JP2006093666A - Method for grinding silicon carbide crystal substrate - Google Patents

Method for grinding silicon carbide crystal substrate Download PDF

Info

Publication number
JP2006093666A
JP2006093666A JP2005229693A JP2005229693A JP2006093666A JP 2006093666 A JP2006093666 A JP 2006093666A JP 2005229693 A JP2005229693 A JP 2005229693A JP 2005229693 A JP2005229693 A JP 2005229693A JP 2006093666 A JP2006093666 A JP 2006093666A
Authority
JP
Japan
Prior art keywords
polishing
silicon carbide
crystal substrate
carbide crystal
abrasive grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005229693A
Other languages
Japanese (ja)
Inventor
Naoyuki Ikenaka
直行 生中
Eiji Fukuda
英司 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005229693A priority Critical patent/JP2006093666A/en
Publication of JP2006093666A publication Critical patent/JP2006093666A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for grinding a silicon carbide crystal substrate with a high-precision and stable surface without processing stain and lack. <P>SOLUTION: This method has been devised to grind a silicon carbide crystal substrate. It contains a process where the grinding liquid (7) with the abrasive particles made of boron carbide is used to grind the silicon carbide crystal substrate (2) with a surface roughness Rz of 50 μm or less. In this way, the diamond used so far as an abrasive particle is replaced with the boron carbide so that damage to the materials to be polished such as the silicon carbide crystal and grind stool can be reduced and the surface can be ground with precision. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、炭化シリコン結晶の研磨に関する技術で、特に粗研磨に係わる結晶研磨技術に関する。   The present invention relates to a technique related to polishing of silicon carbide crystals, and more particularly to a crystal polishing technique related to rough polishing.

低損失で電気エネルギーを扱うパワーデバイスは、大幅な消費電力の節減ができるため、広く利用されている。現在のパワーデバイスは、シリコン基板から作製されているが、シリコン固有の特性により、さらなる高性能化には限界がある。特に、シリコンは高温になると使用できないため、シリコンに代わる材料が必要となってきた。   Power devices that handle electrical energy with low loss are widely used because they can greatly reduce power consumption. Current power devices are fabricated from silicon substrates, but there are limits to further performance enhancement due to the inherent characteristics of silicon. In particular, since silicon cannot be used at high temperatures, materials that replace silicon have become necessary.

このため、近年、炭化シリコン(SiC)が注目を集めている。炭化シリコンの禁制帯幅はシリコンの禁制帯幅の3倍であるので、シリコンよりも高温条件下で使用できる。また、絶縁破壊電界についてはシリコンの約10倍であるため、小型化も可能である。さらに熱伝導度についてはシリコンの約3倍であり、放熱性に優れ、冷却されやすいという利点もある。このように炭化シリコンは優れた特性を有することから、炭化シリコン基板はシリコン基板に変わるパワーデバイス用基板として大変有望である。   For this reason, in recent years, silicon carbide (SiC) has attracted attention. Since the forbidden band width of silicon carbide is three times the forbidden band width of silicon, it can be used under higher temperature conditions than silicon. In addition, since the breakdown electric field is about 10 times that of silicon, the size can be reduced. Furthermore, the thermal conductivity is about three times that of silicon, and there is an advantage that it is excellent in heat dissipation and is easily cooled. Since silicon carbide has excellent characteristics as described above, the silicon carbide substrate is very promising as a power device substrate instead of a silicon substrate.

ところで、炭化シリコン基板からパワーデバイスを作製するためには、その表面を最終的に出来る限り滑らかに研磨する必要がある。現行では、まず結晶成長により精製した炭化シリコンインゴットをワイヤーソー、ブレードソーなどによりスライスし、その後、研削を行い基板に存在する凹凸を除き、硬質の研磨定盤を用いる粗研磨、軟質の研磨パッドを用いる精密(鏡面)研磨の過程を経て加工が行なわれている。このうち精密研磨は最も重要な工程で、すでに既知の工法として特許文献1のようにダイヤモンド砥粒やSiO(コロイダルシリカ)を含む懸濁液を用いた研磨工法が現在一般的に使用されている。また最終加工面の前処理工程である粗研磨も精密研磨同様に重要な工程であり、粗研磨後の状態がよければ最終工程の加工時間短縮が期待できる。
特表2001−508597号公報
By the way, in order to fabricate a power device from a silicon carbide substrate, it is necessary to finally polish the surface as smoothly as possible. At present, a silicon carbide ingot purified by crystal growth is first sliced with a wire saw, blade saw, etc., and then ground to remove irregularities present on the substrate, and rough polishing using a hard polishing surface plate, a soft polishing pad Processing is carried out through a precision (mirror surface) polishing process using. Of these, precision polishing is the most important process, and as a known method, a polishing method using a suspension containing diamond abrasive grains and SiO 2 (colloidal silica) as in Patent Document 1 is currently generally used. Yes. In addition, rough polishing, which is a pretreatment process for the final processed surface, is an important process as well as precision polishing. If the state after rough polishing is good, the processing time of the final process can be shortened.
Special table 2001-508597 gazette

しかしながら特許文献1の技術は、ダイヤモンドを研磨砥粒として使用しているため、研磨に要する時間(加工レート)が短いが、被加工物へのダメージが大きい。すなわち、研磨の際に、炭化シリコン結晶へのダメージが大きく、且つ、ダイヤモンド砥粒から生成される凝集物で炭化シリコン結晶の破損が生じやすい。さらに、粗研磨の工程では、硬質研磨定盤を用いるため、この研磨定盤へのダメージも大きく、次の研磨の際には研磨定盤の面修正が必要である。硬質の研磨定盤を用いる粗研磨では、研磨定盤の形状が、被研磨材である炭化シリコン基板に転写されるので、面修正を行っていない研磨定盤で粗研磨を行った場合、炭化シリコン基板の加工表面状態が悪化する原因となる。従って、炭化シリコン結晶の研磨を行う際には、研磨定盤のダメージを軽減する必要がある。   However, since the technique of Patent Document 1 uses diamond as the abrasive grains, the time required for polishing (processing rate) is short, but damage to the workpiece is large. That is, during polishing, the silicon carbide crystal is greatly damaged, and the silicon carbide crystal is easily damaged by aggregates formed from the diamond abrasive grains. Further, since a hard polishing surface plate is used in the rough polishing step, the damage to the polishing surface plate is large, and the surface of the polishing surface plate needs to be corrected in the next polishing. In rough polishing using a hard polishing surface plate, the shape of the polishing surface plate is transferred to the silicon carbide substrate, which is the material to be polished. This may cause deterioration of the processed surface state of the silicon substrate. Therefore, when polishing silicon carbide crystals, it is necessary to reduce damage to the polishing surface plate.

本発明は、前記従来の課題を解決するもので、炭化シリコン基板の最終加工前処理面を得る際に、炭化シリコン結晶と硬質研磨定盤へのダメージを抑え、且つ表面の研磨加工を精密に行うことができる炭化シリコン結晶基板研磨方法を提供する。   The present invention solves the above-described conventional problems, and when obtaining a final pre-processed surface of a silicon carbide substrate, suppresses damage to the silicon carbide crystal and the hard polishing surface plate, and precisely polishes the surface. A silicon carbide crystal substrate polishing method that can be performed is provided.

本発明の炭化シリコン結晶基板研磨方法は、炭化シリコン結晶基板を研磨する方法であって、炭化ボロンからなる研磨砥粒を含む研磨液を用いて、表面粗さRzが50μm以下の炭化シリコン結晶基板を研磨する研磨工程を含むことを特徴とする。   The silicon carbide crystal substrate polishing method of the present invention is a method for polishing a silicon carbide crystal substrate, wherein a silicon carbide crystal substrate having a surface roughness Rz of 50 μm or less using a polishing liquid containing abrasive grains made of boron carbide. And a polishing step of polishing the substrate.

本発明によれば、研磨砥粒を従来から使用されているダイヤモンドから炭化ボロンにすることで、被研磨材である炭化シリコン結晶と研磨定盤表面へのダメージを軽減出来、且つ表面の研磨加工を精密に行うことができる。   According to the present invention, by changing the abrasive grains from conventionally used diamond to boron carbide, it is possible to reduce damage to the silicon carbide crystal as the material to be polished and the surface of the polishing platen, and polishing the surface Can be performed precisely.

本発明は、炭化シリコン結晶基板を粗研磨する際に使用される。ここで粗研磨とは、炭化シリコン結晶基板表面粗さRzが1μmを越え50μm以下のものを研磨後は1μm以下にすることをいう。   The present invention is used when roughly polishing a silicon carbide crystal substrate. Here, the rough polishing means that the surface roughness Rz of the silicon carbide crystal substrate is more than 1 μm and not more than 50 μm, and after polishing is made 1 μm or less.

ここで「表面粗さRz」とは、JIS規格B0601で規定される値であり、基準長さにおける輪郭曲線の山高さの最大値と谷深さの最大値の和として定義されている。本発明では光干渉式の表面粗さ測定器Zygo Corporation社製商品名”Newview5032”により測定を行っている。   Here, the “surface roughness Rz” is a value defined by JIS standard B0601, and is defined as the sum of the maximum value of the peak height of the contour curve and the maximum value of the valley depth in the reference length. In the present invention, the measurement is performed using a product name “Newview 5032” manufactured by Zygo Corporation of an optical interference type surface roughness measuring instrument.

研磨液は、炭化ボロンからなる研磨砥粒を含む研磨液を用いる。炭化ボロンの平均粒子径は100μm以下の範囲が好ましい。さらに具体的には、本発明では粗研磨の中でも数段階の加工工程を想定しているため、例えばRz=50μmのSiC基板に対しては平均粒子径60〜100μmの炭化ボロンが好適であり、Rz=1μm付近のSiC基板に対しては10μm以下の炭化ボロンが好適である。なお、炭化ボロン粒子は無定形である。   As the polishing liquid, a polishing liquid containing polishing abrasive grains made of boron carbide is used. The average particle diameter of boron carbide is preferably in the range of 100 μm or less. More specifically, in the present invention, since several processing steps are assumed in rough polishing, for example, boron carbide having an average particle diameter of 60 to 100 μm is suitable for a SiC substrate with Rz = 50 μm, For SiC substrates in the vicinity of Rz = 1 μm, boron carbide of 10 μm or less is suitable. The boron carbide particles are amorphous.

ここで、平均粒子径は、自然遠心沈降式方法により測定したものであり、測定装置は株式会社堀場製作所製の商品名”CAPA-300”により測定を行っている。測定装置内で砥粒成分1重量%程度を含むサンプル液を遠心分離し、沈殿する砥粒成分の速度により平均粒子径を測定する。   Here, the average particle diameter is measured by a natural centrifugal sedimentation method, and the measuring apparatus measures the product name “CAPA-300” manufactured by Horiba, Ltd. The sample liquid containing about 1% by weight of the abrasive component is centrifuged in a measuring apparatus, and the average particle size is measured by the speed of the precipitated abrasive component.

この研磨液は、例えば純水に研磨砥粒として炭化ボロンを0.1重量%以上5重量%以下の割合で分散したものを好ましく使用できる。ここで純水とはイオン交換水のことである。   As this polishing liquid, for example, a dispersion obtained by dispersing boron carbide in a proportion of 0.1 wt% or more and 5 wt% or less as abrasive grains in pure water can be preferably used. Here, pure water is ion-exchanged water.

本発明の研磨方法は、粗研磨から仕上げ研磨まで使用することができる。   The polishing method of the present invention can be used from rough polishing to finish polishing.

本発明方法において、炭化シリコン結晶基板を研磨する研磨定盤上に研磨液を入れた研磨容器を配置し、研磨容器内部の研磨液の研磨砥粒が沈殿しないように研磨容器内で攪拌しながら研磨定盤へ研磨液を滴下しながら研磨するのが好ましい。このようにすると、均一な組成の研磨液を炭化シリコン結晶基板表面に供給できるため、研磨面も均一にできる。   In the method of the present invention, a polishing container containing a polishing liquid is placed on a polishing surface plate for polishing a silicon carbide crystal substrate, and the polishing liquid inside the polishing container is stirred in the polishing container so as not to precipitate. It is preferable to perform polishing while dropping the polishing liquid onto the polishing surface plate. In this way, since a polishing liquid having a uniform composition can be supplied to the surface of the silicon carbide crystal substrate, the polishing surface can be made uniform.

本発明の研磨工程においては、研磨砥粒の平均粒径が異なる複数の研磨工程を含むことが好ましい。このようにすると、段階的に研磨を進めることができる。   In the polishing step of the present invention, it is preferable to include a plurality of polishing steps in which the average particle size of the polishing abrasive grains is different. If it does in this way, polish can be advanced in steps.

前記の研磨工程において、最初の研磨工程で用いられる研磨砥粒の平均粒径は、最後の研磨工程で用いられる研磨砥粒の平均粒径より大きく、且つ研磨工程が進むに連れ、順次平均粒径を小さくしていくことが好ましい。このようにすると、粗研磨から段階的に精密研磨に進めることができる。   In the above polishing step, the average particle size of the abrasive grains used in the first polishing step is larger than the average particle size of the polishing abrasive particles used in the last polishing step, and the average particle size is sequentially increased as the polishing step proceeds. It is preferable to reduce the diameter. If it does in this way, it can advance to precision polishing in steps from rough polishing.

さらに本発明の炭化シリコン結晶基板研磨方法は、最初の研磨工程で用いる研磨砥粒の平均粒径は60μm以上100μm以下であり、最後の研磨工程で用いる研磨砥粒の平均粒径は10μm以下であることが好ましい。これは最初の研磨工程では加工レートを高くして研磨することが目的であり、反対に最後の研磨工程では面粗さをよくすることが目的であるため、最初の研磨工程では大きい研磨砥粒を用い、最後の研磨工程ではさらに小さい研磨砥粒を用いる。最後の工程で用いる研磨砥粒の平均粒径は、一般に市販されている炭化ボロンの最小の平均粒径は1μmであるが、例えば分級等を行い平均粒径0.8μmとか、平均粒径0.6μmのもので研磨を行ってもよい。   Furthermore, in the silicon carbide crystal substrate polishing method of the present invention, the average grain size of the abrasive grains used in the first polishing process is 60 μm or more and 100 μm or less, and the average grain diameter of the abrasive grains used in the last polishing process is 10 μm or less. Preferably there is. This is because the purpose of polishing is to increase the processing rate in the first polishing step, and the purpose is to improve the surface roughness in the final polishing step. In the final polishing step, smaller abrasive grains are used. The average grain size of the abrasive grains used in the last step is generally 1 μm as the minimum average grain size of commercially available boron carbide. For example, classification is performed to obtain an average grain size of 0.8 μm or an average grain size of 0 μm. Polishing may be performed with a thickness of 6 μm.

さらに本発明方法で使用する研磨定盤の回転数は、5rpm以上40rpm以下であり、研磨液の前記研磨定盤への滴下速度は5cc/min以上であることが好ましい。このようにすると効率のよい研磨ができる。ここでいう条件は研磨定盤が乾かないための条件であり、回転数下限、滴下速度上限はない。実用的には回転数は5rpm以上が好適であり、滴下速度についていえば極端にいえば研磨定盤が研磨液に浸かっていてもいいので実用上でも上限はない。   Furthermore, the number of rotations of the polishing platen used in the method of the present invention is preferably 5 rpm or more and 40 rpm or less, and the dropping rate of the polishing liquid onto the polishing platen is preferably 5 cc / min or more. In this way, efficient polishing can be performed. The conditions here are conditions for preventing the polishing platen from drying, and there are no lower limit of rotation speed and no upper limit of dropping speed. Practically, the number of revolutions is preferably 5 rpm or more, and in terms of dropping speed, there is no upper limit in practical use because the polishing surface plate may be immersed in the polishing liquid.

さらに本発明方法で使用する研磨液は、溶媒に純水を用い、研磨砥粒を前記溶媒に分散させるための分散剤が無い場合は、研磨砥粒の研磨溶液に対する比率は0.1重量%以上5重量%以下であることが好ましい。これは研磨砥粒の重量比が大きい場合は研磨液中で研磨砥粒の沈殿が生じてしまうためであり、反対に研磨砥粒の重量比が小さい場合には加工効率が悪化するためである。   Furthermore, when the polishing liquid used in the method of the present invention uses pure water as a solvent and there is no dispersant for dispersing the abrasive grains in the solvent, the ratio of the abrasive grains to the polishing solution is 0.1% by weight. The content is preferably 5% by weight or less. This is because when the weight ratio of the abrasive grains is large, precipitation of the abrasive grains occurs in the polishing liquid, and conversely, when the weight ratio of the abrasive grains is small, the processing efficiency is deteriorated. .

さらに本発明の研磨工程における研磨定盤の上全面が研磨液によって常時覆われていることが好ましい。これは乾燥した研磨定盤と湿った研磨定盤とでは研磨砥粒と研磨定盤と炭化シリコン基板の接触部の摩擦抵抗が異なるためであり、乾燥した状態では摩擦抵抗が増大し、炭化シリコン基板の表面に大きな加工傷を生じさせる原因となるためである。   Furthermore, it is preferable that the entire upper surface of the polishing platen in the polishing step of the present invention is always covered with the polishing liquid. This is because the dry polishing surface plate and the wet polishing surface plate have different frictional resistances at the contact portions between the abrasive grains, the polishing surface plate, and the silicon carbide substrate. This is because it causes a large processing flaw on the surface of the substrate.

さらに本発明の研磨工程において、炭化シリコン結晶基板に100gf/cm以上200gf/cm以下の面圧を与えて研磨加工をすることが好ましい。これは100gf/cm未満の面圧では実用的な加工レートを得られないためであり、反対に200gf/cmを越える面圧では炭化シリコン基板が破損する恐れがあるためである。 Further, in the polishing step of the present invention, it is preferable to perform polishing by applying a surface pressure of 100 gf / cm 2 or more and 200 gf / cm 2 or less to the silicon carbide crystal substrate. This is because a practical processing rate cannot be obtained at a surface pressure of less than 100 gf / cm 2 , and conversely, a silicon carbide substrate may be damaged at a surface pressure of over 200 gf / cm 2 .

本発明によれば、研磨砥粒を従来から使用されているダイヤモンドから炭化ボロンにすることで、被研磨材である炭化シリコン結晶と研磨定盤表面へのダメージを軽減出来、且つ表面の研磨加工を精密に行うことができる。   According to the present invention, by changing the abrasive grains from conventionally used diamond to boron carbide, it is possible to reduce damage to the silicon carbide crystal as the material to be polished and the surface of the polishing platen, and polishing the surface Can be performed precisely.

本発明の炭化シリコン基板の研磨方法の一例について、図面を用いて詳細に説明する。なお、本発明は下記の実施例に限定されない。   An example of the method for polishing a silicon carbide substrate of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following Example.

図1Aは本発明の一実施例における研磨装置の平面図、図1Bは同側面図、図1Cは図1B中のおもりとワークガイドの組み立て体12の部分の拡大図、図1Dは図1Cの組み立て図である。図1A〜図1Dに示すように、研磨定盤1上に炭化シリコン基板2を貼り付けた貼り付けジグ3と、加圧を行なうための適量のおもり4を載せる。そしてワークガイド5を炭化シリコン基板2、貼り付けジグ3、おもり4の外側に取り付け、研磨定盤1を矢印P方向に回転させることで、アーム6に支えられる形で炭化シリコン基板2、貼り付けジグ3、おもり4、ワークガイド5が研磨定盤1上を矢印Q方向に回転する。そして炭化ボロンからなる研磨砥粒を含む研磨液7をチュービングポンプ8(例えば東京理科器械株式会社製のカセットチュービングポンプSMP−21など)を用い、シリコンチューブ9を介して定期的に研磨定盤1上に滴下することで研磨加工が進行する。ここで研磨液7は例えば一般に市販されている磁石を内蔵した攪拌子10を研磨液7の容器に入れ、容器下部から一般に市販されているスターラー11により攪拌を行い、研磨液7中の炭化ボロンからなる研磨砥粒が沈殿しないようにする。ここで攪拌子10、スターラー11は例えば東京理科器械株式会社製のマグネチックスターラー、攪拌子を使用してもよい。   1A is a plan view of a polishing apparatus according to an embodiment of the present invention, FIG. 1B is a side view thereof, FIG. 1C is an enlarged view of a weight 12 and a work guide assembly 12 in FIG. 1B, and FIG. FIG. As shown in FIG. 1A to FIG. 1D, an affixing jig 3 in which a silicon carbide substrate 2 is affixed to a polishing surface plate 1 and an appropriate amount of weight 4 for applying pressure are placed. Then, the work guide 5 is attached to the outside of the silicon carbide substrate 2, the attaching jig 3, and the weight 4, and the polishing table 1 is rotated in the direction of arrow P so that the silicon carbide substrate 2 is attached in a form supported by the arm 6. The jig 3, the weight 4, and the work guide 5 rotate on the polishing surface plate 1 in the arrow Q direction. Then, a polishing liquid 7 containing abrasive grains made of boron carbide is periodically polished through a silicon tube 9 using a tubing pump 8 (for example, a cassette tubing pump SMP-21 manufactured by Tokyo Science Instrument Co., Ltd.). The polishing process proceeds by dripping onto the top. Here, as the polishing liquid 7, for example, a commercially available stirrer 10 containing a magnet is put in a container of the polishing liquid 7, and stirred by a commercially available stirrer 11 from the bottom of the container, and boron carbide in the polishing liquid 7 is added. So that the abrasive grains consisting of Here, as the stirrer 10 and the stirrer 11, for example, a magnetic stirrer and a stirrer manufactured by Tokyo Science Instruments Co., Ltd. may be used.

このとき炭化シリコン基板2、貼り付けジグ3、おもり4、ワークガイド5はアーム6にモーターを取り付けなくても回転はされるが、アーム6にモーターを取り付け、独自に回転運動をさせた方がより安定した回転数で炭化シリコン基板2、貼り付けジグ3、おもり4、ワークガイド5が回転するので好ましい。またこのときの研磨定盤1、アーム6の回転方向は同方向でも逆方向でも良い。またアーム6に揺動機構を取り付けても良い。   At this time, the silicon carbide substrate 2, the bonding jig 3, the weight 4, and the work guide 5 can be rotated without attaching a motor to the arm 6. This is preferable because the silicon carbide substrate 2, the bonding jig 3, the weight 4, and the work guide 5 rotate at a more stable rotational speed. Further, the rotation direction of the polishing surface plate 1 and the arm 6 at this time may be the same direction or the reverse direction. Further, a swing mechanism may be attached to the arm 6.

研磨液7の組成は、純水と炭化ボロンからなる砥粒成分とから構成され、炭化ボロンからなる研磨砥粒と純水との重量比は、0.1%以上5%以下の割合が好ましい。研磨液7において炭化ボロンからなる研磨砥粒の重量比が5%を越える場合は、研磨加工中、研磨液7中に炭化ボロンの砥粒成分が沈殿し、研磨加工に適さない研磨砥粒が生じるため加工効率が悪くなる。また、沈殿した炭化ボロンからなる研磨砥粒が凝集して砥粒形状が歪むため、研磨加工の際に、研磨定盤1や炭化シリコン基板2に加工傷を与える。さらに、研磨液7中に濃度分布が生じてしまうので、加工品質にむらが生じる。研磨液7中の炭化ボロンの重量比が少ないと(0%で無ければ)加工効率は低下するが、研磨加工後の炭化シリコン基板2の面粗さは良化する。   The composition of the polishing liquid 7 is composed of an abrasive grain component made of pure water and boron carbide, and the weight ratio between the abrasive grain made of boron carbide and pure water is preferably 0.1% or more and 5% or less. . When the weight ratio of the abrasive grains made of boron carbide in the polishing liquid 7 exceeds 5%, the abrasive grains of boron carbide precipitate in the polishing liquid 7 during the polishing process, resulting in abrasive grains that are not suitable for the polishing process. As a result, the processing efficiency deteriorates. Further, since the abrasive grains made of precipitated boron carbide aggregate and the shape of the abrasive grains is distorted, the polishing surface plate 1 and the silicon carbide substrate 2 are scratched during polishing. Further, since the concentration distribution is generated in the polishing liquid 7, the processing quality is uneven. If the weight ratio of boron carbide in the polishing liquid 7 is small (if it is not 0%), the processing efficiency is lowered, but the surface roughness of the silicon carbide substrate 2 after the polishing is improved.

研磨加工中は、常に研磨液7を攪拌しながら、研磨液7を研磨定盤1上に供給を行なうのが好ましい。これは、炭化ボロンの重量比が2〜3%である研磨液7でも、長時間の研磨加工中に多少の沈殿が生じるからである。さらに研磨液7中に例えば、アミン系材料であるエチレンジアミン四酢酸のような分散剤を添加し分散性を高めて使用してもよい。   During the polishing process, it is preferable to supply the polishing liquid 7 onto the polishing surface plate 1 while constantly stirring the polishing liquid 7. This is because, even with the polishing liquid 7 in which the weight ratio of boron carbide is 2 to 3%, some precipitation occurs during long-time polishing. Further, for example, a dispersant such as ethylenediaminetetraacetic acid, which is an amine material, may be added to the polishing liquid 7 to increase the dispersibility.

また研磨工程は、研磨砥粒を変えて複数回行うのが効果的である。すなわち、研磨前の炭化シリコン基板2は、その面粗さが粗いので、最初に研磨する場合の研磨液7に含まれる炭化ボロンの平均粒径は大きいものを用い、研磨加工が進むに連れ、順次、研磨砥粒の平均粒径を小さくしていくのが良い。一般に、被研磨基板へ与える面圧が同一で有れば、研磨砥粒の平均粒径は大きいほど加工レートは大きくなり(研磨時間が短くなる)、研磨後の面粗さは大きくなる。反対に、研磨砥粒の平均粒径が小さくなるほど加工レートは小さくなり、研磨後の面粗さも少なくなる。   In addition, it is effective to perform the polishing step a plurality of times by changing the abrasive grains. That is, since the surface roughness of the silicon carbide substrate 2 before polishing is rough, the average particle size of boron carbide contained in the polishing liquid 7 in the first polishing is large, and as the polishing process proceeds, Sequentially, the average grain size of the abrasive grains should be reduced. In general, if the surface pressure applied to the substrate to be polished is the same, the processing rate increases (the polishing time decreases) and the surface roughness after polishing increases as the average particle size of the abrasive grains increases. Conversely, the smaller the average grain size of the abrasive grains, the smaller the processing rate and the smaller the surface roughness after polishing.

表1に、本発明の実施の一例として、面粗さが、50μm(Rz:最大高さ)の炭化シリコン基板2を研磨する際の、研磨液7に含まれる炭化ボロンの平均粒径と炭化シリコン結晶基板2へ与える面圧と加工レートの関係を示す。表1において研磨液7に含まれる炭化ボロンの平均粒径は20μm、40μm、60μm、80μm、100μm、120μmとし、炭化シリコン基板2へ与えられる面圧は0gf/cm(自重のみ)、50gf/cm、100gf/cm、150gf/cm、200gf/cm、250gf/cmとした。また加工レートは前記の炭化ボロンの平均粒径と炭化シリコン基板2へ与えられる面圧の各組み合わせにおいて、電子天秤により測定した加工前後の炭化シリコン基板2の重量差から算出した値同士を比較したものであり、加工レートが十分に速い30μm/h以上の場合はA、若干加工できている程度の10μm/h程度の場合はB、0μm/hではないがほとんど加工されていない場合はC、炭化シリコン基板2に破損が生じた場合はDとした。 In Table 1, as an example of the practice of the present invention, the average particle size and carbonization of boron carbide contained in the polishing liquid 7 when the silicon carbide substrate 2 having a surface roughness of 50 μm (Rz: maximum height) is polished. The relationship between the surface pressure applied to the silicon crystal substrate 2 and the processing rate is shown. In Table 1, the average particle diameter of boron carbide contained in the polishing liquid 7 is 20 μm, 40 μm, 60 μm, 80 μm, 100 μm, and 120 μm, and the surface pressure applied to the silicon carbide substrate 2 is 0 gf / cm 2 (self weight only), 50 gf / cm 2 , 100 gf / cm 2 , 150 gf / cm 2 , 200 gf / cm 2 , and 250 gf / cm 2 were set. Further, the processing rate was compared with the values calculated from the weight difference of the silicon carbide substrate 2 before and after processing measured by an electronic balance in each combination of the average particle size of boron carbide and the surface pressure applied to the silicon carbide substrate 2. If the processing rate is 30 μm / h or higher, the processing rate is A. If the processing rate is about 10 μm / h, the processing rate is B. If not, the processing rate is C. When the silicon carbide substrate 2 was damaged, D was used.

Figure 2006093666
Figure 2006093666

表1に示すように、面圧が250gf/cm以上の場合、すべての条件で基板の破損が生じたが、200gf/cm以下の面圧条件では基板の破損は生じていない。従って、研磨砥粒の平均粒径によらず、面圧は、200gf/cm以下が好ましい。また平均粒径120μmの炭化ボロンは研磨液7中での攪拌が十分に行えないため、研磨砥粒の沈殿や凝集が生じ、有効な研磨が行えなかった。従って、炭化ボロンを用いた研磨砥粒の平均粒径は、100μm以下が好ましい。 As shown in Table 1, when the surface pressure was 250 gf / cm 2 or more, the substrate was damaged under all conditions, but under the surface pressure conditions of 200 gf / cm 2 or less, the substrate was not damaged. Therefore, the surface pressure is preferably 200 gf / cm 2 or less regardless of the average particle diameter of the abrasive grains. Further, boron carbide having an average particle size of 120 μm cannot be sufficiently agitated in the polishing liquid 7, so that precipitation and aggregation of abrasive grains occur, and effective polishing cannot be performed. Therefore, the average particle size of abrasive grains using boron carbide is preferably 100 μm or less.

また、研磨砥粒である炭化ボロンの平均粒径が大きい時は、加工レートと面圧の関係は顕著である。すなわち、炭化ボロンの平均粒径が60〜100μmの時は、最適の加工レートになる面圧は、100〜200gf/cmである。 Further, when the average particle size of boron carbide, which is an abrasive grain, is large, the relationship between the processing rate and the surface pressure is remarkable. That is, when the average particle size of boron carbide is 60 to 100 μm, the surface pressure at which the optimum processing rate is obtained is 100 to 200 gf / cm 2 .

そのため本発明は、初期研磨では60μm〜100μm程度の大きな平均粒径を有する炭化ボロンからなる研磨砥粒を使用し、炭化シリコン基板2へ与える面圧が100〜200gf/cmの条件で研磨を行い、炭化シリコン基板2の面の粗修正を施した後、小さい平均粒径の炭化ボロンからなる研磨砥粒を使用して所望の研磨表面を得る仕上げ研磨を行うのが好ましい。 Therefore, the present invention uses polishing abrasive grains made of boron carbide having a large average particle diameter of about 60 μm to 100 μm in the initial polishing, and polishing is performed under the condition that the surface pressure applied to the silicon carbide substrate 2 is 100 to 200 gf / cm 2. After performing the rough correction of the surface of the silicon carbide substrate 2, it is preferable to perform final polishing to obtain a desired polishing surface using polishing grains made of boron carbide having a small average particle diameter.

仕上げ研磨では、初期研磨に比べると加工レートよりも研磨後の面粗さ、表面状態が重要になる。表2は研磨液7に含まれる炭化ボロン砥粒の平均粒径が1μm、5μm、10μm、20μm、40μm、60μm、80μm、100μmの条件で研磨加工を行った際の炭化シリコン基板2の面粗さについてまとめたものである。   In the final polishing, the surface roughness and surface state after polishing are more important than the processing rate compared to the initial polishing. Table 2 shows the surface roughness of the silicon carbide substrate 2 when polishing is performed under the conditions that the average particle size of boron carbide abrasive grains contained in the polishing liquid 7 is 1 μm, 5 μm, 10 μm, 20 μm, 40 μm, 60 μm, 80 μm, and 100 μm. This is a summary.

Figure 2006093666
Figure 2006093666

面粗さはZygo Corporation社製商品名”Newview5032”装置により研磨加工終了後の面粗さをRz値により測定し、Rz値が1.0μm以下ならA、Rz値が1.0μmを若干超える程度ならB、Rz値が明らかに1μm以上ならCとした。ここで、炭化ボロンを用いて研磨を行う仕上げ研磨後の炭化シリコン基板2の面粗さはRz=1μm以下であることが好ましいので、仕上げ研磨における研磨液7に含まれる炭化ボロンの平均粒径は、10μm以下が好ましい。   The surface roughness is measured by the Rz value after completion of polishing with the Zygo Corporation brand name “Newview 5032” apparatus. If the Rz value is 1.0 μm or less, A and the Rz value slightly exceed 1.0 μm. Then B, and C if the Rz value is clearly 1 μm or more. Here, it is preferable that the surface roughness of the silicon carbide substrate 2 after the final polishing in which polishing is performed using boron carbide is Rz = 1 μm or less, and therefore the average particle diameter of boron carbide contained in the polishing liquid 7 in the final polishing. Is preferably 10 μm or less.

研磨定盤1の材料は、特殊なもので無く、例えば鋳鉄など通常のダイヤモンドによる粗研磨などで使用されているものでよい。炭化シリコン基板2を研磨定盤1に押し付ける面圧は、表1に示したように、100gf/cm〜200gf/cmが望ましい。面圧が200gf/cmより高い場合は、表1にあるように炭化シリコン基板2の割れが発生しやすくなる。 The material of the polishing surface plate 1 is not a special one, and may be one used for rough polishing with normal diamond such as cast iron. As shown in Table 1, the surface pressure at which the silicon carbide substrate 2 is pressed against the polishing surface plate 1 is preferably 100 gf / cm 2 to 200 gf / cm 2 . When the surface pressure is higher than 200 gf / cm 2, the silicon carbide substrate 2 is easily cracked as shown in Table 1.

また研磨定盤1とアーム6により与えられる炭化シリコン基板2の回転数は研磨定盤1、炭化シリコン基板2のサイズ、研磨定盤1の材質、溝形状と炭化シリコン基板2との組み合わせ、研磨液7の濃度、加工時の温度、湿度、研磨装置の形状にもよるが、鋳鉄からなる研磨定盤1が直径200mm、炭化シリコン基板2が5.08cm(2インチ)、炭化ボロンからなる研磨砥粒が濃度5wt%である研磨液7を1分あたり5cc滴下した場合は最大でも40rpmである。他の研磨加工条件が同一の場合、回転数が小さい場合は加工効率が悪化するが、炭化シリコン基板2表面へのダメージは小さくなるため、本実施の形態の最終段階などでは特に有効である。逆に回転数が大きい場合は、研磨定盤1上の研磨液7が飛散しやすくなり、研磨定盤1がより乾きやすくなる。研磨定盤1が乾くことは研磨定盤1上の研磨砥粒の凝集の発生につながり、傷の発生の原因ともなるので避けねばならない。この研磨定盤1と炭化シリコン基板2の回転数は通常、研磨定盤1と本実施形態でいう炭化シリコン基板2に相当する被研磨材の大きさが大きくなればなるほど小さくするのが好ましい。研磨定盤1、被研磨材のサイズが大きい場合は研磨定盤1、被研磨材が小さい場合と比較して、研磨定盤1上を乾かさないために必要な研磨液7の量が多くなるため、より低速度で加工しなければ効率が悪くなる。また研磨定盤1のサイズが大きい場合は実際に加工される部分の周速度自体が速くなるため、研磨定盤1のサイズが小さい場合と比較して回転数を小さくしても加工効率は落ちにくい。これは炭化シリコン基板2のサイズについても同様である。これら実際の加工具合は前述のとおり、研磨定盤1、炭化シリコン基板2のサイズ、研磨定盤1の材質、溝形状と炭化シリコン基板2との組み合わせ、研磨液7の濃度、加工時の温度、湿度、研磨装置の形状にもよる影響が大きい。また研磨定盤1は円形である必要はなく、また回転運動をしながら研磨を行なう必要もなく線運動、非定常運動であってもよい。   The rotation speed of the silicon carbide substrate 2 provided by the polishing surface plate 1 and the arm 6 is determined by the polishing surface plate 1, the size of the silicon carbide substrate 2, the material of the polishing surface plate 1, the combination of the groove shape and the silicon carbide substrate 2, and the polishing. Depending on the concentration of the liquid 7, the temperature during processing, the humidity, and the shape of the polishing apparatus, the polishing surface plate 1 made of cast iron has a diameter of 200 mm, the silicon carbide substrate 2 has 5.08 cm (2 inches), and the polishing made of boron carbide. When 5 cc of polishing liquid 7 having a concentration of abrasive grains of 5 wt% is dropped per minute, the maximum is 40 rpm. When the other polishing processing conditions are the same, the processing efficiency is deteriorated when the rotational speed is small, but the damage to the surface of the silicon carbide substrate 2 is small, which is particularly effective in the final stage of the present embodiment. On the contrary, when the rotational speed is large, the polishing liquid 7 on the polishing surface plate 1 is likely to be scattered, and the polishing surface plate 1 is more easily dried. Drying of the polishing platen 1 must be avoided because it leads to the aggregation of abrasive grains on the polishing platen 1 and causes scratches. In general, it is preferable that the number of rotations of the polishing surface plate 1 and the silicon carbide substrate 2 be reduced as the size of the polishing object corresponding to the polishing surface plate 1 and the silicon carbide substrate 2 in this embodiment increases. When the size of the polishing surface plate 1 and the material to be polished is large, the amount of the polishing liquid 7 required to keep the surface of the polishing surface plate 1 from being dried is larger than when the polishing surface plate 1 and the material to be polished are small. For this reason, the efficiency becomes worse unless machining is performed at a lower speed. Further, when the polishing surface plate 1 is large, the peripheral speed itself of the part that is actually processed increases, so that the processing efficiency is reduced even if the number of rotations is reduced as compared with the case where the size of the polishing surface plate 1 is small. Hateful. The same applies to the size of the silicon carbide substrate 2. As described above, these actual processing conditions are the size of the polishing surface plate 1, the silicon carbide substrate 2, the material of the polishing surface plate 1, the combination of the groove shape and the silicon carbide substrate 2, the concentration of the polishing liquid 7, and the temperature during processing. The influence of humidity, the shape of the polishing apparatus is also great. Further, the polishing surface plate 1 does not need to be circular, and it is not necessary to perform polishing while rotating, and may be linear motion or unsteady motion.

以下に、本発明の研磨方法の効果を、例をあげてさらに詳細に説明する。   Hereinafter, the effect of the polishing method of the present invention will be described in more detail with examples.

(実施例1)
2種類の平均粒径(60μmと1μm)の電気化学工業株式会社製の炭化ボロンからなる研磨砥粒と純水とからなる研磨液7を使用した。研磨砥粒の研磨溶液に対する比率は、5重量%とした。研磨砥粒の平均粒径が60μmのものを第1工程(初期研磨工程)、研磨砥粒の平均粒径が1μmのものを第2工程(仕上げ研磨工程)として使用した。それぞれ研磨加工中には研磨砥粒の沈殿が生じないように研磨液7中を攪拌子により攪拌を行った。また研磨定盤1には鋳鉄を使用した。炭化シリコン基板2にはCREE、INC社製のSiC単結晶基板を使用した。貼り付けジグ3への炭化シリコン基板2の貼り付けには日化精工株式会社製のエレクトロンワックスを使用した。
Example 1
A polishing liquid 7 consisting of abrasive grains made of boron carbide made by Denki Kagaku Kogyo Co., Ltd. and two kinds of average particle diameters (60 μm and 1 μm) and pure water was used. The ratio of the abrasive grains to the polishing solution was 5% by weight. An abrasive having an average grain size of 60 μm was used as the first step (initial polishing step), and an abrasive grain having an average particle size of 1 μm was used as the second step (finish polishing step). In each polishing process, the polishing liquid 7 was stirred with a stirrer so as not to cause precipitation of abrasive grains. The polished surface plate 1 was cast iron. The silicon carbide substrate 2 was a SiC single crystal substrate manufactured by CREE, INC. Electron wax made by Nikka Seiko Co., Ltd. was used for attaching the silicon carbide substrate 2 to the attaching jig 3.

研磨液7を研磨定盤1上に1分当たりに5cc滴下し、研磨定盤1およびアーム6の回転数を同方向に40rpmとして、おもり4により炭化シリコン基板2へ面圧で200gf/cmの加圧力を与えた。また炭化シリコン基板2の研磨を行なう面の初期状態はRz=50μmとして加工時間は第1工程を15分、第2工程を60分とした。 5 cc of the polishing liquid 7 is dropped on the polishing platen 1 per minute, the rotation speed of the polishing platen 1 and the arm 6 is set to 40 rpm in the same direction, and the weight 4 is applied to the silicon carbide substrate 2 at a surface pressure of 200 gf / cm 2. Pressure was applied. The initial state of the surface of the silicon carbide substrate 2 to be polished was Rz = 50 μm, and the processing time was 15 minutes for the first step and 60 minutes for the second step.

(比較例1)
研磨液7に有限会社エフアールティージャパン製のダイヤモンドスラリーを使用した。ダイヤモンドスラリー内のダイヤモンドからなる研磨砥粒は平均粒径で1μmとした。おもり4により炭化シリコン基板2へは面圧で150gf/cmを付与した。使用した研磨液7がダイヤモンドスラリーであり、おもり4による炭化シリコン基板2への面圧が150gf/cmである以外は実施例1と同様として、1加工工程のみで加工を行った。また加工時間は45分とした。
(Comparative Example 1)
A diamond slurry manufactured by FRT Japan Ltd. was used for the polishing liquid 7. The abrasive grains made of diamond in the diamond slurry had an average particle diameter of 1 μm. The weight 4 applied 150 gf / cm 2 to the silicon carbide substrate 2 in terms of surface pressure. The processing was performed in only one processing step as in Example 1 except that the polishing liquid 7 used was diamond slurry and the surface pressure applied to the silicon carbide substrate 2 by the weight 4 was 150 gf / cm 2 . The processing time was 45 minutes.

表3には、実施例1の第1工程、第2工程、比較例1の研磨加工結果のうち、それぞれの加工条件での加工レートおよび実施例1と比較例1での炭化シリコン基板2の最終加工面の状態、および研磨定盤1の状態を示す。加工レートは実施例1の第1工程、第2工程、比較例1での研磨加工前後の炭化シリコン基板2の重量を電子天秤により測定し、炭化シリコン基板2の比重を3.2として計算した加工除去量を1時間あたりの量で示したものである。また炭化シリコン基板2の最終加工面状態はZygo Corporation社製商品名”New view5032”装置により面粗さ(Rz値)を測定した。さらに炭化シリコン基板表面の加工傷の深さを株式会社キーエンス製のレーザー顕微鏡VK8500により測定した。研磨定盤1の表面状態は目視により確認して、加工前とほぼ同じであればA、加工傷などが確認されればBとした。   Table 3 shows the processing rates under the respective processing conditions and the silicon carbide substrate 2 in Example 1 and Comparative Example 1 among the first and second steps of Example 1 and the polishing results of Comparative Example 1. The state of the final processing surface and the state of the polishing surface plate 1 are shown. The processing rate was calculated by measuring the weight of the silicon carbide substrate 2 before and after the polishing process in the first step, the second step, and the comparative example 1 in Example 1 with an electronic balance, and setting the specific gravity of the silicon carbide substrate 2 to 3.2. The amount of processing removal is shown by the amount per hour. Further, the final machined surface state of the silicon carbide substrate 2 was measured for surface roughness (Rz value) using a product name “New view 5032” manufactured by Zygo Corporation. Furthermore, the depth of the processing flaw on the surface of the silicon carbide substrate was measured with a laser microscope VK8500 manufactured by Keyence Corporation. The surface condition of the polishing surface plate 1 was confirmed by visual observation. If the surface condition was almost the same as that before processing, A was determined, and if a processing flaw was confirmed, it was determined as B.

Figure 2006093666
Figure 2006093666

表3に示すように、炭化ボロンの平均粒径が1μmの場合(第2工程)とダイヤモンド(比較例1)とを比較すると、加工レートは比較例1のダイヤモンドの方が良い。すなわち、第2工程のみで、比較例1と同等の加工する場合は、加工レートの結果より研磨加工時間で7.2倍必要である。しかし研磨工程を2回に分け、第1工程に平均粒径60μmの炭化ボロンを使用することで、研磨加工時間を約1.7倍にまで短縮出来、且つ研磨後の面粗さを同一にすることが出来る。また、第2工程と比較例1の加工研磨後の加工傷深さを比べると第2工程で研磨加工を行った方が、加工傷を2.5倍も浅くすることができる。粗研磨後の炭化シリコン基板2表面の加工傷が浅い場合は後工程である精密研磨での加工時間を大幅に短縮できる効果がある。ここで精密研磨工程は数時間から数十時間の加工時間を要するので実施例1の研磨加工を行った場合、総合的な加工時間は大幅に短縮されるものと考えられる。また比較例1では、加工後の研磨定盤1の加工傷が顕著であるが、実施例の第1工程および第2工程では、加工傷は見られない。従って、研磨砥粒に炭化ボロンを用いれば、従来のダイヤモンド砥粒に比べて、研磨工程を複数回設けても、研磨定盤を補正加工する必要がなく、かつ品質の良い結晶表面をもつ炭化シリコン基板を得ることが出来る。   As shown in Table 3, when the average particle size of boron carbide is 1 μm (second step) and diamond (Comparative Example 1), the processing rate of the diamond of Comparative Example 1 is better. That is, in the case of processing equivalent to that of Comparative Example 1 only in the second step, the polishing time is 7.2 times longer than the result of the processing rate. However, by dividing the polishing process into two steps and using boron carbide with an average particle size of 60 μm in the first step, the polishing time can be shortened to about 1.7 times and the surface roughness after polishing is the same. I can do it. In addition, when comparing the second step and the depth of the processing flaw after the processing and polishing of Comparative Example 1, it is possible to reduce the processing flaw by 2.5 times when the polishing processing is performed in the second step. When the processing scratches on the surface of the silicon carbide substrate 2 after the rough polishing are shallow, there is an effect that the processing time in precision polishing, which is a subsequent process, can be greatly shortened. Here, since the precision polishing process requires several hours to several tens of hours of processing time, when the polishing processing of Example 1 is performed, it is considered that the total processing time is significantly shortened. Further, in Comparative Example 1, the processing scratches on the polished surface plate 1 after processing are significant, but no processing scratches are seen in the first step and the second step of the example. Therefore, if boron carbide is used for the abrasive grains, it is not necessary to correct the polishing surface plate even if the polishing process is performed a plurality of times compared to the conventional diamond abrasive grains, and the carbonized surface has a good quality crystal surface. A silicon substrate can be obtained.

この他、実施例1で示したように第1工程として研磨砥粒の平均粒径が60μmのもの、第2工程として研磨砥粒の平均粒径が1μmのものを使用する工法以外にも、第1工程として研磨砥粒の平均粒径が60μmのもの、第2工程として研磨砥粒の平均粒径が10μmのもの、第3工程として研磨砥粒の平均粒径が1μmのものを使用する工法や、第1工程として研磨砥粒の平均粒径が80μmのもの、第2工程として研磨砥粒の平均粒径が10μmのもの、第3工程として研磨砥粒の平均粒径が1μmのものを使用する工法を使用しても問題ない。   In addition, as shown in Example 1, in addition to the construction method using the first process having an average grain size of 60 μm as the first step and the second process having an average grain size of the abrasive grain of 1 μm, In the first step, the abrasive grains having an average particle size of 60 μm, in the second step, the abrasive grains having an average particle size of 10 μm, and in the third step, the abrasive grains having an average particle size of 1 μm are used. In the construction method, the first step has an average abrasive grain size of 80 μm, the second step has an average abrasive grain size of 10 μm, and the third step has an average abrasive grain size of 1 μm There is no problem even if the construction method using is used.

本発明によれば、研磨砥粒に炭化ボロンを使用することで、通常のダイヤモンド砥粒での粗研磨加工と比較して、炭化シリコン基板、研磨定盤へのダメージを抑制した炭化シリコン基板を提供でき、炭化シリコン基板の研磨方法として有用である。   According to the present invention, by using boron carbide for the abrasive grains, a silicon carbide substrate that suppresses damage to the silicon carbide substrate and the polishing surface plate as compared with rough polishing with normal diamond abrasive grains is provided. It can be provided and is useful as a method for polishing a silicon carbide substrate.

図1Aは本発明の一実施例における研磨装置の平面図、図1Bは同側面図を示す。また図1Cは図1B中の12の部分の拡大図、図1Dは図1Cの組み立て図である。FIG. 1A is a plan view of a polishing apparatus in one embodiment of the present invention, and FIG. 1B is a side view thereof. 1C is an enlarged view of a portion 12 in FIG. 1B, and FIG. 1D is an assembly view of FIG. 1C.

符号の説明Explanation of symbols

1 研磨定盤
2 炭化シリコン基板
3 貼り付けジグ
4 おもり
5 ワークガイド
6 アーム
7 研磨液
8 チュービングポンプ
9 シリコンチューブ
10 攪拌子
11 スターラー
12 おもりとワークガイドの組み立て体
DESCRIPTION OF SYMBOLS 1 Polishing surface plate 2 Silicon carbide substrate 3 Sticking jig 4 Weight 5 Work guide 6 Arm 7 Polishing liquid 8 Tubing pump 9 Silicon tube 10 Stirrer 11 Stirrer 12 Weight and work guide assembly

Claims (10)

炭化シリコン結晶基板を研磨する方法であって、
炭化ボロンからなる研磨砥粒を含む研磨液を用いて、表面粗さRzが50μm以下の炭化シリコン結晶基板を研磨する研磨工程を含むことを特徴とする炭化シリコン結晶基板研磨方法。
A method for polishing a silicon carbide crystal substrate, comprising:
A method for polishing a silicon carbide crystal substrate, comprising a polishing step of polishing a silicon carbide crystal substrate having a surface roughness Rz of 50 μm or less using a polishing liquid containing abrasive grains made of boron carbide.
前記研磨工程は、前記研磨砥粒の平均粒径が異なる複数の研磨工程を含む請求項1に記載の炭化シリコン結晶基板研磨方法。   The silicon carbide crystal substrate polishing method according to claim 1, wherein the polishing step includes a plurality of polishing steps in which the average particle size of the polishing abrasive grains is different. 前記研磨工程において、最初の研磨工程で用いられる前記研磨砥粒の平均粒径は、最後の研磨工程で用いられる前記研磨砥粒の平均粒径より大きく、且つ研磨工程が進むに連れ、順次平均粒径を小さくしていく請求項2に記載の炭化シリコン結晶基板方法。   In the polishing step, the average particle size of the polishing abrasive grains used in the first polishing step is larger than the average particle size of the polishing abrasive particles used in the last polishing step, and the average is sequentially increased as the polishing step proceeds. The silicon carbide crystal substrate method according to claim 2, wherein the grain size is reduced. 前記最初の研磨工程で用いる研磨砥粒の平均粒径は60μm以上100μm以下であり、前記最後の研磨工程で用いる研磨砥粒の平均粒径は10μm以下である請求項3に記載の炭化シリコン結晶基板研磨方法。   4. The silicon carbide crystal according to claim 3, wherein the average grain size of the abrasive grains used in the first polishing step is 60 μm or more and 100 μm or less, and the average grain diameter of the abrasive grains used in the last polishing step is 10 μm or less. Substrate polishing method. 前記研磨工程において、前記炭化シリコン結晶基板を研磨する研磨定盤上に前記研磨液を入れた研磨容器を配置し、前記研磨容器内部の研磨液の研磨砥粒が沈殿しないように前記研磨容器内で攪拌しながら前記研磨定盤へ研磨液を滴下する請求項3に記載の炭化シリコン結晶基板研磨方法。   In the polishing step, a polishing container in which the polishing liquid is placed on a polishing surface plate for polishing the silicon carbide crystal substrate is disposed, and the polishing particles in the polishing liquid inside the polishing container are not precipitated. The method for polishing a silicon carbide crystal substrate according to claim 3, wherein a polishing liquid is dropped onto the polishing platen while stirring. 前記研磨定盤の回転数は40rpm以下である請求項5に記載の炭化シリコン結晶基板研磨方法。   The silicon carbide crystal substrate polishing method according to claim 5, wherein the polishing platen has a rotation speed of 40 rpm or less. 前記研磨液の前記研磨定盤への滴下速度は5cc/min以上である請求項5に記載の炭化シリコン結晶基板研磨方法。   The silicon carbide crystal substrate polishing method according to claim 5, wherein a dropping rate of the polishing liquid onto the polishing platen is 5 cc / min or more. 前記研磨液は、溶媒に純水を用い、前記研磨砥粒を前記溶媒に分散させるための分散剤が無い場合は、前記研磨砥粒の前記研磨溶液に対する比率は5重量%以下である請求項1に記載の炭化シリコン結晶基板研磨方法。   The polishing liquid uses pure water as a solvent, and when there is no dispersant for dispersing the polishing abrasive grains in the solvent, the ratio of the polishing abrasive grains to the polishing solution is 5% by weight or less. 2. The method for polishing a silicon carbide crystal substrate according to 1. 前記研磨工程における前記研磨定盤の上全面が前記研磨液によって常時覆われている請求項1に記載の炭化シリコン結晶基板研磨方法。   The silicon carbide crystal substrate polishing method according to claim 1, wherein the entire upper surface of the polishing platen in the polishing step is always covered with the polishing liquid. 前記研磨工程において、前記炭化シリコン結晶基板に100gf/cm以上200gf/cm以下の面圧を与えて研磨加工を行なう請求項1に記載の炭化シリコン結晶基板研磨方法。 The silicon carbide crystal substrate polishing method according to claim 1, wherein in the polishing step, polishing is performed by applying a surface pressure of 100 gf / cm 2 or more to 200 gf / cm 2 or less to the silicon carbide crystal substrate.
JP2005229693A 2004-08-23 2005-08-08 Method for grinding silicon carbide crystal substrate Pending JP2006093666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005229693A JP2006093666A (en) 2004-08-23 2005-08-08 Method for grinding silicon carbide crystal substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004241843 2004-08-23
JP2005229693A JP2006093666A (en) 2004-08-23 2005-08-08 Method for grinding silicon carbide crystal substrate

Publications (1)

Publication Number Publication Date
JP2006093666A true JP2006093666A (en) 2006-04-06

Family

ID=36234295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005229693A Pending JP2006093666A (en) 2004-08-23 2005-08-08 Method for grinding silicon carbide crystal substrate

Country Status (1)

Country Link
JP (1) JP2006093666A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247287A (en) * 2009-04-16 2010-11-04 Bridgestone Corp Manufacturing method for silicon carbide single crystal substrate
JP2015086238A (en) * 2013-10-28 2015-05-07 株式会社ユーテック Polishing agent, polishing article, polishing agent aerosol, polishing member and method for producing polishing agent
WO2016072370A1 (en) * 2014-11-07 2016-05-12 株式会社フジミインコーポレーテッド Polishing method and composition for polishing
KR101807166B1 (en) * 2016-07-19 2017-12-08 재단법인 포항산업과학연구원 METHOD FOR PRODUCING SiC SUBSTRATE
CN113024256A (en) * 2021-03-19 2021-06-25 哈尔滨科友半导体产业装备与技术研究院有限公司 Production method for preparing boron carbide-silicon carbide composite ceramic by using silicon carbide crystal grinding waste liquid
CN115056136A (en) * 2019-12-17 2022-09-16 深圳硅基仿生科技有限公司 Method for grinding surface of ceramic

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288243A (en) * 1994-04-15 1995-10-31 Fuji Electric Co Ltd Electronic device
JP2001144058A (en) * 1999-11-17 2001-05-25 Canon Inc Polishing method and polishing apparatus
JP2002103234A (en) * 2000-09-28 2002-04-09 Jsr Corp Porous polishing body
JP2002114970A (en) * 2000-10-04 2002-04-16 Asahi Denka Kogyo Kk Aqueous lapping liquid and aqueous lapping agent
JP2003165060A (en) * 2001-11-28 2003-06-10 Tosoh Corp Polishing compact and polishing surface plate using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288243A (en) * 1994-04-15 1995-10-31 Fuji Electric Co Ltd Electronic device
JP2001144058A (en) * 1999-11-17 2001-05-25 Canon Inc Polishing method and polishing apparatus
JP2002103234A (en) * 2000-09-28 2002-04-09 Jsr Corp Porous polishing body
JP2002114970A (en) * 2000-10-04 2002-04-16 Asahi Denka Kogyo Kk Aqueous lapping liquid and aqueous lapping agent
JP2003165060A (en) * 2001-11-28 2003-06-10 Tosoh Corp Polishing compact and polishing surface plate using the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247287A (en) * 2009-04-16 2010-11-04 Bridgestone Corp Manufacturing method for silicon carbide single crystal substrate
JP2015086238A (en) * 2013-10-28 2015-05-07 株式会社ユーテック Polishing agent, polishing article, polishing agent aerosol, polishing member and method for producing polishing agent
EP3216562A4 (en) * 2014-11-07 2018-04-18 Fujimi Incorporated Polishing method and composition for polishing
US11015098B2 (en) 2014-11-07 2021-05-25 Fujimi Incorporated Polishing composition
JP2016096326A (en) * 2014-11-07 2016-05-26 株式会社フジミインコーポレーテッド Polishing method and polishing composition
CN107107302A (en) * 2014-11-07 2017-08-29 福吉米株式会社 Ginding process and composition for use in polishing
JP2016093880A (en) * 2014-11-07 2016-05-26 株式会社フジミインコーポレーテッド Polishing method and composition for polishing
EP3263277A3 (en) * 2014-11-07 2018-04-18 Fujimi Incorporated Polishing method and polishing composition
WO2016072370A1 (en) * 2014-11-07 2016-05-12 株式会社フジミインコーポレーテッド Polishing method and composition for polishing
US10227517B2 (en) 2014-11-07 2019-03-12 Fujimi Incorporated Polishing method and polishing composition
US10759981B2 (en) 2014-11-07 2020-09-01 Fujimi Incorporated Polishing method and polishing composition
EP3792000A1 (en) * 2014-11-07 2021-03-17 Fujimi Incorporated Polishing method and polishing composition
KR101807166B1 (en) * 2016-07-19 2017-12-08 재단법인 포항산업과학연구원 METHOD FOR PRODUCING SiC SUBSTRATE
CN115056136A (en) * 2019-12-17 2022-09-16 深圳硅基仿生科技有限公司 Method for grinding surface of ceramic
CN115091354A (en) * 2019-12-17 2022-09-23 深圳硅基仿生科技有限公司 Grinding tool for grinding ceramic surfaces
CN115091354B (en) * 2019-12-17 2023-09-26 深圳硅基仿生科技股份有限公司 Abrasive article for abrading ceramic surfaces
CN115056136B (en) * 2019-12-17 2024-02-06 深圳硅基仿生科技股份有限公司 Method for grinding surface of ceramic
CN113024256A (en) * 2021-03-19 2021-06-25 哈尔滨科友半导体产业装备与技术研究院有限公司 Production method for preparing boron carbide-silicon carbide composite ceramic by using silicon carbide crystal grinding waste liquid

Similar Documents

Publication Publication Date Title
JP5014737B2 (en) Method for manufacturing SiC single crystal substrate
JP5098483B2 (en) Polishing method of sapphire substrate
JP2006093666A (en) Method for grinding silicon carbide crystal substrate
CN111630213B (en) Seed crystal for growing single crystal 4H-SiC and processing method thereof
TW200805453A (en) Method for manufacturing epitaxial wafer
JP4322035B2 (en) Polishing composition for semiconductor substrate and semiconductor substrate polishing method using the same
JP2019210206A (en) Chamfered silicon carbide substrate and chamfering method
JP5795461B2 (en) Epitaxial silicon wafer manufacturing method
JP2016139751A (en) Sapphire substrate polishing method and sapphire substrate obtained
JP2014144500A (en) One-side polishing method for sapphire wafer, and method for producing sapphire wafer
WO2023116555A1 (en) Large-area quartz wafer grinding apparatus and method
JP5116305B2 (en) Polishing composition and substrate polishing method
US7118458B2 (en) Method for polishing silicon carbide crystal substrate
JP6032155B2 (en) Wafer double-side polishing method
JP2009289873A (en) Method of polishing silicon wafer
JP5277722B2 (en) Polishing method of silicon carbide single crystal wafer surface
JP2005117027A (en) Method of manufacturing sic substrate
JP2021160999A (en) Semiconductor substrate and method for manufacturing the same
JP2007067166A (en) Chemomechanical polishing method of sic substrate
CN113480942B (en) Polycrystalline YAG ceramic chemical mechanical polishing solution
JP4145273B2 (en) CMP pad conditioner
JP2013125969A (en) Semiconductor substrate polishing method and semiconductor device polishing apparatus
JP2004055128A (en) Manufacturing method of glass disk substrate for magnetic recording medium
JP2008288240A (en) SiC CRYSTAL POLISHING METHOD
JP2007075948A (en) Abrasive disc, its manufacturing method, and lapping device and its method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630