JP2010244715A - Electrode substrate for alkaline secondary battery, and electrode for the alkaline secondary battery - Google Patents

Electrode substrate for alkaline secondary battery, and electrode for the alkaline secondary battery Download PDF

Info

Publication number
JP2010244715A
JP2010244715A JP2009089070A JP2009089070A JP2010244715A JP 2010244715 A JP2010244715 A JP 2010244715A JP 2009089070 A JP2009089070 A JP 2009089070A JP 2009089070 A JP2009089070 A JP 2009089070A JP 2010244715 A JP2010244715 A JP 2010244715A
Authority
JP
Japan
Prior art keywords
skeleton
nickel
electrode
exposed
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009089070A
Other languages
Japanese (ja)
Inventor
Masahiko Tsukiashi
雅彦 月脚
Takayuki Yano
尊之 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009089070A priority Critical patent/JP2010244715A/en
Publication of JP2010244715A publication Critical patent/JP2010244715A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode substrate and an electrode preventing contact of a positive electrode and a negative electrode, when they are spirally wound by forming the skeleton of three-dimensional net structure so as to make it less apt to pass through a separator. <P>SOLUTION: An electrode substrate 10 for an alkaline secondary battery has three-dimensional net structure, in which the inside is hollow and the tip part 12 of the skeleton 11 exposed to the surface of foam nickel has a spherical or hemispherical outer shape. The spherical or hemispherical outer shape is formed, in such a way that a tip part 12a of a skeleton 11a exposed to the outside of foam resin 10a having three-dimensional net structure is deformed to a spherical or hemispherical tip part 12b of a skeleton 11b exposed to the outside of foam resin 10b by heat treatment, and the foam resin 10b is made electrically conductive; and after electrolytic nickel plating is applied, the foam resin is decomposed and removed by heating. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ニッケル−水素二次電池やニッケル−カドミウム二次電池などのアルカリ二次電池に用いられる電極基板およびこの電極基板を用いた電極に係わり、特に、三次元網状構造の骨格を備えた板状の発泡ニッケルからなるアルカリ二次電池用電極基板およびこの電極基板を用いたアルカリ二次電池用電極に関する。   The present invention relates to an electrode substrate used for an alkaline secondary battery such as a nickel-hydrogen secondary battery or a nickel-cadmium secondary battery, and an electrode using the electrode substrate, and more particularly, has a three-dimensional network structure skeleton. The present invention relates to an electrode substrate for an alkaline secondary battery made of plate-like foamed nickel and an electrode for an alkaline secondary battery using the electrode substrate.

近年、携帯電話や携帯型のパーソナルコンピュータ(所謂、ノートパソコン)のような各種電子機器のコードレス化や、電動アシスト自転車などのニーズの高まりに対して、高機能化、小型軽量化にはめざましいものがある。これらの各種電子機器や電動アシスト自転車などの機器の電源となる二次電池に対して、高容量化の要望が高まっている。これらの機器の電源となる二次電池としては、ニッケル−水素二次電池やニッケル−カドミウム二次電池などのアルカリ二次電池を用いるのが一般的である。特に、ニッケル−水素蓄電池は、水酸化ニッケルを主体としたニッケル正極と、水素吸蔵合金を主体とした水素吸蔵合金負極からなる二次電池であり、高容量で高信頼性のアルカリ二次電池として普及している。   In recent years, as electronic devices such as mobile phones and portable personal computers (so-called laptop computers) have become cordless and the needs for electrically assisted bicycles have increased, they have been remarkably improved in functionality, size and weight. There is. There is a growing demand for higher capacity for secondary batteries that serve as power sources for these various electronic devices and electric assist bicycles. As a secondary battery serving as a power source for these devices, an alkaline secondary battery such as a nickel-hydrogen secondary battery or a nickel-cadmium secondary battery is generally used. In particular, the nickel-hydrogen storage battery is a secondary battery composed of a nickel positive electrode mainly composed of nickel hydroxide and a hydrogen storage alloy negative electrode mainly composed of a hydrogen storage alloy, and is a high capacity and high reliability alkaline secondary battery. It is popular.

この場合、アルカリ二次電池用のニッケル正極には、大別して焼結式と非焼結式の二種類がある。ここで、焼結式正極はパンチングメタル等の導電性芯材とニッケル粉末とを焼結させて得た多孔度80%程度のニッケル焼結基板に、硝酸ニッケル水溶液等のニッケル塩溶液を含浸し、続いて、アルカリ水溶液に含浸するなどして多孔質ニッケル焼結基板中に活物質である水酸化ニッケルを生成させて作製するものである。この焼結式正極はニッケル焼結基板の多孔度をこれ以上大きくすることが困難であるため、活物質量を増加することができず、高容量化には限界がある。   In this case, nickel positive electrodes for alkaline secondary batteries are roughly classified into two types, a sintered type and a non-sintered type. Here, the sintered positive electrode is obtained by impregnating a nickel sintered substrate having a porosity of about 80% obtained by sintering a conductive core material such as punching metal and nickel powder with a nickel salt solution such as an aqueous nickel nitrate solution. Subsequently, nickel hydroxide as an active material is produced in a porous nickel sintered substrate by impregnating with an alkaline aqueous solution. Since it is difficult for the sintered positive electrode to further increase the porosity of the nickel sintered substrate, the amount of active material cannot be increased, and there is a limit to increasing the capacity.

一方、非焼結式正極は発泡ニッケル基板に、正極活物質となる水酸化ニッケルを充填して作製するものであり、高容量タイプのアルカリ二次電池の正極として広く用いられている。ここで、発泡ニッケル基板は、発泡させたポリウレタンなどの3次元網目状構造体の骨格の表面をニッケルでメッキした後、3次元網目状構造体を除去して製造されたものであって、3次元網状構造を有する金属多孔体(例えば多孔度95%程度の発泡ニッケル)からなるものである。この非焼結式正極では高容量化の観点から、嵩密度が大きい球状の水酸化ニッケルが使用される。   On the other hand, a non-sintered positive electrode is produced by filling a foamed nickel substrate with nickel hydroxide as a positive electrode active material, and is widely used as a positive electrode for high-capacity alkaline secondary batteries. Here, the foamed nickel substrate is manufactured by plating the surface of a skeleton of a three-dimensional network structure such as foamed polyurethane with nickel and then removing the three-dimensional network structure. It is made of a metal porous body having a dimensional network structure (for example, nickel foam having a porosity of about 95%). In this non-sintered positive electrode, spherical nickel hydroxide having a large bulk density is used from the viewpoint of increasing the capacity.

ところで、非焼結式正極を用いたアルカリ二次電池においては、円筒型構造と角形構造が知られている。このうち、円筒型構造のアルカリ二次電池は、水酸化ニッケルが塗布された非焼結式ニッケル正極と水素吸蔵合金が塗布された水素吸蔵合金負極とをセパレータを介在させて渦巻状に巻回して形成した電極群と、電解液と、これらの電極群と電解液とを収容する負極端子を兼ねる円筒型外装缶とを備え、電極群の最外周は負極で円筒型外装缶の内面に接するようになされている。   By the way, in an alkaline secondary battery using a non-sintered positive electrode, a cylindrical structure and a square structure are known. Among these, the alkaline secondary battery having a cylindrical structure has a non-sintered nickel positive electrode coated with nickel hydroxide and a hydrogen storage alloy negative electrode coated with a hydrogen storage alloy wound in a spiral shape with a separator interposed therebetween. The electrode group formed in this manner, an electrolytic solution, and a cylindrical outer can that also serves as a negative electrode terminal that accommodates the electrode group and the electrolytic solution, and the outermost periphery of the electrode group is a negative electrode that contacts the inner surface of the cylindrical outer can It is made like that.

近年、この種の円筒型構造のアルカリ二次電池においては、各電極の容積を増加させて高容量化を図るようになされるようになった。そこで、正極と負極の極間距離を短くし、セパレータの低目付化を行うことにより各電極の活物質量を増加させることが、例えば、特許文献1(特開平3−59958号公報)などに提案されている。   In recent years, in this type of cylindrical secondary alkaline battery, the capacity of each electrode has been increased to increase the capacity. Therefore, for example, Patent Document 1 (Japanese Patent Laid-Open No. 3-59958) discloses that the distance between the positive electrode and the negative electrode is shortened and the weight of the separator is reduced to increase the amount of active material of each electrode. Proposed.

特開平3−59958号公報JP-A-3-59958

しかしながら、特許文献1にて提案されるようにセパレータの低目付化を行うと、正極と負極が接触する現象、即ち、内部短絡が生じやすくなって、内部短絡の発生率が高くなるという問題を生じるようになった。これは、セパレータの低目付化を行うと、水酸化ニッケルが塗布された非焼結式ニッケル正極と水素吸蔵合金が塗布された水素吸蔵合金負極とをセパレータを介在させて渦巻状に巻回した際に、非焼結式ニッケル正極に用いられた3次元網状構造を有する金属多孔体(発泡ニッケル)の骨格が低目付のセパレータを突き破って、水素吸蔵合金負極に接触するようになるからである。   However, when the weight of the separator is reduced as proposed in Patent Document 1, there is a problem that the positive electrode and the negative electrode are in contact with each other, that is, an internal short circuit is likely to occur, and the occurrence rate of the internal short circuit is increased. It came to occur. This is because when the separator is reduced in weight, a non-sintered nickel positive electrode coated with nickel hydroxide and a hydrogen storage alloy negative electrode coated with a hydrogen storage alloy are wound in a spiral shape with a separator interposed therebetween. This is because the skeleton of the porous metal body (foamed nickel) having a three-dimensional network structure used for the non-sintered nickel positive electrode breaks through the low-weight separator and comes into contact with the hydrogen storage alloy negative electrode. .

そこで、本発明は上記した問題を解決するためになされたものであって、3次元網状構造を有する金属多孔体(発泡ニッケル)の骨格がセパレータを貫通しづらい形態になるようにして、渦巻状に巻回した際に正極と負極とが接触しないようにし、信頼性に優れたアルカリ二次電池用電極基板およびこの電極基板を用いたアルカリ二次電池用電極を提供することを目的とするものである。   Therefore, the present invention has been made to solve the above-described problem, and the skeleton of the porous metal body (foamed nickel) having a three-dimensional network structure is formed in a spiral shape so that it does not easily penetrate the separator. An object of the present invention is to provide an electrode substrate for an alkaline secondary battery excellent in reliability by preventing the positive electrode and the negative electrode from coming into contact with each other when wound on, and an electrode for an alkaline secondary battery using this electrode substrate. It is.

上記目的を達成するため、本発明の三次元網状構造の骨格を備えた板状の発泡ニッケルからなるアルカリ二次電池用電極基板は、三次元網状構造の骨格の内部は中空であるとともに、当該骨格を備えた板状の発泡ニッケルの外部に露出した骨格の先端部は球状、半球状あるいは柔軟な針状となる外形形状を有していることを特徴とする。   In order to achieve the above object, an alkaline secondary battery electrode substrate made of plate-like nickel foam having a three-dimensional network structure skeleton of the present invention has a hollow three-dimensional network structure inside the skeleton. The tip portion of the skeleton exposed to the outside of the plate-like nickel foam having the skeleton has an outer shape of a spherical shape, a hemispherical shape, or a flexible needle shape.

この場合、球状、半球状あるいは柔軟な針状となる外形形状は三次元網状構造を有する板状の発泡樹脂の外部に露出した骨格の先端部の加熱処理あるいは薬品処理により、当該板状の発泡樹脂の外部に露出した骨格の先端部の外形形状を球状、半球状あるいは柔軟な針状となるように変形させた後に導電性を付与し、かつ電解ニッケルメッキを施した後、加熱することにより、発泡樹脂を分解除去することにより形成されたものであるのが望ましい。   In this case, the outer shape of a spherical, hemispherical or flexible needle shape is obtained by subjecting the plate-like foamed resin having a three-dimensional network structure to the outside of the skeleton exposed to the outside by heat treatment or chemical treatment. By transforming the outer shape of the tip of the skeleton exposed to the outside of the resin into a spherical, hemispherical or flexible needle shape, imparting conductivity, applying electrolytic nickel plating, and then heating It is desirable that the resin is formed by decomposing and removing the foamed resin.

さらに、本発明の三次元網状構造の骨格を備えた板状の発泡ニッケルからなる電極基板に水酸化ニッケルあるいは高次水酸化ニッケルからなる主活物質が充填されて形成されたアルカリ二次電池用電極は、三次元網状構造の骨格の内部は中空であるとともに、当該骨格を備えた板状の発泡ニッケルの外部に露出した骨格の先端部は球状、半球状あるいは柔軟な針状となる外形形状を有しており、骨格間の空隙部に水酸化ニッケルあるいは高次水酸化ニッケルからなる主活物質が充填されていることを特徴とする。   Further, for an alkaline secondary battery formed by filling a main active material made of nickel hydroxide or higher-order nickel hydroxide into an electrode substrate made of plate-like foamed nickel having a three-dimensional network structure skeleton of the present invention. The electrode is hollow inside the skeleton of the three-dimensional network structure, and the outer end of the skeleton exposed to the outside of the plate-like foam nickel provided with the skeleton has a spherical, hemispherical or flexible needle shape. And a main active material made of nickel hydroxide or higher-order nickel hydroxide is filled in the gaps between the skeletons.

この場合も、球状、半球状あるいは柔軟な針状となる外形形状は三次元網状構造を有する板状の発泡樹脂の外部に露出した骨格の先端部の加熱処理あるいは薬品処理により、当該板状の発泡樹脂の外部に露出した骨格の先端部の外形形状を球状、半球状あるいは柔軟な針状となるように変形させた後に導電性を付与し、かつ電解ニッケルメッキを施した後、加熱することにより、発泡樹脂を分解除去することにより形成されたものであるのが望ましい。   Also in this case, the outer shape of a spherical, hemispherical or flexible needle shape is obtained by heating or chemical treatment of the tip of the skeleton exposed outside the plate-like foamed resin having a three-dimensional network structure. The outer shape of the skeleton exposed to the outside of the foamed resin is deformed so that it becomes spherical, hemispherical, or flexible needle-shaped, and then imparted conductivity, and after applying electrolytic nickel plating, heating Therefore, it is desirable that the foamed resin be formed by decomposing and removing.

本発明においては、3次元網状構造を有する金属多孔体(発泡ニッケル)の骨格がセパレータを貫通しづらい形態となっているので、渦巻状に巻回した際に正極と負極が接触することが防止でき、信頼性に優れたアルカリ二次電池用電極基板およびアルカリ二次電池用電極を提供することが可能となる。   In the present invention, since the skeleton of the porous metal body (foamed nickel) having a three-dimensional network structure is difficult to penetrate the separator, the positive electrode and the negative electrode are prevented from coming into contact when wound in a spiral shape. It is possible to provide an alkaline secondary battery electrode substrate and an alkaline secondary battery electrode that are excellent in reliability.

本発明の発泡ポリウレタンシートの表面部の骨格の一部とアルカリ二次電池用電極基板の表面部の骨格の一部を拡大して示す図であり、図1(a)は実施例1の発泡ポリウレタンシートの加熱処理前の骨格の要部の一部の側面を模式的に示す側面図であり、図1(b)は、実施例1の発泡ポリウレタンシートの加熱処理後の骨格の要部の一部の側面を模式的に示す側面図であり、図1(c)は実施例1のアルカリ二次電池用電極基板の骨格の要部の一部の側面を模式的に示す側面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (a) is an enlarged view showing a part of the skeleton of the surface portion of the polyurethane foam sheet of the present invention and a part of the skeleton of the surface portion of the electrode substrate for an alkaline secondary battery. FIG. 1B is a side view schematically showing a part of the side surface of the main part of the skeleton before the heat treatment of the polyurethane sheet, and FIG. 1B shows the main part of the skeleton after the heat treatment of the foamed polyurethane sheet of Example 1. FIG. 1C is a side view schematically showing a part of the side surface of the main part of the skeleton of the electrode substrate for an alkaline secondary battery of Example 1. FIG. . 本発明の発泡ポリウレタンシートの表面部の骨格の一部とアルカリ二次電池用電極基板の表面部の骨格の一部を拡大して示す図であり、図2(a)は実施例2の発泡ポリウレタンシートの薬品処理前の骨格の要部の一部の側面を模式的に示す側面図であり、図2(b)は、実施例2の発泡ポリウレタンシートの薬品処理後の骨格の要部の一部の側面を模式的に示す側面図であり、図2(c)は実施例2のアルカリ二次電池用電極基板の骨格の要部の一部の側面を模式的に示す側面図である。FIG. 2 (a) is an enlarged view showing a part of the skeleton of the surface part of the foamed polyurethane sheet of the present invention and a part of the skeleton of the surface part of the electrode substrate for an alkaline secondary battery. FIG. FIG. 2B is a side view schematically showing a side surface of a part of the main part of the skeleton before chemical treatment of the polyurethane sheet, and FIG. 2B is a diagram of the main part of the skeleton after chemical treatment of the foamed polyurethane sheet of Example 2. FIG. 2C is a side view schematically showing a part of the side surface of the main part of the skeleton of the alkaline secondary battery electrode substrate of Example 2. . 比較例の発泡ポリウレタンシートの骨格の表面部の一部とアルカリ二次電池用電極基板の骨格の表面部の一部を拡大して示す図であり、図3(a)は比較例の発泡ポリウレタンシートの骨格の要部の一部の側面を模式的に示す側面図であり、図3(b)は比較例のアルカリ二次電池用電極基板の骨格の要部の一部の側面を模式的に示す側面図である。It is a figure which expands and shows a part of surface part of the frame | skeleton of the foaming polyurethane sheet of a comparative example, and a part of surface part of the frame | skeleton of the electrode substrate for alkaline secondary batteries, FIG.3 (a) is a foaming polyurethane of a comparative example FIG. 3B is a side view schematically showing a part of the side surface of the main part of the skeleton of the sheet, and FIG. 3B is a schematic side view of a part of the main part of the skeleton of the alkaline secondary battery electrode substrate of the comparative example. FIG. アルカリ二次電池用電極の表面部の要部を拡大して模式的に示す断面図であり、4(a)は、図1(c)に示す実施例1のアルカリ二次電池用電極基板を用いたアルカリ二次電池用電極の表面部の要部の一部の断面を模式的に示す断面図であり、図4(b)は、図2(c)に示す実施例2のアルカリ二次電池用電極基板を用いたアルカリ二次電池用電極の表面部の要部の一部の断面を模式的に示す断面図であり、図4(c)は、図3(b)に示す比較例のアルカリ二次電池用電極基板を用いたアルカリ二次電池用電極の表面部の要部の一部の断面を模式的に示す断面図である。It is sectional drawing which expands and shows typically the principal part of the surface part of the electrode for alkaline secondary batteries, 4 (a) is the electrode substrate for alkaline secondary batteries of Example 1 shown in FIG.1 (c). It is sectional drawing which shows typically a cross section of a part of main part of the surface part of the used electrode for alkaline secondary batteries, FIG.4 (b) is the alkali secondary of Example 2 shown in FIG.2 (c). It is sectional drawing which shows typically a cross section of a part of principal part of the surface part of the electrode for alkaline secondary batteries using a battery electrode substrate, and FIG.4 (c) is a comparative example shown in FIG.3 (b). It is sectional drawing which shows typically a partial cross section of the principal part of the surface part of the electrode for alkaline secondary batteries using the electrode substrate for alkaline secondary batteries. 本発明のアルカリ二次電池を模式的に示す断面図である。It is sectional drawing which shows the alkaline secondary battery of this invention typically.

ついで、本発明の実施の形態を以下に詳細に説明するが、本発明はこれに限定されるものでなく、その要旨を変更しない範囲で適宜変更して実施することができる。   Next, embodiments of the present invention will be described in detail below. However, the present invention is not limited to these embodiments, and can be appropriately modified and implemented without departing from the scope of the present invention.

1.発泡ニッケル基板(3次元網状構造を有する金属多孔体)
(1)実施例1
本実施例1の発泡ニッケル基板10は、内部は中空(図示せず)となる三次元網状構造の骨格11を有している。そして、この基板10の表面に露出する骨格11の先端部12は、図1(c)に示すように、その外形形状が球状あるいは半球状となるように形成されている。以下に、骨格11の先端部12の外形形状が球状あるいは半球状となる作製法について詳述する。
1. Foam nickel substrate (metal porous body with three-dimensional network structure)
(1) Example 1
The foamed nickel substrate 10 of Example 1 has a three-dimensional network structure skeleton 11 that is hollow (not shown). And the front-end | tip part 12 of the frame | skeleton 11 exposed on the surface of this board | substrate 10 is formed so that the external shape may become a spherical shape or a hemispherical shape, as shown in FIG.1 (c). Hereinafter, a manufacturing method in which the outer shape of the distal end portion 12 of the skeleton 11 is spherical or hemispherical will be described in detail.

まず、図示しない発泡ポリウレタンシート(例えば、厚みが1.0mm〜2.0mmのものが好ましく、ここでは1.7mmのものを用いた)10aを用意する。この場合、発泡ポリウレタンシート10aの表面は切断面となっているため、図1(a)に示すように、その表面に露出した骨格11aの先端部12aは、角部が尖った突起状となっている。そして、この表面に熱風(例えば、170〜230℃の温度で、1秒〜5秒間が好ましい)を満遍なく当てて骨格11aの先端部12aを溶融させる。これにより、図1(b)に示すように、骨格11aの一部が変形した骨格部11bとなるとともに、その先端部12bの外形形状が球状あるいは半球状となった発泡ポリウレタンシート10bが得られることとなる。   First, a polyurethane foam sheet (not shown) (for example, a sheet having a thickness of 1.0 mm to 2.0 mm is preferable, and a sheet having a thickness of 1.7 mm is used here) 10a is prepared. In this case, since the surface of the polyurethane foam sheet 10a is a cut surface, as shown in FIG. 1 (a), the tip 12a of the skeleton 11a exposed on the surface has a protruding shape with sharp corners. ing. Then, hot air (for example, preferably at a temperature of 170 to 230 ° C., preferably 1 to 5 seconds) is uniformly applied to the surface to melt the tip 12a of the skeleton 11a. As a result, as shown in FIG. 1 (b), a foamed polyurethane sheet 10b in which a part of the skeleton 11a becomes a deformed skeleton part 11b and the outer shape of the tip part 12b is spherical or hemispherical is obtained. It will be.

ついで、変形した骨格部11bおよびその先端部12bが球状あるいは半球状となった発泡ポリウレタンシート10bにPVD(Physical Vapor Deposition)法によりニッケルを蒸着して、発泡ポリウレタンシート10bの内部骨格(図示せず)、表面に露出した変形した骨格部11bおよび球状あるいは半球状となった先端部12bの表面に導電性を付与した。この後、この内部骨格(図示せず)、表面に露出した変形した骨格部11bおよび球状あるいは半球状となった先端部12bの表面に導電性が付与された発泡ポリウレタンシート10bに電解ニッケルメッキを施して、内部骨格(図示せず)、表面に露出した変形した骨格部11bおよび球状あるいは半球状となった先端部12bの表面にニッケルめっき層(例えば、厚みが5μm〜20μmのものが好ましく、ここでは10μmとした)を形成させたシートとした。   Next, nickel is vapor-deposited by PVD (Physical Vapor Deposition) method on the deformed skeleton part 11b and the foamed polyurethane sheet 10b whose tip part 12b is spherical or hemispherical, and the inner skeleton (not shown) of the foamed polyurethane sheet 10b is shown. ), Conductivity was imparted to the surface of the deformed skeleton 11b exposed on the surface and the tip 12b having a spherical or hemispherical shape. Thereafter, electrolytic nickel plating is applied to the foamed polyurethane sheet 10b having conductivity imparted to the inner skeleton (not shown), the deformed skeleton portion 11b exposed on the surface, and the spherical or hemispherical tip portion 12b. The inner skeleton (not shown), the deformed skeleton portion 11b exposed on the surface and the surface of the tip portion 12b that is spherical or hemispherical, preferably a nickel plating layer (for example, having a thickness of 5 μm to 20 μm, Here, the sheet is 10 μm).

ついで、得られたシートを加熱分解処理(例えば、700℃で、10分間程度が好ましい)して、発泡ポリウレタンシート10aを分解除去するとともに、ニッケルめっき層を焼鈍した。これにより、内部は中空(図示せず)となる三次元網状構造の骨格11を有し、表面に露出する骨格11の先端部12が、図1(c)に示すように、その外形形状が球状あるいは半球状となり、かつ目付が350g/m2となる実施例1の発泡ニッケル基板10が形成されることとなる。 Next, the obtained sheet was subjected to thermal decomposition treatment (for example, preferably at 700 ° C. for about 10 minutes) to decompose and remove the foamed polyurethane sheet 10a and anneal the nickel plating layer. As a result, the inside has a three-dimensional network structure skeleton 11 that is hollow (not shown), and the distal end portion 12 of the skeleton 11 exposed on the surface has an outer shape as shown in FIG. The foamed nickel substrate 10 of Example 1 having a spherical or hemispherical shape and a basis weight of 350 g / m 2 is formed.

なお、上述した実施例1においては、発泡ポリウレタンシート10aの表面に露出した骨格11aの先端部12aを溶融させて、骨格11aの先端部12aの外形形状を球状あるいは半球状とするために、発泡ポリウレタンシート10aの表面に熱風(例えば、170〜230℃の温度で、1秒〜5秒間が好ましい)を満遍なく当てる例について説明した。ところが、発泡ポリウレタンシート10aの表面に露出した骨格11aの先端部12aを溶融させるためには、熱風に限らず、他の手段を用いることが可能である。この場合、例えば、発泡ポリウレタンシート10aを所定の温度(例えば、170℃〜230℃が好ましく、ここでは200℃とした)に加熱された一対の加熱ローラー間を通過させるようにして、発泡ポリウレタンシート10aの表裏面を加熱させて、表面に露出した骨格11aの先端部12aを溶融させ、表面に露出した骨格11aの先端部12aの外形形状を球状あるいは半球状とするようにしてもよい。   In Example 1 described above, foaming is performed in order to melt the tip 12a of the skeleton 11a exposed on the surface of the foamed polyurethane sheet 10a so that the outer shape of the tip 12a of the skeleton 11a is spherical or hemispherical. An example has been described in which hot air (for example, at a temperature of 170 to 230 ° C., preferably 1 to 5 seconds) is uniformly applied to the surface of the polyurethane sheet 10a. However, in order to melt the distal end portion 12a of the skeleton 11a exposed on the surface of the polyurethane foam sheet 10a, not only hot air but other means can be used. In this case, for example, the polyurethane foam sheet 10a is passed between a pair of heating rollers heated to a predetermined temperature (for example, 170 ° C. to 230 ° C., preferably 200 ° C.). The front and back surfaces of 10a may be heated to melt the tip 12a of the skeleton 11a exposed on the surface, and the outer shape of the tip 12a of the skeleton 11a exposed on the surface may be spherical or hemispherical.

(2)実施例2
ついで、実施例2の発泡ニッケル基板20について説明すると、本実施例2の発泡ニッケル基板20は、内部は中空(図示せず)となる三次元網状構造の骨格21を有している。そして、この基板20の表面に露出する骨格21の先端部22は柔軟性を有し、図2(c)に示すように、その先端部の外形形状は針状に尖った形状に形成されている。以下に、表面に露出する骨格21の先端部22は柔軟性を有し、その外形形状が針状に尖った形状となる作製法について詳述する。
(2) Example 2
Next, the foamed nickel substrate 20 of Example 2 will be described. The foamed nickel substrate 20 of Example 2 has a three-dimensional network structure skeleton 21 that is hollow (not shown). And the front-end | tip part 22 of the frame | skeleton 21 exposed on the surface of this board | substrate 20 has a softness | flexibility, and as shown in FIG.2 (c), the external shape of the front-end | tip part is formed in the shape sharpened like a needle. Yes. Hereinafter, a manufacturing method in which the distal end portion 22 of the skeleton 21 exposed on the surface has flexibility and the outer shape thereof becomes a needle-like shape will be described in detail.

まず、図示しない発泡ポリウレタンシート(例えば、厚みが1.0mm〜2.0mmのものが好ましく、ここでは1.7mmのものを用いた)20aを用意する。この場合、発泡ポリウレタンシート20aの表面は切断面となっているため、図2(a)に示すように、その表面に露出した骨格21aの先端部22aは、角部が尖った突起状となっている。そして、この発泡ポリウレタンシート20aの表面(このシート20aの表面から厚みの10〜30%の範囲)に濃硫酸を含浸させる。これにより、図2(b)に示すように、表面に露出した骨格21aの一部が変形した骨格部21bとなるとともに、その先端部の外形形状が針状に尖った形状の針状部22bとなった発泡ポリウレタンシート20bが得られることとなる。   First, a foamed polyurethane sheet (not shown) (for example, a sheet having a thickness of 1.0 mm to 2.0 mm is preferable, and a sheet having a thickness of 1.7 mm is used here) 20a is prepared. In this case, since the surface of the polyurethane foam sheet 20a is a cut surface, as shown in FIG. 2 (a), the tip 22a of the skeleton 21a exposed on the surface has a protruding shape with sharp corners. ing. Then, concentrated sulfuric acid is impregnated on the surface of the polyurethane foam sheet 20a (in the range of 10 to 30% of the thickness from the surface of the sheet 20a). As a result, as shown in FIG. 2B, a part of the skeleton 21a exposed on the surface becomes a deformed skeleton part 21b, and the needle-like part 22b whose outer shape is pointed like a needle is formed. The resulting foamed polyurethane sheet 20b is obtained.

ついで、表面に露出する骨格21aの一部が変形した骨格部21bとなるとともに、その先端部22bの外形形状が針状に尖った形状となった発泡ポリウレタンシート20bにPVD(Physical Vapor Deposition)法によりニッケルを蒸着して、発泡ポリウレタンシート20bの内部骨格(図示せず)21a、表面に露出した変形した骨格部21bおよび先端部22bが針状となった発泡ポリウレタンシート20bの表面に導電性を付与した。この後、導電性が付与された発泡ポリウレタンシート20bに電解ニッケルメッキを施して、内部骨格(図示せず)、表面に露出した変形した骨格部21bおよび針状に尖った先端部22bの表面にニッケルめっき層(例えば、厚みが5μm〜20μmのものが好ましく、ここては10μmとした)を形成させたシートとした。   Next, a part of the skeleton 21a exposed on the surface becomes a deformed skeleton part 21b, and a foamed polyurethane sheet 20b in which the outer shape of the distal end part 22b has a needle-like shape is applied to the PVD (Physical Vapor Deposition) method. The inner surface of the foamed polyurethane sheet 20b (not shown) 21a, the deformed skeleton 21b exposed on the surface, and the surface of the foamed polyurethane sheet 20b in which the tip 22b is needle-shaped are deposited by nickel. Granted. Thereafter, the foamed polyurethane sheet 20b to which conductivity is imparted is subjected to electrolytic nickel plating, so that the inner skeleton (not shown), the deformed skeleton portion 21b exposed on the surface, and the surface of the needle-like tip portion 22b are formed. A sheet on which a nickel plating layer (for example, one having a thickness of 5 μm to 20 μm is preferable, here 10 μm) is formed.

ついで、得られたシートを加熱分解処理(例えば、700℃で、10分間程度が好ましい)して、発泡ポリウレタンシート20bを分解除去するとともに、ニッケルめっき層を焼鈍した。これにより、内部は中空(図示せず)となる三次元網状構造の骨格21を有し、表面に露出する骨格21の先端部22は柔軟性を有し、図2(c)に示すように、その先端部の外形形状は針状に尖った形状となり、かつ目付が350g/m2となる実施例2の発泡ニッケル基板20が形成されることとなる。 Next, the obtained sheet was subjected to a thermal decomposition treatment (for example, preferably at 700 ° C. for about 10 minutes) to decompose and remove the foamed polyurethane sheet 20b and to anneal the nickel plating layer. Thereby, the inside has a three-dimensional network structure skeleton 21 that is hollow (not shown), and the tip 22 of the skeleton 21 exposed on the surface has flexibility, as shown in FIG. 2 (c). Thus, the foamed nickel substrate 20 of Example 2 is formed in which the outer shape of the tip is pointed like a needle and the basis weight is 350 g / m 2 .

なお、上述した実施例2においては、発泡ポリウレタンシート20aの表面に露出した骨格21aの一部が変形した骨格部21bになるとともに、その先端部22bの外形形状が針状に尖った形状となるように、発泡ポリウレタンシート20aを濃硫酸に含浸させる例について説明した。ところが、濃硫酸に代えてフェノールなどの薬品に含浸させるようにしても、発泡ポリウレタンシート20aの表面に露出した骨格21aの一部が変形した骨格部21bになるとともに、その先端部22bの外形形状が針状に尖った形状となった発泡ポリウレタンシート20bを得ることができる。   In Example 2 described above, a part of the skeleton 21a exposed on the surface of the polyurethane foam sheet 20a becomes a deformed skeleton part 21b, and the outer shape of the distal end part 22b has a needle-like shape. As described above, the example in which the foamed polyurethane sheet 20a is impregnated with concentrated sulfuric acid has been described. However, even when impregnated with a chemical such as phenol instead of concentrated sulfuric acid, a part of the skeleton 21a exposed on the surface of the polyurethane foam sheet 20a becomes a deformed skeleton part 21b, and the outer shape of the front end part 22b. Can be obtained as a foamed polyurethane sheet 20b having a needle-like shape.

(3)比較例
ついで、比較例の発泡ニッケル基板30について説明すると、比較例の発泡ニッケル基板30は、内部は中空(図示せず)となる三次元網状構造の骨格31を有している。そして、この基板30の表面に露出する骨格31の先端部32は、図3(c)に示すように、角部が尖った突起状となっている。以下に、その作製法について詳述する。まず、図示しない発泡ポリウレタンシート(例えば、厚みが1.0mm〜2.0mmのものが好ましく、ここでは1.7mmのものを用いた)30aを用意する。この場合、発泡ポリウレタンシート30aの表面は切断面となっているため、図3(a)に示すように、その表面に露出した骨格31aの先端部32aは、角部が尖った突起状となっている。
(3) Comparative Example Next, the foamed nickel substrate 30 of the comparative example will be described. The foamed nickel substrate 30 of the comparative example has a three-dimensional network structure skeleton 31 that is hollow (not shown). And the front-end | tip part 32 of the frame | skeleton 31 exposed on the surface of this board | substrate 30 is a protrusion shape with the sharp corner | angular part, as shown in FIG.3 (c). Below, the manufacturing method is explained in full detail. First, a polyurethane foam sheet (not shown) 30a (for example, a sheet having a thickness of 1.0 mm to 2.0 mm is preferable, and a sheet having a thickness of 1.7 mm is used here) 30a is prepared. In this case, since the surface of the polyurethane foam sheet 30a is a cut surface, as shown in FIG. 3 (a), the tip 32a of the skeleton 31a exposed on the surface has a protruding shape with sharp corners. ing.

ついで、この発泡ポリウレタンシート30aにPVD(Physical Vapor Deposition)法によりニッケルを蒸着して、発泡ポリウレタンシート30aの内部骨格(図示せず)および表面に露出した骨格31aの表面に導電性を付与した。この後、この各骨格表面に導電性が付与された発泡ポリウレタンシート30aに電解ニッケルメッキを施して、内部骨格(図示せず)および表面に露出した骨格31aの表面にニッケルめっき層(例えば、厚みが5μm〜20μmのものが好ましく、ここでは10μmとした)を形成させたシートとした。   Next, nickel was deposited on the foamed polyurethane sheet 30a by a PVD (Physical Vapor Deposition) method to impart conductivity to the internal skeleton (not shown) of the foamed polyurethane sheet 30a and the surface of the skeleton 31a exposed on the surface. Thereafter, electrolytic nickel plating is applied to the foamed polyurethane sheet 30a having conductivity imparted to each skeleton surface, and a nickel plating layer (for example, thickness) is formed on the surface of the inner skeleton (not shown) and the skeleton 31a exposed on the surface. Is preferably 5 μm to 20 μm, and is 10 μm here).

ついで、得られたシートを加熱分解処理(例えば、例えば、700℃で、10分間程度が好ましい)して、発泡ポリウレタンシート30aを分解除去するとともに、ニッケルめっき層を焼鈍した。これにより、内部は中空(図示せず)となる三次元網状構造の骨格31を有し、図3(c)に示すように、表面に露出する骨格31の先端部32は角部が尖った突起状となり、かつ目付が350g/m2となる比較例の発泡ニッケル基板30が形成されることとなる。 Subsequently, the obtained sheet was subjected to a thermal decomposition treatment (for example, preferably at 700 ° C. for about 10 minutes) to decompose and remove the foamed polyurethane sheet 30a and to anneal the nickel plating layer. As a result, the inside has a skeleton 31 having a three-dimensional network structure that is hollow (not shown), and the tip 32 of the skeleton 31 exposed on the surface has a sharp corner as shown in FIG. A foamed nickel substrate 30 of a comparative example having a protrusion shape and a basis weight of 350 g / m 2 is formed.

2.ニッケル正極
ニッケル正極40a(40b,40c)は、上述のような構成となる発泡ニッケル基板10(20,30)に所定量の水酸化ニッケルを主体とする正極活物質が含有されたペーストが充填されて形成されたものである。この場合、発泡ニッケル基板10を用いたものがニッケル正極40aとなり、発泡ニッケル基板20を用いたものがニッケル正極40bとなり、発泡ニッケル基板30を用いたものがニッケル正極40cとなる。ついで、上述のような構成となる発泡ニッケル基板10,20,30を用いて、ニッケル正極40a(40b,40c)を作製する例について、以下に説明する。
2. Nickel positive electrode The nickel positive electrode 40a (40b, 40c) is filled with a paste containing a positive electrode active material mainly composed of a predetermined amount of nickel hydroxide on the foamed nickel substrate 10 (20, 30) having the above-described configuration. Is formed. In this case, the one using the foamed nickel substrate 10 becomes the nickel positive electrode 40a, the one using the foamed nickel substrate 20 becomes the nickel positive electrode 40b, and the one using the foamed nickel substrate 30 becomes the nickel positive electrode 40c. Next, an example in which the nickel positive electrode 40a (40b, 40c) is produced using the foamed nickel substrate 10, 20, 30 having the above-described configuration will be described below.

まず、水酸化ニッケル粉末100質量部に、必要に応じて導電性材料と、結着剤としてのカルボキシメチルセルロース(CMC)0.05質量部、ポリアクリル酸ナトリウム0.05質量部、ポリテトラフルオロエチレン(PTFE)のディスパージョン(比重1.5,固形分60質量%)を固形分換算で0.1質量部とを添加し、水とともに混合することによりペーストを調製する。ここで、水酸化ニッケル粉末としては、亜鉛およびコバルトから選ばれる1種以上の金属が共晶された水酸化ニッケル粉末か、あるいは無共晶の水酸化ニッケル粉末を用いることができる。   First, 100 parts by mass of nickel hydroxide powder, if necessary, a conductive material, 0.05 parts by mass of carboxymethyl cellulose (CMC) as a binder, 0.05 parts by mass of sodium polyacrylate, polytetrafluoroethylene A paste is prepared by adding a dispersion of (PTFE) (specific gravity 1.5, solid content 60% by mass) to 0.1 part by mass in terms of solid content and mixing with water. Here, as the nickel hydroxide powder, nickel hydroxide powder in which one or more metals selected from zinc and cobalt are eutectic, or non-eutectic nickel hydroxide powder can be used.

なお、水酸化ニッケル粉末の表面には、オキシ水酸化コバルト(CoOOH)を含む導電層が形成されたものとすることができるが、導電層が形成した場合は、導電性材料を添加する必要はない。導電性材料としては、例えば、金属コバルト、コバルト化合物(CoOのようなコバルト酸化物やCo(OH)のようなコバルト水酸化物等)を上げることができ、これらの1種または2種以上を用いることができる。この場合、導電性材料は粉末か、水酸化ニッケルの表面を被覆する層状物の形態でペースト中に添加することができる。   Note that a conductive layer containing cobalt oxyhydroxide (CoOOH) may be formed on the surface of the nickel hydroxide powder, but when a conductive layer is formed, it is necessary to add a conductive material. Absent. Examples of the conductive material include metallic cobalt and cobalt compounds (cobalt oxide such as CoO and cobalt hydroxide such as Co (OH)), and one or more of these can be used. Can be used. In this case, the conductive material can be added to the paste in the form of a powder or a layered material covering the surface of nickel hydroxide.

そして、上述のように形成された各発泡ニッケル基板10(20,30)に、上述のように調製されたペーストを活物質の充填密度が2.5g/cm3になるように充填した後、室温で乾燥させ、所定の厚み(例えば、0.65mm)になるように圧延し後、所定の寸法(例えば、100mm)になるように切断してニッケル正極40a(40b,40c)を作製する。なお、得られたニッケル正極40a(40b,40c)の一方の端部は、充填されたペーストを超音波振動により除去して、後述する正極集電体42に溶接接続される接続部41を形成するようにしている。 Then, after filling each foamed nickel substrate 10 (20, 30) formed as described above with the paste prepared as described above so that the active material has a packing density of 2.5 g / cm 3 , After drying at room temperature and rolling to a predetermined thickness (for example, 0.65 mm), the nickel positive electrode 40a (40b, 40c) is manufactured by cutting to a predetermined dimension (for example, 100 mm). One end of the obtained nickel positive electrode 40a (40b, 40c) is formed by removing the filled paste by ultrasonic vibration to form a connection portion 41 that is welded to a positive electrode current collector 42 described later. Like to do.

3.水素吸蔵合金負極
水素吸蔵合金を負極活物質とする水素吸蔵合金負極50は、多孔性基板(パンチングメタル)からなる導電性芯体51の表面に負極活物質となる水素吸蔵合金粉末を含有するペーストが充填されて形成されたものである。この場合、導電性芯体51はニッケルメッキを施した軟鋼材製の多孔性基板(パンチングメタル)からなるものを用いており、一方の端部は、充填されたペーストを超音波振動により除去して、後述する負極集電体52に溶接接続される接続部51を形成するようにしている。
3. Hydrogen Storage Alloy Negative Electrode A hydrogen storage alloy negative electrode 50 using a hydrogen storage alloy as a negative electrode active material is a paste containing hydrogen storage alloy powder as a negative electrode active material on the surface of a conductive core 51 made of a porous substrate (punching metal). Is formed by filling. In this case, the conductive core 51 is made of a nickel-plated soft steel porous substrate (punching metal), and at one end, the filled paste is removed by ultrasonic vibration. Thus, a connection portion 51 that is welded to a negative electrode current collector 52 described later is formed.

なお、水素吸蔵合金としては、電気化学的に水素を吸蔵・放出できるものであれば何であってもよく、例えば、LaNi5,MmNi5(Mmはミッシュメタル),LmNi5(Lmはランタン富化のミッシュメタル)、こらら合金のNiの一部をAl,Mn,Co,Ti,Cu,Zn,Zr,Cr,Bなどから選ばれた少なくとも一種の元素で置換した多元素系のものを挙げることができる。中でも、一般式LmNivCowMnxAlyZrz(ただし、Lmは少なくとも1種以上の希土類元素で、原子比v,w,x,y,zの合計値が5.0≦v+w+x+y+z≦5.4を示すもの)で表されるものを用いるのが好ましい。また、水素吸蔵合金粉末の平均粒径は、20〜70μmの範囲のものが好適である。 The hydrogen storage alloy may be anything as long as it can electrochemically store and release hydrogen. For example, LaNi 5 , MmNi 5 (Mm is misch metal), LmNi 5 (Lm is lanthanum enriched) Misch metal), a multi-element type in which a part of Ni of these alloys is substituted with at least one element selected from Al, Mn, Co, Ti, Cu, Zn, Zr, Cr, B, etc. be able to. Above all, the general formula LmNi v Co w Mn x Al y Zr z ( However, Lm, at least one or more rare earth elements, the atomic ratio v, w, x, y, the total value of z is 5.0 ≦ v + w + x + y + z ≦ 5 It is preferable to use those represented by (4). The average particle size of the hydrogen storage alloy powder is preferably in the range of 20 to 70 μm.

ついで、上述のような実施例の水素吸蔵合金負極50の作製例の一例を以下に説明する。まず、水素吸蔵合金粉末(例えば、LmNi4.0Coi0.4Mn0.3Al0.3)と、この水素吸蔵合金粉末100質量部に対して、結着剤としてのポリアクリル酸ナトリウム0.5質量部、カルボキシメチルセルロース(CMC)0.125質量部、ポリテトラフルオロエチレン(PTFE)のディスパージョン(比重1.5,固形分60質量%)を固形分換算で2.5質量部と、導電剤としてのカーボンブラック1.0質量部と、水50質量部とを混合することにより水素吸蔵合金ペーストを調製する。 Next, an example of a production example of the hydrogen storage alloy negative electrode 50 of the embodiment as described above will be described below. First, hydrogen storage alloy powder (for example, LmNi 4.0 Coi 0.4 Mn 0.3 Al 0.3 ) and 100 parts by mass of this hydrogen storage alloy powder, 0.5 parts by mass of sodium polyacrylate as a binder, carboxymethylcellulose ( CMC) 0.125 parts by mass, polytetrafluoroethylene (PTFE) dispersion (specific gravity 1.5, solid content 60% by mass) 2.5 parts by mass in terms of solid content, and carbon black as a conductive agent. A hydrogen storage alloy paste is prepared by mixing 0 part by mass and 50 parts by mass of water.

ついで、ニッケルメッキを施した軟鋼材製の多孔性基板(パンチングメタル)からなる導電性芯体51を用意し、この導電性芯体51に、所定の充填密度(例えば、5.0g/cm3)となるように上述した水素吸蔵合金ペーストを塗布する。乾燥後、所定の厚みになるように圧延した後、所定の寸法になるように切断して水素吸蔵合金負極50を作製する。なお、得られた水素吸蔵合金負極50の一方の端部は、充填されたペーストを超音波振動により除去して芯体51を露出させて、後述する負極集電体52に溶接接続される接続部を形成するようにしている。 Next, a conductive core 51 made of a nickel-plated soft steel porous substrate (punching metal) is prepared, and a predetermined packing density (for example, 5.0 g / cm 3 ) is provided in the conductive core 51. The above-described hydrogen storage alloy paste is applied so that After drying, the film is rolled to a predetermined thickness, and then cut to a predetermined size to produce a hydrogen storage alloy negative electrode 50. In addition, one end of the obtained hydrogen storage alloy negative electrode 50 is connected to be welded and connected to a negative electrode current collector 52 described later by removing the filled paste by ultrasonic vibration to expose the core 51. The part is formed.

なお、結着剤としては、上述したポリアクリル酸ナトリウム、カルボキシメチルセルロース(CMC)、ポリテトラフルオロエチレン(PTFE)以外に、メチルセルロース、ポリビニルアルコール(PVA)、スチレンブタジエンゴム(SBR)を用いてもよい。また、導電剤としては、上述したカーボンブラックに代えて黒鉛を用いるようにしてもよい。さらに、多孔性基板としては、上述したパンチングメタル以外に、エキスパンデッドメタルやニッケルネットなどを用いるようにしてもよい。   In addition to the sodium polyacrylate, carboxymethyl cellulose (CMC), and polytetrafluoroethylene (PTFE) described above, methyl cellulose, polyvinyl alcohol (PVA), and styrene butadiene rubber (SBR) may be used as the binder. . Further, as the conductive agent, graphite may be used instead of the above-described carbon black. Furthermore, as the porous substrate, in addition to the punching metal described above, an expanded metal, a nickel net, or the like may be used.

4.ニッケル−水素蓄電池
ついで、上述のような構成となるニッケル正極40a,40b,40cと水素吸蔵合金負極50とを用いてニッケル−水素蓄電池を作製する例について、以下に説明する。まず、ニッケル正極40a,40b,40cと水素吸蔵合金負極50とを用意し、セパレータ60がこれらのニッケル正極40a,40b,40cと水素吸蔵合金負極50との間に介在させて積層体とする。なお、セパレータ60としては、例えば、ポリアミド繊維製不織布、ポリエチレン、ポリプロピレンなどのポリオレフィン繊維製不織布、またはこれらの不織布に親水性官能基を付与したものを用いるようにすればよい。
4). Nickel-hydrogen storage battery Next, an example of producing a nickel-hydrogen storage battery using the nickel positive electrodes 40a, 40b, 40c and the hydrogen storage alloy negative electrode 50 having the above-described configuration will be described below. First, nickel positive electrodes 40a, 40b, 40c and a hydrogen storage alloy negative electrode 50 are prepared, and a separator 60 is interposed between the nickel positive electrodes 40a, 40b, 40c and the hydrogen storage alloy negative electrode 50 to form a laminate. As the separator 60, for example, a polyamide fiber nonwoven fabric, a polyolefin fiber nonwoven fabric such as polyethylene or polypropylene, or a nonwoven fabric provided with a hydrophilic functional group may be used.

この後、得られた積層体を渦巻状に巻回して渦巻状電極群を形成した後、渦巻状電極群の下端部に露出して突出した芯体51を負極集電体52に溶接するとともに、渦巻状電極群の上端部に突出した接続部41を正極集電体42に溶接する。この後、正極集電体42および負極集電体52が溶接された渦巻状電極群を鉄にニッケルメッキを施した有底筒状の外装缶(底面の外面は負極外部端子となる)70内に収納する。これにより、渦巻状電極群の最外周に位置する水素吸蔵合金負極50は外装缶70の内周面に密着することとなる。   Then, after winding the obtained laminated body in a spiral shape to form a spiral electrode group, the core body 51 exposed and projected at the lower end of the spiral electrode group is welded to the negative electrode current collector 52. The connection portion 41 protruding from the upper end portion of the spiral electrode group is welded to the positive electrode current collector 42. Thereafter, a spirally wound electrode group to which the positive electrode current collector 42 and the negative electrode current collector 52 are welded is a bottomed cylindrical outer can in which iron is plated with nickel (the outer surface of the bottom surface serves as a negative electrode external terminal) 70 Store in. As a result, the hydrogen storage alloy negative electrode 50 located on the outermost periphery of the spiral electrode group comes into close contact with the inner peripheral surface of the outer can 70.

この後、負極集電体52を外装缶70の底面に溶接した後、正極集電体42より延出する正極リード43を外周部に絶縁ガスケット73が装着された封口体80の底部を構成する封口板81に溶接する。なお、封口体80には正極端子となる正極キャップ82が設けられていて、これらの封口板81と正極キャップ82とで形成される空間内に所定の圧力になると変形する弁体83とスプリング84よりなる圧力弁が配置されている。ついで、外装缶70の上部外周部に環状溝部71を形成した後、電解液を注液し、外装缶70の上部に形成された環状溝部71の上に封口体80の外周部に装着された絶縁ガスケット73を載置する。   Thereafter, the negative electrode current collector 52 is welded to the bottom surface of the outer can 70, and then the positive electrode lead 43 extending from the positive electrode current collector 42 constitutes the bottom of the sealing body 80 having the insulating gasket 73 attached to the outer peripheral portion. Weld to the sealing plate 81. The sealing body 80 is provided with a positive electrode cap 82 serving as a positive electrode terminal, and a valve body 83 and a spring 84 that are deformed when a predetermined pressure is reached in a space formed by the sealing plate 81 and the positive electrode cap 82. The pressure valve which consists of is arrange | positioned. Next, after forming the annular groove 71 on the outer periphery of the upper portion of the outer can 70, the electrolytic solution was injected, and the outer peripheral portion of the sealing body 80 was mounted on the annular groove 71 formed on the upper portion of the outer can 70. An insulating gasket 73 is placed.

この後、外装缶70の開口端縁72をかしめることにより、ニッケル−水素蓄電池を作製する。この場合、外装缶70内にアルカリ電解液を注入して、AAサイズの円筒型ニッケル−水素蓄電池A,B,Cを作製した。なお、ニッケル正極40aを用いたものをニッケル−水素蓄電池Aとし、ニッケル正極40bを用いたものをニッケル−水素蓄電池Bとし、ニッケル正極40cを用いたものをニッケル−水素蓄電池Cとした。この場合、アルカリ電解液としては、例えば、水酸化ナトリウム(NaOH)と水酸化リチウム(LiOH)との混合水溶液、水酸化カリウム(KOH)と水酸化リチウム(LiOH)との混合水溶液、水酸化カリウム(KOH)と水酸化リチウム(LiOH)と水酸化ナトリウム(NaOH)との混合水溶液などを用いるようにすればよい。   Then, the nickel-hydrogen storage battery is produced by caulking the opening edge 72 of the outer can 70. In this case, an alkaline electrolyte was injected into the outer can 70 to produce AA-sized cylindrical nickel-hydrogen storage batteries A, B, and C. In addition, the thing using the nickel positive electrode 40a was made into the nickel-hydrogen storage battery A, the thing using the nickel positive electrode 40b was made into the nickel-hydrogen storage battery B, and the thing using the nickel positive electrode 40c was made into the nickel-hydrogen storage battery C. In this case, examples of the alkaline electrolyte include a mixed aqueous solution of sodium hydroxide (NaOH) and lithium hydroxide (LiOH), a mixed aqueous solution of potassium hydroxide (KOH) and lithium hydroxide (LiOH), and potassium hydroxide. A mixed aqueous solution of (KOH), lithium hydroxide (LiOH), and sodium hydroxide (NaOH) may be used.

5.短絡発生率の測定
ついで、これらのニッケル−水素蓄電池A,B,Cをそれぞれ1000個ずつ作製した後、短絡試験を行って短絡の発生率を測定を求めると、下記の表1に示すような結果となった。この場合、短絡試験は以下のようにして行った。即ち、電解液注液後、電池電圧を測定し、電池電圧が0mVであった電池を短絡が発生した電池とした。

Figure 2010244715
5). Measurement of short-circuit occurrence rate Next, 1000 nickel-hydrogen batteries A, B, and C were prepared, and then a short-circuit test was performed to determine the occurrence rate of short-circuit. As shown in Table 1 below, As a result. In this case, the short circuit test was performed as follows. That is, after injecting the electrolytic solution, the battery voltage was measured, and the battery having a battery voltage of 0 mV was defined as a battery in which a short circuit occurred.
Figure 2010244715

上記表1の結果から明らかなように、ニッケル−水素蓄電池A,Bにおいては、短絡の発生がないのに対して、ニッケル−水素蓄電池Cにおいては、短絡が発生していることが分かる。これは、ニッケル−水素蓄電池Cにおいては、発泡ポリウレタンシート30aは加熱処理や薬品処理が施されていないため、発泡ポリウレタンシート30aの表面は切断面となっていて、表面に露出した骨格31aの先端部32aは、角部が尖った突起状となっている。このため、渦巻状電極群とした際に正極40と負極50とが接触して短絡が生じたと考えられる。   As is clear from the results in Table 1 above, it can be seen that the nickel-hydrogen storage batteries A and B have no short circuit, whereas the nickel-hydrogen storage battery C has a short circuit. In the nickel-hydrogen storage battery C, since the foamed polyurethane sheet 30a is not subjected to heat treatment or chemical treatment, the surface of the foamed polyurethane sheet 30a is a cut surface, and the tip of the skeleton 31a exposed on the surface. The portion 32a has a protrusion shape with sharp corners. For this reason, when it is set as a spiral electrode group, it is thought that the positive electrode 40 and the negative electrode 50 contacted and the short circuit arose.

一方、ニッケル−水素蓄電池A,Bにおいては、発泡ポリウレタンシート10aにおいては加熱処理(熱風処理あるいは加熱ローラー処理)が施され、発泡ポリウレタンシート20aにおいては薬品処理(濃硫酸処理あるいはフェノール処理)が施されている。このため、ニッケル基板10においては、表面に露出する骨格11の先端部12の外形形状が球状あるいは半球状となる。また、ニッケル基板20においては、表面に露出する骨格21の先端部22は柔軟性を有し、その先端部の外形形状は針状に尖った形状となる。これにより、渦巻状電極群とした際に正極40と負極50とが直接接触することが防止でき、短絡の発生を防止できたと考えられる。   On the other hand, in the nickel-hydrogen batteries A and B, the foamed polyurethane sheet 10a is subjected to heat treatment (hot air treatment or heated roller treatment), and the foamed polyurethane sheet 20a is subjected to chemical treatment (concentrated sulfuric acid treatment or phenol treatment). Has been. For this reason, in the nickel substrate 10, the outer shape of the tip 12 of the skeleton 11 exposed on the surface is spherical or hemispherical. Moreover, in the nickel substrate 20, the front-end | tip part 22 of the frame | skeleton 21 exposed on the surface has a softness | flexibility, and the external shape of the front-end | tip part becomes a needle-like shape. Thereby, when it was set as the spiral electrode group, it can be prevented that the positive electrode 40 and the negative electrode 50 were in direct contact, and the occurrence of a short circuit could be prevented.

なお、上述した実施形態においては、本発明のアルカリ二次電池用電極基板およびアルカリ二次電池用電極をニッケル−水素蓄電池に適用する例について説明したが、本発明のアルカリ二次電池用電極基板およびアルカリ二次電池用電極はニッケル−水素蓄電池に限らず、ニッケル−カドミウム蓄電池などの他のアルカリ二次電池に適用できることは勿論である。   In the above-described embodiment, an example in which the electrode substrate for an alkaline secondary battery and the electrode for an alkaline secondary battery of the present invention are applied to a nickel-hydrogen storage battery has been described. However, the electrode substrate for an alkaline secondary battery of the present invention is described. The electrode for the alkaline secondary battery is not limited to the nickel-hydrogen storage battery, but can be applied to other alkaline secondary batteries such as a nickel-cadmium storage battery.

10a…熱処理前の発泡ポリウレタンシート、11a…表面に露出した骨格、12a…表面に露出した骨格の先端部、10b…熱処理後の発泡ポリウレタンシート、11b…熱処理後の表面に露出した骨格、12b…熱処理後の表面に露出した骨格の先端部、10…実施例1の発泡ニッケル、11…表面に露出した骨格、12…表面に露出した骨格の先端部、20a…薬品処理前の発泡ポリウレタンシート、21a…表面に露出した骨格、22a…表面に露出した骨格の先端部、20b…薬品処理後の発泡ポリウレタンシート、21b…薬品処理後の表面に露出した骨格、22b…薬品処理後の表面に露出した骨格の先端部、20…実施例2の発泡ニッケル、21…表面に露出した骨格、22…表面に露出した骨格の先端部、40a,40b…ニッケル正極、41…接続部、42…正極集電体、43…正極リード、50…水素吸蔵合金負極、51…負極用導電性芯体、52…負極集電体、60…セパレータ、70…外装缶、71…環状溝部、72…開口端縁、73…絶縁ガスケット、80…封口体、81…封口板、82…正極キャップ、83…弁板、84…スプリング DESCRIPTION OF SYMBOLS 10a ... Polyurethane sheet before heat treatment, 11a ... Skeleton exposed on the surface, 12a ... Tip portion of skeleton exposed on the surface, 10b ... Polyurethane sheet after heat treatment, 11b ... Skeleton exposed on the surface after heat treatment, 12b ... The tip of the skeleton exposed on the surface after the heat treatment, 10 ... nickel foam of Example 1, 11 ... the skeleton exposed on the surface, 12 ... the tip of the skeleton exposed on the surface, 20a ... the foamed polyurethane sheet before chemical treatment, 21a: skeleton exposed on the surface, 22a: tip of the skeleton exposed on the surface, 20b: foamed polyurethane sheet after chemical treatment, 21b: skeleton exposed on the surface after chemical treatment, 22b ... exposed on the surface after chemical treatment 20 ... nickel foam of Example 2, 21 ... skeleton exposed on the surface, 22 ... skeleton tip exposed on the surface, 40a, 40b Nickel positive electrode, 41 ... connection portion, 42 ... positive electrode current collector, 43 ... positive electrode lead, 50 ... hydrogen storage alloy negative electrode, 51 ... negative electrode conductive core, 52 ... negative electrode current collector, 60 ... separator, 70 ... exterior Can, 71 ... annular groove, 72 ... opening edge, 73 ... insulating gasket, 80 ... sealing body, 81 ... sealing plate, 82 ... positive electrode cap, 83 ... valve plate, 84 ... spring

Claims (4)

三次元網状構造の骨格を備えた板状の発泡ニッケルからなるアルカリ二次電池用電極基板であって、
前記三次元網状構造の骨格の内部は中空であるとともに、当該骨格を備えた板状の発泡ニッケルの外部に露出した骨格の先端部は球状、半球状あるいは柔軟な針状となる外形形状を有していることを特徴とするアルカリ二次電池用電極基板。
An electrode substrate for an alkaline secondary battery comprising a plate-like foamed nickel having a three-dimensional network structure skeleton,
The inside of the skeleton of the three-dimensional network structure is hollow, and the tip of the skeleton exposed to the outside of the plate-like nickel foam provided with the skeleton has an outer shape that is spherical, hemispherical, or flexible needle-like. An electrode substrate for an alkaline secondary battery.
前記球状、半球状あるいは柔軟な針状となる外形形状は三次元網状構造を有する板状の発泡樹脂の外部に露出した骨格の先端部を加熱処理あるいは薬品処理により、当該板状の発泡樹脂の外部に露出した骨格の先端部の外形形状を球状、半球状あるいは柔軟な針状となるように変形させた後に導電性を付与し、かつ電解ニッケルメッキを施した後、加熱することにより前記発泡樹脂を分解除去することにより形成されたものであることを特徴とする請求項1に記載のアルカリ二次電池用電極基板。   The outer shape of the spherical, hemispherical or flexible needle shape is a plate-like foamed resin having a three-dimensional network structure. The outer shape of the skeleton exposed to the outside is deformed to be spherical, hemispherical, or flexible needle-like, and then imparted with conductivity, subjected to electrolytic nickel plating, and then heated to form the foam. 2. The electrode substrate for an alkaline secondary battery according to claim 1, wherein the electrode substrate is formed by decomposing and removing a resin. 三次元網状構造の骨格を備えた板状の発泡ニッケルからなる電極基板に水酸化ニッケルあるいは高次水酸化ニッケルからなる主活物質が充填されて形成されたアルカリ二次電池用電極であって、
前記三次元網状構造の骨格の内部は中空であるとともに、当該骨格を備えた板状の発泡ニッケルの外部に露出した骨格の先端部は球状、半球状あるいは柔軟な針状となる外形形状を有しており、
前記骨格間の空隙部に水酸化ニッケルあるいは高次水酸化ニッケルからなる主活物質が充填されていることを特徴とするアルカリ二次電池用電極。
An electrode for an alkaline secondary battery formed by filling a main active material made of nickel hydroxide or higher-order nickel hydroxide into a plate-like foamed nickel electrode substrate having a three-dimensional network structure skeleton,
The inside of the skeleton of the three-dimensional network structure is hollow, and the tip of the skeleton exposed to the outside of the plate-like nickel foam provided with the skeleton has an outer shape that is spherical, hemispherical, or flexible needle-like. And
An electrode for an alkaline secondary battery, wherein a gap between the skeletons is filled with a main active material made of nickel hydroxide or higher-order nickel hydroxide.
前記球状、半球状あるいは柔軟な針状となる外形形状は三次元網状構造を有する板状の発泡樹脂の外部に露出した骨格の先端部の加熱処理あるいは薬品処理により、当該板状の発泡樹脂の外部に露出した骨格の先端部の外形形状を球状、半球状あるいは柔軟な針状となるように変形させた後に導電性を付与し、かつ電解ニッケルメッキを施した後、加熱することにより、前記発泡樹脂を分解除去することにより形成されたものであることを特徴とする請求項3に記載のアルカリ二次電池用電極。   The outer shape of the spherical, hemispherical or flexible needle shape is obtained by heating or chemical treatment of the tip of the skeleton exposed to the outside of the plate-like foam resin having a three-dimensional network structure. By imparting conductivity after deforming the outer shape of the distal end of the skeleton exposed to the outside into a spherical, hemispherical or flexible needle shape, and after applying electrolytic nickel plating, heating, The electrode for an alkaline secondary battery according to claim 3, wherein the electrode is formed by decomposing and removing the foamed resin.
JP2009089070A 2009-04-01 2009-04-01 Electrode substrate for alkaline secondary battery, and electrode for the alkaline secondary battery Pending JP2010244715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009089070A JP2010244715A (en) 2009-04-01 2009-04-01 Electrode substrate for alkaline secondary battery, and electrode for the alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009089070A JP2010244715A (en) 2009-04-01 2009-04-01 Electrode substrate for alkaline secondary battery, and electrode for the alkaline secondary battery

Publications (1)

Publication Number Publication Date
JP2010244715A true JP2010244715A (en) 2010-10-28

Family

ID=43097529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009089070A Pending JP2010244715A (en) 2009-04-01 2009-04-01 Electrode substrate for alkaline secondary battery, and electrode for the alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP2010244715A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018045909A (en) * 2016-09-15 2018-03-22 プライムアースEvエナジー株式会社 Substrate for positive electrode of alkaline secondary battery, method for manufacturing the same, and alkaline secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09204919A (en) * 1996-01-26 1997-08-05 Sumitomo Electric Ind Ltd Electrode base for alkaline battery and its manufacture
JPH11154517A (en) * 1997-11-21 1999-06-08 Inoac Corporation:Kk Metallic porous body for secondary battery and its manufacture
JPH11176451A (en) * 1997-12-11 1999-07-02 Sumitomo Electric Ind Ltd Metal porous body having inclined structure, and manufacture thereof, and battery board using the metal porous body
JP2004071377A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Manufacturing method of three- dimensional foamed substrate for alkaline storage battery, and manufacturing method of electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09204919A (en) * 1996-01-26 1997-08-05 Sumitomo Electric Ind Ltd Electrode base for alkaline battery and its manufacture
JPH11154517A (en) * 1997-11-21 1999-06-08 Inoac Corporation:Kk Metallic porous body for secondary battery and its manufacture
JPH11176451A (en) * 1997-12-11 1999-07-02 Sumitomo Electric Ind Ltd Metal porous body having inclined structure, and manufacture thereof, and battery board using the metal porous body
JP2004071377A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Manufacturing method of three- dimensional foamed substrate for alkaline storage battery, and manufacturing method of electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018045909A (en) * 2016-09-15 2018-03-22 プライムアースEvエナジー株式会社 Substrate for positive electrode of alkaline secondary battery, method for manufacturing the same, and alkaline secondary battery
CN107834024A (en) * 2016-09-15 2018-03-23 朴力美电动车辆活力株式会社 The positive pole substrate and its manufacture method and alkaline secondary cell of alkaline secondary cell

Similar Documents

Publication Publication Date Title
WO2007004703A1 (en) Nickel-hydrogen battery
JP2013206866A (en) Nickel hydrogen secondary battery
JPH11233106A (en) Alkaline secondary battery and its manufacture
JP2023133607A (en) Electrolyte solution for zinc battery and zinc battery
JP2002279964A (en) Alkaline secondary battery and manufacturing method therefor
JP2002298906A (en) Nickel-hydrogen secondary battery
CN109037600A (en) Non-sintered type anode and the alkaline secondary cell for having non-sintered type anode
JP2010244715A (en) Electrode substrate for alkaline secondary battery, and electrode for the alkaline secondary battery
JP7182062B2 (en) Nickel-zinc battery manufacturing method
JP2008186658A (en) Nickel-hydrogen secondary battery
JP2006196207A (en) Alkaline storage battery and manufacturing method of its electrode group
JP2004303678A (en) Energy storage element and combined energy storage element
JP2000200612A (en) Rectangular alkaline secondary battery
JP2989877B2 (en) Nickel hydride rechargeable battery
WO2023195233A1 (en) Negative electrode for zinc battery, and zinc battery
JP5023645B2 (en) Alkaline storage battery
JP4338410B2 (en) Battery with spiral electrode group
JP2001202969A (en) Alkaline secondary battery
JP2002100396A (en) Cylindrical alkaline secondary cell
JP4413294B2 (en) Alkaline secondary battery
JP2005105356A (en) Hydrogen storage alloy, hydrogen storage alloy electrode, and hermetically sealed-type nickel hydrogen storage battery
JP5355038B2 (en) Non-sintered nickel electrode and alkaline storage battery
JP2024023917A (en) nickel zinc battery
JP2000299104A (en) Manufacture of nickel hydrogen secondary battery
JP2021150242A (en) Alkali storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001