JP2010248034A - Glass composition for forming electrode and electrode forming material - Google Patents

Glass composition for forming electrode and electrode forming material Download PDF

Info

Publication number
JP2010248034A
JP2010248034A JP2009099618A JP2009099618A JP2010248034A JP 2010248034 A JP2010248034 A JP 2010248034A JP 2009099618 A JP2009099618 A JP 2009099618A JP 2009099618 A JP2009099618 A JP 2009099618A JP 2010248034 A JP2010248034 A JP 2010248034A
Authority
JP
Japan
Prior art keywords
electrode
glass
forming material
glass composition
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009099618A
Other languages
Japanese (ja)
Other versions
JP5796270B2 (en
Inventor
Kentaro Ishihara
健太郎 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2009099618A priority Critical patent/JP5796270B2/en
Publication of JP2010248034A publication Critical patent/JP2010248034A/en
Application granted granted Critical
Publication of JP5796270B2 publication Critical patent/JP5796270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a manufacturing cost of a silicon solar cell while improving photoelectric conversion efficiency of the silicon solar cell by inventing an electrode-forming glass composition and an electrode-forming material which hardly produce a blister or aluminum coagulation and are suitable for forming an Al-Si alloy layer and p+ electrolytic layer. <P>SOLUTION: The electrode-forming glass composition comprises 1 to 45% of SiO<SB>2</SB>, 25 to 65% of B<SB>2</SB>O<SB>3</SB>, 0 to <11% of ZnO as a glass composition expressed by mol% in terms of oxide. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電極形成用ガラス組成物および電極形成材料に関し、特にシリコン太陽電池(単結晶シリコン太陽電池、多結晶シリコン太陽電池、微結晶シリコン太陽電池、アモルファスシリコン太陽電池等を含む)の裏面電極の形成に好適な電極形成用ガラス組成物および電極形成材料に関する。   The present invention relates to a glass composition for electrode formation and an electrode forming material, and in particular, a back electrode of a silicon solar cell (including a single crystal silicon solar cell, a polycrystalline silicon solar cell, a microcrystalline silicon solar cell, an amorphous silicon solar cell, etc.). It is related with the glass composition for electrode formation suitable for formation of electrode, and an electrode formation material.

シリコン太陽電池は、シリコン半導体基板、受光面電極、裏面電極、反射防止膜等を備えており、シリコン半導体基板の受光面側に、グリッド状の受光面電極が形成されるとともに、シリコン半導体基板の裏面側に、裏面電極が形成される。また、受光面電極は、Ag電極等が一般的であり、裏面電極は、Al電極等が一般的である。   A silicon solar cell includes a silicon semiconductor substrate, a light-receiving surface electrode, a back electrode, an antireflection film, and the like. A grid-shaped light-receiving surface electrode is formed on the light-receiving surface side of the silicon semiconductor substrate. A back electrode is formed on the back side. The light receiving surface electrode is generally an Ag electrode and the back surface electrode is generally an Al electrode.

裏面電極は、通常、厚膜法で形成される。厚膜法は、所望の電極パターンになるように、シリコン半導体基板に電極形成材料をスクリーン印刷し、これを最高温度660〜900℃で短時間焼成(具体的には、焼成開始から終了まで2〜3分、最高温度で5〜20秒保持)して、Alをシリコン半導体基板に拡散させることにより、シリコン半導体基板に裏面電極を形成する方法である。   The back electrode is usually formed by a thick film method. In the thick film method, an electrode forming material is screen-printed on a silicon semiconductor substrate so as to obtain a desired electrode pattern, and this is fired for a short time at a maximum temperature of 660 to 900 ° C. This is a method of forming a back electrode on a silicon semiconductor substrate by diffusing Al into the silicon semiconductor substrate for 3 minutes and holding at the maximum temperature for 5 to 20 seconds).

裏面電極の形成に用いる電極形成材料は、Al粉末と、ガラス粉末と、ビークル等を含有する。この電極形成材料を焼成すると、Al粉末がシリコン半導体基板のSiと反応し、裏面電極とシリコン半導体基板の界面にAl−Si合金層が形成されるとともに、Al−Si合金層とシリコン半導体基板の界面にp+電解層(Back Surfase Field層、BSF層とも称される)が形成される。p+電解層を形成すれば、電子の再結合を防止し、生成キャリアの収集効率を向上させる効果、所謂BSF効果を享受することができる。結果として、p+電解層を形成すれば、シリコン太陽電池の光電変換効率を高めることができる。   The electrode forming material used for forming the back electrode contains Al powder, glass powder, vehicle and the like. When this electrode forming material is baked, the Al powder reacts with Si of the silicon semiconductor substrate to form an Al—Si alloy layer at the interface between the back electrode and the silicon semiconductor substrate, and between the Al—Si alloy layer and the silicon semiconductor substrate. A p + electrolytic layer (also referred to as a back surface field layer or a BSF layer) is formed at the interface. By forming the p + electrolytic layer, it is possible to enjoy the effect of preventing recombination of electrons and improving the collection efficiency of the generated carriers, the so-called BSF effect. As a result, if a p + electrolytic layer is formed, the photoelectric conversion efficiency of the silicon solar cell can be increased.

特開2000−90733号公報JP 2000-90733 A 特開2003−165744号公報JP 2003-165744 A

電極形成材料に含まれるガラス粉末は、Al粉末とSiの反応を促進し、Al−Si合金層とシリコン半導体基板の界面にp+電解層を形成して、BSF効果を付与する作用を有している(特許文献1、2参照)。   The glass powder contained in the electrode forming material has a function of accelerating the reaction between the Al powder and Si, forming a p + electrolytic layer at the interface between the Al—Si alloy layer and the silicon semiconductor substrate, and imparting a BSF effect. (See Patent Documents 1 and 2).

しかし、従来のガラス粉末、具体的には鉛ホウ酸系ガラス粉末を使用すると、Al粉末とSiの反応が不均一になり、局所的にAl−Si合金の生成量が増大し、裏面電極の表面にブリスターやAlの凝集が生じ、シリコン太陽電池の光電変換効率が低下するとともに、シリコン太陽電池の製造工程でシリコン半導体基板に割れ等が発生しやすくなり、シリコン太陽電池の製造効率が低下する。   However, when conventional glass powder, specifically, lead borate glass powder is used, the reaction between Al powder and Si becomes non-uniform, and the amount of Al-Si alloy produced locally increases, and the back electrode Blisters and Al agglomerate on the surface, reducing the photoelectric conversion efficiency of the silicon solar cell, and easily causing cracks in the silicon semiconductor substrate in the manufacturing process of the silicon solar cell, thereby reducing the manufacturing efficiency of the silicon solar cell. .

上記事情に鑑み、本発明は、ブリスターやAlの凝集が生じ難く、且つAl−Si合金層およびp+電解層の形成に好適な電極形成用ガラス組成物および電極形成材料を創案することにより、シリコン太陽電池の光電変換効率を高めつつ、シリコン太陽電池の製造コストを低廉化することを技術的課題とする。   In view of the above circumstances, the present invention provides a glass composition for forming an electrode and an electrode forming material that are less likely to cause blister and agglomeration of Al and that are suitable for forming an Al—Si alloy layer and a p + electrolytic layer. The technical problem is to reduce the manufacturing cost of silicon solar cells while increasing the photoelectric conversion efficiency of the solar cells.

本発明者は、鋭意努力の結果、SiO−B系ガラスを用いるとともに、ガラス組成中のSiO、B、ZnOの含有量を所定範囲に規制すれば、上記技術的課題を解決できることを見出し、本発明として、提案するものである。すなわち、本発明の電極形成用ガラス組成物は、ガラス組成として、下記酸化物換算のモル%表示で、SiO 1〜45%、B 25〜65%、ZnO 0〜11%未満含有することを特徴とする。 As a result of diligent efforts, the present inventor uses SiO 2 —B 2 O 3 based glass and regulates the contents of SiO 2 , B 2 O 3 , and ZnO in the glass composition within a predetermined range. The present inventors have found that the problem can be solved and propose as the present invention. That is, the glass composition for electrode formation of the present invention contains SiO 2 1 to 45%, B 2 O 3 25 to 65%, ZnO 0 to less than 11% as a glass composition in terms of the following oxide equivalent mol%. It is characterized by doing.

ガラスの骨格を形成する成分として、SiOとBを導入すれば、Al−Si合金層とシリコン半導体基板の界面にp+電解層が適正に形成されて、BSF効果を的確に享受することができる。つまり、SiO−B系ガラスは、鉛ホウ酸系ガラスに比べて、p+電解層を適正に形成できるため、BSF効果を的確に享受することができ、その結果、シリコン太陽電池の光電変換効率を高めることができる。また、ガラスの骨格を形成する成分として、SiOとBを導入すれば、Al粉末とSiの反応を促進しつつ、Al粉末とSiの反応を均一化しやすくなり、ブリスターやAlの凝集を抑制することもできる。また、ZnOの含有量を所定範囲以下に規制すれば、ブリスターやAlの凝集を顕著に抑制することができる。結果として、SiO、B、ZnOの含有量を所定範囲に規制すれば、シリコン太陽電池の光電変換効率を高めつつ、シリコン太陽電池の製造コストを低廉化することができる。 If SiO 2 and B 2 O 3 are introduced as components for forming the skeleton of the glass, a p + electrolytic layer is appropriately formed at the interface between the Al—Si alloy layer and the silicon semiconductor substrate, and the BSF effect can be enjoyed accurately. be able to. That is, SiO 2 —B 2 O 3 glass can appropriately form a p + electrolytic layer as compared with lead borate glass, so that the BSF effect can be enjoyed accurately. Photoelectric conversion efficiency can be increased. Moreover, if SiO 2 and B 2 O 3 are introduced as components for forming the glass skeleton, the reaction between the Al powder and Si is facilitated while the reaction between the Al powder and Si is facilitated, and blister and Al Aggregation can also be suppressed. Moreover, if the content of ZnO is restricted to a predetermined range or less, aggregation of blisters and Al can be remarkably suppressed. As a result, if the content of SiO 2 , B 2 O 3 , and ZnO is regulated within a predetermined range, the manufacturing cost of the silicon solar cell can be reduced while increasing the photoelectric conversion efficiency of the silicon solar cell.

第二に、本発明の電極形成用ガラス組成物は、更に、ガラス組成として、MgO+CaO+SrO+BaO(MgO、CaO、SrO、BaOの合量)を5〜35%含有することを特徴とする。このようにすれば、ブリスターやAlの凝集を抑制しつつ、ガラスの熱的安定性を高めることができる。   2ndly, the glass composition for electrode formation of this invention contains 5-35% of MgO + CaO + SrO + BaO (total amount of MgO, CaO, SrO, BaO) further as a glass composition, It is characterized by the above-mentioned. If it does in this way, thermal stability of glass can be improved, suppressing aggregation of blister and Al.

第三に、本発明の電極形成用ガラス組成物は、CaOの含有量が1〜35%であることを特徴とする。このようにすれば、ブリスターやAlの凝集を顕著に抑制することができる。   Third, the electrode-forming glass composition of the present invention is characterized in that the content of CaO is 1 to 35%. In this way, aggregation of blisters and Al can be remarkably suppressed.

第四に、本発明の電極形成用ガラス組成物は、更に、ガラス組成として、LiO+NaO+KO(LiO、NaO、KOの合量)を1〜30%含有することを特徴とする。このようにすれば、ガラスの軟化点が低下し、低温で裏面電極を形成できるとともに、電極形成材料の焼結性が向上する。 Fourthly, the glass composition for electrode formation of the present invention further contains 1 to 30% of Li 2 O + Na 2 O + K 2 O (total amount of Li 2 O, Na 2 O, K 2 O) as a glass composition. It is characterized by doing. If it does in this way, the softening point of glass will fall, while being able to form a back surface electrode at low temperature, the sinterability of electrode forming material will improve.

第五に、本発明の電極形成用ガラス組成物は、更に、ガラス組成として、CuOを0.1〜20%含有することを特徴とする。   Fifth, the electrode-forming glass composition of the present invention is further characterized by containing 0.1 to 20% of CuO as a glass composition.

第六に、本発明の電極形成用ガラス組成物は、熱膨張係数が100×10−7/℃未満であることを特徴とする。近年、シリコン太陽電池の製造コストを低廉化するために、シリコン半導体基板を薄くすることが検討されている。シリコン半導体基板を薄くすれば、Alとシリコン半導体基板の熱膨張係数の差に起因して、電極形成材料の焼成後に、シリコン半導体基板において裏面電極が形成された裏面側が凹状になるような反りが発生しやすくなる。電極形成材料の塗布量を低減し、裏面電極を薄くすれば、シリコン半導体基板の反りを抑制することができるが、電極形成材料の塗布量を低減すると、電極形成材料の焼成時にブリスターやAlの凝集が生じやすくなる。そこで、熱膨張係数を上記範囲とすれば、シリコン半導体基板の反りを可及的に抑制することができる。ここで、「熱膨張係数」とは、押棒式熱膨張係数測定(TMA)装置で測定した値を指し、30〜300℃の温度範囲で測定した値を指す。 Sixth, the electrode-forming glass composition of the present invention is characterized in that the thermal expansion coefficient is less than 100 × 10 −7 / ° C. In recent years, in order to reduce the manufacturing cost of silicon solar cells, it has been studied to make the silicon semiconductor substrate thinner. If the silicon semiconductor substrate is made thin, the back surface side where the back electrode is formed on the silicon semiconductor substrate becomes concave after firing of the electrode forming material due to the difference in thermal expansion coefficient between Al and the silicon semiconductor substrate. It tends to occur. If the coating amount of the electrode forming material is reduced and the back electrode is made thin, the warp of the silicon semiconductor substrate can be suppressed. However, if the coating amount of the electrode forming material is reduced, blister or Al Aggregation tends to occur. Therefore, if the thermal expansion coefficient is in the above range, warpage of the silicon semiconductor substrate can be suppressed as much as possible. Here, the “thermal expansion coefficient” refers to a value measured with a push rod type thermal expansion coefficient measurement (TMA) apparatus, and refers to a value measured in a temperature range of 30 to 300 ° C.

第七に、本発明の電極形成材料は、上記の電極形成用ガラス組成物からなるガラス粉末と、金属粉末と、ビークルとを含むことを特徴とする。このようにすれば、厚膜法で電極パターンを形成することができ、シリコン太陽電池の生産効率を高めることができる。ここで、「ビークル」は、一般的に、有機溶媒中に樹脂を溶解させたものを指すが、本発明では、樹脂を含有せず、高粘性の有機溶媒(例えば、イソトリデシルアルコール等の高級アルコール)のみで構成される態様を含む。   Seventhly, the electrode forming material of the present invention is characterized by including glass powder made of the above-mentioned electrode forming glass composition, metal powder, and vehicle. If it does in this way, an electrode pattern can be formed by a thick film method, and the production efficiency of a silicon solar cell can be improved. Here, “vehicle” generally refers to a resin in which an organic solvent is dissolved. However, in the present invention, the resin does not contain a high-viscosity organic solvent (for example, isotridecyl alcohol or the like). The aspect comprised only with a higher alcohol) is included.

第八に、本発明の電極形成材料は、ガラス粉末の平均粒子径D50が5μm未満であることを特徴とする。ここで、「平均粒子径D50」は、レーザー回折法で測定した値を指し、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒子径を表す。 Eighth, the electrode forming material of the present invention, wherein the average particle diameter D 50 of the glass powder is less than 5 [mu] m. Here, the “average particle diameter D 50 ” refers to a value measured by the laser diffraction method. In the volume-based cumulative particle size distribution curve measured by the laser diffraction method, the accumulated amount is accumulated from the smaller particle. The particle diameter is 50%.

第九に、本発明の電極形成材料は、ガラス粉末の軟化点が650℃以下であることを特徴とする。また、ガラス粉末の軟化点を600℃以下にすれば、短時間で裏面電極を形成することができる。ここで、「軟化点」とは、マクロ型示差熱分析(DTA)装置で測定した値を指し、DTAは室温から測定を開始し、昇温速度は10℃/分とする。なお、マクロ型DTA装置で測定した軟化点は、図1に示す第四屈曲点の温度(Ts)を指す。   Ninthly, the electrode forming material of the present invention is characterized in that the softening point of the glass powder is 650 ° C. or lower. Further, if the softening point of the glass powder is 600 ° C. or lower, the back electrode can be formed in a short time. Here, the “softening point” refers to a value measured with a macro-type differential thermal analysis (DTA) apparatus, DTA starts measurement from room temperature, and the rate of temperature rise is 10 ° C./min. In addition, the softening point measured with the macro type | mold DTA apparatus points out the temperature (Ts) of the 4th bending point shown in FIG.

第十に、本発明の電極形成材料は、ガラス粉末の結晶化温度が650℃以上であることを特徴とする。このようにすれば、ガラスの熱的安定性が向上し、電極形成材料の焼成時にガラスが失透し難くなり、結果として、裏面電極の機械的強度が低下し難くなる。ここで、「結晶化温度」は、マクロ型DTA装置で測定したピーク温度を指し、DTAは室温から測定を開始し、昇温速度は10℃/分とする。なお、低温でガラスが失透すると、Al粉末とSiの反応を促進し難くなり、BSF効果を享受し難くなる。   Tenth, the electrode forming material of the present invention is characterized in that the crystallization temperature of the glass powder is 650 ° C. or higher. If it does in this way, the thermal stability of glass will improve and it will become difficult to devitrify glass at the time of baking of an electrode formation material, As a result, the mechanical strength of a back surface electrode will become difficult to fall. Here, the “crystallization temperature” refers to the peak temperature measured with a macro DTA apparatus, DTA starts measurement from room temperature, and the rate of temperature rise is 10 ° C./min. In addition, when glass devitrifies at low temperature, it becomes difficult to promote reaction of Al powder and Si, and it becomes difficult to enjoy the BSF effect.

第十一に、本発明の電極形成材料は、ガラス粉末の含有量が0.2〜10質量%であることを特徴とする。このようにすれば、Al−Si合金層とシリコン半導体基板の界面にp+電解層を形成して、BSF効果を享受することができる。   Eleventh, the electrode forming material of the present invention is characterized in that the glass powder content is 0.2 to 10% by mass. In this way, it is possible to enjoy the BSF effect by forming a p + electrolytic layer at the interface between the Al—Si alloy layer and the silicon semiconductor substrate.

第十二に、本発明の電極形成材料は、金属粉末がAg、Al、Au、Cu、Pd、Ptおよびこれらの合金の一種または二種以上を含むことを特徴とする。これらの金属粉末は、本発明に係るガラス粉末と適合性が良好であり、電極形成材料の焼成時にガラスが発泡し難い性質を有している。   Twelfth, the electrode forming material of the present invention is characterized in that the metal powder contains Ag, Al, Au, Cu, Pd, Pt, or one or more of these alloys. These metal powders have good compatibility with the glass powder according to the present invention, and have a property that the glass is difficult to foam during firing of the electrode forming material.

第十三に、本発明の電極形成材料は、金属粉末がAlであることを特徴とする。   Thirteenth, the electrode forming material of the present invention is characterized in that the metal powder is Al.

第十四に、本発明の電極形成材料は、シリコン太陽電池の電極に用いることを特徴とする。   14thly, the electrode forming material of this invention is used for the electrode of a silicon solar cell, It is characterized by the above-mentioned.

第十五に、本発明の電極形成材料は、シリコン太陽電池の裏面電極に用いることを特徴とする。   15thly, the electrode forming material of this invention is used for the back surface electrode of a silicon solar cell, It is characterized by the above-mentioned.

マクロ型DTA装置で測定したときのガラス粉末の軟化点を示す模式図である。It is a schematic diagram which shows the softening point of glass powder when it measures with a macro type | mold DTA apparatus.

本発明の電極形成用ガラス組成物において、各成分の含有範囲を上記のように規定した理由を以下に説明する。   In the glass composition for electrode formation of the present invention, the reason why the content ranges of the respective components are defined as described above will be described below.

SiOは、SiO−B系ガラスに本明細書の段落[0010]に記載の効果を付与する成分であるとともに、ガラスの熱的安定性を高める成分である。また、SiOは、ガラスの熱膨張係数を低下させる成分であり、またガラスの耐水性を高める成分である。SiOの含有量は1〜45%、好ましくは3〜30%、より好ましくは5〜20%、更に好ましくは7〜15%である。SiOの含有量が少なくなると、SiO−B系ガラスに本明細書の段落[0010]に記載の効果を付与し難くなる。また、SiOの含有量が少なくなると、ガラスの熱的安定性が低下し、電極形成材料の焼成時に、ガラスが失透しやすくなり、裏面電極の機械的強度が低下しやすくなることに加えて、ガラスの熱膨張係数が高くなり過ぎ、電極形成材料の焼成後に、シリコン半導体基板が反りやすくなる。一方、SiOの含有量が多くなると、ガラスの軟化点が高くなり過ぎ、低温で裏面電極を形成しやすくなる。 SiO 2 is a component that imparts the effects described in paragraph [0010] of the present specification to the SiO 2 —B 2 O 3 -based glass, and is a component that enhances the thermal stability of the glass. Further, SiO 2 is a component to lower the thermal expansion coefficient of the glass, also a component for increasing the water resistance of the glass. The content of SiO 2 is 1 to 45%, preferably 3 to 30%, more preferably 5 to 20%, and still more preferably 7 to 15%. When the content of SiO 2 decreases, it becomes difficult to impart the effect described in paragraph [0010] of the present specification to the SiO 2 —B 2 O 3 based glass. In addition, when the content of SiO 2 is reduced, the thermal stability of the glass is lowered, and when the electrode forming material is fired, the glass is easily devitrified, and the mechanical strength of the back electrode is easily lowered. Thus, the thermal expansion coefficient of the glass becomes too high, and the silicon semiconductor substrate tends to warp after the electrode forming material is baked. On the other hand, when the content of SiO 2 increases, the softening point of the glass becomes too high, and it becomes easy to form the back electrode at a low temperature.

は、ガラスの骨格を形成する成分であり、主成分として含有させると、Al−Si合金層とシリコン半導体基板の界面にp+電解層を適正に形成させる効果とともに、ブリスターやAlの凝集を抑制する効果が得られる。また、Bは、ガラスの熱的安定性を高める成分であるとともに、ガラスの軟化点を低下させる成分である。Bの含有量は25〜65%、好ましくは30〜60%、より好ましくは35〜55%である。Bの含有量が少なくなると、BSF効果を享受し難くなることに加えて、ブリスターやAlの凝集が生じやすくなる。また、Bの含有量が少なくなると、ガラスの熱的安定性が低下し、電極形成材料の焼成時に、ガラスが失透しやすくなり、裏面電極の機械的強度が低下しやすくなる。一方、Bの含有量が多くなると、ガラスの耐水性が低下しやすくなり、裏面電極の長期信頼性が低下することに加えて、ガラスが分相しやすくなり、Al−Si合金層およびp+電解層を均一に形成し難くなる。 B 2 O 3 is a component that forms a skeleton of glass, and when incorporated as a main component, B 2 O 3 has the effect of properly forming a p + electrolytic layer at the interface between the Al—Si alloy layer and the silicon semiconductor substrate, and also includes blisters and Al. An effect of suppressing aggregation is obtained. B 2 O 3 is a component that increases the thermal stability of the glass and a component that lowers the softening point of the glass. The content of B 2 O 3 is 25 to 65%, preferably 30 to 60%, more preferably 35 to 55%. When the content of B 2 O 3 decreases, it becomes difficult to enjoy the BSF effect, and in addition, blisters and Al aggregates easily occur. Further, when the content of B 2 O 3 is low, reduces the thermal stability of the glass, upon firing of the electrode forming material, the glass is easily devitrified, the mechanical strength of the back electrode tends to decrease. On the other hand, when the content of B 2 O 3 increases, the water resistance of the glass tends to decrease, the long-term reliability of the back electrode decreases, and the glass tends to phase-separate, and the Al—Si alloy layer And it becomes difficult to form the p + electrolytic layer uniformly.

ZnOは、ガラスの熱的安定性を高める成分であるとともに、ガラスの熱膨張係数を上昇させずに、ガラスの軟化点を低下させる成分であるが、ガラス組成中に導入すると、Al粉末とSiの反応が不均一になりやすく、局所的にAl-Si合金の生成量が増大し、ブリスターやAlの凝集が生じやすくなる。よって、ZnOの含有量は0〜11%未満、好ましくは0〜7%、より好ましくは0〜3%、更に好ましくは0〜1%未満であり、実質的に含有しないことが望ましい。ここで、「実質的にZnOを含有しない」とは、ガラス組成中のZnOの含有量が1000ppm(質量)以下の場合を指す。   ZnO is a component that increases the thermal stability of the glass and lowers the softening point of the glass without increasing the coefficient of thermal expansion of the glass. When introduced into the glass composition, ZnO and Si This reaction tends to be non-uniform, the amount of Al-Si alloy produced locally increases, and blisters and Al agglomeration tend to occur. Therefore, the content of ZnO is 0 to less than 11%, preferably 0 to 7%, more preferably 0 to 3%, still more preferably less than 0 to 1%, and it is desirably not contained. Here, “substantially does not contain ZnO” refers to a case where the content of ZnO in the glass composition is 1000 ppm (mass) or less.

本発明の電極形成用ガラス組成物は、上記成分以外にも下記の成分を60%、好ましくは40%まで含有することができる。   The electrode-forming glass composition of the present invention may contain the following components in addition to the above components at 60%, preferably up to 40%.

MgO+CaO+SrO+BaOは、ブリスターやAlの凝集を抑制する成分であるとともに、ガラスの軟化点を低下させる成分であり、またガラスの熱的安定性を高める成分であり、その含有量は0〜40%、5〜35%、特に10〜30%が好ましい。MgO+CaO+SrO+BaOの含有量が多くなると、p+電解層を形成し難くなるため、BSF効果を享受し難くなり、シリコン太陽電池の光電変換効率が低下しやすくなる。また、MgO+CaO+SrO+BaOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスに結晶が析出しやすくなる。   MgO + CaO + SrO + BaO is a component that suppresses aggregation of blisters and Al, a component that lowers the softening point of glass, and a component that increases the thermal stability of glass, and its content is 0 to 40%, 5 -35%, especially 10-30% is preferred. When the content of MgO + CaO + SrO + BaO increases, it becomes difficult to form a p + electrolytic layer, so that it becomes difficult to enjoy the BSF effect, and the photoelectric conversion efficiency of the silicon solar cell is likely to decrease. Moreover, when there is too much content of MgO + CaO + SrO + BaO, the component balance of a glass composition will be impaired and it will become easy to precipitate a crystal | crystallization conversely.

MgOは、ブリスターやAlの凝集を抑制する成分であり、その含有量は0〜20%、0〜5%、特に0〜2%が好ましい。MgOの含有量が多くなると、p+電解層を形成し難くなるため、BSF効果を享受し難くなり、シリコン太陽電池の光電変換効率が低下しやすくなる。   MgO is a component that suppresses aggregation of blisters and Al, and its content is preferably 0 to 20%, 0 to 5%, particularly preferably 0 to 2%. When the content of MgO increases, it becomes difficult to form a p + electrolytic layer, so that it becomes difficult to enjoy the BSF effect, and the photoelectric conversion efficiency of the silicon solar cell is likely to decrease.

CaOは、ブリスターやAlの凝集を抑制する効果が高い成分であり、その含有量は0〜35%、1〜35%、特に5〜25%が好ましい。CaOの含有量が多くなると、p+電解層を形成し難くなるため、BSF効果を享受し難くなり、シリコン太陽電池の光電変換効率が低下しやすくなる。   CaO is a component having a high effect of suppressing the aggregation of blisters and Al, and its content is preferably 0 to 35%, 1 to 35%, particularly preferably 5 to 25%. When the content of CaO increases, it becomes difficult to form a p + electrolytic layer, so that it becomes difficult to enjoy the BSF effect, and the photoelectric conversion efficiency of the silicon solar cell is likely to decrease.

SrOは、ブリスターやAlの凝集を抑制する成分であるとともに、ガラスの軟化点を低下させる成分であり、またガラスの熱的安定性を高める成分であり、その含有量は0〜30%、0〜20%、特に0〜10%が好ましい。SrOの含有量が多くなると、p+電解層を形成し難くなるため、BSF効果を享受し難くなり、シリコン太陽電池の光電変換効率が低下しやすくなる。また、SrOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスに結晶が析出しやすくなる。   SrO is a component that suppresses the aggregation of blisters and Al, is a component that lowers the softening point of glass, and is a component that improves the thermal stability of glass, and its content is 0 to 30%, 0 -20%, especially 0-10% is preferred. When the content of SrO increases, it becomes difficult to form the p + electrolytic layer, so that it becomes difficult to enjoy the BSF effect, and the photoelectric conversion efficiency of the silicon solar cell is likely to decrease. Moreover, when there is too much content of SrO, the component balance of a glass composition will be impaired and it will become easy to precipitate a crystal | crystallization on glass conversely.

BaOは、ブリスターやAlの凝集を抑制する成分であるとともに、ガラスの軟化点を低下させる成分であり、またガラスの熱的安定性を高める効果が高い成分であり、その含有量は0〜35%、0〜30%、特に0.1〜20%が好ましい。BaOの含有量が少なくなると、Al粉末とSiの反応が不均一になりやすく、局所的にAl−Si合金の生成量が増大し、ブリスターやAlの凝集が生じやすくなる。一方、BaOの含有量が多くなると、p+電解層を形成し難くなるため、BSF効果を享受し難くなり、シリコン太陽電池の光電変換効率が低下しやすくなる。また、BaOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスに結晶が析出しやすくなる。   BaO is a component that suppresses aggregation of blisters and Al, is a component that lowers the softening point of glass, and is a component that has a high effect of increasing the thermal stability of glass, and its content is 0 to 35. %, 0 to 30%, particularly 0.1 to 20% is preferable. When the content of BaO decreases, the reaction between the Al powder and Si tends to be non-uniform, the amount of Al—Si alloy produced locally increases, and blisters and Al agglomeration tend to occur. On the other hand, when the content of BaO increases, it becomes difficult to form a p + electrolytic layer, so that it becomes difficult to enjoy the BSF effect, and the photoelectric conversion efficiency of the silicon solar cell is likely to decrease. Moreover, when there is too much content of BaO, the component balance of a glass composition will be impaired and a crystal | crystallization will precipitate on glass conversely.

LiO+NaO+KOは、ガラスの軟化点を低下させる成分であるとともに、電極形成材料の焼結性を高める成分であり、その含有量は0〜30%、1〜30%、5〜25%、特に10〜20%が好ましい。LiO+NaO+KOの含有量が多くなると、ガラスの熱的安定性が低下し、電極形成材料の焼成時に、ガラスが失透しやすくなり、裏面電極の機械的強度が低下しやすくなる。また、LiO+NaO+KOの含有量が多くなると、ガラスの熱膨張係数が高くなり過ぎ、電極形成材料の焼成後に、シリコン半導体基板が反りやすくなる。 Li 2 O + Na 2 O + K 2 O is a component that lowers the softening point of the glass and increases the sinterability of the electrode forming material, and its content is 0 to 30%, 1 to 30%, 5 to 5%. 25%, particularly 10 to 20% is preferable. When the content of Li 2 O + Na 2 O + K 2 O increases, the thermal stability of the glass decreases, and the glass tends to devitrify when the electrode forming material is baked, and the mechanical strength of the back electrode is likely to decrease. . Further, when the content of Li 2 O + Na 2 O + K 2 O increases, the thermal expansion coefficient of the glass becomes too high, and the silicon semiconductor substrate tends to warp after the electrode forming material is baked.

LiOは、ガラスの軟化点を低下させる成分であり、その含有量は0〜20%、0.1〜10%、特に1〜5%が好ましい。LiOの含有量が多くなると、ガラスの熱的安定性が低下し、電極形成材料の焼成時に、ガラスが失透しやすくなり、Al粉末とSiの反応が進行し難くなる。また、LiOの含有量が多くなると、ガラスの熱膨張係数が高くなり過ぎ、電極形成材料の焼成後に、シリコン半導体基板が反りやすくなる。さらに、LiOの含有量が多くなると、ガラスの耐水性が低下しやすくなり、裏面電極の長期信頼性が低下することに加えて、ガラスが分相しやすくなり、Al−Si合金層およびp+電解層を均一に形成し難くなる。 Li 2 O is a component that lowers the softening point of the glass, and its content is preferably 0 to 20%, 0.1 to 10%, and particularly preferably 1 to 5%. When the content of Li 2 O is increased, the thermal stability of the glass is lowered, the glass is easily devitrified when the electrode forming material is fired, and the reaction between the Al powder and Si is difficult to proceed. Moreover, when the content of Li 2 O increases, the thermal expansion coefficient of the glass becomes too high, and the silicon semiconductor substrate tends to warp after the electrode forming material is baked. Furthermore, when the content of Li 2 O is increased, the water resistance of the glass tends to be lowered, and in addition to the long-term reliability of the back electrode being lowered, the glass is likely to be phase-separated, and the Al—Si alloy layer and It becomes difficult to form the p + electrolytic layer uniformly.

NaOは、ガラスの軟化点を低下させる成分であり、その含有量は0〜25%、3〜20%、特に5〜15%が好ましい。NaOの含有量が多くなると、ガラスの熱的安定性が低下し、電極形成材料の焼成時に、ガラスが失透しやすくなり、裏面電極の機械的強度が低下しやすくなる。また、NaOの含有量が多くなると、ガラスの熱膨張係数が高くなり過ぎ、電極形成材料の焼成後に、シリコン半導体基板が反りやすくなる。 Na 2 O is a component that lowers the softening point of the glass, and its content is preferably 0 to 25%, 3 to 20%, and particularly preferably 5 to 15%. When the content of Na 2 O is increased, the thermal stability of the glass is lowered, the glass is easily devitrified when the electrode forming material is baked, and the mechanical strength of the back electrode is easily lowered. Further, when the content of Na 2 O increases, the thermal expansion coefficient of the glass becomes too high, and the silicon semiconductor substrate tends to warp after the electrode forming material is baked.

Oは、ガラスの軟化点を低下させる成分であり、その含有量は0〜20%、0.1〜10%、特に1〜5%が好ましい。KOの含有量が多くなると、ガラスの熱的安定性が低下し、電極形成材料の焼成時に、ガラスが失透しやすくなり、裏面電極の機械的強度が低下しやすくなる。また、KOの含有量が多くなると、ガラスの熱膨張係数が高くなり過ぎ、電極形成材料の焼成後に、シリコン半導体基板が反りやすくなる。 K 2 O is a component that lowers the softening point of the glass, and its content is preferably 0 to 20%, 0.1 to 10%, and particularly preferably 1 to 5%. When the content of K 2 O is increased, the thermal stability of the glass is lowered, the glass is easily devitrified when the electrode forming material is fired, and the mechanical strength of the back electrode is easily lowered. Further, when the content of K 2 O increases, the thermal expansion coefficient of the glass becomes too high, and the silicon semiconductor substrate tends to warp after the electrode forming material is baked.

LiO、NaO、KOは、2種以上、特に3種全てを混合することが望ましい。このようにすれば、アルカリ混合効果により、ガラスの熱膨張係数の上昇を抑制しつつ、ガラスの軟化点を低下させることが可能になる。 As for Li 2 O, Na 2 O, and K 2 O, it is desirable to mix two or more, particularly all three. If it does in this way, it becomes possible to reduce the softening point of glass, suppressing the raise of the thermal expansion coefficient of glass by the alkali mixing effect.

CuOは、詳細な機構は明らかではないが、焼成時に金属粉末と相互作用し、BSF効果を高める効果がある成分であり、その含有量は0〜20%、0.1〜20%、特に5〜15%が好ましい。CuOの含有量が多くなると、ガラスの熱的安定性が低下し、電極形成材料の焼成時に、ガラスが失透しやすくなり、裏面電極の機械的強度が低下しやすくなる。   Although the detailed mechanism is not clear, CuO is a component that interacts with the metal powder during firing and has an effect of enhancing the BSF effect, and its content is 0 to 20%, 0.1 to 20%, especially 5 ~ 15% is preferred. When the content of CuO is increased, the thermal stability of the glass is lowered, the glass is easily devitrified when the electrode forming material is fired, and the mechanical strength of the back electrode is easily lowered.

Alは、ガラスの熱的安定性を高める成分であるとともに、ガラスの熱膨張係数を低下させる成分であり、またガラスの耐水性を高める成分である。その含有量は0〜15%、特に0.1〜5%が好ましい。Alの含有量が多くなると、ガラスの軟化点が高くなり過ぎ、低温で裏面電極を形成し難くなる。 Al 2 O 3 is a component that increases the thermal stability of the glass, a component that decreases the thermal expansion coefficient of the glass, and a component that increases the water resistance of the glass. The content is preferably 0 to 15%, particularly preferably 0.1 to 5%. When the content of Al 2 O 3 increases, the softening point of the glass becomes too high and it becomes difficult to form the back electrode at a low temperature.

TiOは、ガラスの熱的安定性を高める成分であるとともに、ガラスの熱膨張係数を低下させる成分であり、またガラスの耐水性を高める成分である。その含有量は0〜20%、特に0〜10%が好ましい。TiOの含有量が多くなると、ガラスの軟化点が高くなり過ぎ、低温で裏面電極を形成し難くなる。 TiO 2 is a component that increases the thermal stability of the glass, a component that decreases the thermal expansion coefficient of the glass, and a component that increases the water resistance of the glass. Its content is preferably 0 to 20%, particularly preferably 0 to 10%. When the content of TiO 2 increases, the softening point of the glass becomes too high, and it becomes difficult to form the back electrode at a low temperature.

PbOは、ガラスの軟化点を低下させる成分である。本発明の電極形成用ガラス組成物は、PbOの含有を完全に排除するものではないが、環境的観点から実質的に含有しないことが好ましい。また、PbOの含有量が多いと、Al粉末とSiの反応が不均一になりやすく、局所的にAl-Si合金の生成量が増大し、ブリスターやAlの凝集が生じやすくなる。ここで、「実質的にPbOを含有しない」とは、ガラス組成中のPbOの含有量が1000ppm(質量)以下の場合を指す。また、Biは、ガラスの軟化点を低下させる成分であり、その含有量は0〜5%である。Biの含有量が多いと、ガラスの熱的安定性が低下し、電極形成材料の焼成時に、ガラスが失透しやすくなり、裏面電極の機械的強度が低下しやすくなる。なお、Biは、環境負荷が懸念される場合もあり、そのような場合には実質的に含有しないことが望ましい。ここで、「実質的にBiを含有しない」とは、ガラス組成中のBiの含有量が1000ppm(質量)以下の場合を指す。 PbO is a component that lowers the softening point of glass. The glass composition for forming an electrode of the present invention does not completely exclude the content of PbO, but it is preferable that the glass composition does not contain substantially from an environmental viewpoint. Further, when the content of PbO is large, the reaction between Al powder and Si tends to be non-uniform, the amount of Al—Si alloy produced locally increases, and blisters and Al agglomeration tend to occur. Here, “substantially no PbO” refers to the case where the content of PbO in the glass composition is 1000 ppm (mass) or less. Bi 2 O 3 is a component that lowers the softening point of the glass, and its content is 0 to 5%. When the content of Bi 2 O 3 is large, the thermal stability of the glass is lowered, the glass is easily devitrified when the electrode forming material is fired, and the mechanical strength of the back electrode is easily lowered. In some cases, Bi 2 O 3 is concerned about environmental impact, and in such a case, it is desirable that Bi 2 O 3 is not substantially contained. Here, “substantially does not contain Bi 2 O 3 ” refers to the case where the content of Bi 2 O 3 in the glass composition is 1000 ppm (mass) or less.

上記成分の他にも、本発明の効果を損なわない範囲で他の成分を添加することができる。例えば耐水性を高めるためにY、La、Ta、SnO、ZrO、Nbを添加してもよく、ガラスの熱的安定性を高めるためにPを添加してもよい。 In addition to the above components, other components can be added as long as the effects of the present invention are not impaired. For example, Y 2 O 3 , La 2 O 3 , Ta 2 O 5 , SnO 2 , ZrO 2 , and Nb 2 O 5 may be added to increase the water resistance, and P to increase the thermal stability of the glass. 2 O 5 may be added.

本発明の電極形成用ガラス組成物において、ガラスの熱膨張係数は100×10−7/℃未満、92×10−7/℃以下、特に88×10−7/℃以下が好ましい。ガラスの熱膨張係数が低い程、電極形成材料の熱膨張係数が低下して、シリコンの熱膨張係数に近づき、その結果、電極形成材料の焼成後に、シリコン半導体基板が反り難くなる。 In the glass composition for forming an electrode of the present invention, the coefficient of thermal expansion of the glass is preferably less than 100 × 10 −7 / ° C., 92 × 10 −7 / ° C. or less, and particularly preferably 88 × 10 −7 / ° C. or less. The lower the thermal expansion coefficient of the glass, the lower the thermal expansion coefficient of the electrode forming material and approach the thermal expansion coefficient of silicon. As a result, the silicon semiconductor substrate is less likely to warp after the electrode forming material is baked.

本発明の電極形成材料は、上記の電極形成用ガラス組成物からなるガラス粉末と、金属粉末と、ビークルとを含む。ガラス粉末は、Al粉末とSiの反応を促進し、Al−Si合金層とシリコン半導体基板の界面にp+電解層を形成して、BSF効果を付与する成分である。金属粉末は、電極を形成する主要成分であり、導電性を確保するための成分である。ビークルは、ペースト化するための成分であり、印刷に適した粘度を付与するための成分である。   The electrode forming material of the present invention includes a glass powder made of the above-described electrode forming glass composition, a metal powder, and a vehicle. Glass powder is a component that accelerates the reaction between Al powder and Si, forms a p + electrolytic layer at the interface between the Al—Si alloy layer and the silicon semiconductor substrate, and imparts a BSF effect. The metal powder is a main component for forming the electrode and a component for ensuring conductivity. The vehicle is a component for making a paste, and a component for imparting a viscosity suitable for printing.

本発明の電極形成材料において、ガラス粉末の平均粒子径D50は5μm未満、4μm以下、3μm以下、2μm以下、1μm以下、特に1μm未満が好ましい。ガラス粉末の平均粒子径D50が5μm以上であると、ガラス粉末の表面積が小さくなることに起因して、Al粉末とSiの反応を促進し難くなり、BSF効果を享受し難くなる。また、ガラス粉末の平均粒子径D50が5μm以上であると、ガラス粉末の軟化点が上昇し、電極の形成に必要な温度域が上昇する。さらに、ガラス粉末の平均粒子径D50が5μm以上であると、微細な電極パターンを形成し難くなり、シリコン太陽電池の光電変換効率が低下しやすくなる。一方、ガラス粉末の平均粒子径D50の下限は特に限定されないが、ガラス粉末の平均粒子径D50が小さ過ぎると、ガラス粉末のハンドリング性や材料収率が低下しやすくなる。このような状況を考慮すれば、ガラス粉末の平均粒子径D50は0.1μm以上が好ましい。なお、(1)ガラスフィルムをボールミルで粉砕した後、得られたガラス粉末を空気分級、或いは(2)ガラスフィルムをボールミル等で粗粉砕した後、ビーズミル等で湿式粉砕すれば、上記平均粒子径D50を有するガラス粉末を作製することができる。 In the electrode forming material of the present invention, the average particle diameter D 50 of the glass powder less than 5 [mu] m, 4 [mu] m or less, 3 [mu] m or less, 2 [mu] m or less, 1 [mu] m or less, in particular less than 1 [mu] m is preferred. When the average particle diameter D 50 of the glass powder is 5μm or more, due to the surface area of the glass powder is reduced, it becomes difficult to promote the reaction of the Al powder and Si, it is difficult to enjoy the BSF effect. When the average particle diameter D 50 of the glass powder is 5μm or more, the softening point of the glass powder is increased, the temperature range is increased required to form the electrode. Further, when the average particle diameter D 50 of the glass powder is 5μm or more, it becomes difficult to form a fine electrode pattern, the photoelectric conversion efficiency of the silicon solar cells tends to decrease. On the other hand, the lower limit of the average particle diameter D 50 of the glass powder is not particularly limited, the average particle diameter D 50 of the glass powder is too small, the handling property and material yield of the glass powder tends to decrease. In view of such situation, the average particle diameter D 50 of the glass powder is preferably at least 0.1 [mu] m. (1) After the glass film is pulverized with a ball mill, the obtained glass powder is classified by air, or (2) The glass film is coarsely pulverized with a ball mill or the like and then wet pulverized with a bead mill or the like. it can be produced glass powder having a D 50.

本発明の電極形成材料において、ガラス粉末の最大粒子径Dmaxは25μm以下、20μm以下、15μm以下、10μm以下、特に10μm未満が好ましい。ガラス粉末の最大粒子径Dmaxが25μmより大きいと、微細な電極パターンを形成し難くなり、シリコン太陽電池の光電変換効率が低下しやすくなる。ここで、「平均粒子径Dmax」は、レーザー回折法で測定した値を指し、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して99%である粒子径を表す。 In the electrode forming material of the present invention, the maximum particle diameter Dmax of the glass powder is preferably 25 μm or less, 20 μm or less, 15 μm or less, 10 μm or less, particularly preferably less than 10 μm. When the maximum particle diameter Dmax of the glass powder is larger than 25 μm, it becomes difficult to form a fine electrode pattern, and the photoelectric conversion efficiency of the silicon solar cell tends to be lowered. Here, the “average particle diameter D max ” refers to a value measured by the laser diffraction method. In the volume-based cumulative particle size distribution curve measured by the laser diffraction method, the accumulated amount is accumulated from the smaller particle. The particle diameter is 99%.

本発明の電極形成材料において、ガラス粉末の軟化点は650℃以下、620℃以下、特に600℃以下が好ましい。ガラス粉末の軟化点が650℃より高いと、電極の形成に必要な温度域が上昇し、シリコン太陽電池の生産効率が低下する。なお、ガラス粉末の軟化点が450℃より低いと、樹脂の分解が完了する前に、ガラス粉末が流動し、裏面電極に発泡が残存するおそれがある。   In the electrode forming material of the present invention, the softening point of the glass powder is preferably 650 ° C. or less, 620 ° C. or less, and particularly preferably 600 ° C. or less. When the softening point of the glass powder is higher than 650 ° C., the temperature range necessary for forming the electrode is increased, and the production efficiency of the silicon solar cell is decreased. If the softening point of the glass powder is lower than 450 ° C., the glass powder may flow before the resin is completely decomposed and foam may remain on the back electrode.

本発明の電極形成材料において、ガラス粉末の結晶化温度は650℃以上、特に700℃以上が好ましい。ガラス粉末の結晶化温度が650℃より低いと、ガラスの熱的安定性が低下し、電極形成材料の焼成時にガラスが失透しやすくなり、裏面電極の機械的強度が低下しやすくなる。また、低温でガラスが失透すると、Al粉末とSiの反応を促進し難くなり、BSF効果を享受し難くなる。   In the electrode forming material of the present invention, the crystallization temperature of the glass powder is preferably 650 ° C. or higher, particularly preferably 700 ° C. or higher. When the crystallization temperature of the glass powder is lower than 650 ° C., the thermal stability of the glass is lowered, the glass is easily devitrified when the electrode forming material is fired, and the mechanical strength of the back electrode is easily lowered. Further, when the glass is devitrified at a low temperature, it becomes difficult to promote the reaction between the Al powder and Si, and it is difficult to enjoy the BSF effect.

本発明の電極形成材料において、ガラス粉末の含有量は0.2〜10質量%、0.5〜6質量%、0.7〜4質量%、特に1〜3質量%が好ましい。ガラス粉末の含有量が0.2質量%より少ないと、Al粉末とSiの反応を促進し難くなることに加えて、裏面電極の機械的強度が低下しやすくなる。一方、ガラス粉末の含有量が10質量%より多いと、電極形成材料の焼成後にガラスが偏析しやすくなり、裏面電極の導電性が低下して、シリコン太陽電池の光電変換効率が低下するおそれがある。また、ガラス粉末の含有量と金属粉末の含有量は、上記と同様の理由により、質量比で0.3:99.7〜13:87、1.5:98.5〜7:93、特に1.8:98.2〜4:96が好ましい。   In the electrode forming material of the present invention, the glass powder content is preferably 0.2 to 10% by mass, 0.5 to 6% by mass, 0.7 to 4% by mass, and particularly preferably 1 to 3% by mass. When the content of the glass powder is less than 0.2% by mass, it becomes difficult to promote the reaction between the Al powder and Si, and the mechanical strength of the back electrode tends to decrease. On the other hand, when the content of the glass powder is more than 10% by mass, the glass tends to segregate after the electrode forming material is fired, the conductivity of the back electrode is lowered, and the photoelectric conversion efficiency of the silicon solar cell may be lowered. is there. In addition, the content of the glass powder and the content of the metal powder are 0.3: 99.7 to 13:87, 1.5: 98.5 to 7:93 in mass ratios for the same reason as described above, in particular. 1.8: 98.2 to 4:96 are preferred.

本発明の電極形成材料において、金属粉末の含有量は50〜97質量%、65〜95質量%、特に70〜92質量%が好ましい。金属粉末の含有量が50質量%より少ないと、裏面電極の導電性が低下し、シリコン太陽電池の光電変換効率が低下しやすくなる。一方、金属粉末の含有量が97質量%より多いと、相対的にガラス粉末、或いはビークルの含有量を低下せざるを得ず、p+電解層を形成し難くなる。   In the electrode forming material of the present invention, the content of the metal powder is preferably 50 to 97 mass%, 65 to 95 mass%, particularly preferably 70 to 92 mass%. When content of metal powder is less than 50 mass%, the electroconductivity of a back surface electrode will fall and the photoelectric conversion efficiency of a silicon solar cell will fall easily. On the other hand, if the content of the metal powder is more than 97% by mass, the content of the glass powder or the vehicle must be relatively lowered, and it becomes difficult to form the p + electrolytic layer.

本発明の電極形成材料において、金属粉末はAg、Al、Au、Cu、Pd、Ptおよびこれらの合金の一種または二種以上が好ましく、AlはBSF効果を享受する観点から特に好ましい。これらの金属粉末は、導電性が良好であるとともに、本発明に係るガラス粉末と適合性が良好である。よって、これらの金属粉末を用いると、電極形成材料の焼成時にガラスが失透し難くなることに加えて、ガラスが発泡し難くなる。また、微細な電極パターンを形成するために、金属粉末の平均粒子径D50は5μm以下、3μm以下、2μm以下、特に1μm以下が好ましい。 In the electrode forming material of the present invention, the metal powder is preferably one or more of Ag, Al, Au, Cu, Pd, Pt and alloys thereof, and Al is particularly preferable from the viewpoint of enjoying the BSF effect. These metal powders have good electrical conductivity and good compatibility with the glass powder according to the present invention. Therefore, when these metal powders are used, the glass is less likely to be devitrified when the electrode forming material is fired, and the glass is less likely to foam. Further, in order to form a fine electrode pattern, the mean particle diameter D 50 of the metal powder is 5μm or less, 3 [mu] m or less, 2 [mu] m or less, especially 1μm or less.

本発明の電極形成材料において、ビークルの含有量は5〜50質量%、特に10〜30質量%が好ましい。ビークルの含有量が5質量%より少ないと、ペースト化が困難になり、厚膜法で電極を形成し難くなる。一方、ビークルの含有量が50質量%より多いと、電極形成材料の焼成前後で膜厚や膜幅が変動しやすくなり、結果として、所望の電極パターンを形成し難くなる。   In the electrode forming material of the present invention, the content of the vehicle is preferably 5 to 50% by mass, particularly preferably 10 to 30% by mass. When the content of the vehicle is less than 5% by mass, it becomes difficult to form a paste and it is difficult to form an electrode by the thick film method. On the other hand, when the content of the vehicle is more than 50% by mass, the film thickness and film width are likely to fluctuate before and after the electrode forming material is fired, and as a result, it is difficult to form a desired electrode pattern.

既述の通り、ビークルは、一般的に、有機溶媒中に樹脂を溶解させたものを指す。樹脂としては、アクリル酸エステル(アクリル樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、メタクリル酸エステル等が使用可能である。特に、アクリル酸エステル、ニトロセルロース、エチルセルロースは、熱分解性が良好であるため、好ましい。有機溶媒としては、N、N’−ジメチルホルムアミド(DMF)、α−ターピネオール、高級アルコール、γ−ブチルラクトン(γ−BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3−メトキシ−3−メチルブタノール、水、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N−メチル−2−ピロリドン等が使用可能である。特に、α−ターピネオールは、高粘性であり、樹脂等の溶解性も良好であるため、好ましい。   As described above, a vehicle generally refers to a resin in which a resin is dissolved in an organic solvent. As the resin, acrylic acid ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester and the like can be used. In particular, acrylic acid ester, nitrocellulose, and ethylcellulose are preferable because of their good thermal decomposability. As organic solvents, N, N′-dimethylformamide (DMF), α-terpineol, higher alcohol, γ-butyllactone (γ-BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether , Diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, water, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl Ether, tripropylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO) N- methyl-2-pyrrolidone and the like can be used. In particular, α-terpineol is preferable because it is highly viscous and has good solubility in resins and the like.

本発明の電極形成材料は、上記成分以外にも、熱膨張係数を調整するためにコーディエライト等のセラミックフィラー粉末、電極の表面抵抗を調整するためにNiO等の酸化物粉末、ペースト特性を調整するために界面活性剤、増粘剤、可塑剤、表面処理剤、色調を調整するために顔料等を含有してもよい。   In addition to the above components, the electrode-forming material of the present invention has ceramic filler powder such as cordierite for adjusting the thermal expansion coefficient, oxide powder such as NiO for adjusting the surface resistance of the electrode, and paste characteristics. In order to adjust, a surfactant, a thickener, a plasticizer, a surface treatment agent, a pigment or the like may be included to adjust the color tone.

本発明の電極形成材料は、裏面電極のみならず、受光面電極の形成に使用することもでき、その場合、Ag粉末を含有することが好ましい。なお、Ag粉末の含有量等は、上記の通りである。受光面電極の形成に用いる場合、受光面電極と裏面電極を別々に形成してもよいし、受光面電極と裏面電極を同時に形成してもよい。受光面電極と裏面電極を同時に形成すれば、焼成回数を減らすことができるため、シリコン太陽電池の製造効率が向上する。   The electrode forming material of the present invention can be used not only for forming a back surface electrode but also for forming a light receiving surface electrode. In that case, it is preferable to contain Ag powder. In addition, content of Ag powder etc. are as above-mentioned. When used for forming the light receiving surface electrode, the light receiving surface electrode and the back electrode may be formed separately, or the light receiving surface electrode and the back electrode may be formed simultaneously. If the light-receiving surface electrode and the back electrode are formed at the same time, the number of firings can be reduced, so that the production efficiency of the silicon solar cell is improved.

以下、実施例に基づいて、本発明を詳細に説明する。   Hereinafter, based on an Example, this invention is demonstrated in detail.

表1、2は、本発明の実施例(試料No.1〜10)および比較例(試料No.11〜13)を示している。試料No.11、12は、従来の電極形成用ガラス組成物を例示している。   Tables 1 and 2 show Examples (Sample Nos. 1 to 10) and Comparative Examples (Sample Nos. 11 to 13) of the present invention. Sample No. 11 and 12 exemplify conventional glass compositions for electrode formation.

次のようにして、各試料を調製した。まず、表中に示したガラス組成となるように各種酸化物、炭酸塩等のガラス原料を調合し、ガラスバッチを準備した後、このガラスバッチを白金坩堝に入れ、1230〜1330℃で1〜2時間溶融した。次に、溶融ガラスの一部を押棒式熱膨張係数測定(TMA)用サンプルとしてステンレス製の金型に流し出した。その他の溶融ガラスを水冷ローラーでフィルム状に成形し、得られたガラスフィルムをボールミルで粉砕した後、目開き250メッシュの篩を通過させた上で、空気分級し、平均粒子径D50が2.5μm(最大粒子径Dmaxが9.5μm)のガラス粉末を得た。 Each sample was prepared as follows. First, after preparing glass raw materials, such as various oxides and carbonates, so that it may become the glass composition shown in the table, and preparing a glass batch, this glass batch is put into a platinum crucible, and it is 1-30-1330 ° C at 1 Melted for 2 hours. Next, a part of the molten glass was poured out into a stainless steel mold as a sample for measuring the thermal expansion coefficient of the push rod (TMA). Other molten glass was formed into a film with a water-cooled roller, after the glass film obtained were pulverized by a ball mill, after passed through the mesh 250 mesh sieve, and air classification, the average particle diameter D 50 of 2 A glass powder having a diameter of 0.5 μm (maximum particle diameter D max of 9.5 μm) was obtained.

得られたガラス試料につき、熱膨張係数α、軟化点および熱的安定性を測定した。   About the obtained glass sample, the thermal expansion coefficient (alpha), the softening point, and thermal stability were measured.

熱膨張係数αは、TMA装置で測定した値であり、30〜300℃の温度範囲で測定した値である。   The thermal expansion coefficient α is a value measured with a TMA apparatus, and is a value measured in a temperature range of 30 to 300 ° C.

軟化点は、マクロ型DTA装置で測定した値である。なお、マクロ型DTAの測定温度域は室温〜700℃とし、昇温速度は10℃/分とした。   The softening point is a value measured with a macro DTA apparatus. The measurement temperature range of the macro type DTA was room temperature to 700 ° C., and the rate of temperature increase was 10 ° C./min.

熱的安定性は、結晶化温度が650℃以上の場合を「○」とし、650℃未満の場合を「×」として評価した。なお、結晶化温度は、マクロ型DTA装置で測定した値であり、マクロ型DTAの測定温度域は室温〜700℃とし、昇温速度は10℃/分とした。   The thermal stability was evaluated as “◯” when the crystallization temperature was 650 ° C. or higher, and “x” when the crystallization temperature was lower than 650 ° C. The crystallization temperature is a value measured with a macro type DTA apparatus, the measurement temperature range of the macro type DTA is room temperature to 700 ° C., and the temperature increase rate is 10 ° C./min.

得られたガラス粉末3質量%と、Al粉末(平均粒子径D50=0.5μm)75質量%と、ビークル(α−ターピネオールにアクリル酸エステルを溶解させたもの)23質量%とを三本ローラーで混練し、ペースト状の電極形成材料を得た。次に、スクリーン印刷により、シリコン半導体基板(100mm×100mm×200μm厚)の裏面の全面に電極形成材料を塗布し、乾燥した後、最高温度720℃(焼成開始から終了まで2分、最高温度における保持時間10秒)で焼成し、厚みが50μmの裏面電極を得た。得られた裏面電極につき、p+電解層の表面抵抗、外観および反りを評価した。 Three of 3% by weight of the obtained glass powder, 75% by weight of Al powder (average particle diameter D 50 = 0.5 μm), and 23% by weight of vehicle (a solution of acrylic acid ester dissolved in α-terpineol) The mixture was kneaded with a roller to obtain a paste-like electrode forming material. Next, an electrode forming material is applied to the entire back surface of the silicon semiconductor substrate (100 mm × 100 mm × 200 μm thickness) by screen printing and dried, and then the maximum temperature is 720 ° C. (2 minutes from the start to the end of baking, at the maximum temperature). A back electrode having a thickness of 50 μm was obtained by firing at a holding time of 10 seconds. About the obtained back surface electrode, the surface resistance, external appearance, and curvature of the p + electrolytic layer were evaluated.

p+電解層の表面抵抗は、試料No.12により作製されたp+電解層の表面抵抗値を基準にして、その表面抵抗値以下の場合を「○」、その表面抵抗値より大きい場合を「×」として評価した。なお、p+電解層の表面抵抗値が低い程、BSF効果を享受しやすくなる。   The surface resistance of the p + electrolytic layer is the sample No. With respect to the surface resistance value of the p + electrolytic layer produced according to No. 12, the case where the surface resistance value is equal to or less than “◯” is evaluated, and the case where the surface resistance value is greater than “×” is evaluated. In addition, it becomes easy to enjoy a BSF effect, so that the surface resistance value of a p + electrolytic layer is low.

外観は、裏面電極の表面を目視観察し、ブリスターおよびAlの凝集の個数を観察することで評価した。ブリスターおよびAlの凝集の個数が試料No.13より少ない場合を「○」、試料No.13と同等の場合を「△」、試料No.13より多い場合を「×」とした。   The appearance was evaluated by visually observing the surface of the back electrode and observing the number of blisters and Al aggregates. The number of blister and agglomeration of Al is the sample number. In the case of less than 13, “◯”, sample No. The case equivalent to 13 is indicated by “△” and the sample No. The case where there were more than 13 was marked “x”.

反りは、接触式表面粗さ計により、シリコン半導体基板の受光面側の表面を測定することで評価した。シリコン半導体の中央部において、30mmの間隔で測定し、最低部と最上部の差が20μm未満の場合を「○」とし、20μm以上の場合を「×」とした。   The warpage was evaluated by measuring the surface of the silicon semiconductor substrate on the light receiving surface side with a contact-type surface roughness meter. In the central part of the silicon semiconductor, measurement was performed at an interval of 30 mm, and a case where the difference between the lowest part and the uppermost part was less than 20 μm was designated as “◯”, and a case where the difference was 20 μm or more was designated as “X”.

表1、2から明らかなように、試料No.1〜10は、熱膨張係数および軟化点が低く、熱的安定性の評価が良好であった。さらに、試料No.1〜10は、p+電解層の表面抵抗、外観、反りの評価が良好であった。   As is clear from Tables 1 and 2, sample no. 1 to 10 had a low coefficient of thermal expansion and a softening point, and the evaluation of thermal stability was good. Furthermore, sample no. Nos. 1 to 10 were good in evaluation of the surface resistance, appearance, and warpage of the p + electrolytic layer.

一方、試料No.11は、p+電解層の表面抵抗および外観の評価が不良であった。試料No.12は、外観の評価が不良であった。試料No.13は、外観の評価が試料No.1〜10より劣っていた。   On the other hand, sample No. No. 11 had poor evaluation of the surface resistance and appearance of the p + electrolytic layer. Sample No. No. 12 had poor appearance evaluation. Sample No. No. 13 shows the evaluation of the external appearance of sample No. It was inferior to 1-10.

本発明の電極形成用ガラス組成物および電極形成材料は、上記の通り、シリコン太陽電池の電極、特にシリコン太陽電池の裏面電極の形成に好適に使用可能である。さらに、本発明の電極形成用ガラス組成物および電極形成材料は、セラミックコンデンサ等のセラミック電子部品、フォトダイオード等の光学部品に適用することができる。   As described above, the electrode-forming glass composition and electrode-forming material of the present invention can be suitably used for forming an electrode of a silicon solar cell, particularly a back electrode of a silicon solar cell. Furthermore, the electrode-forming glass composition and electrode-forming material of the present invention can be applied to ceramic electronic parts such as ceramic capacitors and optical parts such as photodiodes.

Claims (15)

ガラス組成として、下記酸化物換算のモル%表示で、SiO 1〜45%、B 25〜65%、ZnO 0〜11%未満含有することを特徴とする電極形成用ガラス組成物。 As a glass composition, in mol% in terms of oxide, SiO 2 1~45%, B 2 O 3 25~65%, glass composition for electrode formation, characterized in that it contains less than 0 to 11% ZnO. 更に、ガラス組成として、MgO+CaO+SrO+BaOを5〜35%含有することを特徴とする請求項1に記載の電極形成用ガラス組成物。   Furthermore, it contains 5-35% of MgO + CaO + SrO + BaO as a glass composition, The glass composition for electrode formation of Claim 1 characterized by the above-mentioned. CaOの含有量が1〜35%であることを特徴とする請求項1または2に記載の電極形成用ガラス組成物。   Content of CaO is 1-35%, The glass composition for electrode formation of Claim 1 or 2 characterized by the above-mentioned. 更に、ガラス組成として、LiO+NaO+KOを1〜30%含有することを特徴とする請求項1〜3のいずれかに記載の電極形成用ガラス組成物。 Further, a glass composition, Li 2 O + Na 2 O + K 2 glass composition for electrode formation according to claim 1, O and characterized in that it contains 1% to 30%. 更に、ガラス組成として、CuOを0.1〜20%含有することを特徴とする請求項1〜4のいずれかに記載の電極形成用ガラス組成物。   Furthermore, 0.1-20% of CuO is contained as a glass composition, The glass composition for electrode formation in any one of Claims 1-4 characterized by the above-mentioned. 熱膨張係数が100×10−7/℃未満であることを特徴とする請求項1〜5のいずれかに記載の電極形成用ガラス組成物。 The glass composition for electrode formation according to claim 1, wherein the coefficient of thermal expansion is less than 100 × 10 −7 / ° C. 請求項1〜6のいずれかに記載の電極形成用ガラス組成物からなるガラス粉末と、金属粉末と、ビークルとを含むことを特徴とする電極形成材料。   An electrode forming material comprising a glass powder comprising the glass composition for forming an electrode according to claim 1, a metal powder, and a vehicle. ガラス粉末の平均粒子径D50が5μm未満であることを特徴とする請求項7に記載の電極形成材料。 The electrode forming material according to claim 7, wherein the glass powder has an average particle diameter D 50 of less than 5 μm. ガラス粉末の軟化点が650℃以下であることを特徴とする請求項7または8に記載の電極形成材料。   The electrode forming material according to claim 7 or 8, wherein the softening point of the glass powder is 650 ° C or lower. ガラス粉末の結晶化温度が650℃以上であることを特徴とする請求項7〜9のいずれかに記載の電極形成材料。   The crystallization temperature of glass powder is 650 degreeC or more, The electrode forming material in any one of Claims 7-9 characterized by the above-mentioned. ガラス粉末の含有量が0.2〜10質量%であることを特徴とする請求項7〜10のいずれかに記載の電極形成材料。   Content of glass powder is 0.2-10 mass%, The electrode forming material in any one of Claims 7-10 characterized by the above-mentioned. 金属粉末がAg、Al、Au、Cu、Pd、Ptおよびこれらの合金の一種または二種以上を含むことを特徴とする請求項7〜11のいずれかに記載の電極形成材料。   The electrode forming material according to any one of claims 7 to 11, wherein the metal powder contains one or more of Ag, Al, Au, Cu, Pd, Pt and alloys thereof. 金属粉末がAlであることを特徴とする請求項7〜12のいずれかに記載の電極形成材料。   The electrode forming material according to claim 7, wherein the metal powder is Al. シリコン太陽電池の電極に用いることを特徴とする請求項7〜13のいずれかに記載の電極形成材料。   It is used for the electrode of a silicon solar cell, The electrode forming material in any one of Claims 7-13 characterized by the above-mentioned. シリコン太陽電池の裏面電極に用いることを特徴とする請求項7〜14のいずれかに記載の電極形成材料。   It uses for the back surface electrode of a silicon solar cell, The electrode formation material in any one of Claims 7-14 characterized by the above-mentioned.
JP2009099618A 2009-04-16 2009-04-16 Electrode forming material Active JP5796270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009099618A JP5796270B2 (en) 2009-04-16 2009-04-16 Electrode forming material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009099618A JP5796270B2 (en) 2009-04-16 2009-04-16 Electrode forming material

Publications (2)

Publication Number Publication Date
JP2010248034A true JP2010248034A (en) 2010-11-04
JP5796270B2 JP5796270B2 (en) 2015-10-21

Family

ID=43310857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009099618A Active JP5796270B2 (en) 2009-04-16 2009-04-16 Electrode forming material

Country Status (1)

Country Link
JP (1) JP5796270B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108290A1 (en) * 2011-02-10 2012-08-16 セントラル硝子株式会社 Electroconductive paste and solar cell element obtained using the electroconductive paste
WO2012165167A1 (en) * 2011-06-03 2012-12-06 株式会社ノリタケカンパニーリミテド Solar cell and paste composition for forming aluminum electrode of solar cell
JP2014076912A (en) * 2012-10-10 2014-05-01 Nippon Electric Glass Co Ltd Lead-free glass for semiconductor encapsulation
JP2015511205A (en) * 2011-12-22 2015-04-16 ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー Low resistance contact solar cell paste
JP2015079975A (en) * 2014-11-26 2015-04-23 日立化成株式会社 Element, solar cell, and paste composition for electrode
JP2016515996A (en) * 2013-04-18 2016-06-02 フエロ コーポレーション Low melting point glass composition
JP2016122840A (en) * 2015-12-18 2016-07-07 日立化成株式会社 Device and solar battery, and paste composition for electrodes
CN111320390A (en) * 2018-12-17 2020-06-23 Agc株式会社 Glass composition, composite powder material paste, print head for laser printer, and thermal print head
US11225433B2 (en) 2016-02-19 2022-01-18 Ferro Corporation Sintering aid for glasses for machinable phyllosilicate based structures

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108735339B (en) * 2018-05-25 2019-08-06 重庆邦锐特新材料有限公司 A kind of high performance sintered conductive silver paste and preparation method thereof and sintering method

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100306A (en) * 1981-12-09 1983-06-15 松下電器産業株式会社 Conductive paste
JPS6036350A (en) * 1983-07-25 1985-02-25 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Borosilicate glass composition
JPH06349314A (en) * 1993-06-03 1994-12-22 Murata Mfg Co Ltd Conductive paste
JPH06349313A (en) * 1993-06-03 1994-12-22 Murata Mfg Co Ltd Conductive paste
JPH08180731A (en) * 1994-12-26 1996-07-12 Murata Mfg Co Ltd Electroconductive thick film compound, thick film electrode, ceramic electronic component, and layered ceramic capacitor
JPH0955118A (en) * 1995-08-11 1997-02-25 Tdk Corp Conductive paste and ceramic-layered capacitor
JP2001345231A (en) * 2000-05-31 2001-12-14 Murata Mfg Co Ltd Conductive paste and ceramic electronic part
JP2003223813A (en) * 2002-01-30 2003-08-08 Toyo Aluminium Kk Paste composition and solar cell utilizing the same
JP2003297146A (en) * 2002-04-03 2003-10-17 Murata Mfg Co Ltd Electrically conductive paste and layer stack ceramic electronic component using it
JP2006108610A (en) * 2004-09-07 2006-04-20 Tdk Corp Conductive material, resistor paste, resistor and electronic component
WO2006073024A1 (en) * 2005-01-07 2006-07-13 Murata Manufacturing Co., Ltd. Conductive paste and piezoelectric electronic part utilizing the same
JP2006313744A (en) * 2005-04-14 2006-11-16 E I Du Pont De Nemours & Co Conductive thick film composition, electrode, and semiconductor device composed of same
JP2006347835A (en) * 2005-06-17 2006-12-28 Asahi Glass Co Ltd Glass for coating electrode
JP2007059380A (en) * 2005-06-07 2007-03-08 E I Du Pont De Nemours & Co Thick aluminum film composition, electrode, semiconductor device and method of manufacturing them
JP2007128872A (en) * 2005-10-11 2007-05-24 E I Du Pont De Nemours & Co Aluminum thick film composition, electrode, semiconductor device, and their manufacturing methods
JP2007313744A (en) * 2006-05-25 2007-12-06 Seiko Epson Corp Method for inspecting liquid jetting head

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100306A (en) * 1981-12-09 1983-06-15 松下電器産業株式会社 Conductive paste
JPS6036350A (en) * 1983-07-25 1985-02-25 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Borosilicate glass composition
JPH06349314A (en) * 1993-06-03 1994-12-22 Murata Mfg Co Ltd Conductive paste
JPH06349313A (en) * 1993-06-03 1994-12-22 Murata Mfg Co Ltd Conductive paste
JPH08180731A (en) * 1994-12-26 1996-07-12 Murata Mfg Co Ltd Electroconductive thick film compound, thick film electrode, ceramic electronic component, and layered ceramic capacitor
JPH0955118A (en) * 1995-08-11 1997-02-25 Tdk Corp Conductive paste and ceramic-layered capacitor
JP2001345231A (en) * 2000-05-31 2001-12-14 Murata Mfg Co Ltd Conductive paste and ceramic electronic part
JP2003223813A (en) * 2002-01-30 2003-08-08 Toyo Aluminium Kk Paste composition and solar cell utilizing the same
JP2003297146A (en) * 2002-04-03 2003-10-17 Murata Mfg Co Ltd Electrically conductive paste and layer stack ceramic electronic component using it
JP2006108610A (en) * 2004-09-07 2006-04-20 Tdk Corp Conductive material, resistor paste, resistor and electronic component
WO2006073024A1 (en) * 2005-01-07 2006-07-13 Murata Manufacturing Co., Ltd. Conductive paste and piezoelectric electronic part utilizing the same
JP2006313744A (en) * 2005-04-14 2006-11-16 E I Du Pont De Nemours & Co Conductive thick film composition, electrode, and semiconductor device composed of same
JP2007059380A (en) * 2005-06-07 2007-03-08 E I Du Pont De Nemours & Co Thick aluminum film composition, electrode, semiconductor device and method of manufacturing them
JP2006347835A (en) * 2005-06-17 2006-12-28 Asahi Glass Co Ltd Glass for coating electrode
JP2007128872A (en) * 2005-10-11 2007-05-24 E I Du Pont De Nemours & Co Aluminum thick film composition, electrode, semiconductor device, and their manufacturing methods
JP2007313744A (en) * 2006-05-25 2007-12-06 Seiko Epson Corp Method for inspecting liquid jetting head

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108290A1 (en) * 2011-02-10 2012-08-16 セントラル硝子株式会社 Electroconductive paste and solar cell element obtained using the electroconductive paste
WO2012165167A1 (en) * 2011-06-03 2012-12-06 株式会社ノリタケカンパニーリミテド Solar cell and paste composition for forming aluminum electrode of solar cell
CN103597548A (en) * 2011-06-03 2014-02-19 株式会社则武 Solar cell and paste composition for forming aluminum electrode of solar cell
JPWO2012165167A1 (en) * 2011-06-03 2015-02-23 株式会社ノリタケカンパニーリミテド Solar cell and paste composition for forming aluminum electrode of solar cell
JP2015511205A (en) * 2011-12-22 2015-04-16 ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー Low resistance contact solar cell paste
JP2014076912A (en) * 2012-10-10 2014-05-01 Nippon Electric Glass Co Ltd Lead-free glass for semiconductor encapsulation
JP2016515996A (en) * 2013-04-18 2016-06-02 フエロ コーポレーション Low melting point glass composition
JP2015079975A (en) * 2014-11-26 2015-04-23 日立化成株式会社 Element, solar cell, and paste composition for electrode
JP2016122840A (en) * 2015-12-18 2016-07-07 日立化成株式会社 Device and solar battery, and paste composition for electrodes
US11225433B2 (en) 2016-02-19 2022-01-18 Ferro Corporation Sintering aid for glasses for machinable phyllosilicate based structures
CN111320390A (en) * 2018-12-17 2020-06-23 Agc株式会社 Glass composition, composite powder material paste, print head for laser printer, and thermal print head
CN111320390B (en) * 2018-12-17 2023-06-13 Agc株式会社 Glass composition, composite powder material paste, print head for laser printer, and thermal print head

Also Published As

Publication number Publication date
JP5796270B2 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
JP5532512B2 (en) Electrode forming glass composition and electrode forming material
JP5796270B2 (en) Electrode forming material
WO2010026952A1 (en) Glass composition for electrode formation and electrode formation material
JP5717043B2 (en) Electrode forming glass composition and electrode forming material
JP5888493B2 (en) Conductive paste and solar cell element using the conductive paste
WO2012023413A1 (en) Glass for use in forming electrodes, and electrode-forming material using same
JP2009099781A (en) Conductive paste material
JP6090706B2 (en) Electrode forming glass and electrode forming material using the same
JP2011084437A (en) Sealing material
JP6075601B2 (en) Electrode forming glass and electrode forming material using the same
JP5850388B2 (en) Electrode forming glass and electrode forming material using the same
JP5541605B2 (en) Electrode forming glass composition and electrode forming material
TWI422547B (en) A conductive paste and a solar cell element using the conductive paste
JP2008105880A (en) Bismuth-based sealing material
KR101317228B1 (en) Aluminum paste compositon of the low bowing and high-efficiency silicon solar cells
JP2014007212A (en) Glass for electrode formation and electrode-formation material using the same
JP2010192480A (en) Glass composition for electrode formation, and electrode forming material
JP5796281B2 (en) Electrode forming material
JP2011079694A (en) Sealing material
JP2013018666A (en) Electrode formation glass and electrode formation material
JP5943295B2 (en) Electrode forming glass and electrode forming material using the same
JP6112384B2 (en) Electrode forming glass and electrode forming material using the same
JP5709033B2 (en) Bismuth glass
JP2014105153A (en) Bismuth-based glass composition and electrode formation material using the same
JP2013212949A (en) Glass for electrode formation and electrode forming material using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150803

R150 Certificate of patent or registration of utility model

Ref document number: 5796270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150