JP2010241638A - Thin film laminate with metal nanoparticle layer interposed - Google Patents

Thin film laminate with metal nanoparticle layer interposed Download PDF

Info

Publication number
JP2010241638A
JP2010241638A JP2009092037A JP2009092037A JP2010241638A JP 2010241638 A JP2010241638 A JP 2010241638A JP 2009092037 A JP2009092037 A JP 2009092037A JP 2009092037 A JP2009092037 A JP 2009092037A JP 2010241638 A JP2010241638 A JP 2010241638A
Authority
JP
Japan
Prior art keywords
thin film
zno
layer
metal
film laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009092037A
Other languages
Japanese (ja)
Inventor
Riichi Murakami
理一 村上
Kaibun Seki
海文 戚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009092037A priority Critical patent/JP2010241638A/en
Priority to CN2009202722401U priority patent/CN201816254U/en
Publication of JP2010241638A publication Critical patent/JP2010241638A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent thin film laminate with a low specific resistance. <P>SOLUTION: The thin film laminate comprises a ZnO thin film layer formed on a substrate, a metal nanoparticle layer formed on the ZnO thin film layer and another ZnO thin film layer formed on the metal nanoparticle layer, provided that the metal nanoparticle layer interposed between the two crystalline ZnO thin film layers has a structure comprising a metal nanolayer composed of metal nanoparticles that are connected to each other. The obtained thin film laminate has a specific resistance of ≤8.0×10<SP>-4</SP>Ωcm and a visible light transmittance of ≥70%. The thin film laminate can be used as a transparent conductive film, a photovoltaic electrode, an electromagnetic wave shielding material, etc. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、金属ナノ粒子層を挟んだ薄膜積層体に関する。   The present invention relates to a thin film laminate sandwiching metal nanoparticle layers.

ITO膜(Indium Tin Oxide膜)を使用した透明導電膜が知られている。ITO膜はスパッタリング粒子を200℃以上に加熱して表面拡散を起こさせることによって結晶質層を形成し、その比抵抗値は2.5×10−4Ωcm以下になり得る。しかし、結晶化するためには基板温度を上げることが必要であるが、基板温度を上げて成膜すると低比抵抗値は得られない。 A transparent conductive film using an ITO film (Indium Tin Oxide film) is known. The ITO film forms a crystalline layer by heating the sputtered particles to 200 ° C. or more to cause surface diffusion, and the specific resistance value can be 2.5 × 10 −4 Ωcm or less. However, in order to crystallize, it is necessary to raise the substrate temperature. However, if the film is formed with the substrate temperature raised, a low specific resistance value cannot be obtained.

更に、ITO膜に使われているインジウムは希少金属であるため、このITO膜の代替金属として酸化亜鉛が有望視されている。しかし、低比抵抗値の酸化亜鉛膜は得られておらず、亜鉛の酸化膜である酸化亜鉛は透明であるが、透明導電膜としては使用できない。このため酸化亜鉛にAlなどをドープさせる方法が開発されているが、まだ十分に低い比抵抗値は得られていない。 Furthermore, since indium used in the ITO film is a rare metal, zinc oxide is promising as an alternative metal for the ITO film. However, a zinc oxide film having a low specific resistance value has not been obtained, and zinc oxide, which is a zinc oxide film, is transparent, but cannot be used as a transparent conductive film. For this reason, a method of doping zinc oxide with Al or the like has been developed, but a sufficiently low specific resistance value has not yet been obtained.

特開2000−129464号公報は、二つの誘電体ベースのコーティング間に金属層を含み、金属層に接触する酸化亜鉛に基づいた薄膜積層体を開示している。赤外線反射特性を有した薄膜積層体に含有する金属層として、銀が有利であると述べている。実施例ではAlをドープしたZnOを用いて、透過率72%を得ているが、金属層は金属ナノ粒子層でなく、しかも薄膜積層体の比抵抗に触れておらず、対象の薄膜積層体が導電膜として利用できるか不明であり、薄膜積層体の構造に改良すべき点がある。   JP 2000-129464 discloses a thin-film stack based on zinc oxide that includes a metal layer between two dielectric-based coatings and contacts the metal layer. It states that silver is advantageous as the metal layer contained in the thin film laminate having infrared reflection characteristics. In the examples, ZnO doped with Al is used to obtain a transmittance of 72%, but the metal layer is not a metal nanoparticle layer, and the specific resistance of the thin film stack is not touched, and the target thin film stack Is unclear whether it can be used as a conductive film, and there is a point to be improved in the structure of the thin film laminate.

特開2006―206424号公報は、透明基板の上に誘電体層と金属層(例.Ag層)を2n層以上に積層(n≧1)した低反射率透明積層体を開示している。実施例に、透明基板としてのガラス板の上に、誘電体層としてのZnO層を、その上に金属層としてのAg層を、更にその上に誘電体層としてのZnO層を積層した低反射率透明積層体を開示している。これによって日射遮蔽性、高断熱性が得られるという。しかし、実施例ではAlを2%含有するZnOをターゲットとして得たZnOにAlをドープしたAZO膜の積層体であり、ZnO膜を室温のような低温で積層体を構成した実施例もないし、Ag層の詳細は不明であり、可視光透過率曲線にプラズモンによる効果が認められていないことからAg層は金属ナノ粒子層でなく、Agの膜構造に改良すべき点がある。
Japanese Patent Application Laid-Open No. 2006-206424 discloses a low-reflectivity transparent laminate in which a dielectric layer and a metal layer (eg, Ag layer) are laminated on 2 n or more layers (n ≧ 1) on a transparent substrate. In the embodiment, a low reflection layer in which a ZnO layer as a dielectric layer is laminated on a glass plate as a transparent substrate, an Ag layer as a metal layer is laminated thereon, and a ZnO layer as a dielectric layer is further laminated thereon. A rate transparent laminate is disclosed. This is said to provide solar shading and high heat insulation. However, in the example, it is a laminated body of an AZO film obtained by doping ZnO containing 2% Al with ZnO as a target, and there is no example in which the laminated body is formed at a low temperature such as room temperature. Details of the Ag layer are unclear, and since the effect of plasmons is not recognized in the visible light transmittance curve, the Ag layer is not a metal nanoparticle layer, and there is a point that should be improved to the film structure of Ag.

特開2000―129464号公報(第7頁、図1)Japanese Unexamined Patent Publication No. 2000-129464 (page 7, FIG. 1) 特開2006―206424号公報(第9頁、図3)JP 2006-206424 A (page 9, FIG. 3)

発明者は、希少金属であるインジウムの代替金属として酸化亜鉛を使用しつつ、比抵抗値が低く、透明性がよい薄膜積層体を得るため鋭意検討した。 The inventors diligently studied to obtain a thin film laminate having a low specific resistance value and good transparency while using zinc oxide as a substitute metal for indium, which is a rare metal.

発明者は、上記課題を解決する下記の発明した。
1.基板上に、ZnO薄膜層、金属ナノ粒子層、ZnO薄膜層をこの順序に積層し、前記金属ナノ粒子層はAg、Al、Cu、Au、Ni、Pd、Pt、Zn、Cdの群から選ばれた1以上の金属ナノ粒子が結晶成長し相互に連結してナノ層を形成していることを特徴とする薄膜積層体
2.金属ナノ粒子が少なくともAgを含むナノ粒子であると効果的である。
3.金属ナノ粒子層の厚さが5nm〜100nmである前記1又は2に記載の薄膜積層体
4.ZnO、金属ナノ粒子層、およびZnOの各薄膜層をDCマグネトロンスパッタリング法により室温において成膜した前記1、2又は3に記載の薄膜積層体
5.基板材料がガラス、セラミックス等の無機質板、熱可塑性樹脂、熱硬化性樹脂である前記1、2、3又は4に記載の薄膜積層体
6.基板材料が透明ガラスで、薄膜積層体の比抵抗が8.0×10-4Ωcm以下で、かつ紫外線域の波長を含んだ可視光透過率が70%以上である前記1、2、3又は4に記載の薄膜積層体
The inventor has invented the following to solve the above problems.
1. A ZnO thin film layer, a metal nanoparticle layer, and a ZnO thin film layer are laminated in this order on a substrate, and the metal nanoparticle layer is selected from the group of Ag, Al, Cu, Au, Ni, Pd, Pt, Zn, and Cd 1. A thin film laminate in which at least one metal nanoparticle is grown and connected to each other to form a nanolayer. It is effective when the metal nanoparticles are nanoparticles containing at least Ag.
3. 3. The thin film laminate according to 1 or 2 above, wherein the thickness of the metal nanoparticle layer is 5 nm to 100 nm. 4. The thin film laminate according to the above 1, 2 or 3, wherein each thin film layer of ZnO, metal nanoparticle layer, and ZnO is formed at room temperature by a DC magnetron sputtering method. 5. The thin film laminate according to 1, 2, 3 or 4 above, wherein the substrate material is an inorganic plate such as glass or ceramics, a thermoplastic resin, or a thermosetting resin. The substrate material is transparent glass, the specific resistance of the thin film laminate is 8.0 × 10 −4 Ωcm or less, and the visible light transmittance including the wavelength in the ultraviolet region is 70% or more. 4. The thin film laminate according to 4

基板としては、(1)セラミックス膜(特に透明セラミックス膜)等の無機質板、(2)PP(ポリプロピレン)、PE(ポリエチレン)、PS(ポリスチレン)、PMMA(アクリル)、PET(ポリエチレンテレフタレート)、PPE(ポリフェニレンエーテル)、PA(ナイロン/ポリアミド)、PC(ポリカーボネイト)等の熱可塑性樹脂、(3)PF(フェノール樹脂)、MF(メラミン)等の熱硬化性樹脂が使用できる。透明かつ低抵抗の熱可塑性樹脂フィルム又はシート薄膜を基板に使用すると、PDP、太陽電池、液晶のタッチパネルの電極、さらにはPDP、液晶の電磁波シールに使用できる。   Substrates include (1) inorganic plates such as ceramic films (especially transparent ceramic films), (2) PP (polypropylene), PE (polyethylene), PS (polystyrene), PMMA (acrylic), PET (polyethylene terephthalate), PPE Thermoplastic resins such as (polyphenylene ether), PA (nylon / polyamide), and PC (polycarbonate), and thermosetting resins such as (3) PF (phenol resin) and MF (melamine) can be used. When a transparent and low-resistance thermoplastic resin film or sheet thin film is used as a substrate, it can be used for electrodes of PDPs, solar cells, liquid crystal touch panels, PDPs, and liquid crystal electromagnetic waves.

本発明の構成要素であるZnO薄膜層、金属ナノ粒子層、ZnO薄膜層は透明性がよいので透明性を有する基板を使用して薄膜積層体を構成し透明性を必要とする用途に使用することが望ましいが、例えばUVレーザーとか、シートダイオードに使用するときは基板が透明性を有すことは必須でない。   Since the ZnO thin film layer, metal nanoparticle layer, and ZnO thin film layer, which are constituent elements of the present invention, have good transparency, a thin film laminate is formed using a transparent substrate and used for applications that require transparency. Desirably, however, it is not essential that the substrate be transparent, for example when used in UV lasers or sheet diodes.

金属ナノ粒子層のナノ粒子金属は、Ag、Al、Cu、Au等の低抵抗の金属粒子単独で、またはそれらの金属ナノ粒子の組み合わせで使用できる。これらは表面プラズモン現象が発現しやすいからである。その中でも特にAg又はAgと他の低抵抗の金属の組み合わせがよい。
金属ナノ粒子層は、金属ナノ粒子が電気的に連結されて形成されていることが好ましい。
金属ナノ粒子層の厚さは低比抵抗、透明性を確保できれば特に限定されるものではないが、実務的には5nm〜100nm、好ましくは5nm〜50nm、より好ましくは10nm〜30nmがよい。連結して金属ナノ粒子層を形成する金属ナノ粒子の形状と大きさは上記金属ナノ粒子層の厚さ内に収まれば特に制限はない。
The nanoparticle metal of the metal nanoparticle layer can be used alone or in combination of metal particles with low resistance such as Ag, Al, Cu, Au. This is because the surface plasmon phenomenon is likely to occur. Among these, Ag or a combination of Ag and other low resistance metals is particularly preferable.
The metal nanoparticle layer is preferably formed by electrically connecting metal nanoparticles.
The thickness of the metal nanoparticle layer is not particularly limited as long as low specific resistance and transparency can be ensured, but in practice it is 5 nm to 100 nm, preferably 5 nm to 50 nm, more preferably 10 nm to 30 nm. The shape and size of the metal nanoparticles that are connected to form the metal nanoparticle layer are not particularly limited as long as they are within the thickness of the metal nanoparticle layer.

本発明の金属ナノ粒子層を挟んだ薄膜積層体は、基板上にZnO/金属ナノ粒子層/ZnOの順に積層している。この薄膜積層体は、基板上に設けたZnO薄膜層の上に金属ナノ粒子層を形成した後、さらに、その上にZnO薄膜層を設けることで得られる。成膜成層方法はDCマグネトロンスパッタリング法が好ましいが、これに限定されるものではない。
DCマグネトロンスパッタリング法において傾斜対向したターゲット配置を採用すると、スパッタリング粒子やArによる基板上に成膜するZnO薄膜層および金属ナノ粒子層の損傷を低減できる。
The thin film laminate sandwiching the metal nanoparticle layers of the present invention is laminated on the substrate in the order of ZnO / metal nanoparticle layer / ZnO. This thin film laminate can be obtained by forming a metal nanoparticle layer on a ZnO thin film layer provided on a substrate and further providing a ZnO thin film layer thereon. The film deposition method is preferably a DC magnetron sputtering method, but is not limited thereto.
Employing a target arrangement that is inclined and opposed in the DC magnetron sputtering method can reduce damage to the ZnO thin film layer and the metal nanoparticle layer formed on the substrate by sputtering particles or Ar.

本発明の薄膜積層体は、真空中で磁場で制御したスパッタリング法で、基板上に誘電体であるZnO薄膜層を室温において成膜し、その上に金属ナノ粒子層を結晶成長させた後、さらにその上にZnO薄膜層を積層して製造することが望ましい。ZnO薄膜層上に金属ナノ粒子層を形成させることにより、ZnO薄膜層を使用しているにも拘わらず比抵抗を低下させ、かつ透明性を高めたZnO薄膜層/金属ナノ粒子層/ZnO薄膜層からなる薄膜積層体が得られる。   The thin film laminate of the present invention is a sputtering method controlled by a magnetic field in a vacuum, a ZnO thin film layer that is a dielectric is formed on a substrate at room temperature, and after a metal nanoparticle layer is grown on the crystal, Furthermore, it is desirable to manufacture by laminating a ZnO thin film layer thereon. By forming a metal nanoparticle layer on the ZnO thin film layer, the specific resistance is lowered and the transparency is enhanced even though the ZnO thin film layer is used, and the transparency is improved. ZnO thin film layer / metal nanoparticle layer / ZnO thin film A thin film laminate comprising layers is obtained.

本発明の薄膜積層体は、金属ナノ粒子によってプラズモンを発生させ、透過率を向上させたことにも特徴がある。表面プラズモン現象は金属表面に光が照射されると、金属表面の約50nm以下の表面層で光が生じる物理現象である。
透明な二つのZnO膜の間に、相互に連結した金属ナノ粒子からなる金属ナノ粒子を挟んだ本発明の薄膜積層体の表面プラズモン現象は、光の吸収と散乱の二つの因子が原因となって発現する。ZnO膜表面上に金属ナノ粒子層を堆積すると、表面プラズモン現象は金属ナノ粒子層の構造に依存して約540nm付近の波長領域において強く発現され、実用上使用できる光線の波長域を拡大させ、かつ可視光透過率を増大させる効果が高い。金属ナノ粒子層は、可視光域における光の散乱に強い影響を及ぼす。金属(例.Ag)ナノ粒子の結晶成長の形態は、比抵抗の減少、かつ透明性の確保に影響がある。
The thin film laminate of the present invention is also characterized in that plasmons are generated by metal nanoparticles and the transmittance is improved. The surface plasmon phenomenon is a physical phenomenon in which light is generated in a surface layer of about 50 nm or less on the metal surface when the metal surface is irradiated with light.
The surface plasmon phenomenon of the thin film laminate of the present invention in which metal nanoparticles composed of interconnected metal nanoparticles are sandwiched between two transparent ZnO films is caused by two factors, light absorption and scattering. Expressed. When a metal nanoparticle layer is deposited on the surface of the ZnO film, the surface plasmon phenomenon is strongly expressed in a wavelength region near about 540 nm depending on the structure of the metal nanoparticle layer, and the wavelength region of light that can be used practically is expanded. In addition, the effect of increasing the visible light transmittance is high. The metal nanoparticle layer has a strong influence on light scattering in the visible light region. The form of crystal growth of metal (eg, Ag) nanoparticles has an effect on reduction of specific resistance and ensuring transparency.

基板を除く薄膜積層体全体の膜厚は特に制限はないが、45nm〜225nm、好ましくは45nm〜110nmであることが望ましい。ZnO膜単独の膜厚が110nm越えることは成膜に多大な時間を要し、かつ透明性が劣るので、生産上好ましくない。   The film thickness of the entire thin film laminate excluding the substrate is not particularly limited, but is desirably 45 nm to 225 nm, preferably 45 nm to 110 nm. If the thickness of the ZnO film alone exceeds 110 nm, it takes a long time to form the film and is inferior in transparency, which is not preferable for production.

本発明の薄膜積層体のZnO薄膜層表面の凹凸の最大粗さは10nm以下、好ましくは5nm以下の平滑性を持つことが望ましい。本発明の薄膜積層体は平滑性が要求される透明導電膜電極用および/または太陽光発電電極用、さらには電磁波シールド用の基板が主な用途になるからである。 The maximum roughness of the unevenness on the surface of the ZnO thin film layer of the thin film laminate of the present invention is desirably 10 nm or less, preferably 5 nm or less. This is because the thin film laminate of the present invention is mainly used for substrates for transparent conductive films and / or photovoltaic power generation electrodes that require smoothness, and for electromagnetic wave shielding.

誘電体である二つのZnO薄膜層の間に金属ナノ粒子層を挟んだ本発明のZnO/金属ナノ粒子層/ZnOからなる薄膜積層体は、その比抵抗は8.0×10―4Ωcm以下、条件によっては9.0×10-5Ωcm以下にでき、更に紫外線領域の波長を含んだ可視光透過率が70%以上、条件によっては80%以上にできるので、従来にまして導電性が高く、かつ透明性の高い。本発明により透明導電膜としての酸化亜鉛薄膜の用途を広げることが可能になった。 The specific resistance of the thin film laminate of ZnO / metal nanoparticle layer / ZnO of the present invention in which the metal nanoparticle layer is sandwiched between two dielectric ZnO thin film layers is 8.0 × 10 −4 Ωcm or less. Depending on the conditions, it can be 9.0 × 10 −5 Ωcm or less, and the visible light transmittance including the wavelength in the ultraviolet region is 70% or more, and depending on the conditions, it can be 80% or more. And high transparency. The use of the zinc oxide thin film as the transparent conductive film can be expanded by the present invention.

本発明の薄膜積層体は、基板温度が室温であっても、二つの酸化亜鉛間に金属ナノ粒子層を挟んだ構造体からなる薄膜積層体を製造できる。本発明の薄膜積層体は、透明導電膜、太陽光発電電極、電磁波シールド材等として使用できる。   The thin film laminate of the present invention can produce a thin film laminate comprising a structure in which a metal nanoparticle layer is sandwiched between two zinc oxides even when the substrate temperature is room temperature. The thin film laminate of the present invention can be used as a transparent conductive film, a photovoltaic power generation electrode, an electromagnetic wave shielding material, and the like.

実施例1の金属ナノ粒子層を挟んだ薄膜積層体の横断面図。The cross-sectional view of the thin film laminated body which pinched | interposed the metal nanoparticle layer of Example 1. FIG. 実施例1の薄膜積層体の製造に使用した傾斜対向型DCスパッタリング装置の模式図。FIG. 3 is a schematic diagram of a tilted opposed DC sputtering apparatus used for manufacturing the thin film laminate of Example 1. 実施例1のZnO/Ag/ZnOからなる薄膜積層体におけるZnO膜表面上に堆積したAgナノ粒子層の電子顕微鏡像。The electron microscope image of the Ag nanoparticle layer deposited on the ZnO film | membrane surface in the thin film laminated body which consists of ZnO / Ag / ZnO of Example 1. FIG. 実施例1のZnO/Ag/ZnO薄膜積層体の可視光透過率曲線。The visible light transmittance | permeability curve of the ZnO / Ag / ZnO thin film laminated body of Example 1. FIG. 実施例1のZnO/Ag/ZnO薄膜積層体の比抵抗−Ag堆積時間曲線Specific Resistance-Ag Deposition Time Curve of ZnO / Ag / ZnO Thin Film Stack of Example 1 実施例2のZnO/Al(Ag+Al)/ZnO薄膜積層体の可視光透過率曲線。The visible light transmittance | permeability curve of the ZnO / Al (Ag + Al) / ZnO thin film laminated body of Example 2. FIG. 実施例3のZnO/Cu/ZnO薄膜積層体の可視光透過率曲線。The visible light transmittance | permeability curve of the ZnO / Cu / ZnO thin film laminated body of Example 3. FIG.

以下に本発明の実施の形態を説明する。
本発明の薄膜積層体は、図1に示す構造をしており、基板1の表面上に酸化亜鉛ZnO薄膜層2、その上に金属ナノ粒子層3、更にその上に酸化亜鉛ZnO薄膜層4がある。
本発明の薄膜積層体は、図2に示す傾斜対向ターゲット型DCマグネトロンスパッタリング装置を使って製造できる。
Embodiments of the present invention will be described below.
The thin film laminate of the present invention has a structure shown in FIG. 1, and a zinc oxide ZnO thin film layer 2 is formed on the surface of the substrate 1, a metal nanoparticle layer 3 is formed thereon, and a zinc oxide ZnO thin film layer 4 is formed thereon. There is.
The thin film laminate of the present invention can be manufactured using the inclined opposed target type DC magnetron sputtering apparatus shown in FIG.

ターゲットは基板に対して45度の角度で設置しているため、シャッターを開けて基板を回転させながらコーティングを行う時に、スパッタリングされた粒子が基板に到着したときに起こすZnO薄膜の損傷を低減させることができる。そのため、この装置を使用すれば、コーティング時の基板温度は低くでき、室温でコーティングできる。製造したZnO薄膜表面上に金属ナノ粒子層を堆積すること、さらにその上にZnO薄膜層を成膜することにより、低比抵抗の導電性のよい薄膜積層体を得ることができる。その際、金属ナノ粒子層は、基板を固定させて加熱せずに短時間に成膜することが良い。 Since the target is set at an angle of 45 degrees with respect to the substrate, when coating is performed while the shutter is opened and the substrate is rotated, damage to the ZnO thin film caused when the sputtered particles arrive at the substrate is reduced. be able to. Therefore, if this apparatus is used, the substrate temperature at the time of coating can be lowered, and coating can be performed at room temperature. By depositing a metal nanoparticle layer on the surface of the manufactured ZnO thin film and further forming a ZnO thin film layer thereon, a thin film laminate having a low specific resistance and good conductivity can be obtained. At that time, the metal nanoparticle layer is preferably formed in a short time without fixing and heating the substrate.

本傾斜対向ターゲット型DCマグネトロンスパッタリング装置は、ターゲット材を4枚同時に設置することができる特徴を有している。ターゲットして酸化物ターゲット(酸化亜鉛)や金属ターゲットのいずれも使用可能である。ターゲットT1として金属1、ターゲットT2として金属2、ターゲットT3として金属3およびターゲットT4として金属4の純金属を同時に設置することができる。導電性の良い薄膜積層体を得るには、金属として電気抵抗が低い金属を使用することが望ましい。   This inclined opposed target type DC magnetron sputtering apparatus has a feature that four target materials can be installed simultaneously. As the target, either an oxide target (zinc oxide) or a metal target can be used. Metal 1 as target T1, metal 2 as target T2, metal 3 as target T3, and pure metal of metal 4 as target T4 can be simultaneously installed. In order to obtain a thin film laminate having good conductivity, it is desirable to use a metal having a low electrical resistance as the metal.

ZnO薄膜層の成膜にはターゲットT1に純亜鉛(99.99%)を設置し、スパッタガスとして酸素とアルゴンの混合ガスを用いてスパッタリングするのが望ましい。その際、チャンバー内の圧力を6.0×10−1Pa〜7.0×10−1Paにするのが良い。金属ナノ粒子層のコーティングに際して、金属ナノ粒子層単体の堆積には、ターゲットT3に純銀(99.99%)、純Al(99.99%)、純銅(99.99%)あるいは純金(99.99%)のいずれか一つを設置するのがよい。 For the formation of the ZnO thin film layer, it is desirable to place pure zinc (99.99%) on the target T1 and perform sputtering using a mixed gas of oxygen and argon as a sputtering gas. At that time, it is good to the pressure in the chamber to 6.0 × 10 -1 Pa~7.0 × 10 -1 Pa. When the metal nanoparticle layer is coated, pure silver (99.99%), pure Al (99.99%), pure copper (99.99%) or pure gold (99.99%) is deposited on the target T3. 99%) should be installed.

2種類の金属ナノ粒子がランダムに分布した金属ナノ粒子層を得る場合、例えばターゲットT2に純Al(99.99%)、純銅(99.99%)あるいは純金(99.99%)のいずれか一つ、ターゲットT3に純銀(99.99%)を設置するのが良い。3種類の金属ナノ粒子の金属ナノ粒子がランダムに分布した金属ナノ粒子層を得る場合、例えばターゲットT2として純銅(99.99%)または純金(99.99%)、ターゲットT3として純銀(99.99%)、ターゲットT4として純Al(99.9%)を設置するのがよい。   When obtaining a metal nanoparticle layer in which two types of metal nanoparticles are randomly distributed, for example, either pure Al (99.99%), pure copper (99.99%), or pure gold (99.99%) is used as the target T2. One, it is good to install pure silver (99.99%) on the target T3. When obtaining a metal nanoparticle layer in which metal nanoparticles of three kinds of metal nanoparticles are randomly distributed, for example, pure copper (99.99%) or pure gold (99.99%) as the target T2, and pure silver (99.99%) as the target T3. 99%) and pure Al (99.9%) is preferably installed as the target T4.

チャンバー内の圧力は6.0×10−1Pa〜7.0×10−1Paにしてアルゴンガスを用いてスパッタリングするのが良い。堆積時間は特に制限はないが、金属ナノ粒子および金属ナノ膜が得られる5秒〜45秒、好ましくは10秒〜30秒が良い。ZnO/金属ナノ粒子層/ZnOからなる薄膜積層体の透明性と比抵抗は、二つのZnO間に挟まれた金属ナノ粒子層の構造(金属ナノ膜と金属ナノ粒子の大きさ、形状および密度等)の影響を受ける。 The pressure in the chamber is preferably 6.0 × 10 −1 Pa to 7.0 × 10 −1 Pa, and sputtering is performed using argon gas. The deposition time is not particularly limited, but is 5 seconds to 45 seconds, preferably 10 seconds to 30 seconds, from which metal nanoparticles and metal nanofilms can be obtained. The transparency and specific resistance of the thin film stack consisting of ZnO / metal nanoparticle layer / ZnO are the structure of the metal nanoparticle layer sandwiched between two ZnOs (size, shape and density of the metal nanofilm and metal nanoparticles). Etc.).

図2に示す傾斜対向型DCマグネトロンスパッタリング装置を用いてZnO/Ag/ZnOの薄膜積層体を製造した。チャンバー内にあるターゲットT1およびターゲットT3の位置に、それぞれ純亜鉛(純度99.99%、300×62×5mm)板、および純銀(99.99%、300×62×5mm)板を予め取り付けた。また、ガラス基板は中心部の回転台に取り付けた。   A thin film laminate of ZnO / Ag / ZnO was manufactured using the inclined opposed DC magnetron sputtering apparatus shown in FIG. Pure zinc (purity 99.99%, 300 × 62 × 5 mm) plates and pure silver (99.99%, 300 × 62 × 5 mm) plates were previously attached to the positions of the target T1 and target T3 in the chamber, respectively. . Moreover, the glass substrate was attached to the turntable in the center.

その後、チャンバー内を3.0×10−3Pa〜3.3×10−3Pa以下になるまで真空にした。ガラス基板表面上にZnO膜を成膜する。まず、チャンバー内にAr/Oの流量比が50/3(sccm)である混合ガスを流入させて、チャンバー内の圧力を6.0×10−1Pa〜7.0×10−1Paに調整した。基板を取り付けた回転台は回転速度5rpmで回転させながら、コイル電流5A、アノード電圧20V、バイアス電圧0V、純亜鉛ターゲットの電流は0.1A、ターゲット電圧250V〜260Vの条件下でスパッタリングした。そのZnO膜の成膜速度は0.514nm/sであった。コーティング時間を100分としてガラス基板表面上に膜厚50nmのZnO膜を得た。 Then, vacuum was applied until the chamber below 3.0 × 10 -3 Pa~3.3 × 10 -3 Pa. A ZnO film is formed on the glass substrate surface. First, by introducing the mixed gas flow ratio of Ar / O 2 is 50/3 (sccm) into the chamber, the pressure in the chamber 6.0 × 10 -1 Pa~7.0 × 10 -1 Pa Adjusted. Sputtering was performed under the conditions of a coil current of 5 A, an anode voltage of 20 V, a bias voltage of 0 V, a pure zinc target of 0.1 A, and a target voltage of 250 V to 260 V while the turntable on which the substrate was attached was rotated at a rotation speed of 5 rpm. The deposition rate of the ZnO film was 0.514 nm / s. A ZnO film having a thickness of 50 nm was obtained on the surface of the glass substrate with a coating time of 100 minutes.

次に得たZnO膜表面上にAgナノ粒子層を堆積するために、チャンバー内にArガスを50sccmの流量で流入させた。そのときのチャンバー内の圧力は、6.0×10−1Pa〜7.0×10−1Paとして、基板を取り付けた回転台は固定させた。コイル電流5A、アノード電圧20V、バイアス電圧0V、純銀ターゲットの電流は0.4A、ターゲット電圧270V〜280Vの条件でAgナノ粒子層を堆積した。その堆積速度は0.4nm/sであった。堆積時間を10秒〜45秒に変えてZnO膜表面上に直接Agナノ粒子層を堆積させた。 Next, in order to deposit an Ag nanoparticle layer on the surface of the obtained ZnO film, Ar gas was introduced into the chamber at a flow rate of 50 sccm. Pressure in the chamber at this time, as 6.0 × 10 -1 Pa~7.0 × 10 -1 Pa, turntable fitted with substrate was fixed. The Ag nanoparticle layer was deposited under the conditions of a coil current of 5 A, an anode voltage of 20 V, a bias voltage of 0 V, a pure silver target current of 0.4 A, and a target voltage of 270 V to 280 V. The deposition rate was 0.4 nm / s. The Ag nanoparticle layer was deposited directly on the ZnO film surface by changing the deposition time from 10 seconds to 45 seconds.

このAgナノ粒子層は、図3の電子顕微鏡写真が示すようにZnO膜表面上に直接堆積した金属ナノ膜上に金属ナノ粒子から構成されていた。Agナノ粒子径は、20nm〜50nmの範囲に分布しており、粒子径が30nm〜40nmのAgナノ粒子が最も多かった。堆積時間が長くなっても、Agナノ粒子径はほとんど同じであり、その密度は増加した。
得たAgナノ粒子層表面上にZnO膜を成膜した。その成膜条件は、上記のZnO膜の成膜条件と同一にした。得たZnO膜は、Agナノ粒子間およびAgナノ粒子頂上に堆積した構造であった。薄膜積層体の成膜中の基板温度は30℃とした。
The Ag nanoparticle layer was composed of metal nanoparticles on the metal nanofilm deposited directly on the surface of the ZnO film as shown in the electron micrograph of FIG. The Ag nanoparticle diameter was distributed in a range of 20 nm to 50 nm, and the Ag nanoparticle having a particle diameter of 30 nm to 40 nm was the largest. Even with a longer deposition time, the Ag nanoparticle size was almost the same and its density increased.
A ZnO film was formed on the surface of the obtained Ag nanoparticle layer. The film formation conditions were the same as those for the ZnO film. The obtained ZnO film had a structure deposited between Ag nanoparticles and on top of Ag nanoparticles. The substrate temperature during film formation of the thin film laminate was 30 ° C.

製造した薄膜積層体のガラス基板を含めた最大の可視光透過率は、図4に示すように、Agナノ粒子の堆積時間が10秒では75%、15秒では78%、20秒では87%、25秒では80%、30秒では80%、35秒では74%、40秒では74%、45秒では68%であった。可視光透過率曲線が示すようにAgナノ粒子層の構造によって可視光透過率が変化し、かつその波長域が長波長域から短波長域に変化している。これはAgナノ粒子層の構造に基づく表面プラズモン現象の原因のうち散乱効果が強く現れたものと考えられる。また、紫外線領域の370nmの透過率にピークが現れているが、これは表面プラズモンがAgナノ粒子による吸収効果に依存した現象と考えられる。製造した薄膜積層体の比抵抗は、図5に示すように7.4×10―4Ωcm(堆積時間=10秒)、5.3×10―5Ωcm(堆積時間=20秒)、1.8×10―5Ωcm(堆積時間=30秒)、1.4×10―5Ωcm(堆積時間=40秒)であった。この薄膜積層体のX線回折測定を行ったところ酸化亜鉛の(100)を示す回折ピークとAgの(111)を示す回折ピークが観察され、室温で成膜したZnO薄膜層は結晶質であることが確認できた。また、原子間力顕微鏡より求めた薄膜積層体表面の凹凸は、平均粗さはRa=0.655nmー0.232nmであり、最大粗さは約5.0nmであった。 As shown in FIG. 4, the maximum visible light transmittance including the glass substrate of the manufactured thin film laminate is 75% for Ag nanoparticle deposition time of 10 seconds, 78% for 15 seconds, and 87% for 20 seconds. 80% at 25 seconds, 80% at 30 seconds, 74% at 35 seconds, 74% at 40 seconds, and 68% at 45 seconds. As shown by the visible light transmittance curve, the visible light transmittance varies depending on the structure of the Ag nanoparticle layer, and the wavelength region changes from the long wavelength region to the short wavelength region. This is considered to be due to the strong scattering effect among the causes of the surface plasmon phenomenon based on the structure of the Ag nanoparticle layer. In addition, a peak appears in the transmittance of 370 nm in the ultraviolet region, which is considered to be a phenomenon in which the surface plasmon depends on the absorption effect by Ag nanoparticles. The specific resistance of the manufactured thin film laminate is 7.4 × 10 −4 Ωcm (deposition time = 10 seconds), 5.3 × 10 −5 Ωcm (deposition time = 20 seconds), as shown in FIG. They were 8 × 10 −5 Ωcm (deposition time = 30 seconds) and 1.4 × 10 −5 Ωcm (deposition time = 40 seconds). When the X-ray diffraction measurement of this thin film laminate was performed, a diffraction peak showing (100) of zinc oxide and a diffraction peak showing (111) of Ag were observed, and the ZnO thin film layer formed at room temperature was crystalline. I was able to confirm. Further, the unevenness of the surface of the thin film laminate obtained from the atomic force microscope had an average roughness of Ra = 0.655 nm-0.232 nm and a maximum roughness of about 5.0 nm.


実施例1と同様に傾斜対向型DCマグネトロンスパッタリング装置を使用して、ZnO/金属ナノ粒子層/ZnOからなる薄膜積層体を製造した。金属ナノ粒子層として、Agナノ粒子層単体、Alナノ粒子層単体並びにAgおよびAlナノ粒子からなるものを別々に製造した。
チャンバー内のターゲットの位置に、ターゲットT1には純亜鉛(純度99.99%、300×62×5mm)板、ターゲットT3には純銀(99.99%、300×62×5mm)板、ターゲットT4には純Al(純度99.99%、300×62×5mm)板を取り付けた。ZnO膜のコーティング条件は、実施例1と同様な条件の下でZnO膜を成膜した。

In the same manner as in Example 1, a tilted opposed DC magnetron sputtering apparatus was used to manufacture a thin film laminate composed of ZnO / metal nanoparticle layer / ZnO. As the metal nanoparticle layer, an Ag nanoparticle layer alone, an Al nanoparticle layer alone, and Ag and Al nanoparticles were separately manufactured.
At the target position in the chamber, the target T1 has a pure zinc (purity 99.99%, 300 × 62 × 5 mm) plate, the target T3 has a pure silver (99.99%, 300 × 62 × 5 mm) plate, and the target T4. A pure Al (purity 99.99%, 300 × 62 × 5 mm) plate was attached. The ZnO film was formed under the same coating conditions as in Example 1.

金属ナノ粒子層は、Agナノ粒子層単体あるいはAlナノ粒子層単体をZnO膜表面上に堆積した他、2つの金属ナノ粒子層からなる混合層をZnO膜表面上に直接堆積した。その堆積条件は実施例1と同じとした。ただし、純Alターゲットの電流は0.2A(堆積速度=0.08nm/sec、堆積時間=16秒)および0.4A(堆積速度=0.15nm/sec、堆積時間=13秒)に変えた。金属ナノ粒子層の上にZnO膜を実施例1の条件と同様にして成膜した。   As the metal nanoparticle layer, a single Ag nanoparticle layer or an Al nanoparticle layer was deposited on the ZnO film surface, and a mixed layer composed of two metal nanoparticle layers was directly deposited on the ZnO film surface. The deposition conditions were the same as in Example 1. However, the current of the pure Al target was changed to 0.2 A (deposition rate = 0.08 nm / sec, deposition time = 16 seconds) and 0.4 A (deposition rate = 0.15 nm / sec, deposition time = 13 seconds). . A ZnO film was formed on the metal nanoparticle layer in the same manner as in Example 1.

製造した薄膜積層体のガラス基板を含めた最大の可視光透過率は、図6に示すように、Agナノ粒子層単体では87%、Alナノ粒子層単体では78%、Ag+Alナノ粒子の混合ナノ粒子層では60%(0.2A)および64%(0.4A)であった。ZnO/金属ナノ粒子層/ZnOからなる薄膜積層体の透明性は、薄膜積層体の間に挟んだ金属ナノ粒子の種類が、最大可視光透過率を変えた。この薄膜積層体の比抵抗値は、Agナノ粒子層単体(堆積時間=20秒);5.6×10―5Ωcm、Alナノ粒子単体(堆積時間=3分);12Ωcm、Ag+Alナノ粒子混合層(堆積時間=16秒);7.6×10―4Ωcm、Ag+Alナノ粒子混合層(堆積時間=13秒);1.8×10―3Ωcmであった。 As shown in FIG. 6, the maximum visible light transmittance of the manufactured thin film laminate including the glass substrate is 87% for the Ag nanoparticle layer alone, 78% for the Al nanoparticle layer alone, and mixed nanoparticles of Ag + Al nanoparticles. The particle layer was 60% (0.2 A) and 64% (0.4 A). As for the transparency of the thin film laminate composed of ZnO / metal nanoparticle layer / ZnO, the type of metal nanoparticles sandwiched between the thin film laminates changed the maximum visible light transmittance. The specific resistance value of this thin film laminate was as follows: Ag nanoparticle layer alone (deposition time = 20 seconds); 5.6 × 10 −5 Ωcm, Al nanoparticle alone (deposition time = 3 minutes); 12Ωcm, Ag + Al nanoparticle Particle mixed layer (deposition time = 16 seconds); 7.6 × 10 −4 Ωcm, Ag + Al nanoparticle mixed layer (deposition time = 13 seconds); 1.8 × 10 −3 Ωcm.


実施例1と同様に傾斜対向型DCマグネトロンスパッタリング装置を使用してZnO/Cu/ZnOからなる薄膜積層体を製造した。ターゲットT1として純亜鉛(純度99.99%、300×62×5mm)板を設置した他に、ターゲットT3には純銅(99.99%、300×62×5mm)板を取り付けた以外は、成膜条件は実施例1と同様にした。
Cuナノ粒子層は、ZnO膜表面上に直接堆積した。その堆積条件は、純Agと同じにして堆積時間を35秒、70秒、105秒および140秒に変えた。再度、その上にZnO膜を実施例1の条件と同様にして成膜した。

In the same manner as in Example 1, a thin film laminate made of ZnO / Cu / ZnO was manufactured using a tilted opposed DC magnetron sputtering apparatus. In addition to installing a pure zinc (purity 99.99%, 300 × 62 × 5 mm) plate as the target T1, the target T3 is composed of a pure copper (99.99%, 300 × 62 × 5mm) plate, except that it is attached. The film conditions were the same as in Example 1.
The Cu nanoparticle layer was deposited directly on the ZnO film surface. The deposition conditions were the same as pure Ag, and the deposition time was changed to 35 seconds, 70 seconds, 105 seconds and 140 seconds. Again, a ZnO film was formed thereon in the same manner as in Example 1.

製造した薄膜積層体のガラス基板を含めた最大の可視光透過率は、図7に示すように、堆積時間が35秒で79%、70秒で70%、105秒で60%、140秒で53%であった。この薄膜積層体の比抵抗値は、3.8×10―2Ωcm(35秒)、2.9×10―3Ωcm(70秒)、6.1×10―4Ωcm(105秒)、5.4×10―4Ωcm(140秒)であった。 As shown in FIG. 7, the maximum visible light transmittance including the glass substrate of the manufactured thin film laminate is 79% at 35 seconds, 70% at 70 seconds, 60% at 105 seconds, and 140 seconds. 53%. The specific resistance of this thin film laminate was 3.8 × 10 −2 Ωcm (35 seconds), 2.9 × 10 −3 Ωcm (70 seconds), 6.1 × 10 −4 Ωcm (105 seconds), 5 4 × 10 −4 Ωcm (140 seconds).


1 基板
2 酸化亜鉛ZnO薄膜層
3 金属ナノ粒子層
4 酸化亜鉛ZnO薄膜層
T1 ターゲット
T2 ターゲット
T3 ターゲット
T4 ターゲット

DESCRIPTION OF SYMBOLS 1 Substrate 2 Zinc oxide ZnO thin film layer 3 Metal nanoparticle layer 4 Zinc oxide ZnO thin film layer T1 Target T2 Target T3 Target T4 Target

Claims (6)

基板上に、ZnO薄膜層、金属ナノ粒子層、ZnO薄膜層をこの順序に積層し、前記金属ナノ粒子層はAg、Al、Cu、Au、Ni、Pd、Pt、Zn、Cdの群から選ばれた1以上の金属ナノ粒子が結晶成長し相互に連結してナノ層を形成していることを特徴とする薄膜積層体   A ZnO thin film layer, a metal nanoparticle layer, and a ZnO thin film layer are laminated in this order on a substrate, and the metal nanoparticle layer is selected from the group of Ag, Al, Cu, Au, Ni, Pd, Pt, Zn, and Cd A thin film laminate, wherein one or more metal nanoparticles are grown and connected to each other to form a nanolayer. 金属ナノ粒子が少なくともAgを含むナノ粒子である請求項1に記載の薄膜積層体   The thin film laminate according to claim 1, wherein the metal nanoparticles are nanoparticles containing at least Ag. 金属ナノ粒子層の厚さが5nm〜100nmである請求項1又は2に記載の薄膜積層体   The thin film laminate according to claim 1 or 2, wherein the metal nanoparticle layer has a thickness of 5 nm to 100 nm. ZnO、金属ナノ粒子層、およびZnOの各薄膜層をDCマグネトロンスパッタリング法により室温において成膜した請求項1、2又は3に記載の薄膜積層体   The thin film laminate according to claim 1, 2 or 3, wherein each thin film layer of ZnO, metal nanoparticle layer, and ZnO is formed at room temperature by a DC magnetron sputtering method. 基板材料がガラス、セラミックス等の無機質板、熱可塑性樹脂、熱硬化性樹脂である請求項1、2、3又は4に記載の薄膜積層体   The thin film laminate according to claim 1, 2, 3, or 4, wherein the substrate material is an inorganic plate such as glass or ceramics, a thermoplastic resin, or a thermosetting resin. 基板材料が透明ガラスで、薄膜積層体の比抵抗が8.0X10-4Ωcm以下で、かつ紫外線域の波長を含んだ可視光透過率が70%以上である請求項1、2、3又は4に記載の薄膜積層体 The substrate material is transparent glass, the specific resistance of the thin film laminate is 8.0 × 10 −4 Ωcm or less, and the visible light transmittance including the wavelength in the ultraviolet region is 70% or more. Thin film laminate as described in
JP2009092037A 2009-04-06 2009-04-06 Thin film laminate with metal nanoparticle layer interposed Pending JP2010241638A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009092037A JP2010241638A (en) 2009-04-06 2009-04-06 Thin film laminate with metal nanoparticle layer interposed
CN2009202722401U CN201816254U (en) 2009-04-06 2009-11-20 Film laminated structure with metal nano particle interlayer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009092037A JP2010241638A (en) 2009-04-06 2009-04-06 Thin film laminate with metal nanoparticle layer interposed

Publications (1)

Publication Number Publication Date
JP2010241638A true JP2010241638A (en) 2010-10-28

Family

ID=43095102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009092037A Pending JP2010241638A (en) 2009-04-06 2009-04-06 Thin film laminate with metal nanoparticle layer interposed

Country Status (2)

Country Link
JP (1) JP2010241638A (en)
CN (1) CN201816254U (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199755A (en) * 2011-04-27 2011-09-28 南开大学 Method for growing hydrogenated Ga-Ti codoped ZnO-TCO thin film and application
CN102199759A (en) * 2011-05-20 2011-09-28 南开大学 Gradient hydrogen process grown ZnO-TCO thin film with textured structure and use thereof
CN102199758A (en) * 2011-05-13 2011-09-28 南开大学 Method for growing ZnO-TCO thin film with suede structure and application
CN102909911A (en) * 2011-08-05 2013-02-06 林宽锯 Transparent conductive glass with high visible light transmittance and manufacture method thereof
WO2013042449A1 (en) * 2011-09-22 2013-03-28 住友化学株式会社 Process for producing metallic particle assembly
JP2014069997A (en) * 2012-09-28 2014-04-21 Toyoda Gosei Co Ltd Decorative article having plasmon film, and production method of the same
JP2016087841A (en) * 2014-10-31 2016-05-23 正尚 曹 Manufacturing method of composite mixture
CN105751621A (en) * 2016-04-29 2016-07-13 苏州巨邦新材料科技有限公司 Efficient conductive composite material and preparation process
JP2017500597A (en) * 2013-08-20 2017-01-05 サン−ゴバン グラス フランス Method for obtaining a substrate with a coating comprising a discontinuous thin metal layer
JP2017512251A (en) * 2014-02-13 2017-05-18 ミムシ・マテリアルズ・エービーMimsi Materials Ab Method for coating a substrate to provide controlled in-plane composition modulation

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102277570A (en) * 2011-08-19 2011-12-14 上海交通大学 Method for preparing ZnO/Cu/ZnO transparent conductive thin film
CN104608441B (en) * 2015-01-13 2016-05-11 武汉理工大学 A kind of island structure metallic diaphragm coated glass and preparation method thereof
CN104900725A (en) * 2015-04-28 2015-09-09 广西智通节能环保科技有限公司 Solar cell
CN106634668B (en) * 2016-10-12 2019-02-12 昆山域之光电子有限公司 A kind of Nano type Multi-layer composite conductive glue film and preparation method thereof
CN107045775A (en) * 2017-01-10 2017-08-15 成都体育学院 A kind of sensor and signal acquiring processing system of free combat electronics protector
CN107881470A (en) * 2017-11-22 2018-04-06 朱秋华 A kind of ZnO transparent conductive thin film and preparation method thereof
CN108877987A (en) * 2018-05-31 2018-11-23 江苏大学 ZnO compound transparent electricity conductive film based on flexible substrate and preparation method thereof
CN109089406A (en) * 2018-10-18 2018-12-25 吴江友鑫新材料科技有限公司 A kind of invaginating transparent metal grid electromagnetic shielding film and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206424A (en) * 2004-12-27 2006-08-10 Central Glass Co Ltd Ag FILM FORMING METHOD AND LOW-EMISSIVITY GLASS

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206424A (en) * 2004-12-27 2006-08-10 Central Glass Co Ltd Ag FILM FORMING METHOD AND LOW-EMISSIVITY GLASS

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199755A (en) * 2011-04-27 2011-09-28 南开大学 Method for growing hydrogenated Ga-Ti codoped ZnO-TCO thin film and application
CN102199758A (en) * 2011-05-13 2011-09-28 南开大学 Method for growing ZnO-TCO thin film with suede structure and application
CN102199759A (en) * 2011-05-20 2011-09-28 南开大学 Gradient hydrogen process grown ZnO-TCO thin film with textured structure and use thereof
CN102909911A (en) * 2011-08-05 2013-02-06 林宽锯 Transparent conductive glass with high visible light transmittance and manufacture method thereof
WO2013042449A1 (en) * 2011-09-22 2013-03-28 住友化学株式会社 Process for producing metallic particle assembly
JP2014069997A (en) * 2012-09-28 2014-04-21 Toyoda Gosei Co Ltd Decorative article having plasmon film, and production method of the same
JP2017500597A (en) * 2013-08-20 2017-01-05 サン−ゴバン グラス フランス Method for obtaining a substrate with a coating comprising a discontinuous thin metal layer
JP2017512251A (en) * 2014-02-13 2017-05-18 ミムシ・マテリアルズ・エービーMimsi Materials Ab Method for coating a substrate to provide controlled in-plane composition modulation
US10378099B2 (en) 2014-02-13 2019-08-13 Mimsi Materials Ab Method of coating a substrate so as to provide a controlled in-plane compositional modulation
JP2016087841A (en) * 2014-10-31 2016-05-23 正尚 曹 Manufacturing method of composite mixture
CN105751621A (en) * 2016-04-29 2016-07-13 苏州巨邦新材料科技有限公司 Efficient conductive composite material and preparation process

Also Published As

Publication number Publication date
CN201816254U (en) 2011-05-04

Similar Documents

Publication Publication Date Title
JP2010241638A (en) Thin film laminate with metal nanoparticle layer interposed
Dhar et al. High quality transparent TiO2/Ag/TiO2 composite electrode films deposited on flexible substrate at room temperature by sputtering
EP2831707B1 (en) Transparent body for use in a touch screen panel manufacturing method and system
KR101680928B1 (en) Transparent electrode based on combination of transparent conductive oxides, metals and oxides
TWI653670B (en) Transparent body with single substrate and anti-refelection and/or anti-fingerprint coating and method of manufacturing thereof
TWI381401B (en) Transparent conductive film and manufacturing method thereof
Dhar et al. Optimization of TiO2/Cu/TiO2 multilayer as transparent composite electrode (TCE) deposited on flexible substrate at room temperature
Kim et al. Realization of highly transparent and low resistance TiO2/Ag/TiO2 conducting electrode for optoelectronic devices
JP2005108467A (en) Transparent conductive sheet, and photosensitive solar cell
CN105144045A (en) Conductive structure and preparation method therefor
CN108367556A (en) Metal layer is laminated transparent conducting film and uses its touch sensor
JP4068993B2 (en) Transparent conductive laminated film
WO2014064939A1 (en) Transparent conductor
CN106119778A (en) The method of room temperature sputtering sedimentation flexibility AZO transparent conductive film
JP2005019205A (en) Transparent conductive film and its manufacturing method
JP6979938B2 (en) Conductive transparent aluminum-doped zinc oxide sputtered film
CN105845752B (en) It is a kind of applied to transparent conductive film of flexible photoelectric device and preparation method thereof
JP6709171B2 (en) Transparent conductive film and method for producing transparent conductive film
JP2003115599A (en) Solar battery
Guo et al. The effect of Cu/Mo bi-layer film on the structural, morphological and electro-optical characteristics of AZO/metal/AZO transparent conductive film
Rayerfrancis et al. Effect of Ag incorporation on the electrical and optical properties of AZO/Ag/AZO multilayer transparent conducting electrode
CN103154301A (en) Flexible ti-in-zn-o transparent electrode for dye-sensitized solar cell, and metal-inserted three-layer transparent electrode with high conductivity using same and manufacturing method therefor
JP2005108468A (en) Transparent conductive sheet, manufacturing method of the same, and photosensitive solar cell using the same
Lakhonchai et al. Comparing the performance of transparent, conductive ZnO/Ag/ZnO thin films that have an interlayer coating formed by either DC magnetron sputtering or HiPIMS
JP2005071901A (en) Transparent conductive laminated film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110307

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110307

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018