JP2010247450A - Antibacterial film - Google Patents

Antibacterial film Download PDF

Info

Publication number
JP2010247450A
JP2010247450A JP2009100132A JP2009100132A JP2010247450A JP 2010247450 A JP2010247450 A JP 2010247450A JP 2009100132 A JP2009100132 A JP 2009100132A JP 2009100132 A JP2009100132 A JP 2009100132A JP 2010247450 A JP2010247450 A JP 2010247450A
Authority
JP
Japan
Prior art keywords
antibacterial
film
thin film
metal
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009100132A
Other languages
Japanese (ja)
Inventor
Hiroshi Mase
比呂志 間瀬
Natsuko Araki
夏子 安楽城
Noriaki Asada
典明 浅田
Shoko Ono
昇子 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2009100132A priority Critical patent/JP2010247450A/en
Publication of JP2010247450A publication Critical patent/JP2010247450A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antibacterial film which is flexible and can be applied to an arbitrary site and has excellent antibacterial performance. <P>SOLUTION: This antibacterial film has at least, one layer of antibacterial metallic thin film formed of preferably, silver, copper or their alloy, on at least, one side surface of the flexible polymer film base material. The metallic thin film is an antibacterial film formed through a vacuum vapor deposition process to thermally melt a metallic evaporation source. That is, it is preferable to form a pressure-sensitive adhesive layer on one side surface of the base material and also form an antibacterial metal on the opposite side surface to the side where at least the pressure-sensitive adhesive layer is formed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は建造物や機器、什器などの表面に設置して、その表面に生息する有害微生物を低減するための抗菌フィルムに関する。     The present invention relates to an antibacterial film that is installed on the surface of a building, equipment, furniture, etc. to reduce harmful microorganisms that inhabit the surface.

食品を扱う事業所や一般家庭の調理場、医療施設などにおいては、床や壁などの内装、機器、什器などに付着した病原菌などの有害微生物に起因した接触感染や中毒を防止するため、これら内装、機器、什器の表面を無菌状態に保つことが強く求められている。接触感染のリスクは従来から強く認識されており、水拭きや各種消毒薬を用いた清掃が励行されてきた。しかし全ての内装、機器、什器類の表面を残すことなく完全に清掃するには多大な労力と注意力が必要であり、接触感染による食中毒や院内感染を完全に防ぐことはできていないのが現状である。   To prevent contact infection and poisoning caused by harmful microorganisms such as pathogens attached to interiors such as floors and walls, equipment, furniture, etc. There is a strong demand for keeping the surfaces of equipment and furniture sterile. The risk of contact infection has long been recognized and cleaning with water wipes and various disinfectants has been enforced. However, a great deal of labor and caution is required to completely clean all interiors, equipment, and fixtures without leaving any surface, and food poisoning and nosocomial infection due to contact infection cannot be completely prevented. Currently.

このような状況の中、より少ない労力で有効に有害微生物を低減するために、微生物を死滅または増殖を抑制する効果のある物質即ち抗菌剤を含む材料が使用されるようになってきている。病院や食品工場で、抗菌剤を練りこんだ塗料で床を塗装するなどがその例として挙げられる。また、より簡易に表面に有害微生物低減効果を持たせるために、抗菌剤を練りこんだ抗菌壁紙などを表面に設置することも広く行われてきている。特に銅などの抗菌性金属が、有機系の抗菌剤と比べてより広範囲の有害微生物に効果を発揮し、かつ人体への毒性が低いことに着目し、例えば銅の薄膜を紙やフィルムなどの可撓性基材に設けることが特許文献1〜8および非特許文献1に提案されている。   Under such circumstances, in order to effectively reduce harmful microorganisms with less effort, materials containing substances that have an effect of killing or suppressing the growth of microorganisms, that is, antibacterial agents, have been used. An example is the painting of floors with antibacterial agents in hospitals and food factories. In addition, in order to more easily impart harmful microorganisms to the surface, antibacterial wallpaper or the like in which an antibacterial agent has been kneaded has been widely installed. In particular, antibacterial metals such as copper are effective against a wider range of harmful microorganisms than organic antibacterial agents and are less toxic to the human body. For example, copper thin films such as paper and film It is proposed in Patent Documents 1 to 8 and Non-Patent Document 1 to be provided on a flexible substrate.

しかしながら前述のような抗菌フィルムは、以下のような問題から必ずしも充分有用なものとは言えなかった。有機系の抗菌剤を練りこみもしくは表面に塗工したものは、作用する菌種が限定されること、および該抗菌剤に耐性を有する菌が出現する恐れが高いといった事情から、菌の低減効果が必ずしも充分とは言えなかった。
一方、無機系抗菌剤は比較的菌の低減効果に優れるものの、抗菌剤を高分子材料等に練りこんで配合したものは、フィルムの表面全面に抗菌剤が露出しているわけではないので、抗菌剤の露出していない部位に付着した有害微生物は抗菌剤の影響を受けることなく生き延びてしまうという問題があった。
また一方で、フィルムの表面全面に抗菌性の金属薄膜を形成したフィルムが提案されているものの、その効果の厳密な評価および、より効果の高い構成および手段については詳細には検討されてこなかった。
However, the antibacterial film as described above has not always been sufficiently useful due to the following problems. What is kneaded with organic antibacterial agent or coated on the surface is limited in the type of fungus that acts, and there is a high risk that bacteria having resistance to the antibacterial agent will appear. However, it was not always enough.
On the other hand, although the inorganic antibacterial agent is relatively excellent in reducing bacteria, the antibacterial agent is not exposed on the entire surface of the film when the antibacterial agent is kneaded into a polymer material. There was a problem that harmful microorganisms attached to the unexposed part of the antibacterial agent survive without being affected by the antibacterial agent.
On the other hand, although a film in which an antibacterial metal thin film is formed on the entire surface of the film has been proposed, rigorous evaluation of its effect and more effective configuration and means have not been studied in detail. .

特開平11−179870JP-A-11-179870 特開2004−183030JP2004-183030 特開昭61−182943JP 61-182943 特許第2947934Japanese Patent No. 2947934 特表平9―505112Special table hei 9-505112 特表平8―500392Special table hei 8-500392 特開2006−152353JP 2006-152353 A

富山県工業技術センター平成9年度研究報告 p.II-73Toyama Prefectural Industrial Technology Center, 1997 report p.II-73

本発明は、可撓性があり任意の場所に設置することができ、かつ抗菌性能に優れる抗菌フィルムを提供することを目的とする。   An object of this invention is to provide the antibacterial film which is flexible, can be installed in arbitrary places, and is excellent in antibacterial performance.

前記問題点に対して、本発明者らは金属薄膜の膜の構造や密度が薄膜形成の方法により異なることに着目し、銅などの抗菌性を有する金属の薄膜の抗菌力と薄膜形成方法との関係に関して詳細な検討を加えてきた。その結果、薄膜の形成方法によって抗菌効果の発現の度合いが異なることを発見し、本発明を完成させるに至った。すなわち本発明は抗菌性金属薄膜として、金属蒸発源を加熱溶融させて行う真空蒸着法(以下蒸着法)により形成された薄膜(以下蒸着膜)を用いることで、他の製造方法で製造したものよりも高い抗菌力を得るものである。金属の薄膜をプラスチック基材上に形成する場合、膜厚が比較的薄い場合は膜厚制御性と基材への付着力に優れたスパッタリング法を用いるか、膜厚制御性や基材への付着力は劣るが生産性に優れる蒸着法が一般に用いられる。また、膜厚を概ね1マイクロメートル以上と厚くする場合は、基材への電解めっきまたは電解精錬により製造された銅箔を用いることが一般的である。   In view of the above problems, the present inventors have paid attention to the fact that the structure and density of the metal thin film differ depending on the method of forming the thin film. A detailed study has been made on the relationship. As a result, it was discovered that the degree of expression of the antibacterial effect varies depending on the thin film formation method, and the present invention has been completed. In other words, the present invention is an antibacterial metal thin film manufactured by another manufacturing method by using a thin film (hereinafter referred to as vapor deposition method) formed by a vacuum evaporation method (hereinafter referred to as vapor deposition method) performed by heating and melting a metal evaporation source. Higher antibacterial activity. When a metal thin film is formed on a plastic substrate, if the film thickness is relatively thin, use a sputtering method with excellent film thickness controllability and adhesion to the substrate, or use film thickness controllability and A vapor deposition method that is inferior in adhesion but excellent in productivity is generally used. Further, when the film thickness is increased to about 1 micrometer or more, it is general to use a copper foil manufactured by electrolytic plating or electrolytic refining on the base material.

これらの製造方法の中で蒸着膜が他の方法で形成された金属薄膜より高い抗菌力を示す理由は明確ではない。しかし、蒸着膜はスパッタリング法やめっき法で形成された金属層と比較して膜の密度が低いため、水分や空気中の酸素による金属の酸化反応がより速く起こると考えられる。この高い酸化反応速度が、細菌を死滅させる活性物質である活性酸素や金属イオンの生成を加速して、より大きな殺菌力が得られていると考えられる。   Among these production methods, the reason why the deposited film exhibits higher antibacterial activity than metal thin films formed by other methods is not clear. However, since the deposited film has a lower film density than a metal layer formed by sputtering or plating, it is considered that the oxidation reaction of the metal by moisture or oxygen in the air occurs faster. It is considered that this high oxidation reaction rate accelerates the generation of active oxygen and metal ions, which are active substances that kill bacteria, and a greater bactericidal power is obtained.

実施例ならびに比較例の抗菌試験結果から明らかなように、本発明の抗菌フィルムは同じ抗菌性金属を他の方法で形成した抗菌フィルムに比べて短時間により多くの菌を殺すことが可能である。   As is clear from the antibacterial test results of the examples and comparative examples, the antibacterial film of the present invention can kill more bacteria in a shorter time than an antibacterial film formed by the same method with other antibacterial metals. .

本発明の抗菌フィルムを、壁・床・天井・窓枠・押入れ内張り・手摺・ドアノブなど建造物の建材表面、あるいはテーブル・食器棚・作業台・カーテンなど家具または室内装飾品の表面に設置することにより、従来提案されてきた構成の抗菌フィルムや銅箔・銅板に比べ低コストで、かつより効果的に室内環境中の黴や有害細菌類の増殖を抑制して健康被害のリスクを低減することができる。
さらに本発明の抗菌フィルムを容易に除去可能な状態で設置することにより、建材や家具または室内装飾品といった対象物自体に抗菌加工を施す場合と違い、前記外観の変化を機に該抗菌フィルムを除去したり別のフィルムと交換したりすることで、良好な環境を保つことが容易になる。
The antibacterial film of the present invention is installed on the surface of building materials such as walls, floors, ceilings, window frames, closet linings, handrails and doorknobs, or furniture or interior decorations such as tables, cupboards, work tables, and curtains. This reduces the risk of health damage by suppressing the growth of moths and harmful bacteria in the indoor environment at a lower cost and more effectively than the antibacterial films, copper foils and copper plates that have been proposed in the past. be able to.
Furthermore, by installing the antibacterial film of the present invention in a state where it can be easily removed, unlike the case where the object itself such as building materials, furniture or upholstery is subjected to antibacterial processing, By removing or replacing with another film, it becomes easy to maintain a good environment.

抗菌性金属を、金属蒸発源を加熱溶融させて行う真空蒸着法により形成することにより、高い抗菌効果を得ることが可能になる。金属蒸発源を加熱溶融させて行う手段としては、成膜速度の制御性が良好なことから電子ビームを照射して加熱を行う方法(いわゆるEB蒸着)、通電加熱、誘導加熱など一般に利用されている全ての加熱方法を利用できる。これらの加熱方法で金属蒸発源を加熱して溶融、さらに蒸発させる蒸着方法を採用することにより、他の金属薄膜形成方法、例えばスパッタリング法、電解析出(めっき)法を用いるのに比べてより高い有害微生物低減効果を得ることができる。   A high antibacterial effect can be obtained by forming the antibacterial metal by a vacuum deposition method in which a metal evaporation source is heated and melted. As a means for heating and melting a metal evaporation source, a method of heating by irradiating an electron beam (so-called EB vapor deposition), energization heating, induction heating, etc. are generally used because of good controllability of a film formation rate. All heating methods are available. By adopting a vapor deposition method in which the metal evaporation source is heated and melted and further evaporated by these heating methods, compared to using other metal thin film forming methods such as sputtering and electrolytic deposition (plating). A high effect of reducing harmful microorganisms can be obtained.

抗菌性金属層の構成物質は、銅、銀、または銅合金、銀合金から選ぶのが最も好ましいが、人体に対して毒性の低い金属として亜鉛、白金、鉄、コバルト、モリブデンなどの遷移金属やアルミニウムなど、また前記金属を含有する合金も使用することができる。
また、該抗菌フィルムを望ましい位置に設置し固定するために、基材の一方の面に粘着剤層が形成され、粘着剤層が形成されている側と反対側の面には抗菌性金属が形成された構成とすることで容易に固定が可能になる。さらに設置だけでなく抗菌性能が劣化した際に容易に除去できるように、粘着剤層には再剥離可能な粘着剤を使用することが望ましい。また、基材の選択によっては粘着剤層との剥離強度が低く、除去した際に設置対象に粘着剤が残留する、いわゆる糊残りが発生するため、該粘着剤層は基材に近い側から遠い側に向かって順に剥離強度が小さくなるように少なくとも2層形成されていることが好ましい場合もある。
The constituent material of the antibacterial metal layer is most preferably selected from copper, silver, a copper alloy, and a silver alloy, but transition metals such as zinc, platinum, iron, cobalt, and molybdenum as metals having low toxicity to the human body, Aluminum and other alloys containing the above metals can also be used.
In addition, in order to install and fix the antibacterial film at a desired position, an adhesive layer is formed on one side of the substrate, and an antibacterial metal is formed on the side opposite to the side where the adhesive layer is formed. It becomes possible to fix easily by setting it as the formed structure. Furthermore, it is desirable to use a removable adhesive for the adhesive layer so that it can be easily removed when the antibacterial performance deteriorates as well as the installation. Also, depending on the choice of substrate, the peel strength from the adhesive layer is low, and when removed, the adhesive remains on the installation target, so-called adhesive residue is generated. In some cases, at least two layers are preferably formed so that the peel strength decreases in order toward the far side.

また、抗菌性金属薄膜を形成したフィルムを少なくとも2層以上積層し、かつ積層した後に抗菌性金属に接しない最外層の粘着剤層の剥離強度が他の層の粘着剤層の剥離強度よりも大きくなるように予め構成した抗菌フィルムを使用することにより、最表層の抗菌性能や外観が劣化した際には最表層のみを除去することで容易に抗菌性能や外観を回復することができる。   Also, at least two layers of the antibacterial metal thin film are laminated, and the peel strength of the outermost pressure-sensitive adhesive layer that is not in contact with the antibacterial metal after lamination is higher than the peel strength of the other pressure-sensitive adhesive layers. By using an antibacterial film configured in advance so as to be large, when the antibacterial performance and appearance of the outermost layer deteriorate, the antibacterial performance and appearance can be easily recovered by removing only the outermost layer.

抗菌性金属薄膜の膜厚を概ね5ナノメートル以上とすることで、基材の表面全面を金属薄膜で完全に被覆することができる。一方、抗菌性金属薄膜の膜厚を1マイクロメートル以下とすることにより、該抗菌フィルムを取り扱う際にその端面で手を切傷する危険を避けることができる。さらに抗菌性金属薄膜の膜厚を20ナノメートル以下にすることで、該金属薄膜を光線が透過できるようになるため、基材に施された各種意匠を該抗菌フィルムの外観に反映させることが可能になり、該抗菌フィルムを設置した建造物内装や家具または室内装飾品全体の意匠性を向上させることが可能になる。   By setting the film thickness of the antibacterial metal thin film to approximately 5 nanometers or more, the entire surface of the substrate can be completely covered with the metal thin film. On the other hand, when the film thickness of the antibacterial metal thin film is 1 micrometer or less, the risk of cutting the hand at the end face when handling the antibacterial film can be avoided. Furthermore, by making the film thickness of the antibacterial metal thin film 20 nm or less, light can be transmitted through the metal thin film, so that various designs applied to the substrate can be reflected in the appearance of the antibacterial film. It becomes possible, and it becomes possible to improve the design nature of the interior of a building or furniture or the entire interior decoration in which the antibacterial film is installed.

次に本発明を実施例及び比較例に基づき更に詳しく説明する。なお、本発明はこれらの例によって何ら制限されるものではない。   Next, the present invention will be described in more detail based on examples and comparative examples. In addition, this invention is not restrict | limited at all by these examples.

市販の二軸延伸ポリプロピレンフィルム(以下OPPフィルム、東セロ株式会社製「エコネージュ」(登録商標)、フィルム厚50マイクロメートル)の片側表面に、電子ビーム加熱真空蒸着法により、純銅薄膜を膜厚50ナノメートル形成した。このときの装置内の圧力(Base Pressure)は2×10のマイナス4乗パスカル、蒸着源の銅の純度は99.9%以上、銅薄膜の形成速度は毎秒10ナノメートルであった。こうして作製した銅薄膜つきフィルムを50ミリメートル四方の大きさに切り出し、大腸菌および黄色ブドウ球菌について、JISZ2801:2000「抗菌加工製品−抗菌性試験方法・抗菌効果」に基づく試験と、それに加えて試験時間だけを通常の24時間器加え以外に15分間に変えての試験を、それぞれ1検体3連性にて行った。結果を表1に示す。   A pure copper thin film having a thickness of 50 is formed on one surface of a commercially available biaxially stretched polypropylene film (hereinafter referred to as OPP film, “Econege” (registered trademark) manufactured by Tosero Co., Ltd., film thickness 50 μm) by an electron beam heating vacuum deposition method. Nanometer formed. At this time, the pressure (Base Pressure) in the apparatus was 2 × 10 minus 4 Pascal, the purity of the copper of the vapor deposition source was 99.9% or more, and the formation rate of the copper thin film was 10 nanometers per second. The film with copper thin film thus prepared was cut into a size of 50 mm square, and E. coli and Staphylococcus aureus were tested based on JISZ2801: 2000 “Antibacterial processed product-Antibacterial test method / antibacterial effect”, in addition to the test time. In addition to the usual addition for 24 hours, the test was changed to 15 minutes and each sample was performed in triplicate. The results are shown in Table 1.

市販の二軸延伸ポリエチレンテレフタレートフィルム(以下OPETフィルム、帝人デュポンフィルム株式会社製「OX」グレード、フィルム厚50マイクロメートル)の片側表面に、実施例1と同一条件で同じ膜厚の純銅薄膜を形成した。こうして作製した銅薄膜つきフィルムを50ミリメートル四方の大きさに切り出し、実施例1と同一の抗菌性試験を実施した。結果を表1に示す。   A pure copper thin film having the same film thickness as that of Example 1 is formed on one surface of a commercially available biaxially stretched polyethylene terephthalate film (hereinafter referred to as “OPET film”, “OX” grade manufactured by Teijin DuPont Films Co., Ltd., film thickness 50 μm). did. The film with a copper thin film thus produced was cut into a size of 50 mm square and subjected to the same antibacterial test as in Example 1. The results are shown in Table 1.

[比較例1]
実施例1と同じ仕様のOPPフィルムの片側表面に、高周波スパッタリング法により、実施例1と同一膜厚である50ナノメートルの純銅薄膜を形成した。このときの装置内の圧力(Base Pressure)は2×10のマイナス4乗パスカル、成膜雰囲気ガスはアルゴンで成膜時圧力は0.5パスカル、銅薄膜の形成速度は毎秒0.02ナノメートル、スパッタターゲットの銅の純度は99.9%以上であった。こうして作製した銅薄膜つきフィルムを50ミリメートル四方の大きさに切り出し、実施例1と同一の抗菌性試験を実施した。結果を表1に示す。
[Comparative Example 1]
A 50-nanometer pure copper thin film having the same film thickness as that of Example 1 was formed on one surface of an OPP film having the same specifications as in Example 1 by high-frequency sputtering. At this time, the pressure in the apparatus (Base Pressure) is 2 × 10 minus fourth power Pascal, the film formation atmosphere gas is argon, the pressure during film formation is 0.5 Pascal, and the formation rate of the copper thin film is 0.02 nanometers per second. The copper purity of the sputtering target was 99.9% or higher. The film with a copper thin film thus produced was cut into a size of 50 mm square and subjected to the same antibacterial test as in Example 1. The results are shown in Table 1.

[比較例2]
実施例2と同じ仕様のOPETフィルムの片側表面に、比較例1と同一条件で同じ膜厚の純銅薄膜を形成した。こうして作製した銅薄膜つきフィルムを50ミリメートル四方の大きさに切り出し、実施例1と同一の抗菌性試験を実施した。結果を表1に示す。
[Comparative Example 2]
A pure copper thin film having the same thickness as that of Comparative Example 1 was formed on one surface of an OPET film having the same specifications as in Example 2. The film with a copper thin film thus produced was cut into a size of 50 mm square and subjected to the same antibacterial test as in Example 1. The results are shown in Table 1.

[比較例3]
市販の電解銅シートを50ミリメートル四方の大きさに切り出して被試験体とし、実施例1と同一の抗菌性試験を実施した。結果を表1に示す。
[Comparative Example 3]
A commercially available electrolytic copper sheet was cut into a size of 50 mm square to make a test object, and the same antibacterial test as in Example 1 was performed. The results are shown in Table 1.

Claims (4)

可撓性高分子フィルム基材の少なくとも一方の表面に少なくとも1層の抗菌性金属薄膜を形成してなり、該金属薄膜は金属蒸発源を加熱溶融させて行う真空蒸着法により形成されている抗菌フィルム。 An antibacterial film formed by forming at least one antibacterial metal thin film on at least one surface of a flexible polymer film substrate, and the metal thin film is formed by a vacuum evaporation method in which a metal evaporation source is heated and melted the film. 抗菌性金属薄膜の材質が銅、銀、銅合金、銀合金からなる群から選ばれる少なくとも1種以上の金属である請求項1に記載の抗菌フィルム。 The antibacterial film according to claim 1, wherein the material of the antibacterial metal thin film is at least one metal selected from the group consisting of copper, silver, a copper alloy, and a silver alloy. 基材の一方の面に粘着剤層が形成され、少なくとも粘着剤層が形成されている側と反対側の面には抗菌性金属が形成されている請求項1ないし2に記載の抗菌フィルム。 The antibacterial film according to claim 1 or 2, wherein an adhesive layer is formed on one side of the substrate, and an antibacterial metal is formed on at least the side opposite to the side where the adhesive layer is formed. 再剥離可能な粘着剤層が形成されている請求項3に記載の抗菌フィルム。 The antibacterial film according to claim 3, wherein a releasable pressure-sensitive adhesive layer is formed.
JP2009100132A 2009-04-16 2009-04-16 Antibacterial film Pending JP2010247450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009100132A JP2010247450A (en) 2009-04-16 2009-04-16 Antibacterial film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009100132A JP2010247450A (en) 2009-04-16 2009-04-16 Antibacterial film

Publications (1)

Publication Number Publication Date
JP2010247450A true JP2010247450A (en) 2010-11-04

Family

ID=43310360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009100132A Pending JP2010247450A (en) 2009-04-16 2009-04-16 Antibacterial film

Country Status (1)

Country Link
JP (1) JP2010247450A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109566648A (en) * 2017-09-29 2019-04-05 信越化学工业株式会社 Have and has photochemical catalyst/alloy film component on antibacterium/fungoid photochemical catalyst/alloy particle dispersion liquid, the preparation method and surface
WO2019198484A1 (en) * 2018-04-12 2019-10-17 信越化学工業株式会社 Photocatalyst transfer film and method for manufacturing same
WO2020085175A1 (en) * 2018-10-25 2020-04-30 株式会社Uacj Antibacterial sheet and method for manufacturing same
KR102170441B1 (en) * 2020-04-24 2020-10-28 주식회사 엔아이씨 the antimicrobial adhesive film using the dispersion solution in which the copper nanoparticle and copper micro particle are mixed to the specific gravity difference and a method of manufacture thereof
WO2021193940A1 (en) 2020-03-27 2021-09-30 三菱マテリアル株式会社 Antibacterial member
KR20210147625A (en) * 2020-05-29 2021-12-07 정현철 Method for manufacturing antiviral film with copper deposited thereon and antiviral film deposited with copper manufactured using the same
DE112021000940T5 (en) 2020-04-09 2023-02-23 Uacj Corporation Antimicrobial film and manufacturing method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019063712A (en) * 2017-09-29 2019-04-25 信越化学工業株式会社 Photocatalyst/alloy fine-particle dispersion having antibacterial/antifungal properties, method of preparation thereof, and member having photocatalyst/alloy thin film on surface
CN109566648B (en) * 2017-09-29 2022-12-23 信越化学工业株式会社 Photocatalyst/alloy fine particle dispersion liquid having antibacterial/antifungal properties, method for producing the same, and member having photocatalyst/alloy film on surface thereof
CN109566648A (en) * 2017-09-29 2019-04-05 信越化学工业株式会社 Have and has photochemical catalyst/alloy film component on antibacterium/fungoid photochemical catalyst/alloy particle dispersion liquid, the preparation method and surface
JP7014292B2 (en) 2018-04-12 2022-02-01 信越化学工業株式会社 Photocatalytic transfer film and its manufacturing method
WO2019198484A1 (en) * 2018-04-12 2019-10-17 信越化学工業株式会社 Photocatalyst transfer film and method for manufacturing same
US11319422B2 (en) 2018-04-12 2022-05-03 Shin-Etsu Chemical Co., Ltd. Photocatalyst transfer film and production method thereof
JPWO2019198484A1 (en) * 2018-04-12 2021-02-12 信越化学工業株式会社 Photocatalytic transfer film and its manufacturing method
JP2020066187A (en) * 2018-10-25 2020-04-30 株式会社Uacj Antibacterial sheet and manufacturing method therefor
CN112638644A (en) * 2018-10-25 2021-04-09 株式会社Uacj Antibacterial sheet and method for producing same
JP7084846B2 (en) 2018-10-25 2022-06-15 株式会社Uacj Antibacterial sheet and its manufacturing method
WO2020085175A1 (en) * 2018-10-25 2020-04-30 株式会社Uacj Antibacterial sheet and method for manufacturing same
WO2021193940A1 (en) 2020-03-27 2021-09-30 三菱マテリアル株式会社 Antibacterial member
CN115243545A (en) * 2020-03-27 2022-10-25 三菱综合材料株式会社 Antibacterial member
EP4129646A4 (en) * 2020-03-27 2024-04-24 Mitsubishi Materials Corp Antibacterial member
DE112021000940T5 (en) 2020-04-09 2023-02-23 Uacj Corporation Antimicrobial film and manufacturing method thereof
KR102170441B1 (en) * 2020-04-24 2020-10-28 주식회사 엔아이씨 the antimicrobial adhesive film using the dispersion solution in which the copper nanoparticle and copper micro particle are mixed to the specific gravity difference and a method of manufacture thereof
KR20210147625A (en) * 2020-05-29 2021-12-07 정현철 Method for manufacturing antiviral film with copper deposited thereon and antiviral film deposited with copper manufactured using the same
KR102338838B1 (en) * 2020-05-29 2021-12-10 정현철 Method for manufacturing antiviral film with copper deposited thereon and antiviral film deposited with copper manufactured using the same

Similar Documents

Publication Publication Date Title
JP2010247450A (en) Antibacterial film
Hajjaji et al. Bacterial adhesion and inactivation on Ag decorated TiO2-nanotubes under visible light: Effect of the nanotubes geometry on the photocatalytic activity
Puspasari et al. ZnO-based antimicrobial coatings for biomedical applications
Manninen et al. Antibacterial Ag/aC nanocomposite coatings: The influence of nano-galvanic aC and Ag couples on Ag ionization rates
JP4778123B2 (en) Antimicrobial material, method for producing the same, and antimicrobial material
Scholz et al. Investigations on fabrics coated with precious metals using the magnetron sputter technique with regard to their anti-microbial properties
Ciacotich et al. An electroplated copper–silver alloy as antibacterial coating on stainless steel
JP2017206772A (en) Film, coating surface, and production method thereof
Zhang et al. Synthesis and antibacterial property of Ag-containing TiO2 coatings by combining magnetron sputtering with micro-arc oxidation
Zawadzka et al. Mechanisms of antibacterial activity and stability of silver nanoparticles grown on magnetron sputtered TiO 2 coatings
JP5017638B2 (en) Method for producing antibacterial Sn-Cu alloy thin film formed article and antibacterial Sn-Cu alloy thin film formed article produced thereby
Mostaghimi et al. Thermal spray copper alloy coatings as potent biocidal and virucidal surfaces
Mihut et al. Antibacterial effectiveness of metallic nanoparticles deposited on water filter paper by magnetron sputtering
TWI496911B (en) Antibacterial article and method for making the same
TW201239117A (en) Antibacterial article and method for making the same
CN108690952B (en) Vacuum plating sterilization film
Dehghan et al. Synthesis and antibacterial properties of novel Al2O3-Ag anodised composite coating
JP3163574U (en) Surface protection film for touch panel
JPH08296060A (en) Antibacterial and mildewproof aluminum building material and fittings using the material
TW201305358A (en) Antibacterial article and method for making the same
CN102691036A (en) Antibacterial film coating member and its preparation method
JP5025367B2 (en) Method for producing antibacterial thin film in antibacterial article
JP4551516B2 (en) Antibacterial material
JP6258113B2 (en) Method for producing antibacterial titanium alloy material
Meister et al. Copper and silver thin film systems display differences in antiviral and antibacterial properties--implications for the prevention of SARS-CoV-2 infections