JP2010245217A - Method of mounting semiconductor ic - Google Patents

Method of mounting semiconductor ic Download PDF

Info

Publication number
JP2010245217A
JP2010245217A JP2009090911A JP2009090911A JP2010245217A JP 2010245217 A JP2010245217 A JP 2010245217A JP 2009090911 A JP2009090911 A JP 2009090911A JP 2009090911 A JP2009090911 A JP 2009090911A JP 2010245217 A JP2010245217 A JP 2010245217A
Authority
JP
Japan
Prior art keywords
tin
lead frame
film
semiconductor
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009090911A
Other languages
Japanese (ja)
Inventor
Kenichi Fuse
憲一 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009090911A priority Critical patent/JP2010245217A/en
Publication of JP2010245217A publication Critical patent/JP2010245217A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To increase a bonding strength with a substrate in a semiconductor IC, which indispensably requires bending processing of a lead frame for mounting onto the substrate. <P>SOLUTION: A method is provided for mounting the semiconductor IC on a circuit board through a tin coating after the tin coating is formed in the lead frame of the semiconductor IC by plating and performing the bending process of the lead frame. In the method, annealing is not performed to the lead frame. Instead of the tin coating, a tin alloy coating with growth inhibition metals consisting of Sn, Bi, Ag, and In is formed in the lead frame. As the annealing is eliminated, forming a Cu<SB>3</SB>Sn layer can be avoided and generation of cracks during a bending process can be prevented. In addition, generation of void caused by diffusion of copper to the plating film does not occur, even though the plating film is left alone at room temperature, without annealing, because of the effect of the predetermined added metals. For the above reasons, the bonding strength is kept at a high level. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は半導体ICを回路基板に装填する方法に関して、ICのリードフレームにスズメッキ皮膜を形成し、リードフレームを曲げ加工して基板に装填する際に、IC基板に対する接合の信頼性を向上できるものを提供する。   The present invention relates to a method of loading a semiconductor IC onto a circuit board, and can improve the reliability of bonding to the IC board when a tin plating film is formed on the lead frame of the IC and the lead frame is bent and loaded onto the board. I will provide a.

従来、半導体ICを回路基板に実装する際には、生産効率を向上し、特に基板実装後の接合強度を確保するため、ICリードフレームにスズメッキを施している。
この場合、ICリードフレームは銅又は銅合金製であるため、スズと銅は室温下でも相互に拡散し合うが、銅からスズへの拡散速度の方が非常に速く、金属間化合物(IMC(Intermetallic Compound);Cu6Sn5)が成長して銅側の原子が減少するため、例えば、特許文献1、或は非特許文献1に示すように、カーケンダルボイド(或はカーケンドールボイド;Kirkendall Voids)と呼ばれるボイド(空洞)が発生してしまう。ちなみに、図4はこの非特許文献1に掲載されたカーケンダルボイドの電子顕微鏡写真である(但し、便宜上、非特許文献1では短時間にボイドを発生させるために加熱している)。
その結果、ICを回路基板に実装した後の接合強度が低下し、最悪の場合にはICが基板から剥離する恐れもある。また、スズ皮膜が薄い場合には、拡散した銅がスズ皮膜の表面まで分布することがあり、はんだ濡れ性の劣化を招く原因にもなる。
Conventionally, when a semiconductor IC is mounted on a circuit board, tin plating is applied to the IC lead frame in order to improve the production efficiency, and in particular, to secure the bonding strength after mounting the board.
In this case, since the IC lead frame is made of copper or a copper alloy, tin and copper diffuse to each other even at room temperature, but the diffusion rate from copper to tin is much faster, and the intermetallic compound (IMC ( Intermetallic Compound); Cu 6 Sn 5 ) grows and the atoms on the copper side decrease. For example, as shown in Patent Document 1 or Non-Patent Document 1, Kirkendall void (or Kirkendall void; Kirkendall) Voids (voids) are generated. Incidentally, FIG. 4 is an electron micrograph of Kirkendall void published in Non-Patent Document 1 (however, for convenience, Non-Patent Document 1 is heated to generate a void in a short time).
As a result, the bonding strength after the IC is mounted on the circuit board is lowered, and in the worst case, the IC may be peeled off from the board. In addition, when the tin film is thin, the diffused copper may be distributed to the surface of the tin film, which causes deterioration of solder wettability.

このため、コネクタ部品やチップセラミック積層部品では、ニッケルメッキをバリア層に用いて銅の拡散を防止している。
しかしながら、一般にニッケル皮膜は柔軟性がないうえ、実装に際してリードフレームを曲げ加工する必要がある半導体ICでは、この曲げ加工時にニッケル皮膜が割れてしまうため、IC皮膜にはニッケルを適用できないという問題がある。
For this reason, in connector parts and chip ceramic multilayer parts, nickel plating is used as a barrier layer to prevent copper diffusion.
However, in general, a nickel film is not flexible, and in a semiconductor IC that needs to bend the lead frame for mounting, the nickel film is broken at the time of the bending process, so that nickel cannot be applied to the IC film. is there.

そこで、従来、半導体ICでは、ニッケル皮膜の形成に代えて、リードフレームをアニール処理することで、高温でしか形成せず、且つ緻密なIMC層であるCu3Snを形成し、これをバリア層として機能させて銅原子のスズ層への拡散を防止している。
尚、このCu3Sn層の形成は、前記Cu6Sn5層の成長を抑制するとともに、アニール処理が残留応力を緩和することで、ホイスカー発生を防止する機能も果している(例えば、特許文献2の段落2〜3には、スズ皮膜のアニールによるホイスカーの防止が記載されている)。
Therefore, in the conventional semiconductor IC, instead of forming the nickel film, the lead frame is annealed to form Cu 3 Sn that is formed only at high temperature and is a dense IMC layer. To prevent the diffusion of copper atoms into the tin layer.
The formation of the Cu 3 Sn layer also serves to prevent whisker generation by suppressing the growth of the Cu 6 Sn 5 layer and relaxing the residual stress by annealing treatment (for example, Patent Document 2). Paragraphs 2 to 3 describe prevention of whiskers by annealing a tin film).

特開平3−97888号公報Japanese Patent Laid-Open No. 3-97888 特開平5−247683号公報Japanese Patent Laid-Open No. 5-247683

深町一彦、川内進 「リン青銅スズめっき材の熱はく離について」 表面技術 Vol.42,No.10(1991)Kazuhiko Fukamachi, Susumu Kawauchi “Heat Peeling of Phosphor Bronze Tin Plating Material” Surface Technology Vol.42, No.10 (1991)

しかしながら、本出願人は新たに、アニール処理で形成させた上記Cu3Sn層について、ICリードフレームの曲げ加工前には異常がないものが(図3参照)、リードフレームを曲げ加工すると、Cu3Sn層内にクラックが発生してしまうことを突き止めた(後述の比較例2に対応する図2参照)。
そして、リードフレームの外層スズメッキの内部深くに、つまり、リードフレームのスズ皮膜と銅素地との界面のIMC層内にクラックが発生すると、前述した室温での銅の拡散でカーケンダルボイドが発生した場合と同様に、ICを回路基板に実装した後の接合の信頼性にやはり問題が生じ、最悪の場合にはICが基板から剥離する恐れも出て来る。
However, the present applicant has newly found that the Cu 3 Sn layer formed by annealing does not have any abnormality before bending the IC lead frame (see FIG. 3). It was ascertained that cracks were generated in the 3 Sn layer (see FIG. 2 corresponding to Comparative Example 2 described later).
And when cracks occur deep inside the tin plating of the outer layer of the lead frame, that is, in the IMC layer at the interface between the tin film of the lead frame and the copper base, Kirkendall voids are generated due to the diffusion of copper at room temperature described above. As in the case, there is still a problem in the reliability of bonding after the IC is mounted on the circuit board. In the worst case, the IC may be peeled off from the board.

本発明は、基板への装填に際してリードフレームの曲げ加工が必要な半導体ICにおいて、基板への接合強度を確実に高めることを技術的課題とする。   It is a technical object of the present invention to reliably increase the bonding strength to a substrate in a semiconductor IC that requires bending of a lead frame when loaded on the substrate.

本発明者らは、上記Cu3Sn層を形成するためのアニールを回避して、ICと基板との接合強度を高く保持できる方法を鋭意研究した結果、スズ皮膜にビスマス、銀などの特定の金属を添加して、スズメッキ皮膜の特性を原子レベルで変化させることで(つまり、所定のスズ合金を形成することで)、アニールなしの条件下でも長時間の室温放置でメッキ皮膜への銅の拡散によるボイドを発生させず、また、アニールの省略で熱拡散によるCu3Sn層が形成されないため、ICリードフレームを曲げ加工してもクラックが発生せず、基板への接合強度を高く保持できることを見い出して、本発明を完成した。 As a result of intensive research on a method capable of maintaining a high bonding strength between the IC and the substrate by avoiding the annealing for forming the Cu 3 Sn layer, the present inventors have found that the tin film has a specific material such as bismuth or silver. By adding metal and changing the properties of the tin plating film at the atomic level (that is, by forming a predetermined tin alloy), the copper film on the plating film can be left at room temperature for a long time without annealing. Does not generate voids due to diffusion, and does not form a Cu 3 Sn layer due to thermal diffusion by omitting annealing, so that cracks do not occur even when the IC lead frame is bent, and the bonding strength to the substrate can be kept high. As a result, the present invention was completed.

即ち、本発明1は、半導体ICの銅又は銅合金製のリードフレームにスズ皮膜をメッキで形成し、リードフレームを曲げ加工するとともに、当該スズ皮膜を介してICを回路基板に装着する半導体ICの装填方法において、
上記リードフレームにアニール処理を施さないことにより、スズ皮膜とリードフレームとの界面でのCu3Sn層からなる金属間化合物の形成を回避し、且つ、
上記スズ皮膜に代えて、スズと、ビスマス、銀、インジウムよりなる群から選ばれた成長抑制金属とのスズ合金皮膜をリードフレームにメッキ形成して、
スズ合金皮膜とリードフレームとの界面で銅の拡散による金属間化合物が室温で成長することを抑制可能にしたことを特徴とする半導体ICの装填方法である。
That is, the present invention 1 is a semiconductor IC in which a tin film is formed by plating on a copper or copper alloy lead frame of a semiconductor IC, the lead frame is bent, and the IC is mounted on a circuit board via the tin film. In the loading method of
By avoiding annealing the lead frame, avoiding the formation of an intermetallic compound consisting of a Cu 3 Sn layer at the interface between the tin film and the lead frame, and
Instead of the tin film, a tin alloy film of tin and a growth inhibiting metal selected from the group consisting of bismuth, silver, and indium is plated on the lead frame,
A semiconductor IC loading method characterized in that growth of intermetallic compounds due to copper diffusion at the interface between a tin alloy film and a lead frame can be suppressed at room temperature.

本発明2は、上記本発明1において、スズ合金中のビスマスの含有率が0.25〜5重量%、同じく銀の含有率が0.25〜5重量%、インジウムの含有率が0.25〜60重量%であることを特徴とする半導体ICの装填方法である。   Invention 2 is the same as Invention 1, wherein the bismuth content in the tin alloy is 0.25 to 5% by weight, the silver content is 0.25 to 5% by weight, and the indium content is 0.25. The semiconductor IC loading method is characterized in that it is ˜60 wt%.

一般に、半導体ICのリードフレームにスズ皮膜をメッキすると、室温での銅拡散によりカーケンダルボイドが発生し、接合強度を低下させるため、従来では、リードフレームをアニール処理して、スズ皮膜と銅素地との界面にCu3Sn層からなるIMC層を形成してバリア層としていた。
しかしながら、半導体ICの実装に際してリードフレームを曲げ加工すると、このIMC層にクラックが発生するという新たな知見を得たことにより、本発明では、アニール処理を回避して、メッキ皮膜と銅素地との界面にIMC(Cu3Sn)層を形成しないため、曲げ加工でCu3Sn層にクラックが発生することを根本的に解消できる。
しかも、リードフレームにはスズ皮膜に替えて、ビスマス、銀などの所定の成長抑制金属を添加したスズ合金皮膜をメッキするため、室温での銅の拡散によるIMC(Cu6Sn5)の成長速度を弛緩させ、従来のようなカーケンダルボイドが発生することも解消できる。
このため、半導体ICを基板に装填する際の接合の信頼性を高められるうえ、メッキ皮膜が薄い場合でも、銅がスズ皮膜表面にまで拡散することもないため、ハンダ濡れ性は損なわれず、この点でも接合の信頼性を向上できる。
また、従来行っていたアニールを回避するため、生産コストを引き下げ、ICの装填を迅速化できる。
In general, when a tin film is plated on a lead frame of a semiconductor IC, Kirkendall voids are generated due to copper diffusion at room temperature and the bonding strength is lowered. Conventionally, the lead frame is annealed to form a tin film and a copper substrate. An IMC layer composed of a Cu 3 Sn layer was formed at the interface with the barrier layer.
However, when the lead frame is bent during the mounting of the semiconductor IC, a new finding that cracks are generated in the IMC layer has been obtained. Thus, in the present invention, the annealing treatment is avoided, and the plating film and the copper base are separated. Since no IMC (Cu 3 Sn) layer is formed at the interface, it is possible to fundamentally eliminate the occurrence of cracks in the Cu 3 Sn layer by bending.
Moreover, since the lead frame is plated with a tin alloy film to which a predetermined growth inhibiting metal such as bismuth or silver is added instead of the tin film, the growth rate of IMC (Cu 6 Sn 5 ) due to the diffusion of copper at room temperature. It is possible to eliminate the occurrence of Kirkendall void as in the prior art.
For this reason, the reliability of bonding when the semiconductor IC is loaded on the substrate can be improved, and even when the plating film is thin, the copper does not diffuse to the surface of the tin film, so the solder wettability is not impaired. This also improves the reliability of bonding.
In addition, in order to avoid the conventional annealing, the production cost can be reduced and the IC can be loaded quickly.

本発明は、半導体ICのリードフレームにスズ皮膜をメッキで形成し、リードフレームを曲げ加工し、回路基板に装着する半導体ICの装填方法において、上記リードフレームのアニール処理を回避し、且つ、上記スズ皮膜に代えて、スズと、ビスマス、銀などの所定の成長抑制金属とのスズ合金皮膜をリードフレームにメッキ形成する半導体ICの装填方法である。
但し、本発明の半導体ICは、半導体LSIなどの集積度の高い半導体部品も包含する概念である。
The present invention provides a semiconductor IC loading method in which a tin film is formed by plating on a lead frame of a semiconductor IC, the lead frame is bent, and the semiconductor IC is mounted on a circuit board. This is a method for loading a semiconductor IC in which a lead alloy is plated with a tin alloy film of tin and a predetermined growth inhibiting metal such as bismuth or silver instead of the tin film.
However, the semiconductor IC of the present invention is a concept including a highly integrated semiconductor component such as a semiconductor LSI.

本発明では、スズ皮膜に代えて、スズと、ビスマス、銀、インジウムよりなる群から選ばれた所定の成長抑制金属とのスズ合金皮膜を半導体ICのリードフレーム上にメッキ形成する。
メッキ皮膜は電気メッキ、無電解メッキのいずれで形成しても良い。
例えば、電気メッキでは、可溶性第一スズ塩と、ビスマス、銀、インジウムよりなる群から選ばれた成長抑制金属の可溶性塩の少なくとも一種とを含有する電気メッキ浴を用いる。
可溶性第一スズ塩は、メッキ浴中でSn2+を生じる任意の化合物をいい、硫酸第一スズ、酸化第一スズ、塩化第一スズ、ホウフッ化第一スズ、スルファミン酸第一スズ、亜スズ酸塩などの無機系の可溶性塩、メタンスルホン酸、エタンスルホン酸、ヒドロキシエタンスルホン酸などの有機スルホン酸第一スズ塩、酢酸、ピロピオン酸、クエン酸、酒石酸、グルコン酸などの脂肪族カルボン酸第一スズ、スルホコハク酸第一スズなどの有機系の可溶性塩などが挙げられる。
当該可溶性第一スズ塩の含有量は1〜200g/L、好ましくは5〜100g/Lである。
In the present invention, instead of the tin film, a tin alloy film of tin and a predetermined growth-inhibiting metal selected from the group consisting of bismuth, silver, and indium is plated on the lead frame of the semiconductor IC.
The plating film may be formed by either electroplating or electroless plating.
For example, in electroplating, an electroplating bath containing a soluble stannous salt and at least one soluble salt of a growth-inhibiting metal selected from the group consisting of bismuth, silver, and indium is used.
Soluble stannous salt refers to any compound that produces Sn 2+ in the plating bath, stannous sulfate, stannous oxide, stannous chloride, stannous borofluoride, stannous sulfamate, Inorganic soluble salts such as stannates, stannous organic sulfonic acid salts such as methanesulfonic acid, ethanesulfonic acid, and hydroxyethanesulfonic acid, aliphatic carboxylic acids such as acetic acid, pyropionic acid, citric acid, tartaric acid, and gluconic acid Examples thereof include organic soluble salts such as stannous acid and stannous sulfosuccinate.
The content of the soluble stannous salt is 1 to 200 g / L, preferably 5 to 100 g / L.

上記成長抑制金属の可溶性塩としては、メッキ浴中でBi3+、Ag+、In3+の各種金属イオンを生じる任意の化合物をいい、例えば、可溶性ビスマス塩であれば、酸化ビスマス、塩化ビスマス、臭化ビスマス、硝酸ビスマス、硫酸ビスマス、メタンスルホン酸ビスマスなどのように、ビスマスの酸化物、ハロゲン化物、或は、無機酸又は有機酸のビスマス塩などが挙げられる。可溶性銀であれば、酸化銀、硝酸銀、硫酸銀、炭酸銀、スルホコハク酸銀、クエン酸銀、酒石酸銀、シュウ酸銀、メタンスルホン酸銀、ホウフッ化銀などが挙げられる。可溶性インジウム塩も上記ビスマス塩などと同様に選択できる。
当該成長抑制金属の可溶性塩の含有量は金属ビスマスとして0.1〜40g/L、好ましくは0.5〜20g/L、金属銀として0.05〜20g/L、好ましくは0.1〜10g/L、金属インジウムとして1〜40g/L、好ましくは2〜20g/Lである。
The soluble salt of the growth-inhibiting metal refers to any compound that generates various metal ions of Bi 3+ , Ag + , and In 3+ in the plating bath. For example, in the case of a soluble bismuth salt, bismuth oxide, bismuth chloride Examples thereof include bismuth oxides, halides, or bismuth salts of inorganic acids or organic acids, such as bismuth bromide, bismuth nitrate, bismuth sulfate, and bismuth methanesulfonate. Examples of soluble silver include silver oxide, silver nitrate, silver sulfate, silver carbonate, silver sulfosuccinate, silver citrate, silver tartrate, silver oxalate, silver methanesulfonate, and silver borofluoride. A soluble indium salt can also be selected in the same manner as the bismuth salt.
The content of the soluble salt of the growth-inhibiting metal is 0.1 to 40 g / L, preferably 0.5 to 20 g / L as metal bismuth, 0.05 to 20 g / L as metal silver, and preferably 0.1 to 10 g. / L, 1-40 g / L as metal indium, preferably 2-20 g / L.

メッキ皮膜を形成する電気メッキ浴では、上記皮膜供給源としての可溶性金属塩以外に、無機酸、有機酸のベース酸、或は、必要に応じてビスマス、銀、インジウムの各種イオンを浴中で安定化する安定剤、界面活性剤、光沢剤、半光沢剤、酸化防止剤、pH調整剤、緩衝剤などの各種添加剤を含有することはいうまでもない。
無電解メッキで用いるメッキ浴では、基本的に電気メッキで用いた各種の可溶性金属塩を使用できる。この外に、チオ尿素或はその誘導体、EDTA、エチレンジアミン等の錯化剤、次亜リン酸又はその塩、アミンボラン類、水素化ホウ素化合物、ビドラジン誘導体等の還元剤などを含有することができる。
In an electroplating bath for forming a plating film, in addition to the soluble metal salt as the film supply source, an inorganic acid, an organic acid base acid, or various ions of bismuth, silver, and indium as necessary in the bath. Needless to say, it contains various additives such as a stabilizing agent, a surfactant, a brightening agent, a semi-brightening agent, an antioxidant, a pH adjusting agent, and a buffering agent.
In the plating bath used in electroless plating, various soluble metal salts used in electroplating can be basically used. In addition, thiourea or a derivative thereof, a complexing agent such as EDTA or ethylenediamine, a hypophosphorous acid or a salt thereof, an amine borane, a borohydride compound, a reducing agent such as a bidrazine derivative, or the like can be contained.

本発明のリードフレームに形成するスズ合金は、スズと、ビスマス、銀、インジウムよりなる群から選ばれた成長抑制金属とのスズ合金であり、スズ−ビスマス合金、スズ−銀合金、スズ−インジウム合金の2成分系のスズ合金が基本であるが、スズ−銀−インジウム合金、スズ−ビスマス−インジウム合金などの3成分以上の多成分系のスズ合金も含まれる。
本発明2に示すように、スズ合金がスズ−ビスマス合金の場合、ビスマスの含有率は0.25〜5重量%が適しており、好ましくは0.5〜4重量%である。同じくスズ−銀合金の場合、銀の含有率は0.25〜5重量%が適しており、好ましくは1〜4重量%である。スズ−インジウム合金の場合、インジウムの含有率は0.25〜60重量%が適しており、好ましくは5〜50重量%である。
上記成長抑制金属の含有率が適正範囲より少ないと銅拡散の抑制効果が低減し、ボイドが発生する恐れがあり、適正範囲より多いとハンダ濡れ性に影響を与え、また、増量しても効果に余り差がなくコストの無駄である。
また、リードフレームに形成するスズ合金皮膜の膜厚は特に制限なく任意に選択できるが、1〜20μmが適しており、5〜15μmが好ましい。
The tin alloy formed in the lead frame of the present invention is a tin alloy of tin and a growth-inhibiting metal selected from the group consisting of bismuth, silver, and indium, and includes a tin-bismuth alloy, a tin-silver alloy, and a tin-indium. The alloy is basically a two-component tin alloy, but a multi-component tin alloy having three or more components such as a tin-silver-indium alloy and a tin-bismuth-indium alloy is also included.
As shown in Invention 2, when the tin alloy is a tin-bismuth alloy, the content of bismuth is suitably 0.25 to 5% by weight, preferably 0.5 to 4% by weight. Similarly, in the case of a tin-silver alloy, the content of silver is suitably 0.25 to 5% by weight, preferably 1 to 4% by weight. In the case of a tin-indium alloy, the content of indium is suitably 0.25 to 60% by weight, preferably 5 to 50% by weight.
If the content of the growth-inhibiting metal is less than the appropriate range, the copper diffusion suppression effect may be reduced and voids may be generated. If the content is higher than the appropriate range, solder wettability will be affected. There is not much difference between the two, which is a waste of cost.
Further, the thickness of the tin alloy film formed on the lead frame can be arbitrarily selected without any particular limitation, but 1 to 20 μm is suitable, and 5 to 15 μm is preferable.

以上の通り、本発明では、リードフレームにアニール処理を施さないため、従来のアニール処理で生成するべきIMC層(Cu3Sn)の形成を回避でき、従って、曲げ加工でCu3Sn層にクラックが発生することを根本的に解消できる。
しかも、従来では、室温下でも銅がメッキ皮膜に速やかに拡散してカーケンダルボイドが発生していたのが、本発明では、リードフレームに所定のスズ合金メッキ皮膜を形成するため、アニール処理を施さないにも拘わらず、この成長抑制金属の添加作用で、従来のような銅拡散によるIMC(Cu6Sn5)の成長速度を弛緩させ、カーケンダルボイドの発生を回避することができる。
この結果、室温放置による当該ボイドの発生と、アニール後の曲げ加工によるIMC層でのクラックの発生との両方を防止でき、半導体ICを回路基板に実装した際の接合の信頼性を高く保持できる。
As described above, in the present invention, since the lead frame is not annealed, it is possible to avoid the formation of the IMC layer (Cu 3 Sn) that should be generated by the conventional annealing process. Therefore, the Cu 3 Sn layer is cracked by bending. Can be fundamentally eliminated.
Moreover, in the past, copper diffused rapidly into the plating film even at room temperature, resulting in the formation of Kirkendall voids. In the present invention, in order to form a predetermined tin alloy plating film on the lead frame, an annealing treatment is performed. Despite not being applied, the growth-inhibiting metal addition action can relax the growth rate of IMC (Cu 6 Sn 5 ) by conventional copper diffusion and avoid the generation of Kirkendall voids.
As a result, it is possible to prevent both the generation of the void due to standing at room temperature and the generation of a crack in the IMC layer due to the bending process after annealing, and the high reliability of bonding when the semiconductor IC is mounted on the circuit board can be maintained. .

以下、本発明の半導体ICの装填方法に関して、アニール処理を施すことなくICのリードフレームを曲げ加工する実施例、当該実施例でのリードフレームの曲げ加工部の断面の微視観察試験例を順次述べる。
尚、本発明は下記の実施例、試験例に拘束されるものではなく、本発明の技術的思想の範囲内で任意の変形をなし得ることは勿論である。
Hereinafter, with respect to the semiconductor IC loading method of the present invention, an example in which the lead frame of the IC is bent without annealing, and a microscopic observation test example of the cross section of the bent portion of the lead frame in the example are sequentially performed. State.
The present invention is not limited to the following examples and test examples, and it is needless to say that arbitrary modifications can be made within the scope of the technical idea of the present invention.

《アニール回避方式によるICリードフレームの実施例》
実施例1はリードフレームにスズ−ビスマス合金メッキ皮膜を形成し、アニールを回避して曲げ加工した例、同じく実施例2はスズ−銀合金メッキ皮膜の形成例、実施例3はスズ−インジウム合金メッキ皮膜の形成例である。
一方、比較例1はスズメッキ皮膜を形成し、アニールを回避し、曲げ加工した例である。比較例2はスズメッキ皮膜を形成し、アニール処理を施して曲げ加工した例である。比較例3〜5は共に比較例2を基本としたもので、比較例3はスズ皮膜に代えてスズ−ビスマス合金メッキ皮膜を形成した例、比較例4はスズ皮膜に代えてスズ−銀合金メッキ皮膜を形成した例、比較例5はスズ皮膜に代えてスズ−インジウム合金メッキ皮膜を形成した例である。
<< Example of IC lead frame by annealing avoidance method >>
Example 1 is an example in which a tin-bismuth alloy plating film is formed on a lead frame and bending is performed while avoiding annealing, Example 2 is an example of forming a tin-silver alloy plating film, and Example 3 is a tin-indium compound. It is an example of formation of a gold plating film.
On the other hand, Comparative Example 1 is an example in which a tin plating film is formed, annealing is avoided, and bending is performed. Comparative Example 2 is an example in which a tin plating film was formed and subjected to an annealing treatment to bend. Comparative Examples 3 to 5 are both based on Comparative Example 2, Comparative Example 3 is an example in which a tin-bismuth alloy plating film is formed instead of a tin film, and Comparative Example 4 is a tin-silver compound in place of a tin film. An example in which a gold plating film is formed and Comparative Example 5 are examples in which a tin-indium alloy plating film is formed instead of a tin film.

(1)実施例1
リード加工前の半導体ICは入手困難であるため、銅合金の一種であるCDA194材でリードフレームと同様な形状を有する試験片を製作し、下記(a)の組成のスズ−ビスマス合金メッキ浴を用いて下記(b)の条件で電気メッキを行い、下記(c)の組成及び膜厚のスズ−ビスマス合金メッキ皮膜を形成し、アニール処理を回避して、図6に示す通り、一般にJベンドと呼ばれる曲げ成形を模して、角度180度で曲げ加工した。
(a)スズ−ビスマス合金メッキ浴
石原薬品製のUTB PF-TIN15(可溶性第一スズ塩) :533g/L
石原薬品製のUTB PF-BI15(可溶性ビスマス塩) :26.7g/L
石原薬品製のUTB PF-ACID(有機スルホン酸) :125g/L
石原薬品製のUTB PF-05SH-A(半光沢剤) :30ml/L
石原薬品製のUTB PF-05SH-B(半光沢剤) :10ml/L
尚、上記可溶性第一スズ塩は15%溶液となっている。
(b)電気メッキの条件
浴温 :50℃
電流密度:10A/dm2
(c)スズ−ビスマス合金皮膜
膜厚 :10μm
析出組成:Sn/Bi=98/2
(1) Example 1
Since it is difficult to obtain semiconductor ICs before lead processing, a test piece having the same shape as the lead frame is manufactured using CDA194 material, which is a kind of copper alloy, and a tin-bismuth alloy plating bath having the following composition (a) is prepared. And by performing electroplating under the conditions of (b) below, forming a tin-bismuth alloy plating film having the composition and film thickness of (c) below, avoiding the annealing treatment, and as shown in FIG. It was bent at an angle of 180 degrees, imitating bending forming called.
(a) Tin-bismuth alloy plating bath UTB PF-TIN15 (soluble stannous salt) manufactured by Ishihara Yakuhin: 533 g / L
UTB PF-BI15 (soluble bismuth salt) manufactured by Ishihara Yakuhin: 26.7 g / L
UTB PF-ACID (organic sulfonic acid) made by Ishihara Pharmaceutical: 125 g / L
UTB PF-05SH-A (semi-brighter) made by Ishihara Pharmaceutical: 30ml / L
UTB PF-05SH-B (semi-brighter) made by Ishihara Pharmaceutical: 10ml / L
The soluble stannous salt is a 15% solution.
(b) Electroplating conditions Bath temperature: 50 ° C
Current density: 10 A / dm 2
(c) Tin-bismuth alloy film thickness: 10 μm
Precipitation composition: Sn / Bi = 98/2

(2)実施例2
実施例1の半導体ICのリードフレームに、下記(a)の組成のスズ−銀合金メッキ浴を用いて下記(b)の条件で電気メッキを行い、下記(c)の組成及び膜厚のスズ−銀合金メッキ皮膜を形成し、アニール処理を回避して、実施例1と同様の角度で曲げ加工した。
(a)スズ−銀合金メッキ浴
石原薬品製のUTB PF-TIN15(可溶性第一スズ塩) :433g/L
石原薬品製のUTB PF-AG(可溶性銀塩) :7g/L
石原薬品製のUTB PF-ACID(有機スルホン酸) :75g/L
石原薬品製のUTB MTS-554A(半光沢剤) :60ml/L
石原薬品製のUTB MTS-554B(半光沢剤) :50ml/L
(b)電気メッキの条件
浴温 :35℃
電流密度:10A/dm2
(c)スズ−銀合金皮膜
膜厚 :10μm
析出組成:Sn/Ag=96.5/3.5
(2) Example 2
The lead frame of the semiconductor IC of Example 1 was electroplated under the condition (b) below using a tin-silver alloy plating bath having the following composition (a), and tin having the composition and film thickness (c) below was obtained. A silver alloy plating film was formed and bent at the same angle as in Example 1 while avoiding the annealing treatment.
(a) Tin-silver alloy plating bath UTB PF-TIN15 (soluble stannous salt) manufactured by Ishihara Pharmaceutical: 433 g / L
UTB PF-AG (soluble silver salt) made by Ishihara Pharmaceutical: 7 g / L
UTB PF-ACID (Organic sulfonic acid) made by Ishihara Pharmaceutical: 75 g / L
UTB MTS-554A (semi-brighter) made by Ishihara Pharmaceutical: 60ml / L
UTB MTS-554B (semi-brightening agent) made by Ishihara Pharmaceutical: 50ml / L
(b) Electroplating conditions Bath temperature: 35 ° C
Current density: 10 A / dm 2
(c) Tin-silver alloy coating film thickness: 10 μm
Precipitation composition: Sn / Ag = 96.5 / 3.5

(3)実施例3
実施例1の半導体ICのリードフレームに、下記(a)の組成のスズ−インジウム合金メッキ浴を用いて下記(b)の条件で電気メッキを行い、下記(c)の組成及び膜厚のスズ−インジウム合金メッキ皮膜を形成し、アニール処理を回避して、実施例1と同様の角度で曲げ加工した。
(a)スズ−インジウム合金メッキ浴
メタンスルホン酸スズ :10g/L
スルファミン酸インジウム :10g/L
(2R,3S,4R,5R)−2,3,4,5,6
−ペンタヒドロキシヘキサン酸ナトリウム :80g/L
スルファミン酸ナトリウム :80g/L
アミド硫酸 :26g/L
硫酸アンモニウム :46g/L
トリエタノールアミン :2.3g/L
アンモニア水でpH3に調整
(b)電気メッキの条件
浴温 :25℃
電流密度:2A/dm2
(c)スズ−インジウム合金皮膜
膜厚 :10μm
析出組成:Sn/In=90/10
(3) Example 3
The lead frame of the semiconductor IC of Example 1 was electroplated under the conditions (b) below using a tin-indium alloy plating bath having the following composition (a), and tin having the composition and film thickness (c) below was obtained. -An indium alloy plating film was formed and bent at the same angle as in Example 1 while avoiding the annealing treatment.
(a) Tin-indium alloy plating bath Tin methanesulfonate: 10 g / L
Indium sulfamate: 10 g / L
(2R, 3S, 4R, 5R) -2,3,4,5,6
-Sodium pentahydroxyhexanoate: 80 g / L
Sodium sulfamate: 80 g / L
Amidosulfuric acid: 26 g / L
Ammonium sulfate: 46 g / L
Triethanolamine: 2.3 g / L
Adjust to pH 3 with aqueous ammonia
(b) Electroplating conditions Bath temperature: 25 ° C
Current density: 2 A / dm 2
(c) Tin-indium alloy film thickness: 10 μm
Precipitation composition: Sn / In = 90/10

(4)比較例1
実施例1の半導体ICのリードフレームに、下記(a)の組成のスズメッキ浴を用いて下記(b)の条件で電気メッキを行い、下記(c)の膜厚のスズメッキ皮膜を形成し、アニール処理を施さないで、実施例1と同様の角度で曲げ加工した。
(a)スズメッキ浴
メタンスルホン酸第一スズ :50g/L
メタンスルホン酸 :100g/L
ポリオキシエチレンβ-ナフトールエーテル(EO10モル) :10g/L
カテコール :1g/L
(b)電気メッキの条件
浴温 :40℃
電流密度:10A/dm2
(c)スズ皮膜
膜厚 :10μm
(4) Comparative Example 1
The lead frame of the semiconductor IC of Example 1 is subjected to electroplating under the condition (b) below using a tin plating bath having the composition (a) below to form a tin plating film having the film thickness (c) below, followed by annealing. Bending was performed at the same angle as in Example 1 without any treatment.
(a) Tin plating bath Stannous methanesulfonate: 50 g / L
Methanesulfonic acid: 100 g / L
Polyoxyethylene β-naphthol ether (EO 10 mol): 10 g / L
Catechol: 1 g / L
(b) Electroplating conditions Bath temperature: 40 ° C
Current density: 10 A / dm 2
(c) Tin film thickness: 10 μm

(5)比較例2
比較例1の半導体ICのリードフレームに、下記(a)の組成のスズメッキ浴を用いて下記(b)の条件で電気メッキを行い、下記(c)の膜厚のスズメッキ皮膜を形成し、150℃、1時間の条件でアニール処理を施した後、実施例1と同様の角度で曲げ加工した。
(a)スズメッキ浴
下記に示す組成で建浴した。
メタンスルホン酸第一スズ :50g/L
メタンスルホン酸 :100g/L
ポリオキシエチレンβ-ナフトールエーテル(EO10モル) :10g/L
カテコール :1g/L
(b)電気メッキの条件
浴温 :40℃
電流密度:10A/dm2
(c)スズ皮膜
膜厚 :10μm
(5) Comparative example 2
The lead frame of the semiconductor IC of Comparative Example 1 is electroplated under the following condition (b) using a tin plating bath having the following composition (a) to form a tin plating film having the following film thickness (c). After annealing at 1 ° C. for 1 hour, bending was performed at the same angle as in Example 1.
(a) Tin plating bath It was constructed with the composition shown below.
Stannous methanesulfonate: 50 g / L
Methanesulfonic acid: 100 g / L
Polyoxyethylene β-naphthol ether (EO 10 mol): 10 g / L
Catechol: 1 g / L
(b) Electroplating conditions Bath temperature: 40 ° C
Current density: 10 A / dm 2
(c) Tin film thickness: 10 μm

(6)比較例3
実施例1の半導体ICのリードフレームに、前記実施例1と同様の条件で電気メッキを行ってスズ−ビスマス合金メッキ皮膜を形成し、比較例2と同条件でアニール処理を施した後、実施例1と同様の角度で曲げ加工した。
(6) Comparative Example 3
The lead frame of the semiconductor IC of Example 1 was electroplated under the same conditions as in Example 1 to form a tin-bismuth alloy plating film, and after annealing was performed under the same conditions as in Comparative Example 2, the test was performed. Bending was performed at the same angle as in Example 1.

(7)比較例4
実施例1の半導体ICのリードフレームに、前記実施例2と同様の条件で電気メッキを行ってスズ−銀合金メッキ皮膜を形成し、比較例2と同条件でアニール処理を施した後、実施例1と同様の角度で曲げ加工した。
(7) Comparative example 4
The lead frame of the semiconductor IC of Example 1 was electroplated under the same conditions as in Example 2 to form a tin-silver alloy plating film, and after annealing was performed under the same conditions as in Comparative Example 2, Bending was performed at the same angle as in Example 1.

(8)比較例5
実施例1の半導体ICのリードフレームに、前記実施例3と同様の条件で電気メッキを行ってスズ−インジウム合金メッキ皮膜を形成し、比較例2と同条件でアニール処理を施した後、実施例1と同様の角度で曲げ加工した。
(8) Comparative Example 5
The lead frame of the semiconductor IC of Example 1 was electroplated under the same conditions as in Example 3 to form a tin-indium alloy plating film, and after annealing was performed under the same conditions as in Comparative Example 2, Bending was performed at the same angle as in Example 1.

《リードフレームの曲げ加工部の微視観察試験例》
そこで、上記実施例1〜3並びに比較例1〜5で得られた半導体ICのリードフレームについて、曲げ加工部におけるクラックの発生の有無を微視観察するとともに、曲げ加工したリードフレームをメッキ後、1000時間に亘り室温放置した後、ボイドの発生の有無を微視観察した。
《Example of microscopic observation test of bent part of lead frame》
Therefore, for the lead frames of the semiconductor ICs obtained in Examples 1 to 3 and Comparative Examples 1 to 5, after microscopic observation of the presence or absence of cracks in the bent portion, after plating the bent lead frame, After leaving at room temperature for 1000 hours, the presence or absence of voids was observed microscopically.

下表はその観察結果である。
ボイドの有無 クラックの有無
実施例1 なし なし
実施例2 なし なし
実施例3 なし なし
比較例1 あり なし
比較例2 なし あり
比較例3 なし あり
比較例4 なし あり
比較例5 なし あり
The following table shows the observation results.
Existence of voids Existence of cracks Example 1 No No Example 2 No No Example 3 No No Comparative example 1 Yes No Comparative example 2 No Yes Comparative example 3 No Yes Comparative example 4 No Yes Comparative example 5 No Yes

上表によると、スズ皮膜を形成した比較例1では、リードフレームにアニール処理を施さないため、冒述の非特許文献1に掲載された電顕写真(図4参照)に示す通り、室温放置でカーケンダルボイドが発生したが、その反面、アニールの省略によりCu3Sn層の形成を回避できたため、クラックの発生は認められなかった。
同じくスズ皮膜を形成した比較例2では、アニール処理を施したため、室温放置でボイドは発生しなかったが、銅拡散により生成したCu3Sn層にクラックの発生が認められた(図2のIMC層に沿って走る空洞列を参照)。
According to the above table, in Comparative Example 1 in which the tin film was formed, since the lead frame was not annealed, it was left at room temperature as shown in the electron micrograph (see FIG. 4) published in Non-Patent Document 1 described above. However, since the formation of the Cu 3 Sn layer could be avoided by omitting the annealing, the generation of cracks was not recognized.
Similarly, in Comparative Example 2 in which a tin film was formed, no void was generated when allowed to stand at room temperature because of annealing treatment, but cracks were observed in the Cu 3 Sn layer formed by copper diffusion (IMC in FIG. 2). (See Cavity Rows that run along the layers).

これに対して、スズ−ビスマス合金皮膜を形成してアニール処理を回避した実施例1では、長時間の室温放置でもボイドは発生せず、また、アニールの省略によりCu3Sn層の形成を回避できたため、クラックの発生も認められなかった(図1のIMC層には空洞列は見られず)。尚、図1に示すように、当該実施例1のメッキ皮膜と銅素地の界面では、IMC層は非常に薄くしか生成していないことが分かる。
但し、同じくスズ−ビスマス合金皮膜を形成した比較例3では、アニール処理を施したので、室温放置でボイドは発生しなかったが、銅拡散により生成したCu3Sn層にクラックの発生が認められた(図5のIMC層には空洞が多く見られた)。これにより、スズ皮膜に代えてスズ−ビスマス合金皮膜を形成した場合でも、アニール処理をした後に曲げ加工すると、クラックの発生が確認できたことから、曲げ加工が前提のICリードフレームでは、スズ−ビスマス合金を形成し、且つ、アニール処理を施さないことが、クラック並びにボイドの発生を阻止する必要条件であることが判断できた。
また、スズ−銀合金皮膜を形成した実施例2、スズ−インジウム合金皮膜を形成した実施例3においても、実施例1と同様に、室温放置でのボイドの発生はなく、また、アニールの回避により曲げ加工によるクラックの発生も認められなかった。但し、アニール処理をして曲げ加工した比較例4〜5では、比較例3と同様に、曲げ加工部にクラックが発生した。
On the other hand, in Example 1 in which the annealing treatment was avoided by forming a tin-bismuth alloy film, voids did not occur even when left at room temperature for a long time, and the formation of the Cu 3 Sn layer was avoided by omitting the annealing. As a result, no cracks were observed (no cavity row was seen in the IMC layer in FIG. 1). In addition, as shown in FIG. 1, it turns out that the IMC layer is produced | generated only very thinly in the interface of the plating film of the said Example 1 and a copper base material.
However, in Comparative Example 3 in which a tin-bismuth alloy film was also formed, since annealing was performed, voids did not occur when left at room temperature, but cracks were observed in the Cu 3 Sn layer formed by copper diffusion. (There were many cavities in the IMC layer of FIG. 5). As a result, even when a tin-bismuth alloy film was formed instead of a tin film, the occurrence of cracks could be confirmed when bending was performed after annealing. It was determined that the formation of a bismuth alloy and no annealing treatment were necessary conditions for preventing the generation of cracks and voids.
Further, in Example 2 in which the tin-silver alloy film was formed and in Example 3 in which the tin-indium alloy film was formed, there was no generation of voids at room temperature as in Example 1, and avoidance of annealing. Thus, no cracks were observed due to bending. However, in Comparative Examples 4 to 5 that were bent by annealing, cracks occurred in the bent portion as in Comparative Example 3.

実施例1(スズ−ビスマス合金皮膜/アニールなし)の曲げ加工部の電子顕微鏡写真(倍率5000倍)である。It is an electron micrograph (magnification 5000 times) of the bending process part of Example 1 (tin-bismuth alloy film / no annealing). 比較例2(スズ皮膜/アニールあり)の曲げ加工部の電子顕微鏡写真(倍率5000倍)である。It is an electron micrograph (magnification 5000 times) of the bending process part of the comparative example 2 (with a tin film / annealing). 比較例2の曲げ加工前の電子顕微鏡写真(倍率5000倍)である。6 is an electron micrograph (magnification: 5000 times) before bending of Comparative Example 2. 非特許文献1に掲載された電子顕微鏡写真である。2 is an electron micrograph published in Non-Patent Document 1. 比較例3(スズ−ビスマス合金皮膜/アニールあり)の曲げ加工部の電子顕微鏡写真(倍率5000倍)である。It is an electron micrograph (magnification 5000 times) of the bending process part of the comparative example 3 (A tin-bismuth alloy membrane | film | coat / with annealing). ICリードフレームを曲げ加工する際の曲げ角度を示す拡大写真(倍率60倍)である。It is an enlarged photograph (magnification 60 times) which shows the bending angle at the time of bending an IC lead frame. ICリードフレームの曲げ加工部を示す拡大写真(倍率2.3倍)である。It is an enlarged photograph (magnification 2.3 times) which shows the bending process part of an IC lead frame.

Claims (2)

半導体ICの銅又は銅合金製のリードフレームにスズ皮膜をメッキで形成し、リードフレームを曲げ加工するとともに、当該スズ皮膜を介してICを回路基板に装着する半導体ICの装填方法において、
上記リードフレームにアニール処理を施さないことにより、スズ皮膜とリードフレームとの界面でのCu3Sn層からなる金属間化合物の形成を回避し、且つ、
上記スズ皮膜に代えて、スズと、ビスマス、銀、インジウムよりなる群から選ばれた成長抑制金属とのスズ合金皮膜をリードフレームにメッキ形成して、
スズ合金皮膜とリードフレームとの界面で銅の拡散による金属間化合物が室温で成長することを抑制可能にしたことを特徴とする半導体ICの装填方法。
In a semiconductor IC loading method of forming a tin film on a lead frame made of copper or copper alloy of a semiconductor IC by plating, bending the lead frame, and mounting the IC to a circuit board via the tin film,
By avoiding annealing the lead frame, avoiding the formation of an intermetallic compound consisting of a Cu 3 Sn layer at the interface between the tin film and the lead frame, and
Instead of the tin film, a tin alloy film of tin and a growth inhibiting metal selected from the group consisting of bismuth, silver, and indium is plated on the lead frame,
A method of loading a semiconductor IC, characterized in that growth of an intermetallic compound due to copper diffusion at the interface between a tin alloy film and a lead frame can be suppressed at room temperature.
スズ合金中のビスマスの含有率が0.25〜5重量%、同じく銀の含有率が0.25〜5重量%、インジウムの含有率が0.25〜60重量%であることを特徴とする請求項1に記載の半導体ICの装填方法。   The content of bismuth in the tin alloy is 0.25 to 5% by weight, the content of silver is 0.25 to 5% by weight, and the content of indium is 0.25 to 60% by weight. The method for loading a semiconductor IC according to claim 1.
JP2009090911A 2009-04-03 2009-04-03 Method of mounting semiconductor ic Pending JP2010245217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009090911A JP2010245217A (en) 2009-04-03 2009-04-03 Method of mounting semiconductor ic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009090911A JP2010245217A (en) 2009-04-03 2009-04-03 Method of mounting semiconductor ic

Publications (1)

Publication Number Publication Date
JP2010245217A true JP2010245217A (en) 2010-10-28

Family

ID=43097925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009090911A Pending JP2010245217A (en) 2009-04-03 2009-04-03 Method of mounting semiconductor ic

Country Status (1)

Country Link
JP (1) JP2010245217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019090946A (en) * 2017-11-15 2019-06-13 日立化成株式会社 Negative photosensitive resin composition and method for manufacturing semiconductor device member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138334A (en) * 1999-12-06 2000-05-16 Furukawa Electric Co Ltd:The Outer lead part of lead frame material and semiconductor device using the outer lead part
JP2000174191A (en) * 1998-12-07 2000-06-23 Hitachi Ltd Semiconductor device and its manufacture
JP2006319288A (en) * 2005-05-16 2006-11-24 Nec Electronics Corp Semiconductor device
JP2007100148A (en) * 2005-10-03 2007-04-19 C Uyemura & Co Ltd Whisker-suppressive surface treating method
JP2009070997A (en) * 2007-09-12 2009-04-02 Toyota Motor Corp Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174191A (en) * 1998-12-07 2000-06-23 Hitachi Ltd Semiconductor device and its manufacture
JP2000138334A (en) * 1999-12-06 2000-05-16 Furukawa Electric Co Ltd:The Outer lead part of lead frame material and semiconductor device using the outer lead part
JP2006319288A (en) * 2005-05-16 2006-11-24 Nec Electronics Corp Semiconductor device
JP2007100148A (en) * 2005-10-03 2007-04-19 C Uyemura & Co Ltd Whisker-suppressive surface treating method
JP2009070997A (en) * 2007-09-12 2009-04-02 Toyota Motor Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019090946A (en) * 2017-11-15 2019-06-13 日立化成株式会社 Negative photosensitive resin composition and method for manufacturing semiconductor device member
JP7069657B2 (en) 2017-11-15 2022-05-18 昭和電工マテリアルズ株式会社 Method for manufacturing negative photosensitive resin composition and semiconductor device member

Similar Documents

Publication Publication Date Title
JP4868892B2 (en) Plating method
JP5418894B2 (en) Manufacturing method of composite ball for electronic parts
JP4998704B2 (en) Method for forming substituted tin alloy plating film, substituted tin alloy plating bath, and method for maintaining plating performance
JP6083921B2 (en) Silver-tin alloy electroplating bath
WO2005123987A1 (en) Tin-based plating film and method for forming the same
JP2018029175A (en) Multi-layer electrical contact element
US9458541B2 (en) Method for electroless plating of tin and tin alloys
TWI582870B (en) Manufacture of coated copper pillars
JP5288362B2 (en) Multilayer plating film and printed wiring board
KR102116055B1 (en) Electroless nickel strike plating solution
TWI805624B (en) Electroless palladium plating solution
JP2010245217A (en) Method of mounting semiconductor ic
KR20210089695A (en) Electroless Nickel Plating Solution
US10991645B2 (en) Wiring substrate
KR101447505B1 (en) Solder joint structure having tooth-like structure with excellent efficiency for suppressing the formation of kirkendall voids and method of manufacturing the same
JP2010202895A (en) Method for film deposition of tin-plated film
EP3693495A1 (en) Electroless palladium plating solution, and electroless palladium plated coating
JP7213390B1 (en) Silver-plated film and electrical contact provided with said silver-plated film
JP7316250B2 (en) Electroless gold plating bath and electroless gold plating method
JP2005264261A (en) Electronic component material
JP2009019225A (en) Electroless copper plating liquid, and electroless copper plating method
JP2007141936A (en) Method of manufacturing printed wiring board having high-density copper pattern
KR20140092597A (en) Electroless cobalt plating solution, method of electroless plating using the same, and cobalt plating layer using the same
JP2021070858A (en) Substitution gold plating solution and substitution gold plating method
WO2014102140A1 (en) A method for plating a substrate with a metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140422