JP2010242426A - Double floor structure - Google Patents

Double floor structure Download PDF

Info

Publication number
JP2010242426A
JP2010242426A JP2009094279A JP2009094279A JP2010242426A JP 2010242426 A JP2010242426 A JP 2010242426A JP 2009094279 A JP2009094279 A JP 2009094279A JP 2009094279 A JP2009094279 A JP 2009094279A JP 2010242426 A JP2010242426 A JP 2010242426A
Authority
JP
Japan
Prior art keywords
floor structure
damping member
double floor
viscoelastic damper
sandwiching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009094279A
Other languages
Japanese (ja)
Other versions
JP5240025B2 (en
Inventor
Hiroyuki Kishi
浩行 岸
Takeshi Tomizawa
健 冨澤
Kenichi Matsumoto
研一 松本
Osamu Yoshida
治 吉田
Mitsuru Nakamura
充 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2009094279A priority Critical patent/JP5240025B2/en
Publication of JP2010242426A publication Critical patent/JP2010242426A/en
Application granted granted Critical
Publication of JP5240025B2 publication Critical patent/JP5240025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a double floor structure which can efficiently attenuate vibration in the vertical direction by a damping member such as a viscoelastic damper and which can improve a degree of freedom in the arrangement position of the damping member. <P>SOLUTION: The double floor structure is placed on top of the floor slab of a building frame and is provided with a lattice beam and the damping member. The lattice beam has a plurality of girders and a plurality of beams. The plurality of girders are supported horizontally on top of the floor slab through the medium of a support member, and the plurality of beams are constructed horizontally between the girders opposed to each other. The damping member attenuates the vibration of the lattice beam in the vertical direction. One end of the damping member is connected to the beam so that the damping member can attenuate the vibration of the lattice beam in the vertical direction through the medium of the beam, and the other end of the damping member is connected to the part other than the lattice beam. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体工場等で使用される二重床構造に関する。   The present invention relates to a double floor structure used in a semiconductor factory or the like.

半導体工場等の精密生産工場では、日常の微振動に対して厳しい条件が課せられる。このような工場に対し、コストや工期などの観点から採用されることの多い鉄骨構造においては、半導体生産設備自体が発する振動や、製造に従事する作業者の歩行などにより生じる振動が原因となって、製造に支障をきたすことがある。特に鉛直方向の振動が問題となることが多いことから、この鉛直振動を低減させるべく様々な技術が提案されている。   In precision production factories such as semiconductor factories, severe conditions are imposed on daily fine vibrations. In such a factory, steel structures that are often adopted from the viewpoints of cost, construction period, etc., are caused by vibrations generated by the semiconductor production equipment itself or by walking of workers engaged in manufacturing. May interfere with manufacturing. In particular, since vertical vibration often becomes a problem, various techniques have been proposed to reduce this vertical vibration.

例えば特許文献1では、二重床構造1が提案されている(例えば図8を参照)。詳しくは、(1)建物躯体の床スラブ25上に、鉛直構面として柱8やブレース81(又は間柱82)等からなる支持部材8を設け、(2)当該支持部材8に大梁4を支持させるとともに、対向する大梁4,4同士に複数の小梁5を水平に架設させることにより、水平構面として格子梁2を形成し、(3)当該格子梁2上に床パネル6を設置して二重床構造1を構築することが記載されている。そして、鉛直構面を構成する支持部材8の前記ブレース81(又は間柱82)と、水平構面を構成する格子梁2の前記大梁4との間に、減衰部材として粘弾性ダンパー10aを介装し、これにより、格子梁2の鉛直方向の微振動を効果的に低減可能としている。   For example, Patent Document 1 proposes a double floor structure 1 (see, for example, FIG. 8). Specifically, (1) a support member 8 including a column 8 and a brace 81 (or an intermediary column 82) is provided as a vertical surface on the floor slab 25 of the building frame, and (2) the girder 4 is supported by the support member 8 In addition, a plurality of small beams 5 are horizontally installed between the opposing large beams 4 and 4 to form a lattice beam 2 as a horizontal construction surface. (3) A floor panel 6 is installed on the lattice beam 2. The construction of a double floor structure 1 is described. A viscoelastic damper 10a is interposed as a damping member between the braces 81 (or the studs 82) of the support member 8 constituting the vertical construction surface and the large beams 4 of the lattice beam 2 constituting the horizontal construction surface. Thus, the fine vibration in the vertical direction of the lattice beam 2 can be effectively reduced.

特開2007−270604号公報JP 2007-270604 A

しかしながら、工場内の各種設備や配管等の設置位置によっては、大梁4を支持する鉛直構面たる支持部材8内にブレース81や間柱82を設けることが困難な状況もありうる。そして、その場合には、二重床構造1に対して粘弾性ダンパー10aを設け難くなる。   However, depending on the installation positions of various facilities and pipes in the factory, there may be a situation where it is difficult to provide the braces 81 and the studs 82 in the support member 8 that is the vertical surface for supporting the girder 4. In that case, it is difficult to provide the viscoelastic damper 10 a for the double floor structure 1.

本発明は、上記のような従来の問題に鑑みなされたものであって、粘弾性ダンパー等の減衰部材によって鉛直方向の振動を効率良く減衰可能な二重床構造において、減衰部材の配置位置の自由度を高めること等を目的とする。   The present invention has been made in view of the above-described conventional problems, and in a double floor structure in which vertical vibration can be efficiently damped by a damping member such as a viscoelastic damper, the position of the damping member is determined. The purpose is to increase the degree of freedom.

かかる目的を達成するために請求項1に示す発明は、
建物躯体の床スラブの上部に設置される二重床構造であって、
前記床スラブの上方に支持部材を介して水平に支持された複数の大梁、及び、対向する前記大梁同士の間に水平に架設された複数の小梁を有する格子梁と、
前記格子梁の鉛直方向の振動を減衰する減衰部材と、を備え、
前記減衰部材が前記小梁を介して前記格子梁の鉛直方向の振動を減衰するように、前記減衰部材の一端部は、前記小梁に連結されているとともに、前記減衰部材の他端部は、前記格子梁以外の部位に連結されていることを特徴とする。
In order to achieve this object, the invention shown in claim 1
It is a double floor structure installed at the top of the floor slab of the building frame,
A plurality of large beams supported horizontally via a support member above the floor slab, and a lattice beam having a plurality of small beams laid horizontally between the opposed large beams;
A damping member that damps the vertical vibration of the lattice beam,
One end of the damping member is connected to the small beam so that the damping member attenuates vibration in the vertical direction of the lattice beam via the small beam, and the other end of the damping member is And connected to a portion other than the lattice beam.

上記請求項1に示す発明によれば、前記減衰部材は、前記格子梁における小梁に設けられ、小梁の振動減衰を通じて格子梁の鉛直振動は減衰される。よって、減衰部材を大梁に設けなくても良く、つまり、大梁に減衰部材を設けるという制約条件から解放される。これにより、減衰部材の配置位置の自由度を高めることができる。
また、格子梁は格子状であるので、全体として高い剛性を有している。よって、減衰部材から小梁に付与される減衰力を、小梁を通じて格子梁全体に確実に伝達することができて、その結果、格子梁全体の鉛直振動を有効に低減可能となる。
更には、小梁に減衰部材を設けるので、格子梁の平面内における概ね任意の位置に対して減衰部材を配置できる。よって、格子梁の平面内において鉛直振動の腹となる位置やその近傍位置に対して選択的且つ確実に減衰部材を配置でき、結果、格子梁の鉛直方向の振動環境を自在に制御可能となる。
According to the first aspect of the present invention, the damping member is provided on the small beam in the lattice beam, and the vertical vibration of the lattice beam is attenuated through vibration attenuation of the small beam. Therefore, it is not necessary to provide the damping member on the girder, that is, it is released from the constraint that the damping member is provided on the girder. Thereby, the freedom degree of the arrangement position of an attenuation member can be raised.
Moreover, since the lattice beam has a lattice shape, it has high rigidity as a whole. Therefore, the damping force applied from the damping member to the small beam can be reliably transmitted to the entire lattice beam through the small beam, and as a result, the vertical vibration of the entire lattice beam can be effectively reduced.
Furthermore, since the dampening member is provided in the small beam, the dampening member can be arranged at almost any position in the plane of the lattice beam. Therefore, the damping member can be selectively and reliably arranged with respect to a position where the vertical vibration occurs in the plane of the lattice beam and its vicinity, and as a result, the vibration environment in the vertical direction of the lattice beam can be freely controlled. .

請求項2に示す発明は、請求項1に記載の二重床構造であって、
前記減衰部材の他端部は、連結部材を介して、前記床スラブ又は前記支持部材に連結されていることを特徴とする。
上記請求項2に示す発明によれば、前記減衰部材の他端部は、前記床スラブ又は前記支持部材に連結されている。従って、格子梁の鉛直振動を減衰するための反力を前記床スラブ又は前記支持部材から確実に取ることができて、結果、格子梁の鉛直振動を効果的に減衰可能となる。
The invention shown in claim 2 is the double floor structure according to claim 1,
The other end of the damping member is connected to the floor slab or the support member via a connecting member.
According to the second aspect of the present invention, the other end of the damping member is connected to the floor slab or the support member. Accordingly, a reaction force for attenuating the vertical vibration of the lattice beam can be reliably taken from the floor slab or the support member, and as a result, the vertical vibration of the lattice beam can be effectively attenuated.

請求項3に示す発明は、請求項2に記載の二重床構造であって、
前記連結部材は、三角形状のトラス構造体又はラーメン構造体であることを特徴とする。
上記請求項3に示す発明によれば、前記連結部材は、三角形状のトラス構造体又はラーメン構造体である。よって、減衰部材に鉛直振動が入力される際に生じ得る前記連結部材自体の鉛直方向の変形を確実に防止できて、結果、連結部材の変形の影響を概ね受けること無く、格子梁の小梁の鉛直振動を減衰部材に正確に入力可能となる。よって、減衰部材に、設計どおりの減衰性能を発揮させることができる。
The invention described in claim 3 is the double floor structure according to claim 2,
The connection member is a triangular truss structure or a ramen structure.
According to the third aspect of the present invention, the connecting member is a triangular truss structure or a ramen structure. Therefore, it is possible to reliably prevent vertical deformation of the connecting member itself, which may occur when vertical vibration is input to the damping member, and as a result, the lattice beam beam is not substantially affected by the deformation of the connecting member. It is possible to accurately input the vertical vibrations to the damping member. Therefore, the damping member can exhibit the designed damping performance.

請求項4に示す発明は、請求項1乃至3の何れかに記載の二重床構造であって、
前記減衰部材の前記一端部は、前記格子梁の互いに交差する小梁と小梁との交点にて小梁に連結されていることを特徴とする。
上記請求項4に示す発明によれば、減衰部材は、互いに交差する小梁と小梁との交点に連結されている。よって、減衰部材の減衰力を、格子梁の平面内において互いに交差する両方向に速やかに伝達可能となり、もって、格子梁全体の鉛直振動を有効に低減可能となる。
また、前記交点であれば、小梁のみの部分よりも高剛性であるので、当該交点に付与される減衰力を確実に格子梁に伝達可能となり、もって、格子梁の鉛直方向の振動を高い減衰性でもって減衰可能となる。
Invention of Claim 4 is a double floor structure in any one of Claims 1 thru | or 3, Comprising:
The one end portion of the damping member is connected to the beam at the intersection of the beam beams intersecting each other of the lattice beam.
According to the fourth aspect of the present invention, the damping member is connected to the intersection of the beam and the beam that intersect each other. Therefore, the damping force of the damping member can be quickly transmitted in both directions intersecting each other in the plane of the lattice beam, and the vertical vibration of the entire lattice beam can be effectively reduced.
In addition, since the crossing point is higher in rigidity than the portion of only the small beam, the damping force applied to the crossing point can be reliably transmitted to the lattice beam, and thus the vibration in the vertical direction of the lattice beam is high. Attenuation is possible with attenuation.

請求項5に示す発明は、請求項1乃至4の何れかに記載の二重床構造であって、
前記減衰部材は前記一端部及び前記他端部にそれぞれ取り付け部を有し、
前記減衰部材は、前記一端部の取り付け部が取り付けられる前記小梁の取り付け部、又は、前記他端部の取り付け部が取り付けられる前記格子梁以外の部位の取り付け部のうちの少なくとも一方の取り付け部の取り付け面に対して水平方向に摺動可能に取り付けられ、
前記一方の取り付け部及び前記減衰部材の取り付け部に対して、それぞれ前記取り付け面の逆側の面で当接して前記取り付け部同士を挟み込む挟み込み部材を有し、
前記挟み込み部材と前記一方の取り付け部との間の水平方向の摩擦力に係る摩擦係数と、前記挟み込み部材と前記減衰部材の取り付け部との間の水平方向の摩擦力に係る摩擦係数とは相違していることを特徴とする。
Invention of Claim 5 is the double floor structure in any one of Claims 1 thru | or 4, Comprising:
The damping member has attachment portions at the one end and the other end, respectively.
The damping member is at least one attachment portion of the attachment portion of the small beam to which the attachment portion of the one end portion is attached or the attachment portion of the portion other than the lattice beam to which the attachment portion of the other end portion is attached. It is slidably attached to the mounting surface of the
A holding member for holding the one mounting portion and the mounting portion for the damping member in contact with each other on the surface opposite to the mounting surface and sandwiching the mounting portions;
The friction coefficient related to the horizontal friction force between the sandwiching member and the one attachment portion is different from the friction coefficient related to the horizontal friction force between the sandwiching member and the attachment portion of the damping member. It is characterized by that.

上記請求項5に示す発明によれば、地震による減衰部材の破損を未然に防ぐフェールセーフ化、及び地震後の減衰部材に係る一切の復旧作業から解放されるメンテナンスフリー化が達成される。
すなわち、地震時に二重床構造に対して水平力が作用した際には、減衰部材は、前記一方の取り付け部に対して摺動し、これにより、減衰部材への水平力の入力が大幅に軽減される。その結果、減衰部材の破損は有効に防止される。
According to the fifth aspect of the present invention, it is possible to achieve fail-safe prevention that prevents damage to the damping member due to an earthquake and maintenance-free that is freed from any recovery work related to the damping member after the earthquake.
In other words, when a horizontal force is applied to the double floor structure during an earthquake, the damping member slides against the one mounting portion, which greatly increases the horizontal force input to the damping member. It is reduced. As a result, damage to the damping member is effectively prevented.

また、この摺動時には、挟み込み部材は、上述の摩擦係数差に基づいて、前記一方の取り付け部及び前記減衰部材のうちで摩擦係数の大きい方に付いて行き、摩擦係数の小さい方に対しては速やかに滑動する。つまり、挟み込み部材は挟み込んだ姿勢を保ったまま、前記一方の取り付け部と前記減衰部材との摺動に応じて速やかに滑動する。よって、取り付け部からの挟み込み部材の脱落又は挟み込み部材の変形を有効に防止できて、地震後の挟み込み部材の再設置作業を無くすことができる。   Further, at the time of this sliding, the sandwiching member is attached to the one with the larger friction coefficient among the one attachment part and the damping member on the basis of the friction coefficient difference described above, and with respect to the smaller friction coefficient. Will slide quickly. That is, the sandwiching member quickly slides according to the sliding between the one attachment portion and the damping member while maintaining the sandwiched posture. Therefore, it is possible to effectively prevent the sandwiching member from dropping from the mounting portion or the sandwiching member from being deformed, and it is possible to eliminate the work of re-installing the sandwiching member after the earthquake.

請求項6に示す発明は、請求項5に記載の二重床構造であって、
前記減衰部材の取り付け部よりも前記一方の取り付け部の方が水平方向に広く、
前記挟み込み部材と前記一方の取り付け部との間の水平方向の摩擦力に係る摩擦係数よりも、前記挟み込み部材と前記減衰部材の取り付け部との間の水平方向の摩擦力に係る摩擦係数の方が大きいことを特徴とする。
Invention of Claim 6 is the double floor structure of Claim 5,
The one attachment part is wider in the horizontal direction than the attachment part of the damping member,
The coefficient of friction related to the frictional force in the horizontal direction between the sandwiching member and the mounting part of the damping member is larger than the coefficient of friction related to the frictional force in the horizontal direction between the sandwiching member and the one mounting part. Is large.

上記請求項6に示す発明によれば、前記減衰部材が、前記一方の取り付け部に対して水平方向に摺動する際には、挟み込み部材は、上述の摩擦係数差に基づいて、摩擦係数の大きい減衰部材の方に付いて行き、摩擦係数の小さい前記一方の取り付け部に対しては速やかに滑動する。よって、減衰部材の取り付け部からの挟み込み部材の脱落を有効に防ぐことができる。
また、前記一方の取り付け部の方が、前記減衰部材の取り付け部よりも水平方向に広いので、前記一方の取り付け部に対して挟み込み部材が滑動しても前記一方の取り付け部からの脱落は起き難い。
以上から、前記減衰部材の取り付け部及び前記構面の取り付け部からの挟み込み部材の脱落を確実に防止可能となる。
According to the sixth aspect of the present invention, when the damping member slides in the horizontal direction with respect to the one attachment portion, the sandwiching member has a friction coefficient based on the friction coefficient difference. It follows the large damping member and quickly slides with respect to the one attachment portion having a small friction coefficient. Therefore, it is possible to effectively prevent the sandwiching member from dropping from the attachment portion of the attenuation member.
Further, since the one attachment portion is wider in the horizontal direction than the attachment portion of the damping member, even if the sandwiching member slides with respect to the one attachment portion, the one attachment portion will fall off. hard.
As described above, it is possible to reliably prevent the sandwiching member from falling off from the attachment portion of the attenuation member and the attachment portion of the construction surface.

請求項7に示す発明は、請求項5又は6に記載の二重床構造であって、
前記挟み込み部材は、コ字状又はC字状部材の両端部に、互いの間に間隔をおいて対向する一対の挟み込み部を有するとともに、前記一対の挟み込み部の少なくとも一方が他方の挟み込み部に対して進退可能に設けられたクランプであることを特徴とする。
上記請求項7に示す発明によれば、挟み込み部材が、コ字状又はC字状のクランプであるので、減衰部材が既に前記一方の取り付け部に締結固定されている場合でも、当該減衰部材を、メンテナンスフリーでフェールセーフ機能を具備した減衰部材へと容易に変更可能となる。
The invention shown in claim 7 is the double floor structure according to claim 5 or 6,
The sandwiching member has a pair of sandwiching portions opposed to each other with a gap between them at both ends of the U-shaped or C-shaped member, and at least one of the pair of sandwiching portions serves as the other sandwiching portion. In contrast, the clamp is provided so as to be able to advance and retreat.
According to the seventh aspect of the present invention, since the sandwiching member is a U-shaped or C-shaped clamp, even when the attenuation member is already fastened and fixed to the one attachment portion, the attenuation member is Therefore, the damping member can be easily changed to a maintenance-free damping member having a fail-safe function.

例えば、前記一方の取り付け部と減衰部材の取り付け部とを締結固定する既設のボルトを取り外し、それに代えて、クランプの一対の挟み込み部の間の間隔を用いて、当該クランプを前記取り付け部の側方から差し込めば、前記取り付け部を挟み込み可能な位置にクランプを容易に配置することができる。つまり、クランプたる挟み込み部材を問題なく前記取り付け部に設置可能であり、その結果、既設の減衰部材についても、メンテナンスフリーでフェールセーフ機能を具備した減衰部材へと難なく変更することができる。   For example, an existing bolt that fastens and fixes the one attachment portion and the attachment portion of the damping member is removed, and instead, the clamp is attached to the attachment portion side by using a distance between a pair of clamping portions of the clamp. If it inserts from the direction, a clamp can be easily arrange | positioned in the position which can pinch | interpose the said attaching part. That is, the clamping member as a clamp can be installed in the mounting portion without any problem. As a result, the existing damping member can be easily changed to a damping member that is maintenance-free and has a fail-safe function.

本発明によれば、粘弾性ダンパー等の減衰部材によって鉛直方向の振動を効率良く減衰可能な二重床構造において、減衰部材の配置位置の自由度を高めることができる。   ADVANTAGE OF THE INVENTION According to this invention, the freedom degree of the arrangement position of a damping member can be raised in the double floor structure which can attenuate | dampen a vibration of a perpendicular direction efficiently by damping members, such as a viscoelastic damper.

本実施形態に係る二重床構造1の全体を示す概略平面図である。It is a schematic plan view which shows the whole double floor structure 1 which concerns on this embodiment. 図1の一部を示す概略斜視図である。It is a schematic perspective view which shows a part of FIG. 縦横に架け渡される小梁5の接合構造の一例の説明図であって、図3Aには、格子梁2の平面図を、また図3Bには、格子梁2を下方から見た斜視図を示している。It is explanatory drawing of an example of the joining structure of the cross beam 5 spanned vertically and horizontally, FIG. 3A shows the top view of the lattice beam 2, and FIG. 3B shows the perspective view which looked at the lattice beam 2 from the bottom. Show. 他の形態の支持部材8を具備した二重床構造2の概略斜視図である。It is a schematic perspective view of the double floor structure 2 which provided the supporting member 8 of the other form. 図5Aは粘弾性ダンパー10aの側面図であり、図5Bは、図5A中のB−B矢視図である。FIG. 5A is a side view of the viscoelastic damper 10a, and FIG. 5B is a BB arrow view in FIG. 5A. 減衰手段10の連結部材91の第1変形例の概略斜視図である。FIG. 10 is a schematic perspective view of a first modification of the connecting member 91 of the damping means 10. 減衰手段10の連結部材93の第2変形例の概略斜視図である。It is a schematic perspective view of the 2nd modification of the connection member 93 of the attenuation means 10. FIG. 大梁4への粘弾性ダンパー10aの設置例の概略斜視図である。It is a schematic perspective view of the example of installation of the viscoelastic damper 10a to the girder 4. 本実施形態に係る二重床構造1を側方から見た模式図である。It is the schematic diagram which looked at the double floor structure 1 which concerns on this embodiment from the side. 図10Aは、粘弾性ダンパー10aの取り付け構造の側面図であり、図10Bは、図10A中のB−B断面図である。10A is a side view of the attachment structure of the viscoelastic damper 10a, and FIG. 10B is a cross-sectional view taken along the line BB in FIG. 10A. 図11Aは、望ましい取り付け構造例の側面図であり、図11Bは、図11A中のB−B断面図である。FIG. 11A is a side view of a preferred mounting structure example, and FIG. 11B is a cross-sectional view taken along line BB in FIG. 11A. 図12Aは、粘弾性ダンパー10aの取り付け構造の変形例の側面図であり、図12Bは、図12A中のB−B断面図である。12A is a side view of a modified example of the attachment structure of the viscoelastic damper 10a, and FIG. 12B is a cross-sectional view taken along the line BB in FIG. 12A.

===本実施形態===
<<<二重床構造1について>>>
図1及び図2は二重床構造1の説明図である。図1は二重床構造1の全体を示す概略平面図であり、図2は図1の一部を示す概略斜視図である。
=== This Embodiment ===
<<< About Double Floor Structure 1 >>>
1 and 2 are explanatory views of the double floor structure 1. FIG. FIG. 1 is a schematic plan view showing the entire double floor structure 1, and FIG. 2 is a schematic perspective view showing a part of FIG.

二重床構造1は、例えば精密生産工場のクリーンルーム等に適用される。すなわち、二重床構造1は、工場の建物躯体の床スラブ25を下部床とするとともに、この床スラブ25の上に上部床21を配して構成される。そして、この上部床21の床面上には各種の精密機器や生産設備等が設置される一方、上部床21の床面と床スラブ25との間の空間SPについては、配線や配管、空調循環、機器搬入等に供される。   The double floor structure 1 is applied to, for example, a clean room of a precision production factory. That is, the double floor structure 1 is configured by using the floor slab 25 of the factory building frame as a lower floor and arranging the upper floor 21 on the floor slab 25. Various precision devices and production facilities are installed on the floor surface of the upper floor 21, while the space SP between the floor surface of the upper floor 21 and the floor slab 25 is connected to wiring, piping, air conditioning. Used for circulation, equipment delivery, etc.

上部床21は、床スラブ25の上方に所定の間隔をおいて水平に設置される格子梁2と、床スラブ25の上部に垂直に設置されて格子梁2を支持する支持部材8と、格子梁2上に載置される床パネル6と、格子梁2の鉛直方向の振動を減衰する減衰手段10と、を備えている。   The upper floor 21 includes a lattice beam 2 that is horizontally installed above the floor slab 25 at a predetermined interval, a support member 8 that is vertically installed on the floor slab 25 and supports the lattice beam 2, and a lattice A floor panel 6 placed on the beam 2 and a damping means 10 for damping the vertical vibration of the lattice beam 2 are provided.

格子梁2は、大梁4と小梁5とを有する。大梁4は例えばH形鋼からなり、床スラブ25の上方に所定の間隔をおいて水平に縦横に設置され、これにより、床スラブ25の上方の部分を格子状に区画する。なお、この例では、互いに交差する縦方向の大梁4(以下、縦方向大梁4Lとも言う)と横方向の大梁4(以下、横方向大梁4Cとも言う)とは互いに直交しており、これにより格子の各開口形状は矩形になっている。   The lattice beam 2 includes a large beam 4 and a small beam 5. The girder 4 is made of, for example, H-shaped steel, and is installed vertically and horizontally at a predetermined interval above the floor slab 25, thereby partitioning the upper part of the floor slab 25 into a lattice shape. In this example, the vertical beam 4 (hereinafter also referred to as the vertical beam 4L) and the horizontal beam 4 (hereinafter also referred to as the horizontal beam 4C) intersecting each other are orthogonal to each other. Each opening shape of the lattice is rectangular.

一方、小梁5は、大梁4よりも断面係数の小さい小断面の例えばH形鋼からなる。そして、互いに対向する大梁4,4同士の間に水平に縦横に架け渡され、前記格子の各開口を更に細かく区画する。ここで、縦方向に架け渡される小梁5(以下、縦方向小梁5Lとも言う)は、縦方向大梁4Lと平行に配されるとともに、横方向に架け渡される小梁5(以下、横方向小梁5Cとも言う)は、横方向大梁4Cと平行に配される。よって、これら小梁5,5…により細分化された格子の各開口形状も矩形である。   On the other hand, the small beam 5 is made of, for example, H-shaped steel having a small cross section having a smaller section modulus than the large beam 4. And it spans horizontally and vertically between the big beams 4 and 4 which oppose each other, and each opening of the lattice is further finely partitioned. Here, the small beam 5 (hereinafter also referred to as the vertical beam 5L) spanned in the vertical direction is arranged in parallel to the vertical beam 4L, and the small beam 5 (hereinafter referred to as the horizontal beam) spanned in the horizontal direction. The direction small beam 5C) is arranged in parallel to the horizontal large beam 4C. Therefore, each opening shape of the lattice subdivided by these small beams 5, 5... Is also rectangular.

図3A及び図3Bは、縦横に架け渡される小梁5の接合構造の一例の説明図である。図3Aの平面図に示すように、縦方向小梁5Lは、横方向大梁4C,4C同士の間に架け渡される。他方、横方向小梁5Cは、その長手方向の両端が、縦方向大梁4Lと縦方向小梁5Lとの間に架け渡されるか、又は縦方向小梁5L,5L同士の間に架け渡される。ここで、後者について詳しく説明すると、図3Bの下方から見た斜視図に示すように、横方向小梁5Cの小口端面が突き合わされる縦方向小梁5L(又は不図示の縦方向大梁4L)のウエブ5Lwには、当該ウエブ5Lwから側方へ突出したリブプレート5rが一体に溶接等にて固定されている。そして、当該リブプレート5rと横方向小梁5Cのウエブ5Cwとが突き合わされるとともに、これらリブプレート5r及ぶウエブ5Cw同士を跨って連結プレート5jがボルトにて締結固定されることにより、ウエブ5Lw,5Cw同士の接合がなされる。一方、フランジ5Lf,5Cf同士の接合については、横方向小梁5Cのフランジ5Cfが、縦方向小梁5L(又は不図示の縦方向大梁4L)のフランジ5Lfに側方から突き合わされて溶接等で接合される。このような接合構造は、縦方向大梁4Lと横方向大梁4Cとの接合、及び、縦方向小梁5Lと横方向大梁4Cとの接合にも採用されている。但し、互いに直交する部材同士を接合可能であれば、その接合構造は何等上述に限るものではない。   FIG. 3A and FIG. 3B are explanatory diagrams of an example of a joint structure of the small beams 5 that are stretched vertically and horizontally. As shown in the plan view of FIG. 3A, the vertical small beam 5L is bridged between the horizontal large beams 4C and 4C. On the other hand, both ends in the longitudinal direction of the transverse beam 5C are bridged between the longitudinal beam 4L and the longitudinal beam 5L, or between the longitudinal beams 5L and 5L. . Here, the latter will be described in detail. As shown in a perspective view seen from below in FIG. 3B, the longitudinal beam 5L (or the longitudinal beam 4L not shown) with which the end face of the small beam 5C is abutted is shown. A rib plate 5r protruding sideways from the web 5Lw is integrally fixed to the web 5Lw by welding or the like. Then, the rib plate 5r and the web 5Cw of the lateral beam 5C are abutted with each other, and the connecting plate 5j is fastened and fixed with bolts across the webs 5Cw extending over the rib plates 5r, whereby the web 5Lw, 5Cw is joined. On the other hand, for joining the flanges 5Lf and 5Cf, the flange 5Cf of the transverse beam 5C is abutted from the side to the flange 5Lf of the longitudinal beam 5L (or the longitudinal beam 4L (not shown)) by welding or the like. Be joined. Such a joint structure is also used for joining the longitudinal large beam 4L and the transverse large beam 4C and joining the longitudinal small beam 5L and the transverse large beam 4C. However, the joining structure is not limited to the above as long as members orthogonal to each other can be joined.

図1及び図2に示すように、支持部材8は、大梁4を支持するH型鋼等の柱8を主材とする。各柱8は、互いに直交する大梁4,4同士の交差部に対応する床スラブ25の部分に鉛直に立設されており、当該交差部にて大梁4を支持する。なお、支持部材8は、当該支持部材8の剛性を高めるべく、柱8に加えてブレース8aや間柱8b等の補助部材を有していても良い。例えば、図4に示すように、ブレース8aにより、柱8の下端部と、その柱8が支持する大梁4の中間部とを接続してトラス構造化しても良いし、同図に併せて示すように、大梁4の中間部等に間柱8bを設けて前記柱8の支持剛性を補っても良い。   As shown in FIGS. 1 and 2, the support member 8 includes a pillar 8 such as H-shaped steel that supports the large beam 4 as a main material. Each column 8 is erected vertically on a portion of the floor slab 25 corresponding to the intersection of the large beams 4 and 4 orthogonal to each other, and supports the large beam 4 at the intersection. The support member 8 may have auxiliary members such as braces 8a and inter-columns 8b in addition to the columns 8 in order to increase the rigidity of the support members 8. For example, as shown in FIG. 4, a truss structure may be formed by connecting a lower end portion of the column 8 and an intermediate portion of the large beam 4 supported by the column 8 by using a brace 8 a. As described above, an intermediate column 8b may be provided in the middle portion of the large beam 4 to supplement the support rigidity of the column 8.

図2に示すように、床パネル6は例えば矩形板であり、大梁4及び小梁5の上部に水平に載置固定される。なお、必要に応じて、大梁4及び小梁5の少なくとも一方と床パネル6との間に根太(不図示)を介装してもよい。   As shown in FIG. 2, the floor panel 6 is a rectangular plate, for example, and is horizontally placed and fixed on the upper portions of the large beam 4 and the small beam 5. Note that a joist (not shown) may be interposed between at least one of the large beam 4 and the small beam 5 and the floor panel 6 as necessary.

図2に示すように、減衰手段10は、小梁5に連結される粘弾性ダンパー10a(「減衰部材」に相当)と、粘弾性ダンパー10aを床スラブ25に連結するための連結部材としての間柱9と、を有する。ここで、間柱9は、例えばH形鋼を主材とし、床スラブ25の上面において小梁5,5同士の交差部CP(以下、交点CPとも言う)の直下に対向する部分に鉛直に立設されている。これにより、粘弾性ダンパー10aは、小梁5の前記交点CPの部分と、間柱9の上端との間に介装され、かくして、粘弾性ダンパー10aは、振動減衰に係る鉛直方向の反力を床スラブ25から得て、小梁5の鉛直振動の減衰を通じて格子梁2の鉛直振動を減衰する。   As shown in FIG. 2, the damping means 10 is a viscoelastic damper 10 a (corresponding to a “damping member”) connected to the beam 5 and a connecting member for connecting the viscoelastic damper 10 a to the floor slab 25. And a stud 9. Here, the stud 9 is made of, for example, H-shaped steel as a main material, and stands vertically on a portion of the upper surface of the floor slab 25 that faces directly below an intersection CP (hereinafter also referred to as an intersection CP) between the small beams 5 and 5. It is installed. As a result, the viscoelastic damper 10a is interposed between the portion of the intersection CP of the small beam 5 and the upper end of the inter-column 9, and thus the viscoelastic damper 10a has a vertical reaction force related to vibration damping. Obtained from the floor slab 25, the vertical vibration of the lattice beam 2 is attenuated through the attenuation of the vertical vibration of the small beam 5.

また、ここで当該粘弾性ダンパー10aは、互いに直交する小梁5と小梁5との交点CPに連結されている。よって、粘弾性ダンパー10aの減衰力を、格子梁2の平面内において互いに直交する縦横方向に速やかに伝達可能となり、もって、格子梁2全体の鉛直振動を有効に低減可能となる。   Further, here, the viscoelastic damper 10a is connected to an intersection CP between the small beam 5 and the small beam 5 orthogonal to each other. Therefore, the damping force of the viscoelastic damper 10a can be quickly transmitted in the vertical and horizontal directions orthogonal to each other in the plane of the lattice beam 2, and the vertical vibration of the entire lattice beam 2 can be effectively reduced.

ちなみに、この図2の例では、計4本の大梁4,4,4,4で四方を囲まれてなる最小単位の格子梁2mが具備する複数の交点CP,CP…のうちで、当該最小単位の格子梁2mの平面中心又はそれに最も近い位置の交点CPに粘弾性ダンパー10aが設けられている。そして、当該位置の交点CPは、一般に鉛直振動の腹となり易い位置である。よって、当該位置に配置された粘弾性ダンパー10aにより、前記最小単位の格子梁2mの鉛直振動は最も有効に減衰される。   Incidentally, in the example of FIG. 2, among the plurality of intersection points CP, CP... Of the minimum unit lattice beam 2m surrounded by four large beams 4, 4, 4, 4 in total, the minimum A viscoelastic damper 10a is provided at the intersection CP of the plane center of the unit lattice beam 2m or the position closest thereto. And the intersection CP of the said position is a position which tends to become an antinode of a vertical vibration generally. Therefore, the vertical vibration of the minimum unit lattice beam 2m is most effectively damped by the viscoelastic damper 10a disposed at the position.

図5A及び図5Bは粘弾性ダンパー10aの詳細説明図である。図5Aは側面図であり、図5Bは、図5A中のB−B矢視図である。   5A and 5B are detailed explanatory views of the viscoelastic damper 10a. FIG. 5A is a side view, and FIG. 5B is a BB arrow view in FIG. 5A.

粘弾性ダンパー10aは、小梁5側に連結される上部材11(「減衰部材の一端部」に相当)と、間柱9側に連結される下部材14(「減衰部材の他端部」に相当)と、これら上部材11と下部材14との間に介装される粘弾性体17とから構成され、上部材11と下部材14とが粘弾性体17を介して鉛直方向及び小梁5の長手方向に相対変位可能に構成されている。   The viscoelastic damper 10a is connected to an upper member 11 (corresponding to “one end portion of the damping member”) connected to the small beam 5 side and a lower member 14 (“other end portion of the damping member”) connected to the stud 9 side. And a viscoelastic body 17 interposed between the upper member 11 and the lower member 14, and the upper member 11 and the lower member 14 are arranged in the vertical direction and the small beam via the viscoelastic body 17. 5 is configured to be relatively displaceable in the longitudinal direction.

上部材11は、小梁5への取り付け部としての水平な取り付け板12(以下、上取り付け板12とも言う)と、この上取り付け板12の下面側に垂直に立設されるとともに、互いの間に所定の隙間をあけて配された複数枚の鉛直板13,13…(図示例では3枚)と、を有している。一方、下部材14の方も、間柱9への取り付け部としての水平な取り付け板15(以下、下取り付け板15とも言う)と、この下取り付け板15の上面側に垂直に立設されるとともに、前記上部材11の鉛直板13,13同士の間の隙間にそれぞれ一枚ずつ差し込まれる複数の鉛直板16,16…(図示例では2枚)と、を有している。そして、互いに対向する鉛直板16の板面と鉛直板13の板面との間の各隙間Sには、それぞれ、粘弾性体17がこれら板面と一体に設けられている。   The upper member 11 is erected vertically on a horizontal attachment plate 12 (hereinafter also referred to as an upper attachment plate 12) as an attachment portion to the beam 5 and on the lower surface side of the upper attachment plate 12, and And a plurality of vertical plates 13, 13... (Three in the illustrated example) arranged with a predetermined gap therebetween. On the other hand, the lower member 14 is also erected vertically on a horizontal attachment plate 15 (hereinafter also referred to as a lower attachment plate 15) as an attachment portion to the stud 9 and on the upper surface side of the lower attachment plate 15. , And a plurality of vertical plates 16, 16... (Two in the illustrated example) inserted into the gaps between the vertical plates 13, 13 of the upper member 11, respectively. In each gap S between the plate surface of the vertical plate 16 and the plate surface of the vertical plate 13 facing each other, a viscoelastic body 17 is provided integrally with these plate surfaces.

よって、例えば、床パネル6を介して格子梁2上に設置された各種生産設備の作動や同格子梁2上の作業者の歩行等により加振力が格子梁2に入力されて、格子梁2に鉛直方向の振動が生じた場合であっても、当該鉛直振動は、上記粘弾性ダンパー10aに係る粘弾性体17のダンピング特性により有効に減衰される。つまり、格子梁2の固有振動数における振動振幅が増幅されるようなことはなく、鉛直方向の振動振幅の増幅(動剛性の低下)は有効に抑制される。その結果、格子梁2上の精密機器等が自身の鉛直振動により受け得る悪影響を軽減でき、それらの性能を充分に発揮させることができる。   Therefore, for example, an excitation force is input to the grid beam 2 by operating various production facilities installed on the grid beam 2 via the floor panel 6 or walking of an operator on the grid beam 2, Even when a vertical vibration is generated in 2, the vertical vibration is effectively damped by the damping characteristic of the viscoelastic body 17 related to the viscoelastic damper 10 a. That is, the vibration amplitude at the natural frequency of the lattice beam 2 is not amplified, and the amplification of the vibration amplitude in the vertical direction (decrease in dynamic rigidity) is effectively suppressed. As a result, it is possible to reduce the adverse effects that the precision instruments on the lattice beam 2 can be affected by their own vertical vibrations, and to fully exhibit their performance.

また、上述のように減衰手段10を小梁5に連結して減衰力を小梁5に入力する構成によれば、小梁5は、格子梁2に係る平面内の大半の領域に亘って網目の如く広範囲に配置されているので、当該小梁5を介して格子梁2の平面内における任意の位置に対して減衰手段10を配置可能となる。よって、格子梁2の平面内において鉛直振動の腹となり得る位置(振動振幅の大きい位置)やその近傍位置に対して選択的且つ確実に減衰手段10を配置できて、その結果、格子梁2の鉛直方向の振動環境を自在に制御可能となる。   Further, according to the configuration in which the damping means 10 is connected to the beam 5 and the damping force is input to the beam 5 as described above, the beam 5 extends over most of the area in the plane related to the lattice beam 2. Since it is arranged in a wide range like a mesh, the attenuation means 10 can be arranged at an arbitrary position in the plane of the lattice beam 2 via the small beam 5. Therefore, the damping means 10 can be selectively and reliably disposed at a position (position where vibration amplitude is large) that can become an antinode of vertical vibration in the plane of the lattice beam 2 or a position near the position. The vibration environment in the vertical direction can be freely controlled.

例えば、格子梁2の完成後に格子梁2上に載置される各種生産設備のレイアウトに応じて、格子梁2上の振動環境は変化する。よって、工場が稼働中における格子梁2の振動を各位置で実測した後に、当該実測結果に基づいて格子梁2の平面内における振動振幅を低減すべき位置を特定し、特定された位置に選択的に減衰手段10を後付けで配置すれば、二重床構造1の利用形態に応じた最適の振動環境を作り込み可能となる。すなわち、利用形態に応じて、二重床構造1の振動環境を容易にカスタマイズできる。   For example, the vibration environment on the lattice beam 2 changes according to the layout of various production facilities placed on the lattice beam 2 after the lattice beam 2 is completed. Therefore, after actually measuring the vibration of the grid beam 2 at each position while the factory is in operation, the position where the vibration amplitude in the plane of the grid beam 2 should be reduced is specified based on the actual measurement result, and the selected position is selected. If the damping means 10 is disposed later, an optimal vibration environment according to the usage pattern of the double floor structure 1 can be created. That is, the vibration environment of the double floor structure 1 can be easily customized according to the usage form.

ちなみに、この減衰手段10の粘弾性ダンパー10aの鉛直振動の減衰効率を向上させる観点からは、望ましくは、上述の連結部材としての間柱9に、自重を除く長期荷重や短期荷重を設計上負担させないようにすると良い。つまり、格子梁2の自重を支持させないようにすると良く、このようにすれば、粘弾性ダンパー10aには、概ね小梁5の鉛直振動に伴う外力のみが入力されるようになり、もって当該鉛直振動を効率良く減衰可能となる。   Incidentally, from the viewpoint of improving the damping efficiency of the vertical vibration of the viscoelastic damper 10a of the damping means 10, it is desirable that the intermediate column 9 as the connecting member is not designed to bear a long-term load or a short-term load excluding its own weight in design. It is good to do so. That is, it is preferable not to support the self-weight of the lattice beam 2, and in this way, only the external force accompanying the vertical vibration of the small beam 5 is generally input to the viscoelastic damper 10 a, so that the vertical Vibration can be damped efficiently.

図6及び図7に、減衰手段10の連結部材の変形例を示す。図6の第1変形例では、連結部材として、間柱9に代えて三角形トラス構造体91を用いている。詳しくは、このトラス構造体91は、大梁4を支持する前記柱8と、2本の斜材91a,91bとを三角形に組んで、それらの節点をボルト止め等のピン接合で連結したものである。   6 and 7 show modifications of the connecting member of the damping means 10. In the first modification of FIG. 6, a triangular truss structure 91 is used as a connecting member instead of the stud 9. Specifically, this truss structure 91 is a structure in which the pillar 8 supporting the large beam 4 and the two diagonal members 91a and 91b are assembled in a triangle and their joints are connected by pin connection such as bolting. is there.

例えば、図示例では、柱8の上端部と柱8の中間部とに、それぞれ、対応する斜材91a,91bの一端部がボルトにより連結固定され、そして、各斜材91a,91bは、それぞれ、粘弾性ダンパー10aを設けるべき対象の小梁5の交点CPの直下へと延出されて、当該直下にてこれら斜材91a,91bの他端部同士がボルトにより連結固定されている。そして、連結固定された前記他端部の上部には、水平な上面を有する不図示のブラケットが固定されており、当該ブラケットの上面に、上述の粘弾性ダンパー10aの下取り付け板15の下面が密着されてボルトにより締結固定される。なお、粘弾性ダンパー10aの上取り付け板12は、上述と同様、前記交点CP直下の小梁5の下面部分に密着されてボルトにより締結固定される。   For example, in the illustrated example, one end portion of the corresponding diagonal members 91a and 91b is connected and fixed to the upper end portion of the column 8 and the middle portion of the column 8 by bolts, and the diagonal members 91a and 91b are respectively The viscoelastic damper 10a is extended directly below the intersection CP of the target beam 5 and the other ends of the diagonal members 91a and 91b are connected and fixed by bolts. A bracket (not shown) having a horizontal upper surface is fixed to the upper portion of the other end portion connected and fixed, and the lower surface of the lower mounting plate 15 of the viscoelastic damper 10a described above is fixed to the upper surface of the bracket. It is closely attached and fastened and fixed with bolts. The upper mounting plate 12 of the viscoelastic damper 10a is in close contact with the lower surface portion of the small beam 5 directly below the intersection CP, and is fastened and fixed by bolts, as described above.

そして、この第1変形例によれば、連結部材としてトラス構造体91を用いているので、単に一本の斜材からなる片持ち支持に比べて連結部材の鉛直方向の剛性を格段に高め得て、結果、粘弾性ダンパー10aを鉛直方向に確実に支持可能となる。これにより、粘弾性ダンパー10aは、振動減衰に係る鉛直方向の反力を床スラブ25から確実に取ることができて、結果、格子梁2の鉛直振動に対する高い減衰能力を確実に発揮可能となる。   And according to this 1st modification, since the truss structure 91 is used as a connection member, compared with the cantilever support which consists only of one diagonal material, the rigidity of the perpendicular direction of a connection member can be raised significantly. As a result, the viscoelastic damper 10a can be reliably supported in the vertical direction. As a result, the viscoelastic damper 10a can reliably take the vertical reaction force related to vibration damping from the floor slab 25, and as a result, it is possible to reliably exhibit a high damping capability with respect to the vertical vibration of the lattice beam 2. .

なお、この第1変形例では、前記斜材91aの一端部は柱8の中間部に連結されているが、柱8の下端部に連結されていても良く、更には、柱8の下端部に隣接する床スラブ25の部分に連結されていても良い。   In this first modification, one end portion of the diagonal member 91a is connected to the middle portion of the column 8, but may be connected to the lower end portion of the column 8, and further, the lower end portion of the column 8. It may be connected to the portion of the floor slab 25 adjacent to.

また、上述の柱8と2本の斜材91a,91bとの三つの節点をそれぞれ、溶接等の剛接合により連結し、連結部材をラーメン構造体として構成しても同様の作用効果を得ることができる。   Further, even if the three nodes of the column 8 and the two diagonal members 91a and 91b are connected by rigid joining such as welding, and the connecting member is configured as a ramen structure, the same effect can be obtained. Can do.

一方、図7の第2変形例の連結部材は、上述の実施形態と同様に間柱状ではあるが、当該間柱93は、H形鋼のみからなる単材ではなく、複数の部材93a,93bからなるトラス構造体である。例えば、当該間柱93は、逆V字状に組まれつつ下端部を床スラブ25の上面に固定された一対の斜材93a,93bを有し、これら一対の斜材93a,93bと、床スラブ25の上面25sとでトラス構造体をなしている。なお、当該間柱93をラーメン構造体で構成しても良いのは上述と同じである。   On the other hand, the connecting member of the second modified example in FIG. 7 is in the form of a stud as in the above-described embodiment, but the stud 93 is not a single material made of only H-shaped steel but a plurality of members 93a and 93b. A truss structure. For example, the stud 93 includes a pair of diagonal members 93a and 93b that are assembled in an inverted V shape and have a lower end fixed to the upper surface of the floor slab 25. The pair of diagonal members 93a and 93b and the floor slab The upper surface 25s of 25 forms a truss structure. In addition, it is the same as the above-mentioned that you may comprise the said studs 93 with a ramen structure.

ところで、格子梁2における粘弾性ダンパー10aの設置箇所は、何等図2の例のような一箇所に限るものではなく、図6の例のように、格子梁2の平面内の複数箇所にそれぞれ設置しても良い。すなわち、図6の例では、計4本の大梁4,4,4,4で四方を囲まれた最小単位の格子梁2mの平面中心に関して互いに点対称となる四箇所の位置に、それぞれ、粘弾性ダンパー10aが設けられている。そして、これにより、当該最小単位の格子梁2mの鉛直振動は最も有効に減衰される。   By the way, the installation location of the viscoelastic damper 10a in the lattice beam 2 is not limited to one location as in the example of FIG. 2, but at a plurality of locations in the plane of the lattice beam 2 as in the example of FIG. May be installed. That is, in the example of FIG. 6, each of the positions of four points which are point-symmetric with respect to the plane center of the lattice beam 2m of the smallest unit surrounded by four large beams 4, 4, 4 and 4 is in each case. An elastic damper 10a is provided. As a result, the vertical vibration of the lattice beam 2m of the minimum unit is damped most effectively.

また、小梁5における粘弾性ダンパー10aの設置部位は、何等上述の交点CPに限るものではなく、二重床構造1の振動状況に応じて小梁5における任意の部位を選択可能である。例えば、小梁5における梁部の下面、つまり、交点CPと交点CPとの間に位置する小梁5の部位の下面に粘弾性ダンパー10aの上取り付け板12の上面を密着固定しても良い。   Moreover, the installation site | part of the viscoelastic damper 10a in the small beam 5 is not restricted to the above-mentioned intersection CP at all, The arbitrary site | part in the small beam 5 can be selected according to the vibration condition of the double floor structure 1. FIG. For example, the upper surface of the upper mounting plate 12 of the viscoelastic damper 10a may be tightly fixed to the lower surface of the beam portion of the small beam 5, that is, the lower surface of the portion of the small beam 5 positioned between the intersection points CP. .

また、上述の小梁5の粘弾性ダンパー10aに加えて、別途大梁4に対して粘弾性ダンパー10aを設けても良い。大梁4への粘弾性ダンパー10aの設置例としては、図8を例示できる。すなわち、この例では、支持部材8は、大梁4を支持する柱8に加えて、互いに同一の大梁4を支持する柱8,8同士の間に架設された逆V字状のブレース81を有しており、そして、当該逆V字状ブレース81の頂部と大梁4との間に粘弾性ダンパー10aが介装されている。更に、この例では、大梁4の中間部等の直下に間柱82を立設し、当該間柱82と大梁4との間にも粘弾性ダンパー10aを介装している。   In addition to the viscoelastic damper 10a of the small beam 5 described above, a viscoelastic damper 10a may be separately provided for the large beam 4. As an example of installation of the viscoelastic damper 10a on the girder 4, FIG. 8 can be illustrated. That is, in this example, the support member 8 has an inverted V-shaped brace 81 that is laid between the columns 8 and 8 that support the same large beam 4 in addition to the columns 8 that support the large beam 4. A viscoelastic damper 10a is interposed between the top of the inverted V-shaped brace 81 and the large beam 4. Further, in this example, a stud 82 is erected directly below the middle portion of the large beam 4, and a viscoelastic damper 10 a is interposed between the stud 82 and the large beam 4.

<<粘弾性ダンパー10aのフェールセーフ化及びメンテナンスフリー化について>>
ところで、上述の二重床構造1において図5Bの粘弾性体17を層状にしてその厚みを薄くしているのは、微振動に対する減衰性能を高めるためである。すなわち、粘弾性体17の厚みを薄くすることにより、微小変位でも粘弾性体17に大きな剪断歪み(=粘弾性体の厚み方向に直交する方向の変形量/粘弾性体の厚み)を生じさせて、これにより、微振動下においても大きな減衰力を生じさせるためである。
<< About fail-safe and maintenance-free viscoelastic damper 10a >>
By the way, the reason why the viscoelastic body 17 shown in FIG. 5B is layered to reduce the thickness in the double floor structure 1 described above is to improve the damping performance against micro vibrations. That is, by reducing the thickness of the viscoelastic body 17, a large shear strain (= the amount of deformation in the direction perpendicular to the thickness direction of the viscoelastic body / the thickness of the viscoelastic body) is generated even in a minute displacement. Thus, a large damping force is generated even under a slight vibration.

但し、粘弾性体17の厚みを薄くすると、上述したように小さな変位でも剪断歪みが大きくなる。逆に言えば、粘弾性体17の厚みを薄くすると、粘弾性体17の限界剪断歪みに対応する限界変位量は小さくなる。例えば、粘弾性体17の限界剪断歪みがα×100%であるとともに、微振動を有効に抑制可能な粘弾性体17の設計厚みがβmmという薄さの場合には、粘弾性体17の限界変位量は、精々数cm(=α×βmm)という小さな値になる。   However, when the thickness of the viscoelastic body 17 is reduced, the shear strain increases even with a small displacement as described above. In other words, when the thickness of the viscoelastic body 17 is reduced, the limit displacement corresponding to the limit shear strain of the viscoelastic body 17 is reduced. For example, when the limit shear strain of the viscoelastic body 17 is α × 100% and the design thickness of the viscoelastic body 17 capable of effectively suppressing micro vibrations is as thin as β mm, the limit of the viscoelastic body 17 The displacement is a small value of several centimeters (= α × β mm).

一方、二重床構造1には大地震に対する耐震健全性も要求される。そして、この大地震時には数cmを超える水平振幅の地震動が想定され、その際には、この水平振幅の地震動がほぼそのまま粘弾性ダンパー10aに入力される虞がある。   On the other hand, the double floor structure 1 is also required to have seismic soundness against a large earthquake. Then, in the case of this large earthquake, a ground vibration having a horizontal amplitude exceeding several centimeters is assumed, and in this case, there is a possibility that the ground vibration having a horizontal amplitude may be input to the viscoelastic damper 10a as it is.

図9はその説明図であり、二重床構造1を側面視で示している。例えば、地震時に二重床構造1は、図9中二点鎖線で示す状態から実線で示す状態へと全体的に水平方向に変形し、つまり格子梁2の小梁5は水平方向に大きく変位するが、これに対して、減衰手段10の間柱9の方はあまり変形しない。よって、ここに、小梁5と連結部材たる間柱9の上端との間に水平方向の変位量の差を生じ、この変位量の差が粘弾性ダンパー10aに入力される。つまり、上述の数cmを超える水平振幅の地震動が、概ねそのままの大きさで粘弾性ダンパー10aに入力される虞があり、その場合には、粘弾性体17の限界剪断歪みを超えてしまい、粘弾性ダンパー10aが破損する。   FIG. 9 is an explanatory diagram showing the double floor structure 1 in a side view. For example, the double floor structure 1 is deformed in the horizontal direction from the state indicated by the two-dot chain line in FIG. 9 to the state indicated by the solid line in FIG. 9, that is, the small beam 5 of the lattice beam 2 is greatly displaced in the horizontal direction. On the other hand, the intermediate column 9 of the damping means 10 is not so deformed. Therefore, a difference in the amount of displacement in the horizontal direction is generated between the small beam 5 and the upper end of the intermediary column 9 serving as the connecting member, and the difference in the amount of displacement is input to the viscoelastic damper 10a. That is, there is a possibility that the horizontal ground motion exceeding the above-mentioned several centimeters may be input to the viscoelastic damper 10a in almost the same size, in which case it exceeds the limit shear strain of the viscoelastic body 17, The viscoelastic damper 10a is damaged.

そこで、この二重床構造1では、粘弾性ダンパー10aの取り付け構造に対して以下のような工夫をし、これにより、大地震に対しても粘弾性ダンパー10aが破損しないようにフェールセーフ機能を持たせている。また、これに併せて、地震後に粘弾性ダンパー10aに係る一切の復旧作業が不要なようにメンテナンスフリー化も図っている。   Therefore, in this double floor structure 1, the following device is devised with respect to the attachment structure of the viscoelastic damper 10a, thereby providing a fail-safe function so that the viscoelastic damper 10a is not damaged even in the event of a large earthquake. I have it. In addition to this, maintenance-free operation is also made so that no restoration work related to the viscoelastic damper 10a is required after the earthquake.

図10A及び図10Bは、粘弾性ダンパー10aの取り付け構造の説明図である。図10Aは側面図であり、図10Bは、図10A中のB−B断面図である。   10A and 10B are explanatory diagrams of the attachment structure of the viscoelastic damper 10a. 10A is a side view, and FIG. 10B is a cross-sectional view taken along line BB in FIG. 10A.

粘弾性ダンパー10aは、小梁5の交点CPと、この交点CPの直下において対向配置された前記連結部材たる間柱9の上端との間に介挿されている。詳しくは、小梁5は、そのH形鋼の一対のフランジ5f,5fを上下に位置させて配されている。また、間柱9の上端には、水平な上面9dを有する所定厚みのプレート9c(以下、間柱上端プレート9cとも言う)が突き合わされて一体に固定されている。よって、粘弾性ダンパー10aの上取り付け板12は、小梁5の下フランジ5f(「小梁の取り付け部」に相当)の水平な下面5dを小梁5側の取り付け面として取り付けられる一方、粘弾性ダンパー10aの下取り付け板15は、前記間柱上端プレート9c(「一方の取り付け部」に相当)の水平な上面9dを間柱9側の取り付け面として取り付けられる。   The viscoelastic damper 10a is interposed between the intersection point CP of the small beam 5 and the upper end of the intermediary column 9 which is the connecting member and is disposed immediately below the intersection point CP. Specifically, the small beam 5 is arranged with a pair of flanges 5f, 5f of the H-shaped steel positioned vertically. A plate 9c having a predetermined thickness (hereinafter also referred to as an inter-column upper end plate 9c) is abutted and fixed to the upper end of the inter-column 9 in an integrated manner. Therefore, the upper mounting plate 12 of the viscoelastic damper 10a can be mounted with the horizontal lower surface 5d of the lower flange 5f of the small beam 5 (corresponding to the “beam mounting portion”) as the mounting surface on the small beam 5 side. The lower mounting plate 15 of the elastic damper 10a is mounted with the horizontal upper surface 9d of the inter-column upper end plate 9c (corresponding to “one mounting portion”) as the mounting surface on the inter-column 9 side.

なお、この時、粘弾性ダンパー10aの上取り付け板12の水平な取り付け面12dと小梁5の下フランジ5fの水平な取り付け面5dとは略全面に亘って密着される必要があり、他方、粘弾性ダンパー10aの下取り付け板15の水平な取り付け面15dと前記間柱上端プレート9cの水平な取り付け面9dとについても略全面に亘って密着される必要がある。これは、格子梁2の鉛直方向の微振動を、粘弾性ダンパー10aを介して連結部材たる間柱9に確実に伝達させて粘弾性ダンパー10aにより確実に減衰させるためである。つまり、格子梁2の鉛直方向の動剛性を高めるためである。   At this time, the horizontal mounting surface 12d of the upper mounting plate 12 of the viscoelastic damper 10a and the horizontal mounting surface 5d of the lower flange 5f of the small beam 5 need to be in close contact with each other, The horizontal mounting surface 15d of the lower mounting plate 15 of the viscoelastic damper 10a and the horizontal mounting surface 9d of the stud upper end plate 9c also need to be in close contact over substantially the entire surface. This is because the fine vibration in the vertical direction of the lattice beam 2 is surely transmitted to the intermediary column 9 which is the connecting member via the viscoelastic damper 10a and reliably attenuated by the viscoelastic damper 10a. That is, this is to increase the vertical dynamic rigidity of the lattice beam 2.

ここで、前者の密着、つまり、小梁5の下フランジ5fの取り付け面5dと粘弾性ダンパー10aの上取り付け板12の取り付け面12dとの密着については、例えば締結ボルト40が使用される。詳しくは、小梁5の下フランジ5fと粘弾性ダンパー10aの上取り付け板12との両者を、上下方向に貫通させて締結ボルト40が設けられ、当該締結ボルト40に螺合するナット41の締結力により、下フランジ5fと上取り付け板12とは、互いの取り付け面5d,12dを重ね合わせた密着状態で鉛直方向及び水平方向に相対移動不能に固定されている。なお、この例では、締結ボルト40は、小梁5の長手方向に並んで複数本(ここでは4本)設けられて締結ボルト列をなしているとともに、当該締結ボルト列は、小梁5のH形鋼のウエブ5wを挟んで例えば2列設けられているが、何等この配列例には限らない。   Here, for the former contact, that is, the contact between the attachment surface 5d of the lower flange 5f of the small beam 5 and the attachment surface 12d of the upper attachment plate 12 of the viscoelastic damper 10a, for example, a fastening bolt 40 is used. Specifically, the fastening bolt 40 is provided by passing both the lower flange 5f of the small beam 5 and the upper mounting plate 12 of the viscoelastic damper 10a in the vertical direction, and the nut 41 that is screwed to the fastening bolt 40 is fastened. Due to the force, the lower flange 5f and the upper mounting plate 12 are fixed so as not to move relative to each other in the vertical direction and the horizontal direction in a close contact state in which the mounting surfaces 5d and 12d are overlapped. In this example, a plurality of fastening bolts 40 (four in this case) are provided side by side in the longitudinal direction of the small beam 5 to form a fastening bolt row. For example, two rows are provided across the H-shaped steel web 5w, but the arrangement is not limited to this example.

一方、後者の密着、つまり粘弾性ダンパー10aの下取り付け板15の取り付け面15dと間柱上端プレート9cの取り付け面9dとの密着については、クランプ50(「挟み込み部材」に相当)が使用される。クランプ50は、コ字状又はC字状部材を本体とし、その両端部50a,50aには、それぞれ、互いに対向する端部50aに向けて進退可能に挟み込み部としてのジャッキボルト51,51が螺合されている。よって、ジャッキボルト51,51同士の間に、粘弾性ダンパー10aの下取り付け板15と間柱上端プレート9cとの両者を位置させた状態において、ジャッキボルト51を螺合回転させることにより、これら下取り付け板15及び間柱上端プレート9cの両者はジャッキボルト51,51に挟み込まれ、互いの取り付け面15d,9dにおいて重なり合って密着する。   On the other hand, the clamp 50 (corresponding to the “pinching member”) is used for the latter contact, that is, the contact between the attachment surface 15d of the lower attachment plate 15 of the viscoelastic damper 10a and the attachment surface 9d of the stud upper plate 9c. The clamp 50 has a U-shaped or C-shaped member as a main body, and jack bolts 51 and 51 serving as sandwiching portions are screwed into both end portions 50a and 50a so as to be able to advance and retreat toward the opposite end portions 50a, respectively. Are combined. Therefore, in a state where both the lower mounting plate 15 of the viscoelastic damper 10a and the upper end plate 9c of the stud are positioned between the jack bolts 51 and 51, the lower mounting of the jack bolt 51 is performed by screwing and rotating. Both the plate 15 and the stud upper plate 9c are sandwiched between jack bolts 51 and 51, and are overlapped and closely attached to each other on the attachment surfaces 15d and 9d.

ここで、これら取り付け面9d,15d同士の間に生じる静止摩擦力Fは、ジャッキボルト51,51の挟み込み力の調整により、下式1を満足するように調整される。   Here, the static frictional force F generated between the mounting surfaces 9d and 15d is adjusted so as to satisfy the following expression 1 by adjusting the pinching force of the jack bolts 51 and 51.

静止摩擦力F<粘弾性ダンパーの破損想定荷重−クランプの静止摩擦力f …式1
なお、上式1中の「破損想定荷重」とは、例えば粘弾性ダンパー10aの粘弾性体17に限界剪断歪みが生じる大きさの荷重のことである。また、同式1中の「クランプの静止摩擦力f」とは、クランプ50と粘弾性ダンパー10aとの間の水平方向の静止摩擦力f1と、クランプ50と間柱9との間の水平方向の静止摩擦力f2とのうちの小さい方の摩擦力のことである。詳しくは、図10A及び図10Bの例では、前者の静止摩擦力f1は、ジャッキボルト51の先端部と粘弾性ダンパー10aの下取り付け板15の上面15fとの間の静止摩擦力であり、後者の静止摩擦力f2は、ジャッキボルト51の先端部と後述の滑り材53との間の静止摩擦力又は滑り材53と間柱上端プレート9cの下面9fとの間の静止摩擦力のうちの小さい方の摩擦力である。
Static friction force F <Assumed load of damage of viscoelastic damper−Static friction force f of clamp f Equation 1
In addition, the “assumed damage load” in the above formula 1 is, for example, a load having a magnitude that causes a limit shear strain in the viscoelastic body 17 of the viscoelastic damper 10a. Further, “the static frictional force f of the clamp” in the formula 1 is the horizontal static frictional force f1 between the clamp 50 and the viscoelastic damper 10a and the horizontal frictional force between the clamp 50 and the intermediate post 9. It is the smaller frictional force of the static frictional force f2. Specifically, in the example of FIGS. 10A and 10B, the former static friction force f1 is a static friction force between the tip of the jack bolt 51 and the upper surface 15f of the lower mounting plate 15 of the viscoelastic damper 10a. The static frictional force f2 is the smaller of the static frictional force between the tip of the jack bolt 51 and the sliding member 53 described later or the static frictional force between the sliding member 53 and the lower surface 9f of the inter-column upper end plate 9c. It is the friction force.

そして、上式1を満足するように前記取り付け面9d,15d同士の間の静止摩擦力Fを設定しておけば、仮に地震時に二重床構造1に対して大きな水平力が作用したとしても、粘弾性ダンパー10aに破損想定荷重以上の力が作用するより以前に、前記取り付け面9d,15d同士の間での水平方向の摺動が開始され、これにより、粘弾性ダンパー10aは間柱9から縁切りされることになる。その結果、粘弾性ダンパー10aへの水平力の入力は抑制されて、その破損は有効に防止される。つまり、粘弾性ダンパー10aに対してフェールセーフ機能が付与される。なお、この取り付け面9d,15d同士の間の摩擦係数を確実に低くするには、例えばPTFE(ポリテトラフルオロエチレン)などのフッ素樹脂(例えばテフロン(米国デュポン社登録商標))等の低摩擦係数の滑り材(不図示)を取り付け面9d,15d同士の間に介装すると良い。   If the static friction force F between the mounting surfaces 9d and 15d is set so as to satisfy the above formula 1, even if a large horizontal force acts on the double floor structure 1 during an earthquake, Before the force more than the assumed damage load acts on the viscoelastic damper 10a, the horizontal sliding between the mounting surfaces 9d and 15d is started, whereby the viscoelastic damper 10a is It will be cut off. As a result, the input of the horizontal force to the viscoelastic damper 10a is suppressed, and the breakage is effectively prevented. That is, a fail safe function is given to the viscoelastic damper 10a. In order to reliably reduce the friction coefficient between the mounting surfaces 9d and 15d, a low friction coefficient such as a fluororesin such as PTFE (polytetrafluoroethylene) (for example, Teflon (registered trademark of DuPont, USA)) is used. A sliding material (not shown) may be interposed between the attachment surfaces 9d and 15d.

このようなクランプ50は、小梁5の長手方向に並んで複数個(ここでは4個)設けられてクランプ列をなしているとともに、当該クランプ列は、H形鋼の間柱9のウエブ9wの両脇に例えば2列設けられているが、何等この配列例に限るものではない。また、クランプ50の具体例としては、ブルマンC型(商品名:ブルマン株式会社製)等が挙げられる。   A plurality of (in this case, four) such clamps 50 are provided side by side in the longitudinal direction of the small beam 5 to form a clamp row, and the clamp row is formed on the web 9w of the intermediate column 9 of the H-shaped steel. For example, two rows are provided on both sides, but the arrangement is not limited to this example. Moreover, as a specific example of the clamp 50, a Bullman C type (trade name: manufactured by Bullman Co., Ltd.) or the like can be given.

ところで、上述のクランプ50は、一対のジャッキボルト51,51を介して粘弾性ダンパー10aと間柱9との両者に跨って取り付けられている。他方、上述の大きな水平力の作用時には、粘弾性ダンパー10aと間柱9とは縁切りされて水平方向に相対移動(摺動)する。よって、仮にクランプ50のジャッキボルト51が粘弾性ダンパー10aと間柱9との両者に対してしっかり固定されている場合には、上述の相対移動時に、クランプ50は、粘弾性ダンパー10a及び間柱9の両者から水平方向の引張力等を受けて、これによりクランプ50が捻れるなどの変形をしたり、競るなどして両者から脱落する虞がある。その結果、地震発生の都度、地震後にクランプ50交換等の再設置作業を余儀なくされ、不便なものとなる。   By the way, the above-mentioned clamp 50 is attached across both the viscoelastic damper 10a and the intermediate post 9 via a pair of jack bolts 51, 51. On the other hand, at the time of the action of the large horizontal force described above, the viscoelastic damper 10a and the spacer 9 are cut off and relatively moved (slid) in the horizontal direction. Therefore, if the jack bolt 51 of the clamp 50 is firmly fixed to both the viscoelastic damper 10a and the intermediary column 9, the clamp 50 may be connected to the viscoelastic damper 10a and the intermediary column 9 during the relative movement described above. There is a risk that the clamp 50 may be deformed, for example, twisted due to a horizontal tensile force or the like from both, or may fall off from both sides due to competition. As a result, every time an earthquake occurs, re-installation work such as replacement of the clamp 50 is forced after the earthquake, which is inconvenient.

そこで、当該クランプ50のメンテナンスフリー化を図るべく、クランプ50と粘弾性ダンパー10aとの間の水平方向の静止摩擦力に係る摩擦係数と、クランプ50と間柱9との間の水平方向の静止摩擦力に係る摩擦係数とを相違させている。これにより、粘弾性ダンパー10aと間柱9との相対移動時には、クランプ50は、上述の摩擦係数差に基づいて粘弾性ダンパー10a及び間柱9のうちの一方に付いていき、他方に対しては速やかに滑動する。その結果、上述のようなクランプ50の変形や脱落は有効に防止される。ちなみに、直接的には摩擦力を相違させるべきところ、それに代えて摩擦係数を相違させるだけで良い理由は、それぞれの摩擦力の元となる各垂直抗力は、クランプ50の内力(軸力に類する力)に基づいていて互いに同値だからである。   Therefore, in order to make the clamp 50 maintenance-free, the friction coefficient relating to the horizontal static friction force between the clamp 50 and the viscoelastic damper 10a and the horizontal static friction between the clamp 50 and the intermediate post 9 are obtained. The friction coefficient related to the force is made different. Thereby, at the time of relative movement of the viscoelastic damper 10a and the intermediary column 9, the clamp 50 is attached to one of the viscoelastic damper 10a and the intermediary column 9 based on the above-described friction coefficient difference, and quickly to the other. To slide. As a result, the deformation and dropping of the clamp 50 as described above can be effectively prevented. Incidentally, the reason why the frictional force should be made different directly is that the friction coefficient only needs to be changed instead. The vertical drags that are the basis of each frictional force are the internal forces of the clamp 50 (similar to the axial force). This is because they are equivalent to each other.

これら摩擦係数を互いに異ならせる具体的方法としては、目荒し等して粗面にすることや、上述のPTFEなどのフッ素樹脂等の低摩擦係数の滑り材を用いること等が挙げられるが、この図10A及び図10Bの例では、後者の方法を採用している。すなわち、図10Aに示すように、クランプ50の一方のジャッキボルト51の先端部と、この先端部から挟み込み力が付与されるべき間柱上端プレート9cの下面9f(「取り付け面の逆側の面」に相当)との間には、上記の滑り材53が介装されているが、クランプ50のもう一方のジャッキボルト51の先端部と、この先端部から挟み込み力が付与されるべき粘弾性ダンパー10aの下取り付け板15の上面15f(「取り付け面の逆側の面」に相当)との間には、上記の滑り材53が介装されていない。そして、これにより、クランプ50と粘弾性ダンパー10aとの間の摩擦係数の方が大きく設定され、結果、粘弾性ダンパー10aと間柱9との相対移動時には、クランプ50は挟み込み姿勢を維持しつつ粘弾性ダンパー10aの方に確実に付いていく。   Specific methods for making these friction coefficients different from each other include roughening or roughening the surface, or using a sliding material having a low friction coefficient such as the above-mentioned fluororesin such as PTFE. In the examples of FIGS. 10A and 10B, the latter method is adopted. That is, as shown in FIG. 10A, the front end portion of one jack bolt 51 of the clamp 50 and the lower surface 9f of the inter-column upper plate 9c to which a clamping force is to be applied from the front end portion ("the surface opposite to the mounting surface"). The sliding material 53 is interposed between the tip end of the other jack bolt 51 of the clamp 50 and the viscoelastic damper to which a clamping force is to be applied from the tip end. The sliding material 53 is not interposed between the upper surface 15f of the lower mounting plate 15a (corresponding to the “surface opposite to the mounting surface”) 10a. As a result, the coefficient of friction between the clamp 50 and the viscoelastic damper 10a is set to be larger. As a result, during relative movement between the viscoelastic damper 10a and the intermediary column 9, the clamp 50 maintains the sandwiching posture while maintaining the sandwiching posture. It is securely attached to the elastic damper 10a.

ちなみに、粘弾性ダンパー10aの方に付いていくようにした理由は、図10A及び図10Bの例では、粘弾性ダンパー10aの下取り付け板15の上面15fの方が、間柱上端プレート9cの下面9fよりも水平方向の全方位に亘り狭いからである。つまり、ジャッキボルト51が滑動した際に、粘弾性ダンパー10aの下取り付け板15から脱落する確率の方が間柱上端プレート9cよりも高いからである。   Incidentally, the reason for attaching to the viscoelastic damper 10a is that, in the example of FIGS. 10A and 10B, the upper surface 15f of the lower mounting plate 15 of the viscoelastic damper 10a is lower than the lower surface 9f of the stud upper end plate 9c. This is because it is narrower in all directions in the horizontal direction. That is, when the jack bolt 51 slides, the probability of dropping from the lower mounting plate 15 of the viscoelastic damper 10a is higher than that of the stud upper end plate 9c.

ここで、望ましくは、図11A及び図11Bに示すように、粘弾性ダンパー10aの下取り付け板15と、これに対向するジャッキボルト51の先端部との間、及び、滑り材53と、これに対向するもう一方のジャッキボルト51の先端部と滑り材53との間に、それぞれ、所定厚みの鋼板からなる受圧板55を介装すると良い。受圧板55はクランプ列毎に設けられ、クランプ列に属する全てのクランプ50に亘る長さに形成されている。そして、このような受圧板55を設ければ、クランプ列により生じる摩擦力分布を略均等にすることができる。   Here, preferably, as shown in FIG. 11A and FIG. 11B, between the lower mounting plate 15 of the viscoelastic damper 10a and the tip of the jack bolt 51 facing this, and the sliding material 53, A pressure receiving plate 55 made of a steel plate having a predetermined thickness may be interposed between the tip of the other jack bolt 51 facing the sliding member 53. The pressure receiving plate 55 is provided for each clamp row, and is formed to have a length over all the clamps 50 belonging to the clamp row. If such a pressure receiving plate 55 is provided, the frictional force distribution generated by the clamp row can be made substantially uniform.

また、上述の受圧板55を設ける構成によれば、既設の粘弾性ダンパー10aに対して、後付けでメンテナンスフリー化且つフェールセーフ化を行う場合に、その改造工事を容易に行えるようになる。図5A及び図5Bを参照しつつ具体的に説明する。図5A及び図5Bは、フェールセーフ化改造前の既設の粘弾性ダンパー10aの取り付け状態を示している。通常、既設の粘弾性ダンパー10aの下取り付け板15と、間柱上端プレート9cとは、締結ボルト44により締結固定されている。よって、改造工事の一作業として締結ボルト44を外すことになるが、そうすると、下取り付け板15及び間柱上端プレート9cにはそれぞれボルト孔15h,9hが現れる。そして、前記クランプ50のジャッキボルト51のサイズによっては、これらボルト孔15h,9hの中にジャッキボルト51の先端部が落ち込んでしまい、クランプ50の設置を阻害する。   Moreover, according to the structure which provides the above-mentioned pressure receiving plate 55, when making it maintenance-free and fail-safe by retrofitting with respect to the existing viscoelastic damper 10a, the remodeling construction can be performed easily. This will be specifically described with reference to FIGS. 5A and 5B. FIG. 5A and FIG. 5B show an attached state of the existing viscoelastic damper 10a before the fail safe modification. Usually, the lower mounting plate 15 of the existing viscoelastic damper 10a and the stud upper end plate 9c are fastened and fixed by fastening bolts 44. Therefore, the fastening bolts 44 are removed as one work of the remodeling work. Then, bolt holes 15h and 9h appear in the lower mounting plate 15 and the inter-column upper end plate 9c, respectively. Depending on the size of the jack bolt 51 of the clamp 50, the tip end portion of the jack bolt 51 falls into the bolt holes 15h and 9h, thereby obstructing the installation of the clamp 50.

この点につき、図11A及び図11Bに示すように、受圧板55を、ボルト孔15h,9hを覆って塞ぐサイズに形成しておくとともに、当該受圧板55を一方のジャッキボルト51の先端部と下取り付け板15との間、及び、もう一方のジャッキボルト51の先端部と滑り材53との間にそれぞれ介装すれば、受圧板55が、ジャッキボルト51の落ち込みを防ぐので、クランプ50の設置作業を問題なく行うことができる。つまり、後付けで粘弾性ダンパー10aをメンテナンス化且つフェールセーフ化する際の施工性に優れたものとなる。   In this regard, as shown in FIGS. 11A and 11B, the pressure receiving plate 55 is formed in a size that covers and closes the bolt holes 15 h and 9 h, and the pressure receiving plate 55 is connected to the tip of one jack bolt 51. Since the pressure receiving plate 55 prevents the jack bolt 51 from falling if it is interposed between the lower mounting plate 15 and between the tip of the other jack bolt 51 and the sliding member 53, the clamp 50 Installation work can be performed without problems. That is, it is excellent in workability when the viscoelastic damper 10a is made maintenance and made fail-safe later.

ちなみに、上述のボルト孔15h,9hに係る問題は、特に、粘弾性ダンパー10aの方に干渉物が付属していて、上述の既設の締結ボルト44の設置可能位置が制限されている場合に起き易い。例えば、図5A及び図5Bの例では、粘弾性ダンパー10aの部品たる複数枚の前記鉛直板16,16…(図示例では2枚)を組み付けるための組み付けボルト19が、大梁4の長手方向に沿って所定ピッチで設けられている。このため、これら組み付けボルト19の位置をかわして既設の締結ボルト44が設置されているが、このような設置位置の制限は、クランプ50についても同様に課せられる。つまり、締結ボルト44を外した位置と同じ位置にクランプ50を配置せざるを得ない。すると、クランプ50のジャッキボルト51は、既設のボルト孔15h,9hに落ち込み易くなり、つまり、クランプ50の設置を著しく阻害する。よって、このような既設の締結ボルト44に係り設置可能位置の制限があるような場合に、上述の受圧板55が特に有効となる。   Incidentally, the problem related to the above-described bolt holes 15h and 9h occurs particularly when an interference object is attached to the viscoelastic damper 10a and the installation position of the above-described existing fastening bolt 44 is limited. easy. For example, in the example of FIGS. 5A and 5B, the assembly bolts 19 for assembling a plurality of the vertical plates 16, 16 (two in the illustrated example), which are parts of the viscoelastic damper 10 a, are arranged in the longitudinal direction of the girder 4. Are provided along a predetermined pitch. For this reason, the existing fastening bolts 44 are installed by changing the positions of these assembly bolts 19, but such a restriction on the installation position is similarly imposed on the clamp 50. That is, the clamp 50 must be disposed at the same position as the position where the fastening bolt 44 is removed. Then, the jack bolt 51 of the clamp 50 is likely to fall into the existing bolt holes 15h, 9h, that is, the installation of the clamp 50 is significantly hindered. Therefore, the above-described pressure receiving plate 55 is particularly effective when there is a restriction on the position where the existing fastening bolts 44 can be installed.

ところで、上述の実施形態では、図10A及び図10Bに示すように粘弾性ダンパー10aの上取り付け板12と小梁5とは、締結ボルト40により水平方向に相対移動不能に締結固定される一方、粘弾性ダンパー10aの下取り付け板15と間柱9の間柱上端プレート9cとは、クランプ50により水平方向に摺動可能に取り付けられていたが、何等これに限るものではなく、逆にしても良い。つまり、粘弾性ダンパー10aの上取り付け板12と小梁5とが、クランプ50により水平方向に摺動可能に取り付けられる一方、粘弾性ダンパー10aの下取り付け板15と間柱上端プレート9cとは、締結ボルト40により水平方向に相対移動不能に締結固定されていても良い。更には、両者に対してクランプ50を適用して、両者共、水平方向に摺動可能に取り付けても良い。   By the way, in the above-described embodiment, as shown in FIGS. 10A and 10B, the upper mounting plate 12 and the small beam 5 of the viscoelastic damper 10a are fastened and fixed by the fastening bolt 40 so as not to be relatively movable in the horizontal direction. The lower attachment plate 15 of the viscoelastic damper 10a and the intermediate column upper end plate 9c of the intermediate column 9 are attached so as to be slidable in the horizontal direction by the clamp 50. However, the present invention is not limited to this, and may be reversed. In other words, the upper mounting plate 12 and the small beam 5 of the viscoelastic damper 10a are mounted to be slidable in the horizontal direction by the clamp 50, while the lower mounting plate 15 of the viscoelastic damper 10a and the stud upper end plate 9c are fastened. The bolt 40 may be fastened and fixed so as not to be relatively movable in the horizontal direction. Furthermore, the clamp 50 may be applied to both, and both may be attached to be slidable in the horizontal direction.

図12A及び図12Bは、粘弾性ダンパー10aの取り付け構造の変形例の説明図である。図12Aは側面図であり、図12Bは、図12A中のB−B断面図である。   12A and 12B are explanatory views of a modification of the attachment structure of the viscoelastic damper 10a. 12A is a side view, and FIG. 12B is a BB cross-sectional view in FIG. 12A.

上述の実施形態では、地震時における粘弾性ダンパー10aへの水平力の入力を防ぐべく、粘弾性ダンパー10aを、床スラブ25への連結部材たる間柱9に対して摺動可能に構成していたが、この取り付け構造の変形例では、粘弾性ダンパー10aを格子梁2の小梁5に対して摺動可能に構成している点で先ず相違する。また、粘弾性ダンパー10aの取り付け面12dを格子梁2の小梁5の取り付け面5dに密着させる方法に、上述のクランプ50を用いていない点でも相違する。これら以外の構成は概ね上述の実施形態と同じである。   In the above-described embodiment, the viscoelastic damper 10a is configured to be slidable with respect to the stud 9 serving as a connecting member to the floor slab 25 in order to prevent the input of a horizontal force to the viscoelastic damper 10a during an earthquake. However, this modification of the mounting structure is different in that the viscoelastic damper 10a is configured to be slidable with respect to the small beams 5 of the lattice beam 2. Another difference is that the above-described clamp 50 is not used in the method of bringing the attachment surface 12d of the viscoelastic damper 10a into close contact with the attachment surface 5d of the small beam 5 of the lattice beam 2. Other configurations are generally the same as those in the above-described embodiment.

粘弾性ダンパー10aの下取り付け板15は、締結ボルト40により前記間柱9に締結固定されている。詳しくは、粘弾性ダンパー10aの下取り付け板15と間柱9の間柱上端プレート9cとの両者を、上下方向に貫通させて締結ボルト40が設けられ、当該締結ボルト40に螺合するナット41の締結力により、下取り付け板15と間柱上端プレート9cとは、互いの取り付け面15d,9dを重ね合わせた密着状態で鉛直方向及び水平方向に相対移動不能に固定されている。   The lower mounting plate 15 of the viscoelastic damper 10a is fastened and fixed to the stud 9 by fastening bolts 40. Specifically, a fastening bolt 40 is provided by vertically passing both the lower mounting plate 15 of the viscoelastic damper 10a and the intermediate column upper end plate 9c of the intermediate column 9 and fastening of a nut 41 that is screwed into the fastening bolt 40 Due to the force, the lower mounting plate 15 and the stud upper end plate 9c are fixed so as not to move relative to each other in the vertical direction and the horizontal direction in a close contact state in which the mounting surfaces 15d and 9d overlap each other.

一方、粘弾性ダンパー10aの上取り付け板12は、格子梁2の小梁5に取り付けられている。すなわち、上取り付け板12の上面12dを粘弾性ダンパー10a側の取り付け面とし、小梁5の下フランジ5fの下面5dを小梁5側の取り付け面として、これら取り付け面12d,4d同士が密着状態に重ね合わされつつ摺動可能に取り付けられている。   On the other hand, the upper attachment plate 12 of the viscoelastic damper 10 a is attached to the small beam 5 of the lattice beam 2. That is, the upper surface 12d of the upper mounting plate 12 is used as a mounting surface on the viscoelastic damper 10a side, and the lower surface 5d of the lower flange 5f of the small beam 5 is used as a mounting surface on the small beam 5 side. Are slidably attached while being superimposed on each other.

この摺動可能に密着するための挟み込み部材60は、ボルト61と、ボルト61に螺合するナット62と、小梁5の下フランジ5f又は粘弾性ダンパー10aの上取り付け板12のうちの何れか一方に形成される長孔状のボルト孔5hと、小梁5の下フランジ5f又は上取り付け板12のうちの残る一方に形成される正円状のボルト孔12hと、ボルト61の軸力変動を抑えるための皿ばね63と、を有している。   The sandwiching member 60 for slidably contacting is any one of a bolt 61, a nut 62 screwed into the bolt 61, the lower flange 5f of the small beam 5 or the upper mounting plate 12 of the viscoelastic damper 10a. An elongated bolt hole 5h formed on one side, a round bolt hole 12h formed on the lower flange 5f of the small beam 5 or the remaining one of the upper mounting plate 12, and an axial force variation of the bolt 61. And a disc spring 63 for restraining.

この例では、長孔状のボルト孔5hは、小梁5の下フランジ5fに貫通形成されており、長孔状のボルト孔5hの長手方向は、小梁5の長手方向に揃っているとともに、その長さは、地震時の前記取り付け面12d,5d同士の間の想定摺動量に基づいて設定される。他方、正円状のボルト孔12hは、上取り付け板12に貫通形成されており、その内径は、ボルト61を通すのに必要最小限のクリアランスを有した径に設定されている。   In this example, the long hole-shaped bolt hole 5 h is formed through the lower flange 5 f of the small beam 5, and the longitudinal direction of the long hole-shaped bolt hole 5 h is aligned with the longitudinal direction of the small beam 5. The length is set based on the assumed sliding amount between the mounting surfaces 12d and 5d at the time of the earthquake. On the other hand, the circular bolt hole 12 h is formed through the upper mounting plate 12, and the inner diameter thereof is set to a diameter having a minimum clearance necessary for passing the bolt 61.

そして、これらのボルト孔5h,12hにボルト61を通してナット62で締め付ける際には、下フランジ5fと、ボルト頭部61a又はナット62との間に皿ばね63が介装され、これにより、皿ばね63の弾発力が、ボルト61の軸力を通じて挟み込み力として小梁5の下フランジ5f及び上取り付け板12に付与される。なお、説明の都合上、以下では、図12A及び図12Bに示すように、ボルト頭部61aは小梁5側に位置しているものとする。   When the bolt 61 is passed through the bolt holes 5h and 12h with the nut 62, the disc spring 63 is interposed between the lower flange 5f and the bolt head portion 61a or the nut 62. A resilient force of 63 is applied to the lower flange 5f of the small beam 5 and the upper mounting plate 12 as a pinching force through the axial force of the bolt 61. For convenience of explanation, it is assumed below that the bolt head 61a is located on the small beam 5 side as shown in FIGS. 12A and 12B.

ここで、小梁5の取り付け面5dと粘弾性ダンパー10aの上取り付け板12の取り付け面12dとの間に生じる静止摩擦力Fは、皿ばね63の弾発力の調整により、下式2を満足するように調整される。   Here, the static frictional force F generated between the mounting surface 5d of the small beam 5 and the mounting surface 12d of the upper mounting plate 12 of the viscoelastic damper 10a is expressed by the following equation 2 by adjusting the elastic force of the disc spring 63. Adjusted to satisfy.

静止摩擦力F<粘弾性ダンパーの破損想定荷重−挟み込み部材の静止摩擦力f… 式2
なお、上式2中の「破損想定荷重」の定義は、上述と同じである。また、同式2中の「挟み込み部材の静止摩擦力f」とは、挟み込み部材60と小梁5との間の水平方向の静止摩擦力f3と、挟み込み部材60と粘弾性ダンパー10aとの間の水平方向の静止摩擦力f4とのうちの小さい方の摩擦力のことである。詳しくは、図12A及び図12Bの例では、前者の静止摩擦力f3は、皿ばね63と滑り材66との間の静止摩擦力又は滑り材66と小梁5の下フランジ5fの上面5uとの間の静止摩擦力のうちの小さい方の摩擦力であり、後者の静止摩擦力f4は、ナット62と粘弾性ダンパー10aの上取り付け板12の下面12fとの間の静止摩擦力である。
Static friction force F <viscous load of viscoelastic damper-static friction force f of pinching member ... Formula 2
In addition, the definition of “assumed damage load” in the above formula 2 is the same as described above. In addition, the “static frictional force f of the sandwiching member” in the equation 2 is the horizontal static frictional force f3 between the sandwiching member 60 and the small beam 5 and between the sandwiching member 60 and the viscoelastic damper 10a. Is the smaller frictional force of the horizontal static frictional force f4. Specifically, in the example of FIGS. 12A and 12B, the former static frictional force f3 is the static frictional force between the disc spring 63 and the sliding member 66 or the upper surface 5u of the lower flange 5f of the sliding member 66 and the small beam 5. The static friction force f4 is a static friction force between the nut 62 and the lower surface 12f of the upper mounting plate 12 of the viscoelastic damper 10a.

そして、上式2を満足するように前記取り付け面5d,12d同士の間の静止摩擦力を設定しておけば、仮に地震時に二重床構造1に対して大きな水平力が作用したとしても、粘弾性ダンパー10aに破損想定荷重以上の力が作用するより以前に、前記取り付け面5d,12d同士の間での水平方向の摺動が開始され、これにより、粘弾性ダンパー10aと格子梁2の小梁5とは縁切りされることになる。その結果、粘弾性ダンパー10aへの水平力の入力は抑制されて、その破損は有効に防止される。なお、この取り付け面5d,12d同士の間の摩擦係数を確実に低くするには、例えば上述のPTFEなどのフッ素樹脂等の低摩擦係数の滑り材を取り付け面5d,12d同士の間に介装すると良い。   And if the static frictional force between the mounting surfaces 5d and 12d is set so as to satisfy the above formula 2, even if a large horizontal force acts on the double floor structure 1 during an earthquake, Before the force exceeding the damage assumed load is applied to the viscoelastic damper 10a, the horizontal sliding between the mounting surfaces 5d and 12d is started, whereby the viscoelastic damper 10a and the lattice beam 2 are moved. The edge of the beam 5 is cut off. As a result, the input of the horizontal force to the viscoelastic damper 10a is suppressed, and the breakage is effectively prevented. In order to reliably reduce the friction coefficient between the mounting surfaces 5d and 12d, a sliding material having a low friction coefficient such as a fluororesin such as PTFE described above is interposed between the mounting surfaces 5d and 12d. Good.

このような挟み込み部材60は、小梁5の長手方向に並んで複数個(ここでは4個)設けられて挟み込み部材列をなしているとともに、当該挟み込み部材列は、小梁5のH形鋼のウエブ5wを挟んで例えば2列設けられているが、何等この配置例に限るものではない。   A plurality of (four in this case) such sandwiching members 60 are arranged in the longitudinal direction of the small beam 5 to form a sandwiching member row, and the sandwiching member row is an H-shaped steel of the small beam 5. For example, two rows are provided across the web 5w, but the arrangement is not limited to this example.

ところで、上述の実施形態のクランプ50と同様に、挟み込み部材60は、皿ばね63及びナット62を介して粘弾性ダンパー10aと小梁5との両者に跨って取り付けられている。他方、上述の大きな水平力の作用時には、粘弾性ダンパー10aと小梁5とは縁切りされて水平方向に相対移動(摺動)する。よって、仮に挟み込み部材60の皿ばね63とナット62との両者が、それぞれ、小梁5と粘弾性ダンパー10aとに対してしっかり固定されている場合には、上述の相対移動時に、挟み込み部材60は、小梁5及び粘弾性ダンパー10aの両者から水平方向の引張力等を受けて、これにより挟み込み部材60のボルト61が傾く等して正常な鉛直姿勢で挟み込めなくなる虞や、正円状のボルト孔12hから大きな剪断力を受けてボルト61が破損する虞がある。その結果、地震発生の都度、地震後にボルト61交換等の再設置作業を余儀なくされ、不便なものとなる。   By the way, like the clamp 50 of the above-mentioned embodiment, the pinching member 60 is attached across both the viscoelastic damper 10a and the small beam 5 via the disc spring 63 and the nut 62. On the other hand, when the large horizontal force is applied, the viscoelastic damper 10a and the small beam 5 are cut off and relatively moved (slid) in the horizontal direction. Therefore, if both the disc spring 63 and the nut 62 of the sandwiching member 60 are firmly fixed to the small beam 5 and the viscoelastic damper 10a, respectively, the sandwiching member 60 during the relative movement described above. Receives a horizontal tensile force or the like from both the beam 5 and the viscoelastic damper 10a, which may cause the bolt 61 of the sandwiching member 60 to be tilted, etc. The bolt 61 may be damaged by receiving a large shearing force from the bolt hole 12h. As a result, every time an earthquake occurs, re-installation work such as replacement of bolts 61 is forced after the earthquake, which is inconvenient.

そこで、当該挟み込み部材60のメンテナンスフリー化を図るべく、挟み込み部材60と小梁5との間の水平方向の静止摩擦力に係る摩擦係数を、挟み込み部材60と粘弾性ダンパー10aとの間の水平方向の静止摩擦力に係る摩擦係数よりも小さくしている。これにより、粘弾性ダンパー10aと小梁5との相対移動時には、挟み込み部材60は、上述の摩擦係数差に基づいて確実に粘弾性ダンパー10aに付いていき、小梁5に対しては速やかに滑動する。その結果、上述のような挟み込み部材60のボルト61の傾きやボルトの破損等の不具合は有効に防止される。   Therefore, in order to make the pinching member 60 maintenance-free, the friction coefficient related to the horizontal static frictional force between the pinching member 60 and the small beam 5 is set to the horizontal coefficient between the pinching member 60 and the viscoelastic damper 10a. It is smaller than the coefficient of friction related to the static friction force in the direction. As a result, when the viscoelastic damper 10a and the small beam 5 are moved relative to each other, the sandwiching member 60 is surely attached to the viscoelastic damper 10a based on the above-described difference in the friction coefficient, and quickly with respect to the small beam 5. To slide. As a result, problems such as the inclination of the bolt 61 of the sandwiching member 60 and the breakage of the bolt as described above are effectively prevented.

なお、上述の摩擦係数に差を付ける具体的な方法としては、例えば、図12A及び図12Bに示すように、皿ばね63と小梁5の下フランジ5fの上面5u(「取り付け面の逆側の面」に相当)との間には、テフロン等の低摩擦係数の滑り材66を介装するが、ナット62と上取り付け板12の下面12f(「取り付け面の逆側の面」に相当)との間には、上述の滑り材66を介装しないこと等が挙げられる。   In addition, as a specific method of giving a difference to the above-described friction coefficient, for example, as shown in FIGS. 12A and 12B, the upper surface 5u of the disc flange 63 and the lower flange 5f of the small beam 5 ("the opposite side of the mounting surface Between the nut 62 and the lower surface 12f of the upper mounting plate 12 (corresponding to "the surface opposite to the mounting surface"). )), The above-mentioned sliding material 66 is not interposed.

なお、この挟み込み部材60によれば、上述の実施形態のクランプ50構造の場合には起こり得た上取り付け板12や下フランジ5fからの脱落は絶対に起こり得ず、その点において優れている。また、皿ばね63の弾発力一定領域(撓み量変動に対して弾発力が略一定に維持されるたわみ量の範囲)を利用して、取り付け面5d、12d同士の間の摩擦力を略一定に設定し易くなる点でも優れている。   In addition, according to this clamping member 60, the drop off from the upper mounting plate 12 and the lower flange 5f that may have occurred in the case of the clamp 50 structure of the above-described embodiment can never occur, and is excellent in that respect. Further, the friction force between the mounting surfaces 5d and 12d is obtained by utilizing the constant elastic force region of the disc spring 63 (the range of the deflection amount in which the elastic force is maintained substantially constant with respect to the deflection amount variation). It is also excellent in that it can be set to be substantially constant.

===その他の実施の形態===
以上、本発明の実施形態について説明したが、本発明は、かかる実施形態に限定されるものではなく、その要旨を逸脱しない範囲で以下に示すような変形が可能である。
=== Other Embodiments ===
As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, The deformation | transformation as shown below is possible in the range which does not deviate from the summary.

上述の実施形態では、縦方向大梁4Lと横方向大梁4Cとは水面内において互いに直交していたが、これら縦方向大梁4Lと横方向大梁4Cとの交差角度は何等90°に限るものではなく、90°以外の角度で交差していても良い。つまり、格子の開口形状が菱形等の平行四辺形になっていても良い。但し、格子状になるように、縦方向大梁4L,4L同士は互いに平行に配置され、横方向大梁4C,4C同士は互いに平行に配置され、縦方向小梁5Lは縦方向大梁4Lと平行に配置され、横方向小梁5Cは横方向大梁4Cと平行に配置されるのは言うまでもない。   In the above-described embodiment, the vertical large beam 4L and the horizontal large beam 4C are orthogonal to each other in the water surface, but the intersection angle between the vertical large beam 4L and the horizontal large beam 4C is not limited to 90 °. , They may intersect at an angle other than 90 °. That is, the opening shape of the lattice may be a parallelogram such as a rhombus. However, the longitudinal large beams 4L and 4L are arranged in parallel to each other so as to form a lattice shape, the horizontal large beams 4C and 4C are arranged in parallel to each other, and the longitudinal small beams 5L are parallel to the longitudinal large beams 4L. Needless to say, the transverse beam 5C is arranged in parallel with the transverse beam 4C.

上述の実施形態では、格子梁2に係る大梁4及び小梁5の主材としてH形鋼を例示したが、格子組み可能な鋼材であれば何等これに限るものではなく、例えば、溝形鋼や山形鋼等を使用しても良い。   In the above-described embodiment, the H-shaped steel is exemplified as the main material of the large beam 4 and the small beam 5 related to the lattice beam 2. However, the present invention is not limited to this as long as the steel material can be assembled into a lattice. Or angle steel may be used.

上述の実施形態では、粘弾性ダンパー10aの下取り付け板15が取り付けられる間柱9側の取り付け部として間柱上端プレート9cを例示したが、水平な上面を有したプレートとなり得るものであれば何等これに限るものではなく、例えば、H形鋼や溝形鋼や山形鋼等の適宜な鋼材を使用しても良い。   In the above-described embodiment, the intermediate column upper end plate 9c is exemplified as the attachment portion on the side of the intermediate column 9 to which the lower attachment plate 15 of the viscoelastic damper 10a is attached. However, any plate can be used as long as the plate can have a horizontal upper surface. For example, an appropriate steel material such as an H-shaped steel, a grooved steel, or an angle steel may be used.

上述の実施形態では、小梁5にH形鋼を用いたが、H形鋼のフランジ5f(5Cf,5Lf)に相当するような水平方向に延出したプレート部を上部又は下部に有するような鋼材であれば何等これに限るものではなく、例えば溝形鋼や山形鋼等を使用しても良い。   In the above-described embodiment, the H-beam is used for the small beam 5, but the plate portion extending in the horizontal direction corresponding to the flange 5f (5Cf, 5Lf) of the H-beam is provided at the upper or lower portion. It is not limited to this as long as it is a steel material, and, for example, channel steel or angle steel may be used.

1 二重床構造、2 格子梁、2m 格子梁、
4 大梁、4C 横方向大梁、4L 縦方向大梁、
5 小梁、5C 横方向小梁、5L 縦方向小梁、
5f フランジ(取り付け部)、5Cf フランジ、5Lf フランジ、
5w ウエブ、5Cw ウエブ、5Lw ウエブ
5d 下面(取り付け面)、5h ボルト孔、5j 連結プレート、
5r リブプレート、5u 上面(取り付け面の逆側の面)、
6 床パネル、8 柱(支持部材)、8a ブレース、8b 間柱、
9 間柱(連結部材)、9c 間柱上端プレート(一方の取り付け部)、
9d 上面(取り付け面)、9f 下面(取り付け面の逆側の面)、
9w ウエブ、10 減衰手段、10a 粘弾性ダンパー(減衰部材)、
12 上取り付け板(取り付け部)、12d 上面(取り付け面)、
12f 下面(取り付け面の逆側の面)、12h ボルト孔、
13 鉛直板、14 下部材、
15 下取り付け板(取り付け部)、15d 取り付け面、
15f 上面(取り付け面の逆側の面)、15h ボルト孔、
16 鉛直板、17 粘弾性体、19 組み付けボルト、
21 上部床、25 床スラブ、25s 上面、
40 締結ボルト、41 ナット、44 締結ボルト、
50 クランプ、50a 端部、51 ジャッキボルト、
53 滑り材、55 受圧板、60 挟み込み部材、
61 ボルト、61a 頭部、62 ナット、
66 滑り材、81 ブレース、82 間柱、
91 三角形トラス構造体(連結部材)、91a 斜材、91b 斜材、
93 間柱(連結部材)、93a 斜材、93b 斜材、
CP 交差部(交点)、S 隙間、SP 空間
1 Double floor structure, 2 lattice beams, 2m lattice beams,
4 girder, 4C lateral girder, 4L longitudinal girder,
5 Beam, 5C Horizontal beam, 5L Vertical beam,
5f flange (mounting part), 5Cf flange, 5Lf flange,
5w web, 5Cw web, 5Lw web 5d bottom surface (mounting surface), 5h bolt hole, 5j connecting plate,
5r rib plate, 5u upper surface (surface opposite to the mounting surface),
6 Floor panels, 8 pillars (support members), 8a braces, 8b studs,
9 stud (connecting member), 9c stud top plate (one mounting part),
9d upper surface (mounting surface), 9f lower surface (surface opposite to the mounting surface),
9w web, 10 damping means, 10a viscoelastic damper (damping member),
12 Upper mounting plate (mounting part), 12d Upper surface (mounting surface),
12f bottom surface (surface opposite to the mounting surface), 12h bolt hole,
13 Vertical plate, 14 Lower member,
15 lower mounting plate (mounting part), 15d mounting surface,
15f top surface (surface opposite to the mounting surface), 15h bolt hole,
16 Vertical plate, 17 Viscoelastic body, 19 Assembly bolt,
21 Upper floor, 25 floor slab, 25s upper surface,
40 fastening bolts, 41 nuts, 44 fastening bolts,
50 clamp, 50a end, 51 jack bolt,
53 sliding material, 55 pressure receiving plate, 60 sandwiching member,
61 bolt, 61a head, 62 nut,
66 sliding materials, 81 braces, 82 studs,
91 triangular truss structure (connecting member), 91a diagonal, 91b diagonal,
93 Spacer (connecting member), 93a diagonal, 93b diagonal,
CP intersection (intersection), S clearance, SP space

Claims (7)

建物躯体の床スラブの上部に設置される二重床構造であって、
前記床スラブの上方に支持部材を介して水平に支持された複数の大梁、及び、対向する前記大梁同士の間に水平に架設された複数の小梁を有する格子梁と、
前記格子梁の鉛直方向の振動を減衰する減衰部材と、を備え、
前記減衰部材が前記小梁を介して前記格子梁の鉛直方向の振動を減衰するように、前記減衰部材の一端部は、前記小梁に連結されているとともに、前記減衰部材の他端部は、前記格子梁以外の部位に連結されていることを特徴とする二重床構造。
It is a double floor structure installed at the top of the floor slab of the building frame,
A plurality of large beams supported horizontally via a support member above the floor slab, and a lattice beam having a plurality of small beams laid horizontally between the opposed large beams;
A damping member that damps the vertical vibration of the lattice beam,
One end of the damping member is connected to the small beam so that the damping member attenuates vibration in the vertical direction of the lattice beam through the small beam, and the other end of the damping member is The double floor structure is connected to a portion other than the lattice beam.
請求項1に記載の二重床構造であって、
前記減衰部材の他端部は、連結部材を介して、前記床スラブ又は前記支持部材に連結されていることを特徴とする二重床構造。
The double floor structure according to claim 1,
The other end of the damping member is connected to the floor slab or the support member via a connecting member.
請求項2に記載の二重床構造であって、
前記連結部材は、三角形状のトラス構造体又はラーメン構造体であることを特徴とする二重床構造。
The double floor structure according to claim 2,
The double floor structure, wherein the connecting member is a triangular truss structure or a ramen structure.
請求項1乃至3の何れかに記載の二重床構造であって、
前記減衰部材の前記一端部は、前記格子梁の互いに交差する小梁と小梁との交点にて小梁に連結されていることを特徴とする二重床構造。
The double floor structure according to any one of claims 1 to 3,
The double floor structure according to claim 1, wherein the one end portion of the damping member is connected to the beam at the intersection of the beam beams intersecting each other of the lattice beam.
請求項1乃至4の何れかに記載の二重床構造であって、
前記減衰部材は前記一端部及び前記他端部にそれぞれ取り付け部を有し、
前記減衰部材は、前記一端部の取り付け部が取り付けられる前記小梁の取り付け部、又は、前記他端部の取り付け部が取り付けられる前記格子梁以外の部位の取り付け部のうちの少なくとも一方の取り付け部の取り付け面に対して水平方向に摺動可能に取り付けられ、
前記一方の取り付け部及び前記減衰部材の取り付け部に対して、それぞれ前記取り付け面の逆側の面で当接して前記取り付け部同士を挟み込む挟み込み部材を有し、
前記挟み込み部材と前記一方の取り付け部との間の水平方向の摩擦力に係る摩擦係数と、前記挟み込み部材と前記減衰部材の取り付け部との間の水平方向の摩擦力に係る摩擦係数とは相違していることを特徴とする二重床構造。
The double floor structure according to any one of claims 1 to 4,
The damping member has attachment portions at the one end and the other end, respectively.
The damping member is at least one attachment portion of the attachment portion of the small beam to which the attachment portion of the one end portion is attached or the attachment portion of the portion other than the lattice beam to which the attachment portion of the other end portion is attached. It is slidably attached to the mounting surface of the
A holding member for holding the one mounting portion and the mounting portion for the damping member in contact with each other on the surface opposite to the mounting surface and sandwiching the mounting portions;
The friction coefficient related to the horizontal friction force between the sandwiching member and the one attachment portion is different from the friction coefficient related to the horizontal friction force between the sandwiching member and the attachment portion of the damping member. A double floor structure characterized by
請求項5に記載の二重床構造であって、
前記減衰部材の取り付け部よりも前記一方の取り付け部の方が水平方向に広く、
前記挟み込み部材と前記一方の取り付け部との間の水平方向の摩擦力に係る摩擦係数よりも、前記挟み込み部材と前記減衰部材の取り付け部との間の水平方向の摩擦力に係る摩擦係数の方が大きいことを特徴とする二重床構造。
The double floor structure according to claim 5,
The one attachment part is wider in the horizontal direction than the attachment part of the damping member,
The coefficient of friction related to the frictional force in the horizontal direction between the sandwiching member and the mounting part of the damping member is larger than the coefficient of friction related to the frictional force in the horizontal direction between the sandwiching member and the one mounting part. Double floor structure characterized by large
請求項5又は6に記載の二重床構造であって、
前記挟み込み部材は、コ字状又はC字状部材の両端部に、互いの間に間隔をおいて対向する一対の挟み込み部を有するとともに、前記一対の挟み込み部の少なくとも一方が他方の挟み込み部に対して進退可能に設けられたクランプであることを特徴とする二重床構造。
The double floor structure according to claim 5 or 6,
The sandwiching member has a pair of sandwiching portions opposed to each other with a gap between them at both ends of the U-shaped or C-shaped member, and at least one of the pair of sandwiching portions serves as the other sandwiching portion. A double floor structure characterized by being a clamp that can be moved forward and backward.
JP2009094279A 2009-04-08 2009-04-08 Double floor structure Active JP5240025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009094279A JP5240025B2 (en) 2009-04-08 2009-04-08 Double floor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009094279A JP5240025B2 (en) 2009-04-08 2009-04-08 Double floor structure

Publications (2)

Publication Number Publication Date
JP2010242426A true JP2010242426A (en) 2010-10-28
JP5240025B2 JP5240025B2 (en) 2013-07-17

Family

ID=43095726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009094279A Active JP5240025B2 (en) 2009-04-08 2009-04-08 Double floor structure

Country Status (1)

Country Link
JP (1) JP5240025B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102261145A (en) * 2011-04-22 2011-11-30 清华大学 Integrally two-way and locally one-way steel-concrete slab composite floor system and construction method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183432A (en) * 2004-12-28 2006-07-13 Iida Kenchiku Sekkei Jimusho:Kk Floor support structure in building
JP2007231523A (en) * 2006-02-27 2007-09-13 Taisei Corp Base-isolated floor structure
JP2007270604A (en) * 2006-03-10 2007-10-18 Ohbayashi Corp Double-floor structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183432A (en) * 2004-12-28 2006-07-13 Iida Kenchiku Sekkei Jimusho:Kk Floor support structure in building
JP2007231523A (en) * 2006-02-27 2007-09-13 Taisei Corp Base-isolated floor structure
JP2007270604A (en) * 2006-03-10 2007-10-18 Ohbayashi Corp Double-floor structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102261145A (en) * 2011-04-22 2011-11-30 清华大学 Integrally two-way and locally one-way steel-concrete slab composite floor system and construction method thereof

Also Published As

Publication number Publication date
JP5240025B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5940516B2 (en) Connection members for damping vibrations in building structures
KR101263078B1 (en) Connection metal fitting and building with the same
JP2016514224A (en) Structural joining mechanism providing discontinuous elastic behavior in structural enclosure systems
KR20140050642A (en) Passive damper
JP2010266070A (en) Seismic control unit
JP2011042974A (en) Vibration control device and structure having the same and aseismatic device and structure having the same
JP2008138833A (en) Damper device, method of designing damper device, vibration control structure, vibration control method
JP4355302B2 (en) Floating floor vibration control structure
JP4070117B2 (en) Vibration control device
JP5240025B2 (en) Double floor structure
JP2015078498A (en) Bridge vibration control structure
JP5267197B2 (en) Double floor structure
JP2009228834A (en) Damping device
JP6214439B2 (en) Equipment support room floor support structure and building
JP5318298B1 (en) Beam joint structure
JP4909395B2 (en) Building seismic control structure
JP2021076010A (en) Damping building
JPH10280727A (en) Damping frame by composite type damper and damping method
JP5953175B2 (en) Vibration suppression suspension structure
JP4878143B2 (en) Arrangement method of damping wall panel
JP4411444B2 (en) Shear panel type damper mounting structure to structure
JP5028999B2 (en) Double floor structure
JP6269243B2 (en) Building reinforcement structure
JP6411297B2 (en) Damping damper
JP5940320B2 (en) Vibration control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5240025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150