回転を減速して車輪側回転部材に伝達する減速部と、車輪側回転部材の回転を複数の車輪へ駆動伝達する差動装置とを備え、減速部は、モータ側回転部材の回転軸線から偏心してモータ側回転部材に結合した3個の円盤形状の偏心部材と、内周が3個の偏心部材の外周にそれぞれ相対回転自在に取り付けられてモータ側回転部材の回転に伴って回転軸線を中心とする公転運動を行う3個の公転部材と、公転部材の外周部に係合して公転部材の自転運動を生じさせる外周係合部材と、車輪側回転部材と結合して公転部材の自転運動を取り出す内側係合部材とを有することを前提とする。   The vehicle motor drive device according to the present invention includes a motor unit that rotationally drives the motor side rotation member, a speed reduction unit that decelerates the rotation of the motor side rotation member and transmits the rotation to the wheel side rotation member, and the rotation of the wheel side rotation member. And a speed reducer that includes three disc-shaped eccentric members that are eccentric from the rotational axis of the motor-side rotating member and coupled to the motor-side rotating member, and an inner circumference of 3 Three reciprocating members which are attached to the outer peripheries of the individual eccentric members so as to rotate relative to each other and perform a revolving motion around the rotation axis along with the rotation of the motor side rotating member, and the outer peripheral portion of the revolving member. It is assumed that the outer peripheral engagement member that causes the rotation motion of the revolution member and the inner engagement member that couples with the wheel-side rotation member and extracts the rotation motion of the revolution member.

この前提のもと、3個の公転部材は、第1公転部材と、第1公転部材の軸線方向一方側に配置された第2公転部材と、第2公転部材のさらに軸線方向一方側に配置された第3公転部材とを含む。3個の偏心部材は、第1公転部材を相対回転自在に支持するとともに回転軸線から軸線直角方向に偏心して配置される第1偏心部材と、第2公転部材を相対回転自在に支持するとともに第1偏心部材の軸線方向一方側で第1偏心部材と180度異なる周方向位置に偏心して配置される第2偏心部材と、第3公転部材を相対回転自在に支持するとともに第2偏心部材のさらに軸線方向一方側で第2偏心部材と180度異なる周方向位置に偏心して配置される第3偏心部材とを含む。   Under this premise, the three revolving members are arranged on the first revolving member, the second revolving member arranged on the one axial side of the first revolving member, and further on the one axial side of the second revolving member. And a third revolving member. The three eccentric members support the first revolving member so as to be relatively rotatable, and support the first eccentric member disposed eccentrically from the rotation axis in the direction perpendicular to the axis, and the second revolving member so as to be relatively rotatable. A second eccentric member disposed eccentrically at a circumferential position 180 degrees different from the first eccentric member on one axial direction side of the first eccentric member; and a third revolving member that is relatively rotatable and further supports the second eccentric member. And a third eccentric member arranged eccentrically at a circumferential position that is 180 degrees different from the second eccentric member on one side in the axial direction.

そして、第1公転部材および第1偏心部材の重量和をMSl、回転軸線から第1公転部材および第1偏心部材の重心までの偏心距離をESlとし、第2公転部材および第2偏心部材の重量和をMSm、回転軸線から第2公転部材および第2偏心部材の重心までの偏心距離をESmとし、第3公転部材および第3偏心部材の重量和をMSn、回転軸線から第3公転部材および第3偏心部材の重心までの偏心距離をESnとして、
SlSl+MSnSn=MSmSmを満足する。
The sum of weights of the first revolving member and the first eccentric member is M Sl , and the eccentric distance from the rotation axis to the center of gravity of the first revolving member and the first eccentric member is E Sl, and the second revolving member and the second eccentric member M Sm , the eccentric distance from the rotation axis to the center of gravity of the second revolving member and the second eccentric member is E Sm, and the weight sum of the third revolving member and the third eccentric member is M Sn , 3 an eccentric distance to the center of gravity of the revolving member, and the third eccentric member as E Sn,
M S1 E S1 + M Sn E Sn = M Sm E Sm is satisfied.

さらに、公転部材と偏心部材の重心が一致するように各々の公転部材と偏心部材を設置し、第1公転部材および第1偏心部材の重心と、第2公転部材および第2偏心部材の重心との軸線方向距離をLSlmとし、第2公転部材および第2偏心部材の重心と、第3公転部材および第3偏心部材の重心との軸線方向距離をLSmnとして、
SlSlSlm=MSnSnSmnを満足する。
Furthermore, each revolution member and the eccentric member are installed so that the centers of gravity of the revolution member and the eccentric member coincide with each other, the center of gravity of the first revolution member and the first eccentric member, the center of gravity of the second revolution member and the second eccentric member, L Slm is the axial direction distance of L 2, and L Smn is the axial distance between the center of gravity of the second revolving member and the second eccentric member and the center of gravity of the third revolving member and the third eccentric member.
To satisfy the M Sl E Sl L Slm = M Sn E Sn L Smn.

かかる本発明によれば、第1偏心部材および第3偏心部材が同位相に偏心配置され、これら第1偏心部材と第3偏心部材との間に配置された第2偏心部材が、これらと180度異なる位相で偏心配置され、重量バランスが最適なものとなる。したがって、静不釣り合いを解消することができる他、動不釣り合いも解消することができる。   According to the present invention, the first eccentric member and the third eccentric member are eccentrically arranged in the same phase, and the second eccentric member arranged between the first eccentric member and the third eccentric member is 180 with them. It is eccentrically arranged at different phases, and the weight balance is optimal. Accordingly, static imbalance can be eliminated and dynamic imbalance can also be eliminated.

なお、ここでいう重量和とは、各公転部材と各偏心部材との間に転がり軸受が設けられる場合において、転がり軸受の構成部品、例えば内外輪、転動体、保持器、を含むと理解されたい。かかる転がり軸受も、各公転部材または各偏心部材の構成部品であるためである。   Note that the weight sum here is understood to include components of the rolling bearing, such as inner and outer rings, rolling elements, and cages, when a rolling bearing is provided between each revolution member and each eccentric member. I want. This is because such a rolling bearing is also a component of each revolution member or each eccentric member.

このように本発明は、3個の偏心部材は、回転軸線から軸線直角方向に偏心して配置される第1偏心部材と、第1公転部材の軸線方向一方側で第1偏心部材と180度異なる周方向位置に偏心して配置される第2偏心部材と、第2偏心部材のさらに軸線方向一方側で第1公転部材と同じ周方向位置に偏心して配置される第3偏心部材とを含むことから、減速部の静釣り合いおよび動釣り合いを実現することができる。この結果、減速部の振動を防止することが可能になり、インホイールモータ駆動装置および車両用モータ駆動装置の長寿命化を図ることができる。   As described above, in the present invention, the three eccentric members are 180 degrees different from the first eccentric member arranged eccentrically in the direction perpendicular to the axis from the rotation axis, and the first eccentric member on one side in the axial direction of the first revolving member. Because it includes a second eccentric member arranged eccentrically at the circumferential position, and a third eccentric member arranged eccentrically at the same circumferential position as the first revolving member on one axial direction side of the second eccentric member. In addition, it is possible to realize static balance and dynamic balance of the speed reduction unit. As a result, it is possible to prevent vibration of the speed reduction portion, and it is possible to extend the life of the in-wheel motor drive device and the vehicle motor drive device.

本発明の一実施例になるインホイールモータ駆動装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the in-wheel motor drive device which becomes one Example of this invention. 図1のII−IIにおける断面図である。It is sectional drawing in II-II of FIG. 同実施例の偏心部材および曲線板の位置関係を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the positional relationship of the eccentric member and curved board of the Example. 同実施例の偏心部材を回転軸線方向からみた位置関係を模式的に示す説明図である。It is explanatory drawing which shows typically the positional relationship which looked at the eccentric member of the Example from the rotating shaft direction. 同実施例のインホイールモータ駆動装置の配置レイアウトを示す平面図である。It is a top view which shows the arrangement layout of the in-wheel motor drive device of the Example. 本発明の他の実施例になる車両用モータ駆動装置を示す展開断面図である。It is an expanded sectional view showing the motor drive device for vehicles which becomes other examples of the present invention. 同実施例の車両用モータ駆動装置の配置レイアウトを示す平面図である。It is a top view which shows the arrangement layout of the vehicle motor drive device of the Example.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.

図1は、本発明の一実施例になるインホイールモータ駆動装置を示す縦断面図である。図2は、図1のII−IIにおける断面図である。図3は、同実施例の偏心部材および曲線板を取り出して示す縦断面図である。図4は、回転軸線方向からみた同実施例の偏心部材の位置関係を模式的に示す説明図である。図5は、同実施例のインホイールモータ駆動装置の配置レイアウトを示す平面図である。   FIG. 1 is a longitudinal sectional view showing an in-wheel motor drive apparatus according to an embodiment of the present invention. 2 is a cross-sectional view taken along the line II-II in FIG. FIG. 3 is a longitudinal sectional view showing an eccentric member and a curved plate extracted from the embodiment. FIG. 4 is an explanatory diagram schematically showing the positional relationship of the eccentric member of the same embodiment as seen from the rotational axis direction. FIG. 5 is a plan view showing an arrangement layout of the in-wheel motor drive device of the embodiment.

インホイールモータ駆動装置21は、駆動力を発生させるモータ駆動装置としてのモータ部Aと、モータ部Aの回転を減速して出力する減速部Bと、減速部Bからの出力を図示しない駆動輪に伝える車輪ハブ軸受部Cとを備える。モータ部Aはモータ部の外郭を形成するモータケーシング22a、ポンプケーシング22p、およびモータカバー22tに収納され、減速部Bは減速部の外郭を形成する減速部ケーシング22bに収納され、車輪ハブ軸受部Cは減速部ケーシング22bに固定された軸受部ケーシング22cに回転自在に支持されて、例えば電気自動車のホイールハウジング内に取り付けられる。あるいは鉄道車両の台車に取り付けられる。これらモータケーシング22a、ポンプケーシング22p、モータカバー22t、減速部ケーシング22b、および軸受部ケーシング22cは相互に結合して1個のケーシング22を構成する。   The in-wheel motor drive device 21 includes a motor unit A as a motor drive device that generates a driving force, a deceleration unit B that decelerates and outputs the rotation of the motor unit A, and a drive wheel (not shown) that outputs from the deceleration unit B And a wheel hub bearing portion C for transmitting to the wheel. The motor part A is housed in a motor casing 22a, a pump casing 22p, and a motor cover 22t that form the outer part of the motor part, and the speed reducing part B is housed in a speed reducing part casing 22b that forms the outer part of the speed reducing part. C is rotatably supported by a bearing section casing 22c fixed to the speed reduction section casing 22b, and is mounted, for example, in a wheel housing of an electric vehicle. Or it is attached to the bogie of a railway vehicle. The motor casing 22a, the pump casing 22p, the motor cover 22t, the speed reduction portion casing 22b, and the bearing portion casing 22c are connected to each other to form one casing 22.

モータ部Aは、円筒形状のモータケーシング22aの内周に固定されるステータ23と、ステータ23の内側に径方向に開いた隙間を介して対面する位置に配置されるロータ24と、ロータ24の内側に固定連結されてロータ24と一体回転する回転軸35とを備えるラジアルギャップモータである。   The motor part A includes a stator 23 fixed to the inner periphery of a cylindrical motor casing 22a, a rotor 24 disposed at a position facing the inside of the stator 23 via a gap opened in the radial direction, It is a radial gap motor provided with a rotating shaft 35 that is fixedly connected to the inside and rotates integrally with the rotor 24.

回転軸35の端部は、転がり軸受63を介してモータカバー22tに回転自在に支持される。また回転軸35の反対側の端部は、転がり軸受62を介してポンプケーシング22pに回転自在に支持されて減速部入力軸25の一端と結合する。モータカバー22tはモータケーシング22aの一方端の開口を閉塞する円盤形状の部材であり、モータ部Aの端部であるとともに、インホイールモータ駆動装置21の端部でもある。ポンプケーシング22pはモータケーシング22aの他方端の開口を閉塞する円盤形状の部材であり、後述するオイルポンプ51を備える。   The end of the rotating shaft 35 is rotatably supported by the motor cover 22t via the rolling bearing 63. The opposite end of the rotating shaft 35 is rotatably supported by the pump casing 22p via the rolling bearing 62 and is coupled to one end of the speed reducing portion input shaft 25. The motor cover 22t is a disk-shaped member that closes the opening at one end of the motor casing 22a, and is an end portion of the motor portion A and also an end portion of the in-wheel motor drive device 21. The pump casing 22p is a disk-shaped member that closes the opening at the other end of the motor casing 22a, and includes an oil pump 51 described later.

減速部Bは、回転軸35と結合する減速部入力軸25と、減速部入力軸25に結合した第1偏心部材25l、第2偏心部材25m、および第3偏心部材25nと、これら第1偏心部材〜第3偏心部材25l〜25nにそれぞれ回転自在に保持される公転部材としての第1曲線板26l、第2曲線板26m、および第3曲線板26nと、これら曲線板26l,26m,26nの外周部に係合する外周係合部材としての複数の外ピン27と、外ピン27の両端を支持する減速部ケーシング22bと、曲線板26l,26m,26nの自転運動を取り出す内側係合部材としての内ピン31と、内ピン31と結合する車輪側回転部材28と、曲線板26l,26m同士の隙間に取り付けられてこれら曲線板26l,26mの端面に当接して曲線板の傾きを防止するセンターカラー29と、曲線板26m,26n同士の隙間に取り付けられてこれら曲線板26m,26nの端面に当接して曲線板の傾きを防止するセンターカラー30と、内ピン31の撓みを防止する補強部材61とを有する。   The speed reducer B includes a speed reducer input shaft 25 coupled to the rotation shaft 35, a first eccentric member 25l, a second eccentric member 25m, and a third eccentric member 25n coupled to the speed reducer input shaft 25, and these first eccentric members. The first curved plate 26l, the second curved plate 26m, and the third curved plate 26n as revolving members that are rotatably held by the members to the third eccentric members 25l to 25n, and the curved plates 26l, 26m, and 26n, respectively. As an inner engagement member that extracts a plurality of outer pins 27 as outer peripheral engagement members that engage with the outer peripheral portion, a speed reduction portion casing 22b that supports both ends of the outer pin 27, and curvilinear plates 26l, 26m, and 26n. The inner pin 31, the wheel-side rotating member 28 coupled to the inner pin 31, and the curved plates 26l and 26m are attached to the gaps between the curved plates 26l and 26m and contact the end surfaces of the curved plates 26l and 26m. A center collar 29 that prevents the curved plate 26m, 26n from contacting the end surfaces of the curved plate 26m, 26n to prevent the curved plate from tilting, and the inner pin 31 to bend. And a reinforcing member 61 for preventing.

減速部入力軸25は、外径寸法、すなわち太さが一定であり、偏心する部分を有しない。モータ部Aから遠い側にある減速部入力軸25の一端は、軸受64を介して、後述する車輪側回転部材28の端部に回転自在に支持される。またモータ部Aに近い側にある減速部入力軸25の他端は回転軸35の一端と結合する。これら両端間で、減速部入力軸25の外周には、回転軸線Oから直角方向に偏心して偏心部材25l,25m,25nが嵌合固定される。3個の円盤形状の偏心部材25l,25m,25nは、偏心運動による遠心力で発生する振動を互いに打ち消し合うために、回転軸線Oと中心として周方向180度位相を変えて設けられている。   The speed reduction part input shaft 25 has a constant outer diameter, that is, a thickness, and does not have an eccentric part. One end of the speed reduction part input shaft 25 on the side far from the motor part A is rotatably supported by an end part of a wheel side rotation member 28 described later via a bearing 64. Further, the other end of the speed reducer input shaft 25 on the side close to the motor part A is coupled to one end of the rotating shaft 35. Between these both ends, eccentric members 25l, 25m, and 25n are fitted and fixed on the outer periphery of the speed reduction unit input shaft 25 in a direction perpendicular to the rotation axis O. The three disc-shaped eccentric members 251, 25 m, 25 n are provided with a 180 ° phase change in the circumferential direction around the rotation axis O in order to cancel out vibrations generated by centrifugal force due to the eccentric motion.

つまり、ロータ24に近い側に配置された第1偏心部材25lと、ロータ24から遠い側に配置された第3偏心部材25nは、同位相に設けられる。これに対し、第1偏心部材25lと第3偏心部材25nとの間に配置された第2偏心部材25mは、第1偏心部材25lおよび第3偏心部材25nに対し180度位相を変えて設けられている。回転軸35および減速部入力軸25は、モータ部Aの駆動力を減速部Bに伝達するモータ側回転部材を構成する。   That is, the first eccentric member 251 disposed on the side close to the rotor 24 and the third eccentric member 25n disposed on the side far from the rotor 24 are provided in the same phase. On the other hand, the second eccentric member 25m disposed between the first eccentric member 25l and the third eccentric member 25n is provided with a phase difference of 180 degrees with respect to the first eccentric member 25l and the third eccentric member 25n. ing. The rotation shaft 35 and the speed reduction part input shaft 25 constitute a motor side rotation member that transmits the driving force of the motor part A to the speed reduction part B.

図2を参照して、第2偏心部材25mの外周には第2曲線板26mが同心円状に取り付けられている。第2曲線板26mは、外周部にエピトロコイド等のトロコイド系曲線で構成されて径方向に窪んだ複数の曲線凹部を有し、これら曲線凹部が後述する外ピン27と係合する。また第2曲線板26mは一方側端面から他方側端面に貫通する複数の貫通孔30a,30bを有する。   Referring to FIG. 2, a second curved plate 26m is concentrically attached to the outer periphery of the second eccentric member 25m. The second curved plate 26m has a plurality of curved concave portions that are formed of a trochoidal curve such as epitrochoid on the outer peripheral portion and are recessed in the radial direction, and these curved concave portions engage with an outer pin 27 described later. The second curved plate 26m has a plurality of through holes 30a and 30b penetrating from one end face to the other end face.

円盤形状の第2偏心部材25mの中心Xmは、曲線板26mの自転軸心でもあり、軸線Oから偏心した位置に設けられている。なお図2中、後述する軸線油路57は回転軸線Oに沿って延びる。   The center Xm of the disk-shaped second eccentric member 25m is also the rotational axis of the curved plate 26m, and is provided at a position eccentric from the axis O. In FIG. 2, an axial oil passage 57 described later extends along the rotation axis O.

貫通孔30aは、第2曲線板26mの自転軸心Xmを中心とする円周上に等間隔に複数個設けられており、内ピン31をそれぞれ受入れる。内ピン31の外周には針状ころ軸受31aが設けられており、これにより内ピン31の外周が貫通孔30aの孔壁面と転がり接触する。また、貫通孔30bは、第2曲線板26mの中心Xmに設けられており、第2曲線板26mの内周になる。貫通孔30bの内周面と第2偏心部材25mの外周面との間には転がり軸受41を介在させる。第2曲線板26mは、転がり軸受41を介して、第2偏心部材25mの外周に相対回転可能に取り付けられる。   A plurality of through holes 30a are provided at equal intervals on the circumference centered on the rotation axis Xm of the second curved plate 26m, and receive the inner pins 31 respectively. Needle roller bearings 31a are provided on the outer periphery of the inner pin 31, so that the outer periphery of the inner pin 31 is in rolling contact with the hole wall surface of the through hole 30a. Further, the through hole 30b is provided at the center Xm of the second curved plate 26m and becomes the inner periphery of the second curved plate 26m. A rolling bearing 41 is interposed between the inner peripheral surface of the through hole 30b and the outer peripheral surface of the second eccentric member 25m. The second curved plate 26m is attached to the outer periphery of the second eccentric member 25m via the rolling bearing 41 so as to be relatively rotatable.

この転がり軸受41は、第2偏心部材25mの外周面に嵌合する内輪部材42と、複数のころ44と、周方向で隣り合うころ44の間隔を保持する保持器(図示省略)とを備え、貫通孔30bの孔壁面を外側軌道面とする円筒ころ軸受である。あるいは深溝玉軸受であってもよい。内輪部材42は、ころ44が転走する内輪部材42の内側軌道面42aを軸線O方向に挟んで向かい合う1対の鍔部をさらに有し、ころ44を1対の鍔部間に保持する。第1曲線板26lおよび第3曲線板26nも転がり軸受41でそれぞれ回転自在に支持され、具体的には深溝玉軸受で支持される。   The rolling bearing 41 includes an inner ring member 42 that fits on the outer peripheral surface of the second eccentric member 25m, a plurality of rollers 44, and a cage (not shown) that holds the interval between the rollers 44 adjacent in the circumferential direction. The cylindrical roller bearing has a hole wall surface of the through hole 30b as an outer raceway surface. Alternatively, it may be a deep groove ball bearing. The inner ring member 42 further includes a pair of flanges facing each other with the inner raceway surface 42a of the inner ring member 42 on which the roller 44 rolls in the direction of the axis O, and holds the rollers 44 between the pair of flanges. The first curved plate 26l and the third curved plate 26n are also rotatably supported by the rolling bearing 41, and specifically supported by a deep groove ball bearing.

説明を図1に戻すと、複数の内ピン31は、軸線Oと平行に延び、モータ部Aから遠い側にある基端で車輪側回転部材28に共通に支持される。車輪側回転部材28は、軸線Oに沿って延びる軸部28bと、軸部28bの端部に形成されて内ピン31の基端と結合するフランジ部28aとを有する。フランジ部28aの端面には、車輪側回転部材28の回転軸線Oを中心とする円周上の等間隔に内ピン31を固定する穴が形成されている。軸部28bの外周面には、後述する車輪ハブ軸受部Cの車輪ハブ32が固定されている。   Returning to FIG. 1, the plurality of inner pins 31 extend in parallel with the axis O, and are commonly supported by the wheel-side rotating member 28 at the base end on the side far from the motor part A. The wheel-side rotation member 28 includes a shaft portion 28 b extending along the axis O, and a flange portion 28 a that is formed at the end portion of the shaft portion 28 b and is coupled to the base end of the inner pin 31. Holes for fixing the inner pins 31 at equal intervals on the circumference centering on the rotation axis O of the wheel side rotation member 28 are formed in the end face of the flange portion 28a. A wheel hub 32 of a wheel hub bearing portion C described later is fixed to the outer peripheral surface of the shaft portion 28b.

フランジ部28aから離れた側にある内ピン31の先端には、補強部材61が設けられている。補強部材61は、複数の内ピン31先端と結合するフランジ形状の円環部61bと、円環部61bの内径部分から軸線O方向にモータ部Aへ延びる円筒部61cとを含む。3個の曲線板26l,26m,26nから一部の内ピン31に負荷される荷重は円環部61bを介して全ての内ピン31によって支持されるため、内ピン31に作用する応力を低減させ耐久性を向上させることができる。円筒部61cの先端は、オイルポンプ51と駆動結合する。   A reinforcing member 61 is provided at the tip of the inner pin 31 on the side away from the flange portion 28a. The reinforcing member 61 includes a flange-shaped annular portion 61b coupled to the tips of the plurality of inner pins 31, and a cylindrical portion 61c extending from the inner diameter portion of the annular portion 61b to the motor portion A in the direction of the axis O. Since the load applied to some of the inner pins 31 from the three curved plates 26l, 26m, and 26n is supported by all the inner pins 31 via the annular portion 61b, the stress acting on the inner pins 31 is reduced. And durability can be improved. The tip of the cylindrical portion 61 c is drivingly coupled to the oil pump 51.

曲線板26l,26m,26nの外周と係合する外ピン27は、減速部入力軸25の回転軸線Oを中心とする円周軌道上に等間隔に複数設けられる。そして、曲線板26l,26m,26nが偏心部材25l,25m,25nに連れ回されて公転運動すると、曲線板26l,26m,26n外周の曲線凹部と外ピン27とが係合して、曲線板26l,26m,26nに自転運動を生じさせる。   A plurality of outer pins 27 that engage with the outer peripheries of the curved plates 26l, 26m, and 26n are provided at equal intervals on a circumferential track centering on the rotation axis O of the speed reducing portion input shaft 25. When the curved plates 26l, 26m, and 26n are revolved by the eccentric members 25l, 25m, and 25n, the curved concave portions on the outer periphery of the curved plates 26l, 26m, and 26n and the outer pin 27 are engaged with each other. Rotational motion is generated at 26l, 26m, and 26n.

なお、減速部ケーシング22b内部に配設された外ピン27は、減速部ケーシング22bに直接保持されていてもよいが、好ましくは減速部ケーシング22bの内壁に嵌合固定されている外ピン保持部45に保持されている。より具体的には、外ピン27の軸線方向両端部を外ピン保持部45に取り付けられた針状ころ軸受27aによって回転自在に支持されている。このように、外ピン27を外ピン保持部45に回転自在に取り付けることにより、曲線板26l,26m,26nとの係合による接触抵抗を低減することができる。   The outer pin 27 disposed inside the speed reduction part casing 22b may be directly held by the speed reduction part casing 22b, but preferably is an outer pin holding part fitted and fixed to the inner wall of the speed reduction part casing 22b. 45. More specifically, both end portions in the axial direction of the outer pin 27 are rotatably supported by needle roller bearings 27 a attached to the outer pin holding portion 45. Thus, by attaching the outer pin 27 to the outer pin holding portion 45 so as to be rotatable, the contact resistance due to the engagement with the curved plates 26l, 26m, and 26n can be reduced.

インホイールモータ駆動装置21の軽量化の観点から、ケーシング22は、アルミ合金やマグネシウム合金等の軽金属で形成する。一方、高い強度が求められる外ピン保持部45は、炭素鋼で形成するのが望ましい。   From the viewpoint of reducing the weight of the in-wheel motor drive device 21, the casing 22 is formed of a light metal such as an aluminum alloy or a magnesium alloy. On the other hand, it is desirable to form the outer pin holding part 45, which requires high strength, from carbon steel.

車輪ハブ軸受部Cは、車輪側回転部材28に固定連結された車輪ハブ32と、車輪ハブ32を回転自在に保持する車輪ハブ軸受33と、車輪ハブ軸受33を支持する軸受部ケーシング22cとを備える。車輪ハブ軸受33は複列アンギュラ玉軸受であって、その外輪が円筒形状の軸受部ケーシング22cの内周に嵌合固定され、その内輪が車輪ハブ32の外周面に嵌合固定される。車輪ハブ32は、車輪側回転部材28の軸部28bを受け入れる円筒形状の中空部32aと、中空部32aの減速部Bから遠い側の軸線O方向端に形成されたフランジ部32bとを有する。フランジ部32bにはボルト32cによって図示しない駆動輪のロードホイールが連結固定される。   The wheel hub bearing portion C includes a wheel hub 32 fixedly connected to the wheel-side rotating member 28, a wheel hub bearing 33 that rotatably holds the wheel hub 32, and a bearing portion casing 22c that supports the wheel hub bearing 33. Prepare. The wheel hub bearing 33 is a double-row angular ball bearing, and its outer ring is fitted and fixed to the inner periphery of the cylindrical bearing portion casing 22 c, and the inner ring is fitted and fixed to the outer peripheral surface of the wheel hub 32. The wheel hub 32 includes a cylindrical hollow portion 32a that receives the shaft portion 28b of the wheel-side rotating member 28, and a flange portion 32b that is formed at the end of the hollow portion 32a on the side farther from the speed reduction portion B in the axis O direction. A drive wheel road wheel (not shown) is connected and fixed to the flange portion 32b by a bolt 32c.

上記構成のインホイールモータ駆動装置21の作動原理を詳しく説明する。   The operation principle of the in-wheel motor drive device 21 having the above configuration will be described in detail.

モータ部Aは、例えば、ステータ23に交流電流を供給することによって生じる電磁力を受けて、磁性体または永久磁石を含むロータ24が回転する。これにより、ロータ24に接続された回転軸35が回転すると、回転軸35とともに減速部入力軸25が回転し、減速部入力軸25と結合する偏心部材25l,25m,25nが軸線Oを中心として偏心運動する。   For example, the motor unit A receives an electromagnetic force generated by supplying an alternating current to the stator 23, and the rotor 24 including a magnetic body or a permanent magnet rotates. Thereby, when the rotating shaft 35 connected to the rotor 24 rotates, the speed reducing portion input shaft 25 rotates together with the rotating shaft 35, and the eccentric members 25l, 25m, 25n coupled to the speed reducing portion input shaft 25 are centered on the axis O. Eccentric movement.

そうすると曲線板26l,26m、26nはモータ側回転部材の回転軸線Oを中心として公転運動する。このとき、外ピン27が、曲線板26l,26m、26nの外周に形成された曲線凹部と転がり接触しつつ係合して、曲線板26l,26m、26nをモータ側回転部材の回転とは逆向きに自転運動させる。   Then, the curved plates 26l, 26m, and 26n revolve around the rotation axis O of the motor side rotation member. At this time, the outer pin 27 engages with the curved concave portions formed on the outer circumferences of the curved plates 26l, 26m, and 26n while being in rolling contact with the curved plates 26l, 26m, and 26n, which is opposite to the rotation of the motor side rotating member. Rotate in the direction.

貫通孔30aに挿通される内ピン外輪31b外周は、貫通孔30aの内径よりも十分に細く、曲線板26l,26m、26nの自転運動に伴って貫通孔30aの孔壁面と当接する。これにより、曲線板26l,26m、26nの公転運動が内ピン31に伝わらず、曲線板26l,26m、26nの自転運動のみが車輪側回転部材28を介して車輪ハブ軸受部Cに伝達される。   The outer periphery of the inner pin outer ring 31b inserted through the through hole 30a is sufficiently thinner than the inner diameter of the through hole 30a, and abuts against the hole wall surface of the through hole 30a as the curved plates 26l, 26m, and 26n rotate. As a result, the revolving motion of the curved plates 26 l, 26 m and 26 n is not transmitted to the inner pin 31, but only the rotational motion of the curved plates 26 l, 26 m and 26 n is transmitted to the wheel hub bearing portion C via the wheel side rotating member 28. .

このとき、軸線Oと同軸に配置された車輪側回転部材28は、減速部Bの出力軸として曲線板26l,26m、26nの自転を取り出す。減速部Bの減速比は、外ピン27の数をZ、曲線板26l,26m、26nの波形の数をZとすると、(Z−Z)/Zで算出される。図2に示す実施形態では、Z=12、Z=11であるので、減速比は1/11と、非常に大きな減速比を得ることができる。これにより、減速部入力軸25の回転が減速部Bによって減速されて車輪側回転部材28に伝達されるので、低トルク、高回転型のモータ部Aを採用した場合でも、駆動輪に必要なトルクを伝達することが可能となる。 At this time, the wheel-side rotating member 28 arranged coaxially with the axis O takes out the rotation of the curved plates 26l, 26m, and 26n as the output shaft of the speed reduction unit B. The reduction ratio of the reduction part B is calculated as (Z A −Z B ) / Z B where Z A is the number of outer pins 27 and Z B is the number of waveforms of the curved plates 26l, 26m, and 26n. In the embodiment shown in FIG. 2, since Z A = 12 and Z B = 11, the reduction ratio is 1/11, and a very large reduction ratio can be obtained. As a result, the rotation of the speed reduction unit input shaft 25 is decelerated by the speed reduction unit B and transmitted to the wheel side rotation member 28. Therefore, even when the low torque, high rotation type motor unit A is employed, it is necessary for the drive wheels. Torque can be transmitted.

このように、多段構成とすることなく大きな減速比を得ることができる減速部Bを採用することにより、コンパクトで高減速比のインホイールモータ駆動装置21を得ることができる。また、外ピン27を外ピン保持部45に対して回転自在とし、内ピン31の曲線板26l,26m、26nに当接する位置に針状ころ軸受31aを設けたことにより、摩擦抵抗が低減されるので、減速部Bの伝達効率が向上する。   In this way, by adopting the speed reduction unit B that can obtain a large speed reduction ratio without using a multi-stage configuration, the in-wheel motor drive device 21 having a compact and high speed reduction ratio can be obtained. Further, the frictional resistance is reduced by making the outer pin 27 rotatable with respect to the outer pin holding portion 45 and providing the needle roller bearing 31a at a position in contact with the curved plates 26l, 26m, 26n of the inner pin 31. Therefore, the transmission efficiency of the deceleration part B improves.

本実施例に係るインホイールモータ駆動装置21を電気自動車に採用することにより、ばね下重量を抑えることができる。その結果、走行安定性に優れた電気自動車を得ることができる。   By employing the in-wheel motor drive device 21 according to this embodiment in an electric vehicle, the unsprung weight can be suppressed. As a result, an electric vehicle with excellent running stability can be obtained.

また、本実施例においては、車輪側回転部材28に固定された内ピン31と、曲線板26l,26m、26nに設けられた貫通孔30aとで構成される例を示したが、これに限ることなく、減速部Bの回転を車輪ハブ32に伝達可能な任意の構成とすることができる。例えば、曲線板に固定された内ピンと、車輪側回転部材に形成された穴とで構成される運動変換機構であってもよい。   In the present embodiment, an example is shown in which the inner pin 31 is fixed to the wheel-side rotating member 28 and the through hole 30a is provided in the curved plates 26l, 26m, and 26n. Without any limitation, the rotation of the speed reduction unit B can be arbitrarily configured to be transmitted to the wheel hub 32. For example, it may be a motion conversion mechanism composed of an inner pin fixed to a curved plate and a hole formed in the wheel side rotation member.

なお、本実施例における作動の説明は、各部材の回転に着目して行ったが、実際にはトルクを含む動力がモータ部Aから駆動輪に伝達される。したがって、上述のように減速された動力は高トルクに変換されたものとなっている。   The description of the operation in the present embodiment has been made by paying attention to the rotation of each member, but in reality, power including torque is transmitted from the motor unit A to the drive wheels. Therefore, the power decelerated as described above is converted into high torque.

また、本実施例における作動の説明では、モータ部Aに電力を供給してモータ部Aを駆動させ、モータ部Aからの動力を駆動輪に伝達させたが、これとは逆に、車両が減速したり坂を下ったりするようなときは、駆動輪側からの動力を減速部Bで高回転低トルクの回転に変換してモータ部Aに伝達し、モータ部Aで発電しても良い。さらに、ここで発電した電力は、バッテリーに蓄電しておき、後でモータ部Aを駆動させてもよいし、車両に備えられた他の電動機器等の作動に用いてもよい。   In the description of the operation in the present embodiment, power is supplied to the motor unit A to drive the motor unit A, and the power from the motor unit A is transmitted to the drive wheels. When decelerating or going down a hill, the power from the driving wheel side may be converted into high-rotation and low-torque rotation by the deceleration unit B and transmitted to the motor unit A, and the motor unit A may generate power. . Furthermore, the electric power generated here may be stored in a battery, and the motor unit A may be driven later, or may be used for the operation of other electric devices provided in the vehicle.

次に減速部Bの潤滑構造につき、詳しく説明する。   Next, the lubrication structure of the deceleration part B will be described in detail.

ポンプケーシング22pに設けられて上下方向に延びる吸入油路52は、オイルポンプ51の吸入口と減速部Bの下部に設けられたオイル溜まり53とを接続する。ポンプケーシング22pに設けられて上下方向に延びる吐出油路54は、下端でオイルポンプ51の吐出口と接続し、上端でモータケーシング22aに設けられた冷却油路55の一端と接続する。冷却油路55は、モータケーシング22aに設けられたウォータージャケット65と交差する。ウォータージャケット65は冷却水入口65iと、冷却水入出口65oと、モータ部Aを周回するよう配設された冷却水路65wを備える。ウォータージャケット65は軸線油路57と接続するオイルクーラとして機能し、冷却水入口65iから流入した冷却水は、冷却水路65wを流れる過程でモータ部Aおよび冷却油路55を流れる潤滑油を冷却し、冷却水入出口65oから流出する。   A suction oil passage 52 provided in the pump casing 22p and extending in the vertical direction connects the suction port of the oil pump 51 and an oil reservoir 53 provided in the lower part of the speed reduction unit B. The discharge oil passage 54 provided in the pump casing 22p and extending in the vertical direction is connected to the discharge port of the oil pump 51 at the lower end and connected to one end of the cooling oil passage 55 provided in the motor casing 22a at the upper end. The cooling oil passage 55 intersects with a water jacket 65 provided in the motor casing 22a. The water jacket 65 includes a cooling water inlet 65i, a cooling water inlet / outlet 65o, and a cooling water passage 65w disposed around the motor portion A. The water jacket 65 functions as an oil cooler connected to the axial oil passage 57, and the cooling water flowing in from the cooling water inlet 65i cools the lubricating oil flowing through the motor section A and the cooling oil passage 55 in the course of flowing through the cooling water passage 65w. And flows out from the cooling water inlet / outlet 65o.

冷却油路55の他端は、モータカバー22tに設けられた連絡油路56の一端と接続する。径方向に延びる連絡油路56の他端は、互いに結合する管状の回転軸35および管状の減速部入力軸25の内部に共通して設けられた軸線油路57と接続する。軸線油路57は、モータカバー22tに軸支される回転軸35の他端から、軸受64に軸支される減速部入力軸25の一端まで貫通するよう軸線Oに沿って延びる。また軸線油路57は、軸線Oから第2偏心部材25m内を径方向外側に向かって延びる潤滑油路58と接続する。潤滑油路58の径方向外側端は、転がり軸受41の内輪部材42を貫通するよう内側軌道面42aに設けられた孔43と接続する。   The other end of the cooling oil passage 55 is connected to one end of a communication oil passage 56 provided in the motor cover 22t. The other end of the communication oil passage 56 extending in the radial direction is connected to an axial oil passage 57 provided in common inside the tubular rotating shaft 35 and the tubular speed reducing portion input shaft 25 coupled to each other. The axial oil passage 57 extends along the axis O so as to penetrate from the other end of the rotating shaft 35 pivotally supported by the motor cover 22t to one end of the speed reducing portion input shaft 25 pivotally supported by the bearing 64. The axial oil passage 57 is connected to a lubricating oil passage 58 extending from the axis O in the second eccentric member 25m toward the radially outer side. The radially outer end of the lubricating oil passage 58 is connected to a hole 43 provided in the inner raceway surface 42 a so as to penetrate the inner ring member 42 of the rolling bearing 41.

ポンプケーシング22pの中央に取り付けられ、補強部材61の円筒部61cによって駆動されるオイルポンプ51は、例えばサイクロイドポンプで構成され、オイル溜まり53に貯留した潤滑油を吸入油路52下端から吸入し、吐出油路54に潤滑油を吐出する。   The oil pump 51 attached to the center of the pump casing 22p and driven by the cylindrical portion 61c of the reinforcing member 61 is constituted by, for example, a cycloid pump, and sucks lubricating oil stored in the oil reservoir 53 from the lower end of the intake oil passage 52, Lubricating oil is discharged into the discharge oil passage 54.

次に潤滑油は、吐出油路54と冷却油路55とを順次通過し、冷却油路55で冷却される。次に潤滑油は、連絡油路56と、軸線油路57とを順次通過する。そして一部の潤滑油は減速部入力軸25の一端から流出し、軸受64および減速部Bの内部を潤滑する。また一部の潤滑油は軸線油路57から潤滑油路58に分岐して径方向外方へ流れ、第2偏心部材25mに設けられた転がり軸受41を潤滑する。また、潤滑油は遠心力の作用によって径方向外方へ流れるため、曲線板26l,26m、26nの表面と、内ピン外輪31bの外周面と、外ピン27の外周面とをそれぞれ潤滑する。その後、潤滑油は落下して、減速部Bの下部に設けられたオイル溜まり53に貯留する。潤滑油の循環経路は以上のように構成される。   Next, the lubricating oil sequentially passes through the discharge oil passage 54 and the cooling oil passage 55 and is cooled in the cooling oil passage 55. Next, the lubricating oil sequentially passes through the communication oil passage 56 and the axial oil passage 57. A part of the lubricating oil flows out from one end of the speed reducer input shaft 25 and lubricates the bearing 64 and the inside of the speed reducer B. A part of the lubricating oil branches from the axial oil passage 57 to the lubricating oil passage 58 and flows radially outward to lubricate the rolling bearing 41 provided in the second eccentric member 25m. Further, since the lubricating oil flows radially outward by the action of centrifugal force, the surfaces of the curved plates 261, 26m, and 26n, the outer peripheral surface of the inner pin outer ring 31b, and the outer peripheral surface of the outer pin 27 are lubricated. Thereafter, the lubricating oil falls and is stored in an oil reservoir 53 provided at the lower portion of the speed reduction portion B. The lubricating oil circulation path is configured as described above.

なお図示はしなかったが、前述した潤滑油路58を偏心部材25l,25m,25nにそれぞれ設けてもよい。   Although not shown, the above-described lubricating oil passage 58 may be provided in each of the eccentric members 25l, 25m, and 25n.

図3は、偏心部材25l,25m,25nおよび曲線板26l,26m,26nの位置関係を拡大して示す縦断面図である。3個の偏心部材25l,25m,25nは、軸線O方向にモータ部Aから車輪ハブ軸受部Cへ向かって順次配設される。したがって、これら3個の偏心部材25l,25m,25nにそれぞれ回転自在に支持される3個の曲線板26l,26m,26nも、軸線O方向にモータ部Aから車輪ハブ軸受部Cへ向かって順次配設される。   FIG. 3 is an enlarged longitudinal sectional view showing the positional relationship between the eccentric members 25l, 25m, 25n and the curved plates 26l, 26m, 26n. The three eccentric members 25l, 25m, and 25n are sequentially arranged from the motor portion A toward the wheel hub bearing portion C in the axis O direction. Accordingly, the three curved plates 26l, 26m, and 26n that are rotatably supported by the three eccentric members 25l, 25m, and 25n are also sequentially moved from the motor portion A toward the wheel hub bearing portion C in the direction of the axis O. Arranged.

図4は、図3の軸線O方向IVからみた偏心部材25l,25m,25nの位置関係を模式的に示す説明図である。第1偏心部材25lの中心Xlは軸線直角方向一方側に配設され、第2偏心部材25mの中心Xmは軸線直角方向他方側に配設され、第3偏心部材25nの中心Xnは軸線直角方向一方側に配設される。すなわち、中心Xlと中心Xnとは同位相であり、中心Xlと中心Xmとは180度異なる位相となる。このように中心Xl(Xn)と中心Xmとは180度異なる位相で配設されることから、回転軸線Oは中心Xl(Xn)と中心Xmとを結ぶ仮想直線上に位置する。   FIG. 4 is an explanatory diagram schematically showing the positional relationship between the eccentric members 25l, 25m, and 25n viewed from the axis O direction IV of FIG. The center Xl of the first eccentric member 25l is disposed on one side in the direction perpendicular to the axis, the center Xm of the second eccentric member 25m is disposed on the other side in the direction perpendicular to the axis, and the center Xn of the third eccentric member 25n is in the direction perpendicular to the axis. Arranged on one side. That is, the center Xl and the center Xn have the same phase, and the center Xl and the center Xm have a phase different by 180 degrees. Thus, since the center Xl (Xn) and the center Xm are arranged with a phase different by 180 degrees, the rotation axis O is located on an imaginary straight line connecting the center Xl (Xn) and the center Xm.

この結果、第1偏心部材25lと同心円状に配置される第1曲線板26lは、第3偏心部材25nと同心円状に配置される第3曲線板26nと同じ位相で配置される。また、第2偏心部材25mと同心円状に配置される第2曲線板26mは、第1偏心部材25lと同心円状に配置される第1曲線板26lと180度異なる位相で配置される。   As a result, the first curved plate 26l arranged concentrically with the first eccentric member 25l is arranged in the same phase as the third curved plate 26n arranged concentrically with the third eccentric member 25n. Further, the second curved plate 26m arranged concentrically with the second eccentric member 25m is arranged with a phase 180 degrees different from the first curved plate 26l arranged concentrically with the first eccentric member 25l.

第1曲線板26lは回転軸線Oから軸線直角方向に偏心して配置される。第2曲線板26mは第1曲線板26lの軸線O方向一方側で第1曲線板26lと位相が180度異なる周方向位置に偏心して配置される。第3曲線板26nは第2曲線板26mのさらに軸線O方向一方側で第1曲線板26lと同じ位相となる周方向位置に偏心して配置される。   The first curved plate 261 is arranged eccentric from the rotation axis O in the direction perpendicular to the axis. The second curved plate 26m is arranged eccentrically at a circumferential position that is 180 degrees out of phase with the first curved plate 26l on one side in the axis O direction of the first curved plate 26l. The third curved plate 26n is arranged eccentrically at a circumferential position where the second curved plate 26m has the same phase as the first curved plate 26l on one side in the axis O direction.

本実施例では、第1曲線板26lおよび第1偏心部材25lの重量和をMSl、回転軸線Oから第1曲線板26lおよび第1偏心部材25lの重心までの偏心距離をESlとする。第2曲線板26mおよび第2偏心部材25mの重量和をMSm、回転軸線Oから第2曲線板26mおよび第2偏心部材25mの重心までの偏心距離をESmとする。第3曲線板26nおよび第3偏心部材25nの重量和をMSn、回転軸線Oから第3曲線板26nおよび第3偏心部材25nの重心までの偏心距離をESnとする。図4に示すElはESlと等しく、EmはESmと等しく、EnはESnと等しい。 In this embodiment, the weight sum of the first curved plate 26l and the first eccentric member 25l is M Sl , and the eccentric distance from the rotation axis O to the center of gravity of the first curved plate 26l and the first eccentric member 25l is E Sl . The sum of weights of the second curved plate 26m and the second eccentric member 25m is M Sm , and the eccentric distance from the rotation axis O to the center of gravity of the second curved plate 26m and the second eccentric member 25m is E Sm . The weight sum of the third curved plate 26n and the third eccentric member 25n is M Sn , and the eccentric distance from the rotation axis O to the center of gravity of the third curved plate 26n and the third eccentric member 25n is E Sn . In FIG. 4, El is equal to E Sl , Em is equal to E Sm, and En is equal to E Sn .

そして、上述した重量和および偏心距離は、以下の式(1)を満足する。
SlSl+MSnSn=MSmSm ・・・・・・(1)
本実施例では、曲線板と偏心部材の重心が一致するように各々の曲線板と偏心部材を設置し、第1曲線板26lおよび第1偏心部材25lの重心と、第2曲線板26mおよび第2偏心部材25mの重心との軸線方向距離をLSlmとする。第2曲線板26mおよび第2偏心部材25mの重心と、第3曲線板26nおよび第3偏心部材25nの重心との軸線方向距離をLSmnとする。図3に示すLmnはLSmnと等しく、LlmはLSlmと等しい。
The above-described sum of weight and eccentric distance satisfy the following expression (1).
M Sl E S1 + M Sn E Sn = M Sm E Sm (1)
In this embodiment, the curved plates and the eccentric members are installed so that the centroids of the curved plate and the eccentric member coincide with each other, the centroids of the first curved plate 261 and the first eccentric member 251, the second curved plate 26 m and the second centroid. 2 An axial distance from the center of gravity of the eccentric member 25m is defined as L Slm . An axial distance between the center of gravity of the second curved plate 26m and the second eccentric member 25m and the center of gravity of the third curved plate 26n and the third eccentric member 25n is L Smn . Lmn shown in FIG. 3 is equal to L Smn, and Llm is equal to L Slm .

そして、上述した重量和、偏心距離、および軸線方向距離は、以下の式(2)を満足する。
SlSlSlm=MSnSnSmn ・・・・・・(2)
かかる本発明によれば、第1偏心部材25lおよび第3偏心部材25nが同位相に偏心配置され、これら第1偏心部材25lと第3偏心部材25nとの間に配置された第2偏心部材25mが、これらと180度異なる位相で偏心配置され、しかも上述の式(1)および式(2)により重量バランスが最適なものとなる。したがって、静不釣り合いを解消することができる他、動不釣り合いも解消することができる。
The above-described sum of weight, eccentric distance, and axial distance satisfy the following formula (2).
M Sl E Sl L Slm = M Sn E Sn L Smn ······ (2)
According to the present invention, the first eccentric member 251 and the third eccentric member 25n are arranged eccentrically in the same phase, and the second eccentric member 25m arranged between the first eccentric member 251 and the third eccentric member 25n. However, they are eccentrically arranged at a phase different from these by 180 degrees, and the weight balance is optimized by the above formulas (1) and (2). Accordingly, static imbalance can be eliminated and dynamic imbalance can also be eliminated.

なお、重量和MSlとは、第1曲線板26lの重量MAlおよび第1偏心部材25lの重量MBlのみではなく、これら第1曲線板26lおよび第1偏心部材25lに取り付けられた軸受41の重量を含むと理解されたい。同様に重量和MSmとは、第2曲線板26mの重量MAmおよび第2偏心部材25mの重量MBmのみではなく、これら第2曲線板26mおよび第2偏心部材25mに取り付けられた軸受41の重量を含むと理解されたい。同様に重量和MSnとは、第3曲線板26nの重量MAnおよび第3偏心部材25nの重量MBnのみではなく、これら第3曲線板26nおよび第3偏心部材25nに取り付けられた軸受41の重量を含むと理解されたい。 The weight and the sum M Sl, not only the weight M Bl weight M Al and the first eccentric member 25l of the first curved plate 26l, bearing 41 attached thereto first curved plate 26l and the first eccentric member 25l It should be understood to include the weight of Similarly, the weight sum M Sm, second curved plate 26m not only weight M Bm weight M Am and the second eccentric member 25m of the bearing 41 attached thereto a second curved plate 26m and the second eccentric member 25m It should be understood to include the weight of Similarly, the weight sum M Sn is not only the weight M An of the third curved plate 26n and the weight M Bn of the third eccentric member 25n, but also the bearing 41 attached to the third curved plate 26n and the third eccentric member 25n. It should be understood to include the weight of

さらに本実施例では、以下の式(3)、式(4)を満足する。
Sl=MSn ・・・・・・(3)
2MSl=MSm ・・・・・・(4)
式(1)および式(2)に、式(3)および式(4)を代入すると、以下の式(5)、式(6)が導き出される。
Sl+ESn=2ESm ・・・・・・(5)
SlSlm=ESnSmn ・・・・・・(6)
これにより、第1曲線板26lおよび第1偏心部材25lの組み合わせと、第3曲線板26nおよび第3偏心部材25nの組み合わせを、同一の部品にすることができる。したがって、製作コスト上有利なインホイールモータ駆動装置を提供することができる。
Further, in this embodiment, the following expressions (3) and (4) are satisfied.
M Sl = M Sn (3)
2M S1 = M Sm (4)
By substituting Equation (3) and Equation (4) into Equation (1) and Equation (2), the following Equation (5) and Equation (6) are derived.
E Sl + E Sn = 2E Sm (5)
E Sl L Slm = E Sn L Smn (6)
Thereby, the combination of the 1st curve board 26l and the 1st eccentric member 25l and the combination of the 3rd curve board 26n and the 3rd eccentric member 25n can be made into the same component. Therefore, it is possible to provide an in-wheel motor drive device that is advantageous in terms of manufacturing cost.

さらに本実施例では、以下の式(7)を満足する。
Sl=ESn ・・・・・・(7)
式(5)に、式(7)を代入すると、以下の式(8)が導き出される。
Sl=ESm=ESn ・・・・・・(8)
式(6)に、式(7)を代入すると、以下の式(9)が導き出される。
Slm=LSmn ・・・・(9)
これにより、3個の公転部材および3個の偏心部材の偏心距離を、等しくすることが可能になり、減速部Bの軸線O直角方向寸法を均一にすることができる。
Further, in this example, the following expression (7) is satisfied.
E Sl = E Sn (7)
By substituting equation (7) into equation (5), the following equation (8) is derived.
E Sl = E Sm = E Sn (8)
By substituting equation (7) into equation (6), the following equation (9) is derived.
L Slm = L Smn (9)
Thereby, the eccentric distances of the three revolving members and the three eccentric members can be made equal, and the dimension of the speed reduction portion B in the direction perpendicular to the axis O can be made uniform.

本実施例では、各曲線板26l,26m,26nも、同様に配置される。すなわち、第1曲線板26lの重量をMAl、回転軸線Oから第1曲線板26lの重心までの偏心距離をEAlとし、第2曲線板26mの重量をMAm、回転軸線Oから第2曲線板26mの重心までの偏心距離をEAmとし、第3曲線板26nの重量をMAn、回転軸線Oから第3曲線板26nの重心までの偏心距離をEAnとする。図4に示すElはEAlと等しく、EmはEAmと等しく、EnはEAnと等しい。 In the present embodiment, the curved plates 26l, 26m, and 26n are similarly arranged. That is, the weight of the first curved plate 26l is M Al , the eccentric distance from the rotational axis O to the center of gravity of the first curved plate 26l is E Al , the weight of the second curved plate 26m is M Am , and the second from the rotational axis O The eccentric distance to the center of gravity of the curved plate 26m is E Am , the weight of the third curved plate 26n is M An , and the eccentric distance from the rotation axis O to the center of gravity of the third curved plate 26n is E An . El shown in FIG. 4 is equal to E Al , Em is equal to E Am, and En is equal to E An .

そして、以下の式(1´)を満足する。
AlAl+MAnAn=MAmAm ・・・・・・(1´)
さらに、第1曲線板26lの重心と第2曲線板26mの重心との軸線O方向距離をLAlmとし、第2曲線板26mの重心と第3曲線板26nの重心との軸線O方向距離をLAmnとする。図3に示すLmnはLAmnと等しく、LlmはLAlmと等しい。
そして、以下の式(2´)を満足する。
AlAlAlm=MAnAnAmn ・・・・・・(2´)
さらに本実施例では、以下の式(3´)、式(4´)を満足する。
Al=MAn ・・・・・・(3´)
2MAl=MAm ・・・・・・(4´)
式(1´)および式(2´)に、式(3´)および式(4´)を代入すると、以下の式(5´)、式(6´)が導き出される。
Al+EAn=2EAm ・・・・・・(5´)
AlAlm=EAnAmn ・・・・・・(6´)
これにより、第1曲線板26lと第3曲線板26nを同一の部品にすることができる。したがって、製作コスト上有利なインホイールモータ駆動装置を提供することができる。
And the following formula | equation (1 ') is satisfied.
M Al E Al + M An E An = M Am E Am (1 ')
Furthermore, the distance in the axis O direction between the center of gravity of the first curved plate 26l and the center of gravity of the second curved plate 26m is L Alm, and the distance in the axis O direction between the center of gravity of the second curved plate 26m and the center of gravity of the third curved plate 26n is Let L Amn . Lmn shown in FIG. 3 is equal to L Amn, and Llm is equal to L Alm .
And the following formula (2 ′) is satisfied.
M Al E Al L Alm = M An E An L L Amn (2 ')
Further, in this embodiment, the following expressions (3 ′) and (4 ′) are satisfied.
M Al = M An (3 ')
2M Al = M Am (4 ')
By substituting Expression (3 ′) and Expression (4 ′) into Expression (1 ′) and Expression (2 ′), the following Expression (5 ′) and Expression (6 ′) are derived.
E Al + E An = 2E Am (5 ')
E Al L Alm = E An L Amn (6 ')
Thereby, the 1st curve board 26l and the 3rd curve board 26n can be made into the same component. Therefore, it is possible to provide an in-wheel motor drive device that is advantageous in terms of manufacturing cost.

さらに本実施例では、以下の式(7´)を満足する。
Al=EAn ・・・・・・(7´)
式(5´)に、式(7´)を代入すると、以下の式(8´)が導き出される。
Al=EAm=EAn ・・・・・・(8´)
式(6´)に、式(7´)を代入すると、以下の式(9´)が導き出される。
Alm=LAmn ・・・・(9´)
これにより、3個の曲線板26l,26m,26nの偏心距離を、等しくすることが可能になり、減速部Bの軸線O直角方向寸法を均一にすることができる。
Further, in this embodiment, the following expression (7 ′) is satisfied.
E Al = E An (7 ')
By substituting equation (7 ′) into equation (5 ′), the following equation (8 ′) is derived.
E Al = E Am = E An (8 ')
By substituting equation (7 ′) into equation (6 ′), the following equation (9 ′) is derived.
L Alm = L Amn (9 ')
As a result, the eccentric distances of the three curved plates 26l, 26m, and 26n can be made equal, and the dimension of the speed reduction portion B in the direction perpendicular to the axis O can be made uniform.

本実施例では、各偏心部材25l,25m,25nも、同様に配置される。すなわち、第1偏心部材25lの重量をMBl、回転軸線Oから第1偏心部材25lの重心までの偏心距離をEBlとし、第2偏心部材25mの重量をMBm、回転軸線Oから第2偏心部材25mの重心までの偏心距離をEBmとし、第3偏心部材25nの重量をMBn、回転軸線Oから第3偏心部材25nの重心までの偏心距離をEBnとする。図4に示すElはEBlと等しく、EmはEBmと等しく、EnはEBnと等しい。 In the present embodiment, the eccentric members 25l, 25m, and 25n are similarly arranged. That is, weight of the first eccentric member 25l M Bl, the eccentricity from the axis of rotation O to the centroids of the first eccentric member 25l and E Bl, the weight of the second eccentric member 25 m M Bm, from the axis of rotation O second The eccentric distance to the center of gravity of the eccentric member 25m is E Bm , the weight of the third eccentric member 25n is M Bn , and the eccentric distance from the rotation axis O to the center of gravity of the third eccentric member 25n is E Bn . In FIG. 4, El is equal to E Bl , Em is equal to E Bm, and En is equal to E Bn .

そして、以下の式(1´´)を満足する。
BlBl+MBnBn=MBmBm ・・・・・・(1´´)
さらに、第1偏心部材25lの重心と第2偏心部材25mの重心との軸線O方向距離をLBlmとし、第2偏心部材25mの重心と第3偏心部材25nの重心との軸線O方向距離をLBmnとする。図3に示すLmnはLBmnと等しく、LlmはLBlmと等しい。
The following expression (1 ″) is satisfied.
M Bl E Bl + M Bn E Bn = M Bm E Bm ······ (1'')
Further, the distance in the axis O direction between the center of gravity of the first eccentric member 25l and the center of gravity of the second eccentric member 25m is L Blm, and the distance in the axis O direction between the center of gravity of the second eccentric member 25m and the center of gravity of the third eccentric member 25n is Let L Bmn . Lmn shown in FIG. 3 is equal to L Bmn, LLM is equal to L Blm.

そして、以下の式(2´´)を満足する。
BlBlBlm=MBnBnBmn ・・・・・・(2´´)
さらに本実施例では、以下の式(3´´)、式(4´´)を満足する。
Bl=MBn ・・・・・・(3´´)
2MBl=MBm ・・・・・・(4´´)
式(1´´)および式(2´´)に、式(3´´)および式(4´´)を代入すると、以下の式(5´´)、式(6´´)が導き出される。
Bl+EBn=2EBm ・・・・・・(5´´)
BlBlm=EBnBmn ・・・・・・(6´´)
これにより、第1偏心部材25lと第3偏心部材25nを同一の部品にすることができる。したがって、製作コスト上有利なインホイールモータ駆動装置を提供することができる。
And the following expression (2 ″) is satisfied.
M Bl E Bl L Blm = M Bn E Bn L Bmn ······ (2'')
Further, in this embodiment, the following expressions (3 ″) and (4 ″) are satisfied.
M Bl = M Bn (3 ″)
2M Bl = M Bm ······ (4'' )
Substituting Expression (3 ″) and Expression (4 ″) into Expression (1 ″) and Expression (2 ″), the following Expression (5 ″) and Expression (6 ″) are derived. .
E Bl + E Bn = 2E Bm (5 ")
E Bl L Blm = E Bn L Bmn ······ (6'')
Thereby, the 1st eccentric member 25l and the 3rd eccentric member 25n can be made into the same component. Therefore, it is possible to provide an in-wheel motor drive device that is advantageous in terms of manufacturing cost.

さらに本実施例では、以下の式(7´´)を満足する。
Bl=EBn ・・・・・・(7´´)
式(5´´)に、式(7´´)を代入すると、以下の式(8´´)が導き出される。
Bl=EBm=EBn ・・・・・・(8´´)
式(6´´)に、式(7´´)を代入すると、以下の式(9´´)が導き出される。
Blm=LBmn ・・・・(9´´)
これにより、3個の偏心部材25l,25m,25nの偏心距離を、等しくすることが可能になり、減速部Bの軸線O直角方向寸法を均一にすることができる。
Further, in this embodiment, the following expression (7 ″) is satisfied.
E Bl = E Bn (7 ")
When the formula (7 ″) is substituted into the formula (5 ″), the following formula (8 ″) is derived.
E Bl = E Bm = E Bn ... (8 ″)
When the formula (7 ″) is substituted into the formula (6 ″), the following formula (9 ″) is derived.
L Blm = L Bmn ···· (9'' )
As a result, the eccentric distances of the three eccentric members 25l, 25m, and 25n can be made equal, and the dimension of the speed reduction portion B in the direction perpendicular to the axis O can be made uniform.

ここで付言すると、第1偏心部材25lと反対側の周方向位置に偏心して配置される第2偏心部材25mは、一例として第1偏心部材25lと170度異なる周方向位置であったり、他の例として第1偏心部材25lと190度異なる周方向位置であったりすれば、静不釣合いおよび動不釣合いを十分に解消することができない。このため本実施例では、軸線O方向中央部に位置する第2偏心部材25mを、軸線O方向両側に位置する第1および第3偏心部材25l,25nに対し180度位相が異なるよう配置するのである。   In this case, the second eccentric member 25m arranged eccentrically at the circumferential position opposite to the first eccentric member 25l is, for example, a circumferential position that is 170 degrees different from the first eccentric member 25l, For example, if the circumferential position is 190 degrees different from that of the first eccentric member 25l, static imbalance and dynamic imbalance cannot be sufficiently eliminated. For this reason, in the present embodiment, the second eccentric member 25m located in the central portion in the axis O direction is arranged so that the phase is 180 degrees different from the first and third eccentric members 25l and 25n located on both sides in the axis O direction. is there.

図5はインホイールモータ駆動装置21の配置レイアウトを示す平面図である。車両の車体11は、前後左右に4個の車輪を具備する。このうち左輪12Lおよび右輪12Rは駆動輪である。左輪12Lは車両左側に配置されたインホイールモータ駆動装置21Lの車輪ハブ32と結合する。インホイールモータ駆動装置21Lは図示しないサスペンション装置で車体11の床下に懸架されている。同様に右輪12Rも車両右側に配置されたインホイールモータ駆動装置21Rの車輪ハブ32と結合する。インホイールモータ駆動装置21Rも図示しないサスペンション装置で車体11の床下に懸架されている。インホイールモータ駆動装置21L,21Rはいずれも上述したインホイールモータ駆動装置21であり、車両前後方向に延びる車体11の中心線に関して対称に配置される。   FIG. 5 is a plan view showing an arrangement layout of the in-wheel motor drive device 21. The vehicle body 11 includes four wheels on the front, rear, left and right. Of these, the left wheel 12L and the right wheel 12R are drive wheels. The left wheel 12L is coupled to the wheel hub 32 of the in-wheel motor drive device 21L disposed on the left side of the vehicle. The in-wheel motor drive device 21L is suspended under the floor of the vehicle body 11 by a suspension device (not shown). Similarly, the right wheel 12R is coupled to the wheel hub 32 of the in-wheel motor drive device 21R disposed on the right side of the vehicle. The in-wheel motor drive device 21R is also suspended below the floor of the vehicle body 11 by a suspension device (not shown). The in-wheel motor drive devices 21L and 21R are both the in-wheel motor drive device 21 described above, and are arranged symmetrically with respect to the center line of the vehicle body 11 extending in the vehicle front-rear direction.

本実施例では、3個の曲線板26l,26m,26nが内外径同一であり、第1曲線板26lの軸線O方向厚みが第3曲線板26nの軸線O方向厚みと等しい。これにより、外径および内径が等しい第1曲線板26l、第2曲線板26m、および第3曲線板26nを共通する金属材料で形成することが可能となり、製作工程およびコスト上有利となる。   In the present embodiment, the three curved plates 26l, 26m, and 26n have the same inner and outer diameters, and the thickness in the axis O direction of the first curved plate 26l is equal to the thickness in the axis O direction of the third curved plate 26n. As a result, the first curved plate 26l, the second curved plate 26m, and the third curved plate 26n having the same outer diameter and inner diameter can be formed of a common metal material, which is advantageous in terms of manufacturing process and cost.

本実施例では、3個の偏心部材25l,25m,25nが内外径同一であり、第1偏心部材25lの軸線O方向厚みが第3偏心部材25nの軸線O方向厚みと等しい。これにより、外径および内径が等しい第1偏心部材25l、第2偏心部材25m、および第3偏心部材25nを共通する金属材料で形成することが可能となり、製作工程およびコスト上有利となる。   In the present embodiment, the three eccentric members 25l, 25m, and 25n have the same inner and outer diameters, and the thickness of the first eccentric member 25l in the axis O direction is equal to the thickness of the third eccentric member 25n in the axis O direction. Thus, the first eccentric member 25l, the second eccentric member 25m, and the third eccentric member 25n having the same outer diameter and inner diameter can be formed of a common metal material, which is advantageous in terms of manufacturing process and cost.

また図1および図3に示すように、第1偏心部材25lは第1曲線板26lを玉軸受41で回転自在に支持し、第2偏心部材25mは第2曲線板26mをころ軸受41で回転自在に支持し、第3偏心部材25nは第3曲線板26nを玉軸受41で回転自在に支持する。これにより、3個の曲線板26l,26m,26nのうち軸受荷重が最も大きな第2曲線板26mを好適に支持することが可能になり、減速部の耐久性が向上する。   As shown in FIGS. 1 and 3, the first eccentric member 25l rotatably supports the first curved plate 26l by the ball bearing 41, and the second eccentric member 25m rotates the second curved plate 26m by the roller bearing 41. The third eccentric member 25n rotatably supports the third curved plate 26n by the ball bearing 41. This makes it possible to favorably support the second curved plate 26m having the largest bearing load among the three curved plates 26l, 26m, and 26n, thereby improving the durability of the speed reducing portion.

次に本発明の他の実施例を説明する。図6は本発明の他の実施例になる車両用モータ駆動装置を示す展開断面図であり、図7は、同実施例の車両用モータ駆動装置の配置レイアウトを示す平面図である。かかる他の実施例につき、図1〜図5に示す実施例と共通する構成については同一の符号を付して説明を省略し、異なる構成について以下に説明する。   Next, another embodiment of the present invention will be described. FIG. 6 is a developed cross-sectional view showing a vehicle motor drive device according to another embodiment of the present invention, and FIG. 7 is a plan view showing an arrangement layout of the vehicle motor drive device of the embodiment. Regarding such other embodiments, the same components as those shown in FIGS. 1 to 5 are denoted by the same reference numerals, description thereof is omitted, and different configurations will be described below.

他の実施例になる車両用モータ駆動装置71は、図6に示すように、モータ部Aとサイクロイド減速機になる減速部Bとをそれぞれ1個ずつ備え、減速部Bに隣接配置されたディファレンシャルギヤ装置72をさらに備える。   As shown in FIG. 6, a vehicle motor drive device 71 according to another embodiment includes a motor part A and a reduction part B that becomes a cycloid reducer, and a differential disposed adjacent to the reduction part B. A gear device 72 is further provided.

ディファレンシャルギヤ装置72は、リングギヤ75と、ディファレンシャルギヤケース76と、ピニオンメートシャフト77と、1対のピニオンメートギヤ78,79と、2個のサイドギヤ82,83とを有し、車輪側回転部材28の回転を左右輪12L,12R(図7)へ駆動伝達する差動装置である。   The differential gear device 72 includes a ring gear 75, a differential gear case 76, a pinion mate shaft 77, a pair of pinion mate gears 78 and 79, and two side gears 82 and 83. This is a differential device that transmits driving force to the left and right wheels 12L, 12R (FIG. 7).

軸線Oに沿って延びる車輪側回転部材28の軸部28bは、フランジ部28a側を軸受34でケーシング22に回転自在に支持され、フランジ部28aから遠い先端側を軸受73でケーシング22に回転自在に支持される。これら軸受34および軸受73はいずれも転がり軸受である。軸部28bの外周は軸受34および軸受73間で歯車74の中心と結合し、歯車74は車輪側回転部材28と一体回転する。   The shaft portion 28b of the wheel side rotation member 28 extending along the axis O is rotatably supported on the casing 22 by the bearing 34 on the flange portion 28a side, and is rotatable on the casing 22 by the bearing 73 on the tip side far from the flange portion 28a. Supported by Both the bearing 34 and the bearing 73 are rolling bearings. The outer periphery of the shaft portion 28 b is coupled with the center of the gear 74 between the bearing 34 and the bearing 73, and the gear 74 rotates integrally with the wheel-side rotating member 28.

歯車74はディファレンシャルギヤ装置72のリングギヤ75と噛合する。リングギヤ75は、軸受80,81を介してケーシング22に回転自在に支持されたディファレンシャルギヤケース76の外側に固定されている。ディファレンシャルギヤケース76内には、その回転軸Pに対し直交するようピニオンメートシャフト77を貫通設置し、このシャフト77上に1対のピニオンメートギヤ78,79を回転自在に支持してディファレンシャルギヤケース76内に設ける。   The gear 74 meshes with the ring gear 75 of the differential gear device 72. The ring gear 75 is fixed to the outside of a differential gear case 76 that is rotatably supported by the casing 22 via bearings 80 and 81. In the differential gear case 76, a pinion mate shaft 77 is installed so as to be orthogonal to the rotation axis P, and a pair of pinion mate gears 78 and 79 are rotatably supported on the shaft 77 so that the inside of the differential gear case 76. Provided.

ディファレンシャルギヤケース76内には更に、ピニオンメートギヤ78,79間にあってこれらに噛合する1対のサイドギヤ82,83を回転自在に配置する。左側のサイドギヤ82は、左側ドライブシャフト13L(図7)と結合して一体回転する。また右側のサイドギヤ83は、右側ドライブシャフト13R(図7)と結合して一体回転する。   Further, in the differential gear case 76, a pair of side gears 82 and 83 which are between the pinion mate gears 78 and 79 and mesh with the pinion mate gears 78 and 79 are rotatably arranged. The left side gear 82 is coupled to the left drive shaft 13L (FIG. 7) and rotates integrally. Further, the right side gear 83 is coupled to the right drive shaft 13R (FIG. 7) and integrally rotates.

なお、前述した潤滑油路58と同様に、偏心部材25l,25m,25nに潤滑油路58をそれぞれ設けてもよい。潤滑油路58から流出した潤滑油は、各軸受41と、曲線板26l,26m,26nの表面をそれぞれ潤滑する。   Similar to the lubricating oil path 58 described above, the lubricating oil paths 58 may be provided in the eccentric members 25l, 25m, and 25n, respectively. The lubricating oil flowing out from the lubricating oil passage 58 lubricates the bearings 41 and the surfaces of the curved plates 26l, 26m, and 26n.

図7に示すように、左輪12Lは図示しないサスペンション装置で車体11の床下にそれぞれ懸架されている。左輪12Lの車幅方向内側は、車幅方向に延びる左側ドライブシャフト13Lの車幅方向外側端と結合する。左側ドライブシャフト13Lの車幅方向内側端は車両用モータ駆動装置71と駆動結合する。右輪12Rも左輪12Lと同様であり、車両前後方向に延びる車体11の中心線に関して左右対称に配置される。   As shown in FIG. 7, the left wheel 12L is suspended under the floor of the vehicle body 11 by a suspension device (not shown). The inner side in the vehicle width direction of the left wheel 12L is coupled to the outer end in the vehicle width direction of the left drive shaft 13L extending in the vehicle width direction. The inner end in the vehicle width direction of the left drive shaft 13L is drivingly coupled to the vehicle motor drive device 71. The right wheel 12R is the same as the left wheel 12L and is arranged symmetrically with respect to the center line of the vehicle body 11 extending in the vehicle front-rear direction.

この車両用モータ駆動装置71によれば、車両用モータ駆動装置71の減速部Bが、第1曲線板26lを回転自在に支持するとともに回転軸線Oから軸線O直角方向に偏心して配置される第1偏心部材25lと、第2曲線板26mを回転自在に支持するとともに第1偏心部材25lの軸線O方向一方側で第1偏心部材25lと180度異なる周方向位置に偏心して配置される第2偏心部材25mと、第3曲線板26nを回転自在に支持するとともに第2偏心部材25mのさらに軸線O方向一方側で第2偏心部材25mと180度異なる周方向位置に偏心して配置される第3偏心部材25nとを含み、上述した式(1)および式(2)を満足することから、車両用モータ駆動装置71の静不釣り合いを解消することができる他、動不釣り合いも解消することができる。なお左輪12Lおよび右輪12Rは、前輪または後輪のいずれであってもよい。   According to this vehicle motor drive device 71, the speed reduction portion B of the vehicle motor drive device 71 supports the first curved plate 26 l so as to be rotatable and is eccentrically arranged from the rotation axis O in the direction perpendicular to the axis O. A second eccentric member 25l and a second curved plate 26m are rotatably supported and are eccentrically arranged at a circumferential position 180 degrees different from the first eccentric member 25l on one side in the axis O direction of the first eccentric member 25l. The eccentric member 25m and the third curved plate 26n are rotatably supported, and are eccentrically arranged at a circumferential position 180 degrees different from the second eccentric member 25m on one side in the axis O direction of the second eccentric member 25m. Since it includes the eccentric member 25n and satisfies the above-described expressions (1) and (2), the static unbalance of the vehicle motor drive device 71 can be eliminated, and the dynamic unbalance is also achieved. It can be erased. The left wheel 12L and the right wheel 12R may be either front wheels or rear wheels.

以上、図面を参照してこの発明の実施の形態を説明したが、この発明は、図示した実施の形態のものに限定されない。図示した実施の形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。   Although the embodiment of the present invention has been described with reference to the drawings, the present invention is not limited to the illustrated embodiment. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.

この発明になるインホイールモータ駆動装置および車両用モータ駆動装置は、電気自動車およびハイブリッド車両において有利に利用される。   The in-wheel motor drive device and the vehicle motor drive device according to the present invention are advantageously used in electric vehicles and hybrid vehicles.

11 車体、12L 左輪、12R 右輪、13L,13R ドライブシャフト、21,21L,21R インホイールモータ駆動装置、22 ケーシング、22a モータケーシング、22p ポンプケーシング、22t モータカバー、22b 減速部ケーシング、23 ステータ、24 ロータ、25 減速部入力軸、25l 第1偏心部材、25m 第2偏心部材、25n 第3偏心部材、26l 第1曲線板、26m 第2曲線板、26n 第3曲線板、27 外ピン、28 車輪側回転部材、31 内ピン、32 車輪ハブ、33 車輪ハブ軸受、35 回転軸、41 転がり軸受、51 オイルポンプ、53 オイル溜まり、55 冷却油路、57 軸線油路、58 潤滑油路、61 補強部材、71 車両用モータ駆動装置、72 ディファレンシャルギヤ装置。   11 body, 12L left wheel, 12R right wheel, 13L, 13R drive shaft, 21, 21L, 21R in-wheel motor drive device, 22 casing, 22a motor casing, 22p pump casing, 22t motor cover, 22b reduction gear casing, 23 stator, 24 rotor, 25 speed reducer input shaft, 25l first eccentric member, 25m second eccentric member, 25n third eccentric member, 26l first curved plate, 26m second curved plate, 26n third curved plate, 27 outer pin, 28 Wheel side rotating member, 31 inner pin, 32 wheel hub, 33 wheel hub bearing, 35 rotating shaft, 41 rolling bearing, 51 oil pump, 53 oil reservoir, 55 cooling oil passage, 57 axis oil passage, 58 lubricating oil passage, 61 Reinforcement member, 71 Motor drive device for vehicle, 72 Differential Rugiya apparatus.

Claims (13)

モータ側回転部材を回転駆動するモータ部と、前記モータ側回転部材の回転を減速して車輪側回転部材に伝達する減速部と、前記車輪側回転部材に固定連結された車輪ハブとを備え、
前記減速部は、前記モータ側回転部材の回転軸線から偏心してモータ側回転部材に結合した3個の円盤形状の偏心部材と、内周が前記3個の偏心部材の外周にそれぞれ相対回転自在に取り付けられて前記モータ側回転部材の回転に伴って前記回転軸線を中心とする公転運動を行う3個の公転部材と、前記公転部材の外周部に係合して前記公転部材の自転運動を生じさせる外周係合部材と、前記車輪側回転部材と結合して前記公転部材の自転運動を取り出す内側係合部材とを有し、
前記3個の公転部材は、第1公転部材と、前記第1公転部材の軸線方向一方側に配置された第2公転部材と、前記第2公転部材のさらに軸線方向一方側に配置された第3公転部材とを含み、
前記3個の偏心部材は、前記第1公転部材を相対回転自在に支持するとともに前記回転軸線から軸線直角方向に偏心して配置される第1偏心部材と、前記第2公転部材を相対回転自在に支持するとともに前記第1偏心部材の軸線方向一方側で第1偏心部材と180度異なる周方向位置に偏心して配置される第2偏心部材と、前記公転部材に含まれる第3公転部材を相対回転自在に支持するとともに前記第2偏心部材のさらに軸線方向一方側で第2偏心部材と180度異なる周方向位置に偏心して配置される第3偏心部材とを含み、
前記第1公転部材および前記第1偏心部材の重量和をMSl、前記回転軸線から前記第1公転部材および前記第1偏心部材の重心までの偏心距離をESlとし、
前記第2公転部材および前記第2偏心部材の重量和をMSm、前記回転軸線から前記第2公転部材および前記第2偏心部材の重心までの偏心距離をESmとし、
前記第3公転部材および前記第3偏心部材の重量和をMSn、前記回転軸線から前記第3公転部材および前記第3偏心部材の重心までの偏心距離をESnとして、
SlSl+MSnSn=MSmSmを満足するとともに、
前記第1公転部材および前記第1偏心部材の重心と、前記第2公転部材および前記第2偏心部材の重心との軸線方向距離をLSlmとし、
前記第2公転部材および前記第2偏心部材の重心と、前記第3公転部材および前記第3偏心部材の重心との軸線方向距離をLSmnとして、
SlSlSlm=MSnSnSmnを満足する、インホイールモータ駆動装置。
A motor unit that rotationally drives the motor side rotating member, a speed reducing unit that decelerates the rotation of the motor side rotating member and transmits the rotation to the wheel side rotating member, and a wheel hub fixedly connected to the wheel side rotating member,
The speed reducer includes three disk-shaped eccentric members that are eccentric from the rotation axis of the motor-side rotating member and are coupled to the motor-side rotating member, and an inner circumference that is rotatable relative to the outer circumference of the three eccentric members. Attached to the three rotating members that perform a revolving motion around the rotation axis along with the rotation of the motor-side rotating member, and engages with the outer peripheral portion of the revolving member to cause the revolving motion of the revolving member. An outer peripheral engagement member, and an inner engagement member that combines with the wheel-side rotation member to extract the rotation of the revolving member,
The three revolving members are a first revolving member, a second revolving member arranged on one axial direction side of the first revolving member, and a second revolving member arranged further on the one axial side of the second revolving member. 3 revolving members,
The three eccentric members support the first revolving member so as to be relatively rotatable, and are arranged to be decentered in a direction perpendicular to the axis from the rotation axis, and to relatively rotate the second revolving member. A second eccentric member that is supported and eccentrically arranged at a circumferential position 180 degrees different from the first eccentric member on one axial direction side of the first eccentric member, and a third revolution member included in the revolution member are relatively rotated. A third eccentric member that freely supports and is arranged eccentrically at a circumferential position that is 180 degrees different from the second eccentric member on one axial direction side of the second eccentric member,
The mass sum of the first revolution member and the first eccentric member is M Sl , and the eccentric distance from the rotation axis to the center of gravity of the first revolution member and the first eccentric member is E Sl ,
The sum of weights of the second revolution member and the second eccentric member is M Sm , and the eccentric distance from the rotation axis to the center of gravity of the second revolution member and the second eccentric member is E Sm ,
The sum of weights of the third revolution member and the third eccentric member is M Sn , and the eccentric distance from the rotation axis to the center of gravity of the third revolution member and the third eccentric member is E Sn .
M Sl E S1 + M Sn E Sn = M Sm E Sm
An axial distance between the center of gravity of the first revolution member and the first eccentric member and the center of gravity of the second revolution member and the second eccentric member is L Slm ,
L Smn is an axial distance between the center of gravity of the second revolution member and the second eccentric member and the center of gravity of the third revolution member and the third eccentric member,
Satisfying M Sl E Sl L Slm = M Sn E Sn L Smn, in-wheel motor drive device.
Sl=MSnおよび2MSl=MSmを満足する、請求項1に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to claim 1, wherein M S1 = M Sn and 2M S1 = M Sm are satisfied. Sl=ESnを満足する、請求項2に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to claim 2, wherein E Sl = E Sn is satisfied. 前記第1公転部材の重量をMAl、前記回転軸線から前記第1公転部材の重心までの偏心距離をEAlとし、
前記第2公転部材の重量をMAm、前記回転軸線から前記第2公転部材の重心までの偏心距離をEAmとし、
前記第3公転部材の重量をMAn、前記回転軸線から前記第3公転部材の重心までの偏心距離をEAnとして、
AlAl+MAnAn=MAmAmを満足するとともに、
前記第1公転部材の重心と前記第2公転部材の重心との軸線方向距離をLAlmとし、
前記第2公転部材の重心と前記第3公転部材の重心との軸線方向距離をLAmnとして、
AlAlAlm=MAnAnAmnを満足する、請求項1〜3のいずれかに記載のインホイールモータ駆動装置。
The weight of the first revolving member is M Al , the eccentric distance from the rotation axis to the center of gravity of the first revolving member is E Al ,
The weight of the second revolving member is M Am , the eccentric distance from the rotation axis to the center of gravity of the second revolving member is E Am ,
The weight of the third revolving member is M An , and the eccentric distance from the rotation axis to the center of gravity of the third revolving member is E An ,
With satisfying M Al E Al + M An E An = M Am E Am,
The axial distance between the center of gravity of the first revolving member and the center of gravity of the second revolving member is L Alm ,
L Amn is the axial distance between the center of gravity of the second revolving member and the center of gravity of the third revolving member,
Satisfying M Al E Al L Alm = M An E An L Amn, in-wheel motor drive device according to any one of claims 1 to 3.
Al=MAnおよび2MAl=MAmを満足する、請求項4に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to claim 4, wherein M Al = M An and 2M Al = M Am are satisfied. 前記第2公転部材の軸線方向厚みは、前記第1公転部材の軸線方向厚みの2倍である、請求項5に記載のインホイールモータ駆動装置。   6. The in-wheel motor drive device according to claim 5, wherein an axial thickness of the second revolution member is twice an axial thickness of the first revolution member. Al=EAnを満足する、請求項5または6に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to claim 5 or 6, wherein E Al = E An is satisfied. 前記第1偏心部材の重量をMBl、前記回転軸線から前記第1偏心部材の重心までの偏心距離をEBlとし、
前記第2偏心部材の重量をMBm、前記回転軸線から前記第2偏心部材の重心までの偏心距離をEBmとし、
前記第3偏心部材の重量をMBn、前記回転軸線から前記第3偏心部材の重心までの偏心距離をEBnとして、
BlBl+MBnBn=MBmBmを満足するとともに、
前記第1偏心部材の重心と前記第2偏心部材の重心との軸線方向距離をLBlmとし、
前記第2偏心部材の重心と前記第3偏心部材の重心との軸線方向距離をLBmnとして、
BlBlBlm=MBnBnBmnを満足する、請求項1〜7のいずれかに記載のインホイールモータ駆動装置。
The weight of the first eccentric member is M Bl , and the eccentric distance from the rotation axis to the center of gravity of the first eccentric member is E Bl .
The weight of the second eccentric member is M Bm , the eccentric distance from the rotation axis to the center of gravity of the second eccentric member is E Bm ,
The weight of the third eccentric member is M Bn , and the eccentric distance from the rotation axis to the center of gravity of the third eccentric member is E Bn .
M B1 E B1 + M Bn E Bn = M Bm E Bm
The axial distance between the center of gravity of the first eccentric member and the center of gravity of the second eccentric member is L Blm .
The axial distance between the center of gravity of the second eccentric member and the center of gravity of the third eccentric member is L Bmn .
Satisfying M Bl E Bl L Blm = M Bn E Bn L Bmn, in-wheel motor drive device according to any one of claims 1 to 7.
Bl=MBnおよび2MBl=MBmを満足する、請求項8に記載のインホイールモータ駆動装置。 9. The in -wheel motor drive device according to claim 8, wherein M B1 = M Bn and 2M B1 = M Bm are satisfied. 前記第2偏心部材の軸線方向厚みは、前記第1偏心部材の軸線方向厚みの2倍である、請求項9に記載のインホイールモータ駆動装置。   10. The in-wheel motor drive device according to claim 9, wherein the axial thickness of the second eccentric member is twice the axial thickness of the first eccentric member. Bl=EBnを満足する、請求項9または10に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to claim 9 or 10, wherein E Bl = E Bn is satisfied. 前記第1偏心部材は前記第1公転部材を玉軸受で回転自在に支持し、前記第2偏心部材は前記第2公転部材をころ軸受で回転自在に支持し、前記第3偏心部材は前記第3公転部材を玉軸受で回転自在に支持する、請求項1〜11のいずれかに記載のインホイールモータ駆動装置。   The first eccentric member rotatably supports the first revolving member with a ball bearing, the second eccentric member rotatably supports the second revolving member with a roller bearing, and the third eccentric member has the first eccentric member. The in-wheel motor drive device according to claim 1, wherein the three revolving members are rotatably supported by ball bearings. モータ側回転部材を回転駆動するモータ部と、前記モータ側回転部材の回転を減速して車輪側回転部材に伝達する減速部と、前記車輪側回転部材の回転を複数の車輪へ駆動伝達する差動装置とを備え、
前記減速部は、前記モータ側回転部材の回転軸線から偏心してモータ側回転部材に結合した3個の円盤形状の偏心部材と、内周が前記3個の偏心部材の外周にそれぞれ相対回転自在に取り付けられて前記モータ側回転部材の回転に伴って前記回転軸線を中心とする公転運動を行う3個の公転部材と、前記公転部材の外周部に係合して前記公転部材の自転運動を生じさせる外周係合部材と、前記車輪側回転部材と結合して前記公転部材の自転運動を取り出す内側係合部材とを有し、
前記3個の公転部材は、第1公転部材と、前記第1公転部材の軸線方向一方側に配置された第2公転部材と、前記第2公転部材のさらに軸線方向一方側に配置された第3公転部材とを含み、
前記3個の偏心部材は、前記第1公転部材を相対回転自在に支持するとともに前記回転軸線から軸線直角方向に偏心して配置される第1偏心部材と、前記第2公転部材を相対回転自在に支持するとともに前記第1偏心部材の軸線方向一方側で第1偏心部材と180度異なる周方向位置に偏心して配置される第2偏心部材と、前記第3公転部材を相対回転自在に支持するとともに前記第2偏心部材のさらに軸線方向一方側で第2偏心部材と180度異なる周方向位置に偏心して配置される第3偏心部材とを含み、
前記第1公転部材および前記第1偏心部材の重量和をMSl、前記回転軸線から前記第1公転部材および前記第1偏心部材の重心までの偏心距離をESlとし、
前記第2公転部材および前記第2偏心部材の重量和をMSm、前記回転軸線から前記第2公転部材および前記第2偏心部材の重心までの偏心距離をESmとし、
前記第3公転部材および前記第3偏心部材の重量和をMSn、前記回転軸線から前記第3公転部材および前記第3偏心部材の重心までの偏心距離をESnとして、
SlSl+MSnSn=MSmSmを満足するとともに、
前記第1公転部材および前記第1偏心部材の重心と、前記第2公転部材および前記第2偏心部材の重心との軸線方向距離をLSlmとし、
前記第2公転部材および前記第2偏心部材の重心と、前記第3公転部材および前記第3偏心部材の重心との軸線方向距離をLSmnとして、
SlSlSlm=MSnSnSmnを満足する、車両用モータ駆動装置。
A motor unit that rotationally drives the motor-side rotating member; a deceleration unit that decelerates the rotation of the motor-side rotating member and transmits the rotation to the wheel-side rotating member; and a difference that drives and transmits the rotation of the wheel-side rotating member to a plurality of wheels. A moving device,
The speed reducer includes three disk-shaped eccentric members that are eccentric from the rotation axis of the motor-side rotating member and are coupled to the motor-side rotating member, and an inner circumference that is rotatable relative to the outer circumference of the three eccentric members. Attached to the three rotating members that perform a revolving motion around the rotation axis along with the rotation of the motor-side rotating member, and engages with the outer peripheral portion of the revolving member to cause the revolving motion of the revolving member. An outer peripheral engagement member, and an inner engagement member that combines with the wheel-side rotation member to extract the rotation of the revolving member,
The three revolving members are a first revolving member, a second revolving member arranged on one axial direction side of the first revolving member, and a second revolving member arranged further on the one axial side of the second revolving member. 3 revolving members,
The three eccentric members support the first revolving member so as to be relatively rotatable, and are arranged to be decentered in a direction perpendicular to the axis from the rotation axis, and to relatively rotate the second revolving member. While supporting the second eccentric member that is eccentrically arranged at a circumferential position 180 degrees different from the first eccentric member on one side in the axial direction of the first eccentric member, and the third revolving member, the third eccentric member is supported in a relatively rotatable manner. A third eccentric member disposed eccentrically at a circumferential position 180 degrees different from the second eccentric member on one axial direction side of the second eccentric member;
The mass sum of the first revolution member and the first eccentric member is M Sl , and the eccentric distance from the rotation axis to the center of gravity of the first revolution member and the first eccentric member is E Sl ,
The sum of weights of the second revolution member and the second eccentric member is M Sm , and the eccentric distance from the rotation axis to the center of gravity of the second revolution member and the second eccentric member is E Sm ,
The sum of weights of the third revolution member and the third eccentric member is M Sn , and the eccentric distance from the rotation axis to the center of gravity of the third revolution member and the third eccentric member is E Sn .
With satisfying the M Sl E Sl + M Sn E Sn = M Sm E Sm,
An axial distance between the center of gravity of the first revolution member and the first eccentric member and the center of gravity of the second revolution member and the second eccentric member is L Slm ,
L Smn is an axial distance between the center of gravity of the second revolution member and the second eccentric member and the center of gravity of the third revolution member and the third eccentric member,
M Sl E Sl L Slm = M Sn E Sn L satisfies Smn, vehicle motor driving system.
JP2009098343A 2009-04-14 2009-04-14 In-wheel motor drive unit and motor drive device for vehicle Withdrawn JP2010249208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009098343A JP2010249208A (en) 2009-04-14 2009-04-14 In-wheel motor drive unit and motor drive device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098343A JP2010249208A (en) 2009-04-14 2009-04-14 In-wheel motor drive unit and motor drive device for vehicle

Publications (1)

Publication Number Publication Date
JP2010249208A true JP2010249208A (en) 2010-11-04

Family

ID=43311772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098343A Withdrawn JP2010249208A (en) 2009-04-14 2009-04-14 In-wheel motor drive unit and motor drive device for vehicle

Country Status (1)

Country Link
JP (1) JP2010249208A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221570A (en) * 2012-04-17 2013-10-28 Jtekt Corp Speed change gear drive and actuator
KR101331696B1 (en) 2011-10-28 2013-11-20 삼성전기주식회사 Apparatus of Driving Wheels for in-wheel System
JP2015533070A (en) * 2012-09-20 2015-11-16 ヴァレオ システム ドゥ コントロール モトゥール Heat engine air circuit flap actuator
CN109114173A (en) * 2017-06-23 2019-01-01 台达电子工业股份有限公司 Has the deceleration device of power source
JP2019035501A (en) * 2017-06-23 2019-03-07 台達電子工業股▲ふん▼有限公司 Speed reducing device having power source
US10677321B2 (en) 2017-06-23 2020-06-09 Delta Electronics, Inc. Speed reducing device having power source

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101331696B1 (en) 2011-10-28 2013-11-20 삼성전기주식회사 Apparatus of Driving Wheels for in-wheel System
JP2013221570A (en) * 2012-04-17 2013-10-28 Jtekt Corp Speed change gear drive and actuator
JP2015533070A (en) * 2012-09-20 2015-11-16 ヴァレオ システム ドゥ コントロール モトゥール Heat engine air circuit flap actuator
CN109114173A (en) * 2017-06-23 2019-01-01 台达电子工业股份有限公司 Has the deceleration device of power source
JP2019035501A (en) * 2017-06-23 2019-03-07 台達電子工業股▲ふん▼有限公司 Speed reducing device having power source
US10677321B2 (en) 2017-06-23 2020-06-09 Delta Electronics, Inc. Speed reducing device having power source
CN109114173B (en) * 2017-06-23 2020-11-03 台达电子工业股份有限公司 Speed reducer with power source

Similar Documents

Publication Publication Date Title
JP2010172069A (en) Motor driving device, in-wheel motor driving device, and motor driving device for vehicles
US9077222B2 (en) In-wheel motor drive assembly
JP5079431B2 (en) In-wheel motor drive device
JP5620826B2 (en) Cycloid reducer and in-wheel motor drive device
JP2006258289A (en) In-wheel motor drive unit
JP2010249208A (en) In-wheel motor drive unit and motor drive device for vehicle
JP5312132B2 (en) In-wheel motor drive device
JP2016114184A (en) Cycloid speed reducer and in-wheel motor drive with cycloid speed reducer
JP5010490B2 (en) Motor drive device and in-wheel motor drive device
JP2016161117A (en) Cycloid speed reducer and motor drive device with cycloid speed reducer
JP2009012569A (en) In-wheel motor drive device
JP2015192539A (en) in-wheel motor drive device
JP2008202746A (en) Lubricating structure for vehicle speed reducing part and in-wheel motor drive mechanism
WO2016047442A1 (en) In-wheel motor drive apparatus
JP2009162330A (en) Cycloid reduction gear, and in-wheel motor drive unit
WO2015016058A1 (en) Lubrication device of in-wheel motor drive device
WO2016017351A1 (en) Cycloidal speed reducer and in-wheel motor drive device provided with same
JP2010260476A (en) In-wheel motor drive device and motor drive device for vehicles
JP6324761B2 (en) In-wheel motor drive device
JP2016160980A (en) Vehicular motor drive device
JP2008275094A (en) In-wheel motor drive unit
JP2009058005A (en) In-wheel motor drive unit
WO2015137088A1 (en) In-wheel motor drive device
JP5762719B2 (en) In-wheel motor drive device
JP2016151321A (en) In-wheel motor drive device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120703