JP2010247287A - Manufacturing method for silicon carbide single crystal substrate - Google Patents

Manufacturing method for silicon carbide single crystal substrate Download PDF

Info

Publication number
JP2010247287A
JP2010247287A JP2009100401A JP2009100401A JP2010247287A JP 2010247287 A JP2010247287 A JP 2010247287A JP 2009100401 A JP2009100401 A JP 2009100401A JP 2009100401 A JP2009100401 A JP 2009100401A JP 2010247287 A JP2010247287 A JP 2010247287A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
carbide single
surface plate
crystal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009100401A
Other languages
Japanese (ja)
Inventor
Keiichi Sugimoto
敬一 杉本
Sho Kumagai
祥 熊谷
Yasuo Takiguchi
康男 滝口
Masao Nakamura
昌生 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2009100401A priority Critical patent/JP2010247287A/en
Publication of JP2010247287A publication Critical patent/JP2010247287A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a silicon carbide single crystal substrate capable of performing matte machining with high accuracy by suppressing a chip in an outer edge part of the substrate. <P>SOLUTION: The manufacturing method for the silicon carbide single crystal substrate includes a matte machining step for machining a surface of a wafer 10 to a matte surface by pressing the surface of the wafer 10, i.e., the silicon carbide single crystal substrate to a polishing surface 4 of a surface plate 2 rotated in the state that a polishing liquid 5 containing an abrasive grain is dropped. The surface plate 2 comprises a ceramics material, a metal material, a glass material or a material including any one or more of the material. Thus, according to combination of the silicon carbide single crystal (work) having high hardness and the surface plate 2 comprising ceramics or glass, a balance of hardness of the work and the surface plate 2 is sufficient, and satisfactory satin machining can be performed without generating the chip on the wafer 10. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、炭化珪素からなる単結晶基板の表面を梨地面に加工する梨地加工工程を含む炭化珪素単結晶基板の製造方法に関する。   The present invention relates to a method for manufacturing a silicon carbide single crystal substrate including a matte processing step of processing the surface of a single crystal substrate made of silicon carbide into a satin finish.

従来、炭化珪素単結晶基板(以下、適宜、「基板」という)であるウエハには、片面が鏡面研磨されたシングルサイドポリッシュ(SSP)と、両面が鏡面研磨されたダブルサイドポリッシュ(DSP)とがある。このうち、シングルサイドポリッシュ型のウエハを製造する際に、ウエハ表面を梨地面に加工する梨地加工を行う技術が開発されている(例えば、特許文献1参照)。   Conventionally, a wafer which is a silicon carbide single crystal substrate (hereinafter referred to as “substrate” as appropriate) includes a single side polish (SSP) whose one side is mirror-polished and a double side polish (DSP) whose both sides are mirror-polished. There is. Among these, when manufacturing a single-side polished wafer, a technique for performing a satin finish process for processing the wafer surface into a satin finish has been developed (see, for example, Patent Document 1).

特開2007−194556号公報JP 2007-194556 A

しかしながら、前述した特許文献1に記載された梨地加工では、コンプレッサで圧縮した空気を用いて微細な粒状の研削材をウエハ表面に吹き付けるサンドブラストを用いているため、ウエハの外縁部にSEMI_ M55−0705に規定される半径方向の深さ及び周縁の長さが0.25mmより大きい欠けが生じやすいという問題があった。この欠けを防止するために、研削材の粒径や加工圧等のブラスト条件を変更すると、ウエハ表面の梨地状態も同時に変化するおそれがあった。   However, in the satin processing described in Patent Document 1 described above, since sand blasting is used to blow fine granular abrasives onto the wafer surface using air compressed by a compressor, SEMI_M55-0705 is applied to the outer edge of the wafer. There is a problem in that chips having a depth in the radial direction and a length of the peripheral edge defined in the above are easily larger than 0.25 mm. In order to prevent this chipping, if the blasting conditions such as the grain size of the abrasive and the processing pressure are changed, the matte state of the wafer surface may be changed at the same time.

そこで、本発明は、このような状況に鑑みてなされたものであり、基板の外縁部における欠けを抑制して高い精度の梨地加工を行うことができる炭化珪素単結晶基板の製造方法を提供することを目的とする。   Therefore, the present invention has been made in view of such a situation, and provides a method for manufacturing a silicon carbide single crystal substrate capable of performing high-precision matte processing while suppressing chipping at the outer edge portion of the substrate. For the purpose.

前述した課題を解決するため、本発明は、次のような特徴を有している。   In order to solve the above-described problems, the present invention has the following features.

まず、本発明の第1の特徴は、砥粒を含む研磨液(研磨液5)が滴下された状態で回転する定盤(定盤2)の研磨面(研磨面4)に、炭化珪素単結晶基板(ウエハ10)の表面を押し当てることにより、この炭化珪素単結晶基板の表面を梨地面に加工する梨地加工工程を含む炭化珪素単結晶基板の製造方法であって、前記定盤は、セラミックス材料、金属材料、ガラス材料、又は、前記材料を何れか一つ以上含む材料からなることを要旨とする。   First, the first feature of the present invention is that a silicon carbide single piece is provided on a polishing surface (polishing surface 4) of a surface plate (surface plate 2) that rotates in a state in which a polishing liquid containing abrasive grains (polishing liquid 5) is dropped. A method of manufacturing a silicon carbide single crystal substrate including a matte processing step of processing the surface of the silicon carbide single crystal substrate into a matte surface by pressing the surface of the crystal substrate (wafer 10), wherein the surface plate includes: The gist is made of a ceramic material, a metal material, a glass material, or a material containing one or more of the above materials.

本発明の第1の特徴によれば、炭化珪素単結晶基板における外縁部の欠け発生を抑制して高精度の梨地加工を行うことができる。即ち、基板は、炭化珪素からなり、定盤は、セラミックス材料、金属材料、ガラス材料、又は、前記材料を何れか一つ以上含む材料からなる。このように、硬度が高い炭化珪素単結晶(被加工物)とセラミックス材料、金属材料、ガラス材料、又は、前記材料を何れか一つ以上含む材料からなる定盤との組み合わせは、被加工物と定盤との硬度のバランスが良好であり、基板に欠けが発生することなく、良好な梨地加工を行うことができる。   According to the first feature of the present invention, it is possible to perform high-precision matte processing while suppressing the occurrence of chipping at the outer edge of the silicon carbide single crystal substrate. That is, the substrate is made of silicon carbide, and the surface plate is made of a ceramic material, a metal material, a glass material, or a material containing any one or more of the above materials. As described above, a combination of a silicon carbide single crystal (workpiece) having a high hardness and a surface plate made of a ceramic material, a metal material, a glass material, or a material containing any one or more of the above materials is used as a work piece. The balance between the hardness and the surface plate is good, and good satin processing can be performed without chipping the substrate.

本発明の他の特徴においては、前記砥粒は、ダイヤモンドからなることを要旨とする。   In another aspect of the present invention, the abrasive grains are made of diamond.

本発明の他の特徴においては、前記定盤(定盤2)は、ビッカース硬度が、HV200以上である材料からなることを要旨とする。   Another feature of the present invention is that the surface plate (surface plate 2) is made of a material having a Vickers hardness of HV200 or more.

本発明の他の特徴においては、前記定盤(定盤2)を構成するセラミックスは、炭化珪素またはアルミナであることを要旨とする。   Another feature of the present invention is that the ceramic constituting the surface plate (surface plate 2) is silicon carbide or alumina.

本発明の他の特徴においては、前記定盤(定盤2)を構成するガラスは、耐熱ガラスであることを要旨とする。   Another feature of the present invention is that the glass constituting the surface plate (surface plate 2) is heat resistant glass.

基板の外縁部における欠けを抑制して高い精度の梨地加工を行うことができる炭化珪素単結晶基板の製造方法を提供できる。   It is possible to provide a method for manufacturing a silicon carbide single crystal substrate capable of performing high-precision matte processing while suppressing chipping at the outer edge of the substrate.

本発明の実施形態に係る炭化珪素単結晶基板の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the silicon carbide single crystal substrate which concerns on embodiment of this invention. 本発明の実施形態に係る梨地加工を行う表面研磨装置を示す斜視図である。It is a perspective view which shows the surface polishing apparatus which performs the satin processing which concerns on embodiment of this invention.

次に、本発明に係る炭化珪素単結晶基板の製造方法の実施形態について、図面を参照しながら説明する。なお、以下の図面の記載において、同一または類似の部分には、同一または類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。   Next, an embodiment of a method for manufacturing a silicon carbide single crystal substrate according to the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic and ratios of dimensions are different from actual ones.

したがって、具体的な寸法などは以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Accordingly, specific dimensions and the like should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

<単結晶基板の製造工程>
図1を用いて、本発明の実施形態によるシングル・サイド・ポリッシュの炭化珪素単結晶基板の製造工程を説明する。
<Manufacturing process of single crystal substrate>
A manufacturing process of a single-side polished silicon carbide single crystal substrate according to an embodiment of the present invention will be described with reference to FIG.

図1は、本発明の実施形態に係る炭化珪素単結晶基板の製造工程を示すフローチャートである。   FIG. 1 is a flowchart showing manufacturing steps of a silicon carbide single crystal substrate according to an embodiment of the present invention.

まず、昇華法や、CVD(化学気相蒸着)法等によって炭化珪素からなる単結晶インゴットを製造し、首部(トップ)と底部(テール)を切断して除去したのち、炭化珪素単結晶インゴットを径方向に薄くスライス(切断)する(S1工程)。このスライス加工は、例えば、ダイシングソー、ワイヤーソーまたは内周刃切断機等を用いて行う。   First, a single crystal ingot made of silicon carbide is manufactured by a sublimation method, a CVD (chemical vapor deposition) method, and the like. After the neck (top) and the bottom (tail) are cut and removed, the silicon carbide single crystal ingot is removed. Thinly slice (cut) in the radial direction (step S1). This slicing process is performed using, for example, a dicing saw, a wire saw, or an inner peripheral cutting machine.

次いで、炭化珪素単結晶は固くて脆く、加工時に容易に割れたり欠けやすいため、切り出された円盤状のウエハの外周を面取りしS2工程)、ウエハの表面を平面状に研削する(S3工程)。この研削加工は、ウエハの表面に砥石を用いて平面研削を施して平面化する加工である。   Next, since the silicon carbide single crystal is hard and brittle and easily cracked or chipped during processing, the outer periphery of the cut disk-shaped wafer is chamfered (step S2), and the wafer surface is ground into a flat surface (step S3). . This grinding process is a process in which the surface of the wafer is planarized by using a grinding wheel.

こののち、ウエハ表面に梨地加工を施す(S4工程)。梨地加工とは、ウエハ表面に微細で不均一な傷を入れて梨地面に加工するものであり、詳細な内容については、後述する。   After this, a satin finish is applied to the wafer surface (step S4). The satin finish is a process in which fine and non-uniform scratches are made on the wafer surface to process the finish, and the detailed contents will be described later.

そして、梨地面に加工したウェハ面とは反対側のウェハ面を鏡面研磨する(S5工程)。   Then, the wafer surface opposite to the wafer surface processed into a satin surface is mirror-polished (step S5).

<表面研磨装置>
次いで、図2を用いて、梨地加工を行う表面研磨装置の構造を説明する。
<Surface polishing equipment>
Next, the structure of the surface polishing apparatus that performs the matte finish will be described with reference to FIG.

図2は、本発明の実施形態に係る梨地加工を行う表面研磨装置を示す斜視図である。   FIG. 2 is a perspective view showing a surface polishing apparatus for performing matte processing according to an embodiment of the present invention.

表面研磨装置1は、下側に配置されて回転可能に支持された定盤2と、該定盤2の上側に配置されて回転可能に支持されたキャリア3と、前記定盤2の上部に配置されて、定盤2の研磨面4上に、砥粒を含む研磨液5を滴下する研磨液供給装置6と、を備えている。   The surface polishing apparatus 1 includes a surface plate 2 disposed below and rotatably supported, a carrier 3 disposed above the surface plate 2 and rotatably supported, and an upper portion of the surface plate 2. A polishing liquid supply device 6 that is disposed and drops a polishing liquid 5 containing abrasive grains on the polishing surface 4 of the surface plate 2 is provided.

前記定盤2は、上下方向に延びる支軸7の上端に取り付けられた円盤状の部材であり、セラミックス材料、金属材料、ガラス材料、又は、前記材料を何れか一つ以上含む材料からなる。前記定盤2は、ビッカース硬度が、HV200以上である材料からなる事が好ましい。HV200以上である材料としては、例えば、セラミックスとしては、高強度、高靱性、耐熱衝撃性の性質を有するアルミナ(Al)(HV12000)、または炭化珪素(HV22000)などが好ましい。金属としては、鋳鉄(HV200)が挙げられる。ガラスとしては、ホウケイ酸ガラス(HV5000)が挙げられる。 The surface plate 2 is a disk-shaped member attached to the upper end of the support shaft 7 extending in the vertical direction, and is made of a ceramic material, a metal material, a glass material, or a material containing one or more of the materials. The surface plate 2 is preferably made of a material having a Vickers hardness of HV200 or more. As a material having HV200 or more, for example, alumina (Al 2 O 3 ) (HV12000) or silicon carbide (HV22000) having properties of high strength, high toughness, and thermal shock resistance is preferable as ceramics. An example of the metal is cast iron (HV200). Examples of the glass include borosilicate glass (HV5000).

前記キャリア3は、上下方向に延びる支軸8と該支軸8の下端に固定された円盤状の試料台9とから構成されており、前記試料台9の下面に、炭化珪素からなるウエハ(基板)10が固定されている。このキャリア3も、矢印に示す方向、即ち定盤2と同じ方向に回転可能に構成され、前記支軸8が下降して、ウエハ10を定盤2の研磨面4に押し当てることによってウエハ表面を研磨して梨地加工することができる。   The carrier 3 is composed of a support shaft 8 extending in the vertical direction and a disk-shaped sample table 9 fixed to the lower end of the support shaft 8. A silicon carbide wafer ( Substrate) 10 is fixed. The carrier 3 is also configured to be rotatable in the direction indicated by the arrow, that is, in the same direction as the surface plate 2, and the support shaft 8 is lowered so that the wafer 10 is pressed against the polishing surface 4 of the surface plate 2. Can be polished and processed.

前記研磨液供給装置6は、下方に延びるノズル11の下端から研磨液5を吐出し、定盤2の研磨面4の上に滴下するものである。前記研磨液5は、B4C、SiC、SiO2、Al23、CeO2、Mn2233およびダイヤモンド等の砥粒を含む。これらのうち、特にダイヤモンドが好ましい。 The polishing liquid supply device 6 discharges the polishing liquid 5 from the lower end of the nozzle 11 extending downward and drops it on the polishing surface 4 of the surface plate 2. The polishing liquid 5 contains B 4 C, SiC, a SiO 2, Al 2 O 3, CeO 2, Mn 22 O 33 and abrasive grains such as diamond. Of these, diamond is particularly preferable.

<梨地加工>
前記研磨液供給装置6を用いて、ウエハ表面に梨地加工を施す手順を簡単に説明する。
<Pear finish>
A procedure for performing a satin finish on the wafer surface using the polishing liquid supply device 6 will be briefly described.

まず、図2に示すように、キャリア3の試料台9の下面にウエハ10を固定し、キャリア3と定盤2とを同じ矢印方向に回転させる。こののち、研磨液供給装置6のノズル11から研磨液5を定盤2の研磨面4上に吐出させ、キャリア3を下降させて、ウエハ10の下面(表面)を定盤2の研磨面4に押し当てることによって、前記ウエハ表面に梨地加工を施すことができる。   First, as shown in FIG. 2, the wafer 10 is fixed to the lower surface of the sample stage 9 of the carrier 3, and the carrier 3 and the surface plate 2 are rotated in the same arrow direction. Thereafter, the polishing liquid 5 is discharged from the nozzle 11 of the polishing liquid supply device 6 onto the polishing surface 4 of the surface plate 2, the carrier 3 is lowered, and the lower surface (front surface) of the wafer 10 is polished on the polishing surface 4 of the surface plate 2. By pressing against the surface of the wafer, a satin finish can be applied to the wafer surface.

以下に、本発明の実施形態による作用効果を説明する。   Below, the effect by embodiment of this invention is demonstrated.

(1)本発明は、砥粒を含む研磨液5が滴下された状態で回転する定盤2の研磨面4に、炭化珪素単結晶基板であるウエハ10の表面を押し当てることにより、このウエハ10の表面を梨地面に加工する梨地加工工程を含む炭化珪素単結晶基板の製造方法であって、前記定盤2は、セラミックスまたはガラスからなる。   (1) In the present invention, the surface of the wafer 10 which is a silicon carbide single crystal substrate is pressed against the polishing surface 4 of the surface plate 2 rotating in a state where the polishing liquid 5 containing abrasive grains is dropped. 10 is a method for manufacturing a silicon carbide single crystal substrate including a matte processing step of processing the surface of 10 into a satin surface, wherein the surface plate 2 is made of ceramics or glass.

従って、炭化珪素単結晶基板における外縁部の欠け発生を抑制して高精度の梨地加工を行うことができる。即ち、基板は、炭化珪素からなり、定盤2は、セラミックス材料、金属材料、ガラス材料、又は、前記材料を何れか一つ以上含む材料からなる。このように、硬度が高い炭化珪素単結晶(被加工物)とセラミックス材料、金属材料、ガラス材料、又は、前記材料を何れか一つ以上含む材料からなる定盤2との組み合わせは、被加工物と定盤2との硬度のバランスが良好であり、基板に欠けが発生することなく、良好な梨地加工を行うことができる。なお、ウエハ10および定盤2の平面度は、加工時間の短縮、即ち生産性の観点から10μm以下が好ましい。   Therefore, the occurrence of chipping at the outer edge portion in the silicon carbide single crystal substrate can be suppressed, and high-precision finish can be performed. That is, the substrate is made of silicon carbide, and the surface plate 2 is made of a ceramic material, a metal material, a glass material, or a material containing any one or more of the above materials. Thus, a combination of a silicon carbide single crystal (workpiece) having a high hardness and a surface plate 2 made of a ceramic material, a metal material, a glass material, or a material containing any one or more of the above materials is processed. The balance between the hardness of the object and the surface plate 2 is good, and good satin processing can be performed without chipping the substrate. The flatness of the wafer 10 and the surface plate 2 is preferably 10 μm or less from the viewpoint of shortening the processing time, that is, productivity.

(2)前記砥粒として、ダイヤモンドを用いると、被加工物である基板(ウエハ10)と、砥粒および定盤2の組み合わせが最適となり、さらに良好な梨地加工を行うことができる。   (2) When diamond is used as the abrasive grains, the combination of the substrate (wafer 10), which is a workpiece, and the abrasive grains and the surface plate 2 is optimized, and a better satin finish can be performed.

(3)前記定盤2をビッカース硬度が、HV200以上である材料、例えば、セラミックスとしては、アルミナや炭化珪素、金属としては、鋳鉄、ガラスとしては、ホウケイ酸ガラスから形成すると、加工効率が向上するため、好ましい。   (3) When the surface plate 2 is made of a material having a Vickers hardness of HV200 or more, for example, alumina or silicon carbide as a ceramic, cast iron as a metal, or borosilicate glass as a glass, the processing efficiency is improved. Therefore, it is preferable.

(4)前記定盤2を金属材料、例えば、鋳鉄から形成すると、定盤2の平面度が高くなり、加工効率および仕上がり精度が向上する。即ち、定盤2の平面度を管理する上で、切削バイトを用いて研磨面4を容易に切削加工することができるため好ましい。   (4) When the surface plate 2 is formed of a metal material, for example, cast iron, the flatness of the surface plate 2 is increased, and the processing efficiency and finishing accuracy are improved. That is, it is preferable to manage the flatness of the surface plate 2 because the polished surface 4 can be easily cut using a cutting tool.

(5)前記定盤2を構成するガラスは、耐熱ガラスが好ましい。耐熱ガラスからなる定盤2は、耐熱衝撃性に加えて耐腐食性にも優れているからである。   (5) The glass constituting the surface plate 2 is preferably heat resistant glass. This is because the surface plate 2 made of heat-resistant glass is excellent in corrosion resistance in addition to thermal shock resistance.

以下に、本発明を実施例を通してさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically through examples.

<本発明例>
まず、炭化珪素単結晶基板として、直径が76.2mmの円盤状のウエハを準備した。このウエハは、算術平均粗さ(Ra)が0.5μmのものと0.1μmのものとの2種類用意した。なお、平均粒径は、いずれも9μmであった。キャリアを構成するアルミナ製の試料台(前記ウエハよりも大きな径)に、ワックスで前記ウエハを貼りつけた。定盤の寸法は、内径が140mmで外径が280mmであり、梨地加工については、ダイヤモンド砥粒を用いて、定盤の回転数が60rpmで、ウエハに付与する加工圧力は100g/cmで、加工時間は3時間とし、1時間ごとにウエハ表面の欠けを観察した。
<Invention Example>
First, a disk-shaped wafer having a diameter of 76.2 mm was prepared as a silicon carbide single crystal substrate. Two types of wafers having an arithmetic average roughness (Ra) of 0.5 μm and 0.1 μm were prepared. The average particle diameter was 9 μm in all cases. The wafer was affixed with wax to an alumina sample stage (a diameter larger than the wafer) constituting the carrier. The surface plate has an inner diameter of 140 mm and an outer diameter of 280 mm. For satin processing, diamond abrasive grains are used, the rotation speed of the surface plate is 60 rpm, and the processing pressure applied to the wafer is 100 g / cm 2 . The processing time was 3 hours, and chipping of the wafer surface was observed every hour.

なお、算術平均粗さ(Ra)が0.1μmのウエハは、Raが0.5μmのウエハを用いて作製した。具体的には、銅および樹脂の複合体からなる定盤を回転させた状態でダイヤモンドの砥粒を含む研磨液を滴下しつつ、この定盤にRaが0.5μmのウエハを押し付けて研磨することにより、Raが0.1μmのウエハを作製した。定盤の回転数を60rpmとし、ウエハに付与する加工圧力を100g/cmとし、加工時間を30分とした。 A wafer having an arithmetic average roughness (Ra) of 0.1 μm was prepared using a wafer having an Ra of 0.5 μm. Specifically, a polishing liquid containing diamond abrasive grains is dropped while a surface plate made of a composite of copper and resin is rotated, and a wafer having an Ra of 0.5 μm is pressed against the surface plate for polishing. Thus, a wafer having an Ra of 0.1 μm was produced. The rotation speed of the surface plate was 60 rpm, the processing pressure applied to the wafer was 100 g / cm 2 , and the processing time was 30 minutes.

それぞれの組み合わせにおけるウエハ表面が梨地状態になるまでの所要時間と、梨地状態になったときの算術平均粗さとを表1に示す。なお、表1中、定盤材質の「パイレックスガラス」は、コーニング社のパイレックス(PYREX)(登録商標)を意味する。   Table 1 shows the time required for the wafer surface in each combination to be in a satin state and the arithmetic average roughness when the surface is in a satin state. In Table 1, “Pyrex glass” as a surface plate material means PYREX (registered trademark) manufactured by Corning.

その結果、それぞれの組み合わせにおけるウエハのエッジにおける欠け不良率は全て0%であった。   As a result, the chip defect rate at the edge of the wafer in each combination was 0%.

<比較例>
これに対して、比較例では、ブラスト加工によってウエハ表面に梨地加工を施した。具体的には、炭化珪素単結晶ウエハに炭化珪素からなる砥粒を圧縮空気を用いて衝突させる方法を用いた。この方法によって梨地面が形成されたウエハの外縁部の欠け(SEMI_M55−0705にて規定される)が見受けられ、観察したウエハの枚数に対する欠けが生じたウエハの枚数の割合は、48%であった。
<Comparative example>
On the other hand, in the comparative example, the satin finish was applied to the wafer surface by blasting. Specifically, a method of causing abrasive grains made of silicon carbide to collide with a silicon carbide single crystal wafer using compressed air was used. In this method, chipping of the outer edge of the wafer on which the surface is formed (specified by SEMI_M55-0705) is observed, and the ratio of the number of wafers with chipping to the number of observed wafers is 48%. It was.

<結果>
以上のように、本発明例と比較例とを比べると、本発明によれば、ウエハの外縁部における欠けを大幅に抑制することができることが判明した。
<Result>
As described above, comparing the example of the present invention with the comparative example, it has been found that according to the present invention, chipping at the outer edge portion of the wafer can be significantly suppressed.

なお、前述したように、本発明の実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。   As described above, the contents of the present invention have been disclosed through the embodiments of the present invention. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

例えば、前記実施形態では、定盤2および砥粒の材質を特定したが、これ以外の材質も適用することができる。   For example, in the said embodiment, although the material of the surface plate 2 and an abrasive grain was specified, materials other than this can also be applied.

2…定盤
5…研磨液
10…ウエハ(炭化珪素単結晶基板)
2 ... surface plate 5 ... polishing liquid 10 ... wafer (silicon carbide single crystal substrate)

Claims (5)

砥粒を含む研磨液が滴下された状態で回転する定盤の研磨面に、炭化珪素単結晶基板の表面を押し当てることにより、この炭化珪素単結晶基板の表面を梨地面に加工する梨地加工工程を含む炭化珪素単結晶基板の製造方法であって、
前記定盤は、セラミックス材料、金属材料、ガラス材料、又は、前記材料を何れか一つ以上含む材料からなることを特徴とする炭化珪素単結晶基板の製造方法。
A satin finish process in which the surface of the silicon carbide single crystal substrate is processed into a satin surface by pressing the surface of the silicon carbide single crystal substrate against the polishing surface of the surface plate that rotates while the polishing liquid containing the abrasive grains is dropped. A method of manufacturing a silicon carbide single crystal substrate including a process,
The method for producing a silicon carbide single crystal substrate, wherein the surface plate is made of a ceramic material, a metal material, a glass material, or a material containing one or more of the materials.
前記砥粒は、ダイヤモンドからなることを特徴とする請求項1に記載の炭化珪素単結晶基板の製造方法。 The method for manufacturing a silicon carbide single crystal substrate according to claim 1, wherein the abrasive grains are made of diamond. 前記定盤は、ビッカース硬度が、HV200以上である材料からなることを特徴とする請求項1または2に記載の炭化珪素単結晶基板の製造方法。 The method for producing a silicon carbide single crystal substrate according to claim 1, wherein the surface plate is made of a material having a Vickers hardness of HV200 or more. 前記定盤を構成するセラミックスは、炭化珪素またはアルミナであることを特徴とする請求項1または2に記載の炭化珪素単結晶基板の製造方法。 The method for producing a silicon carbide single crystal substrate according to claim 1 or 2, wherein the ceramic constituting the surface plate is silicon carbide or alumina. 前記定盤を構成するガラスは、耐熱ガラスであることを特徴とする請求項1または2に記載の炭化珪素単結晶基板の製造方法。 The method for producing a silicon carbide single crystal substrate according to claim 1, wherein the glass constituting the surface plate is a heat-resistant glass.
JP2009100401A 2009-04-16 2009-04-16 Manufacturing method for silicon carbide single crystal substrate Pending JP2010247287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009100401A JP2010247287A (en) 2009-04-16 2009-04-16 Manufacturing method for silicon carbide single crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009100401A JP2010247287A (en) 2009-04-16 2009-04-16 Manufacturing method for silicon carbide single crystal substrate

Publications (1)

Publication Number Publication Date
JP2010247287A true JP2010247287A (en) 2010-11-04

Family

ID=43310221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009100401A Pending JP2010247287A (en) 2009-04-16 2009-04-16 Manufacturing method for silicon carbide single crystal substrate

Country Status (1)

Country Link
JP (1) JP2010247287A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102198701A (en) * 2011-05-11 2011-09-28 山东大学 Method for processing facet silicon carbide jewel finished product
CN113118967A (en) * 2021-03-17 2021-07-16 广东纳诺格莱科技有限公司 Abrasive particle oriented solid-phase reaction grinding disc suitable for SiC wafer and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780770A (en) * 1993-09-14 1995-03-28 Nippon Steel Corp Mechanochemica polishing method of silicon carbide single crystal
JP2006093666A (en) * 2004-08-23 2006-04-06 Matsushita Electric Ind Co Ltd Method for grinding silicon carbide crystal substrate
JP2007061961A (en) * 2005-08-31 2007-03-15 Matsushita Electric Ind Co Ltd Manufacturing method of lapping plate and mechanical lapping method
JP2009166161A (en) * 2008-01-15 2009-07-30 Nippon Steel Corp Polishing table

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780770A (en) * 1993-09-14 1995-03-28 Nippon Steel Corp Mechanochemica polishing method of silicon carbide single crystal
JP2006093666A (en) * 2004-08-23 2006-04-06 Matsushita Electric Ind Co Ltd Method for grinding silicon carbide crystal substrate
JP2007061961A (en) * 2005-08-31 2007-03-15 Matsushita Electric Ind Co Ltd Manufacturing method of lapping plate and mechanical lapping method
JP2009166161A (en) * 2008-01-15 2009-07-30 Nippon Steel Corp Polishing table

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102198701A (en) * 2011-05-11 2011-09-28 山东大学 Method for processing facet silicon carbide jewel finished product
CN113118967A (en) * 2021-03-17 2021-07-16 广东纳诺格莱科技有限公司 Abrasive particle oriented solid-phase reaction grinding disc suitable for SiC wafer and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US9701043B2 (en) Dicing blade
US11781244B2 (en) Seed crystal for single crystal 4H—SiC growth and method for processing the same
CN1666844A (en) Dresser for polishing cloth and method for producing the same
JP6085152B2 (en) Vacuum chuck
JP2013532587A (en) Grinding tool for trapezoidal grinding of wafers
JP6245833B2 (en) Wire saw manufacturing method
JP2010234597A (en) Cutting blade, method for manufacturing cutting blade, and cutting apparatus
KR101891189B1 (en) Polishing tool and manufacturing method thereof and manufacturing method of polished article
JP2003273053A (en) Surface grinding method
JP2010247287A (en) Manufacturing method for silicon carbide single crystal substrate
US11931861B2 (en) Wafer grinding wheel
US20160361793A1 (en) Abrasive grindstone
KR20180001446A (en) Cutting grindstone
JP5647475B2 (en) Manufacturing method of glass plate
JP3456979B2 (en) Beveling wheel for peripheral processing of silicon wafer
JP5566189B2 (en) Thin blade
JP5953328B2 (en) MOUNTING MATERIAL, WORK PROCESSING METHOD USING THE SAME AND MOUNTING BODY FOR FLAT
JP2008036771A (en) Grinding wheel for hard fragile substrate
JP2008023677A (en) Wheel-shaped rotating grinding wheel for hard and brittle material substrate
JP2000190199A (en) Plane correcting method for surface plate
JP4371853B2 (en) Substrate cutting method
JP2007266441A (en) Cup-like grinding stone for semiconductor wafer rear surface grinding and grinding method
JP2016140970A (en) Retainer ring, polishing device, and semiconductor device manufacturing method
JP2010234453A (en) Wheel for grinding, method for manufacturing the same, and device for grinding or polishing
JPH10291163A (en) Super abrasive grain grinder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107