JP2006206424A - Ag FILM FORMING METHOD AND LOW-EMISSIVITY GLASS - Google Patents

Ag FILM FORMING METHOD AND LOW-EMISSIVITY GLASS Download PDF

Info

Publication number
JP2006206424A
JP2006206424A JP2005280591A JP2005280591A JP2006206424A JP 2006206424 A JP2006206424 A JP 2006206424A JP 2005280591 A JP2005280591 A JP 2005280591A JP 2005280591 A JP2005280591 A JP 2005280591A JP 2006206424 A JP2006206424 A JP 2006206424A
Authority
JP
Japan
Prior art keywords
film
thickness
low
oxide film
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005280591A
Other languages
Japanese (ja)
Inventor
Kenji Fujii
健司 藤井
Kazuhiro Kato
和広 加藤
Koji Kobayashi
孝司 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2005280591A priority Critical patent/JP2006206424A/en
Priority to PCT/JP2005/023756 priority patent/WO2006070727A1/en
Publication of JP2006206424A publication Critical patent/JP2006206424A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3613Coatings of type glass/inorganic compound/metal/inorganic compound/metal/other
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3681Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a low-emissivity glass which has high visible light transmissivity and high heat-shielding property. <P>SOLUTION: An Ag film is formed by a magnetron sputtering method wherein the discharge voltage is kept at 200-350V and the magnetic field intensity on an Ag-target surface is kept at 700-1,200 oersted during Ag-film formation. In the low-emissivity glass, an oxide film and the Ag film, formed by the film forming method, are alternately stacked to form 2n (n≥1) layers in total on a glass substrate, and an oxide film is further stacked on the Ag film of the uppermost layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、低放射ガラスに用いられるAg膜に関し、特にAg膜の成膜方法および低放射ガラスに関するものである。   The present invention relates to an Ag film used for low emission glass, and more particularly to a method for forming an Ag film and low emission glass.

低放射ガラスは、ガラス板上に、誘電体膜とAg膜とを2n+1(n≧1)層繰り返して積層し、最上層を誘電体膜としたものが知られている。誘電体膜には、金属の透明酸化物膜が用いられている(特許文献1)。   Low emission glass is known in which 2n + 1 (n ≧ 1) layers of a dielectric film and an Ag film are repeatedly laminated on a glass plate, and the uppermost layer is a dielectric film. As the dielectric film, a metal transparent oxide film is used (Patent Document 1).

前記低放射ガラスは、Ag膜に前後して積層される誘電体膜により可視光の反射を防止して高い可視光透過性を確保しながら、Ag膜が示す優れた赤外線反射作用により、高い遮熱性を発現する透明積層膜付ガラスとしてよく知られている。   The low emission glass has a high shielding property due to the excellent infrared reflection effect exhibited by the Ag film while preventing the reflection of visible light by the dielectric film laminated before and after the Ag film and ensuring high visible light transmittance. It is well known as a glass with a transparent laminated film that exhibits heat.

このような低放射ガラスは、断熱性を十分に発揮させるため、建築物の窓ガラスに空気断熱層を備えた複層ガラス構成で使用されることが多い。   Such low emission glass is often used in a double glazing structure in which an air insulating layer is provided on a window glass of a building in order to sufficiently exhibit heat insulating properties.

この低放射ガラスは、窓に使用するため、通常、大面積への成膜、量産性に優れているスパッタ法によって成膜される。特に、ターゲット背後に磁石を配置し、発生する磁場により、ターゲット表面近傍にプラズマを閉じ込め、ターゲットからスパッタリングされた粒子により成膜を行うマグネトロンスパッタ法により作製される。   Since this low radiation glass is used for a window, it is usually formed by a sputtering method having a large area and excellent mass productivity. In particular, the magnetron sputtering method is used in which a magnet is disposed behind the target, a plasma is confined in the vicinity of the target surface by a generated magnetic field, and a film is formed by particles sputtered from the target.

Ag膜を用いる低放射ガラスにおいて、高い遮熱性と高い透過性が要求されている。遮熱性の発現には、Ag膜の高い赤外線反射率が必要であり、Ag膜の抵抗が小さいほど赤外線反射率も高くなる。Ag膜の抵抗は、Ag膜の厚みを大きくすることによって下げられるが、厚みを増すとAg膜の透過率が下がるので、低放射率ガラスは、Ag膜の透過率と放射率との兼ね合いでAg膜の厚みが決定される。
特開2002−173343号公報
A low radiation glass using an Ag film is required to have high heat shielding properties and high permeability. The high infrared reflectance of the Ag film is necessary for the expression of heat shielding properties, and the smaller the resistance of the Ag film, the higher the infrared reflectance. Although the resistance of the Ag film can be lowered by increasing the thickness of the Ag film, the transmittance of the Ag film decreases as the thickness increases, so the low emissivity glass is a balance between the transmittance of the Ag film and the emissivity. The thickness of the Ag film is determined.
JP 2002-173343 A

本発明は、高い可視光透過性を有しながら、とりわけ高い遮熱性を有する低放射ガラスを作製するため、Ag膜の厚みを厚くせずに従来技術のAg膜よりも低抵抗のAg膜を作製すること、すなわち、従来技術に比較し、同じ可視光透過率でありながら高い遮熱性を有する低放射ガラスの作製を課題とする。   In order to produce a low radiation glass having a particularly high heat shielding property while having a high visible light transmission property, the present invention provides an Ag film having a resistance lower than that of a prior art Ag film without increasing the thickness of the Ag film. The object is to produce a low-radiation glass having high heat shielding properties while having the same visible light transmittance as compared with the prior art.

本発明のAg膜の成膜方法は、低放射ガラスに用いられるAg膜の成膜方法において、Ag膜がマグネトロンスパッタリング法で成膜時の放電電圧が200〜350Vに保持されて成膜されることを特徴とするAg膜の成膜方法である。   The method for forming an Ag film according to the present invention is the same as the method for forming an Ag film used for low emission glass. The Ag film is formed by a magnetron sputtering method while the discharge voltage during film formation is maintained at 200 to 350 V. This is a method for forming an Ag film.

また、本発明のAg膜の成膜方法は、前記Ag膜の成膜方法において、Agターゲット表面の磁界の強さが、Ag膜の成膜時に、700〜1200エルステッドに保持されていることを特徴とするAg膜の製造方法である。   In the Ag film forming method of the present invention, the strength of the magnetic field on the Ag target surface is maintained at 700 to 1200 Oersted when the Ag film is formed. It is the manufacturing method of the Ag film | membrane characterized.

また、本発明の低放射ガラスは、ガラス基板上に酸化物膜と前記Ag膜の成膜方法でなるAg膜とが交互に2n(n≧1)層をなし、かつ最上層のAg膜の上に酸化物膜が積層されてなることを特徴とする低放射ガラス(1)である。   In the low emission glass of the present invention, the oxide film and the Ag film formed by the film formation method of the Ag film alternately form 2n (n ≧ 1) layers on the glass substrate, and the uppermost Ag film is formed. The low emission glass (1) is characterized in that an oxide film is laminated thereon.

また、本発明の低放射ガラスは、(1)の低放射ガラスであって、n=1であり、第2層のAg膜の厚みt1が5〜30nmの範囲であって、積層膜の比抵抗が(35.8/t1+2.3)×10―6Ωcm以下であることを特徴とする低放射ガラスである。 The low emission glass of the present invention is the low emission glass of (1), wherein n = 1, the thickness t1 of the second layer Ag film is in the range of 5 to 30 nm, and the ratio of the laminated films A low emission glass characterized by having a resistance of (35.8 / t1 + 2.3) × 10 −6 Ωcm or less.

また、本発明の低放射ガラスは、前記低放射ガラスにおいて、第1層の酸化物膜が厚さ20〜60nmの範囲の酸化亜鉛膜でなり、第3層の酸化物膜が厚さ20〜60nmの範囲の酸化亜鉛膜でなり、可視光透過率が70%以上であることを特徴とする低放射ガラスである。   The low emission glass of the present invention is the low emission glass, wherein the first layer oxide film is a zinc oxide film having a thickness of 20 to 60 nm and the third layer oxide film is 20 to 60 nm thick. It is a low emission glass comprising a zinc oxide film in the range of 60 nm and having a visible light transmittance of 70% or more.

また、本発明の低放射ガラスは、(1)の低放射ガラスであって、n=2であり、Ag膜の総厚みt2が15〜35nmの範囲であって、積層膜の比抵抗が(168.6/t2+1.3)×10―6Ωcm以下であることを特徴とする低放射ガラスである。 The low emission glass of the present invention is the low emission glass of (1), where n = 2, the total thickness t2 of the Ag film is in the range of 15 to 35 nm, and the specific resistance of the laminated film is ( 168.6 / t2 + 1.3) × 10 −6 Ωcm or less.

また、本発明の低放射ガラスは、前記低放射ガラスにおいて、第1層の酸化物膜の厚さが20〜60nmの範囲の酸化亜鉛膜でなり、第2層のAg膜の厚みが7.5〜17.5nmの範囲にあり、第3層の酸化物膜が厚さ40〜120nmの範囲の酸化亜鉛膜でなり、第4層のAg膜の厚みが7.5〜17.5nmの範囲にあり、第5層の酸化物膜が厚さ20〜60nmの範囲の酸化亜鉛膜でなり、可視光透過率が70%以上であることを特徴とする請求項6に記載の低放射ガラスである。   In the low emission glass of the present invention, the first layer oxide film is a zinc oxide film having a thickness of 20 to 60 nm, and the second layer Ag film has a thickness of 7. The third layer oxide film is a zinc oxide film having a thickness of 40 to 120 nm, and the fourth layer Ag film is in a range of 7.5 to 17.5 nm. The low emission glass according to claim 6, wherein the oxide film of the fifth layer is a zinc oxide film having a thickness of 20 to 60 nm and has a visible light transmittance of 70% or more. is there.

本発明のAg膜の成膜方法は、高い可視光透過性と、遮熱性とに優れたAg膜および低放射ガラスを提供する。   The method for forming an Ag film of the present invention provides an Ag film and a low radiation glass that are excellent in high visible light transmittance and heat shielding properties.

本発明のAg膜の成膜方法は、透明性の高い低抵抗のAg膜を作製することができ、建物の窓の遮熱を目的とする低放射ガラスのAg膜として用いることが好ましい。   The method for forming an Ag film according to the present invention can produce a highly transparent and low-resistance Ag film, and is preferably used as an Ag film for low-emission glass for the purpose of heat shielding a building window.

低放射ガラスは、例えば、膜構成が、図1に示すように、ガラス基板3にAg膜12と透明性酸化物膜11とが交互に積層されて2n層をなし、最上層に透明酸化物膜11が成膜されたものである。   For example, as shown in FIG. 1, the low emission glass has a film structure in which an Ag film 12 and a transparent oxide film 11 are alternately laminated on a glass substrate 3 to form a 2n layer, and a transparent oxide is the uppermost layer. The film 11 is formed.

ガラス基板には、フロート板ガラスを好適に用いることができる。なお、本発明によるAg膜の成膜は、板ガラスに限定することなく、透明な樹脂板に用いることもできる。   A float plate glass can be suitably used for the glass substrate. In addition, the film-forming of Ag film | membrane by this invention can also be used for a transparent resin board, without being limited to plate glass.

ガラス基板3の直上の透明酸化物膜11は、ガラス基板とAg膜との密着性や、あるいは、膜相互の密着性を高めて、低放射ガラスの積層膜の強度と耐久性を高めるために、さらには、低放射ガラスの透過率を高めるために用いられる。   The transparent oxide film 11 immediately above the glass substrate 3 is used to increase the adhesion and adhesion between the glass substrate and the Ag film, or between the films, thereby increasing the strength and durability of the laminated film of low radiation glass. Furthermore, it is used to increase the transmittance of the low emission glass.

n=1の場合(Ag膜が1層)の場合は、Ag膜12の厚みは、5〜30nmの範囲にあることが好ましい。5nm未満の場合、抵抗値が大きく有効な遮熱性能が得られず、また、30nmを越えると、透明性が損なわれ、建物の窓に用いるには好ましいとはいえなくなる。   In the case of n = 1 (Ag film is one layer), the thickness of the Ag film 12 is preferably in the range of 5 to 30 nm. When the thickness is less than 5 nm, the resistance value is large and an effective heat shielding performance cannot be obtained. When the thickness exceeds 30 nm, the transparency is impaired and it is not preferable for use in a building window.

n=2の場合(Ag膜が2層)の場合は、Ag膜12の厚みの合計は、15〜35nmの範囲にあることが好ましい。1層のAg膜の厚みが15nm未満の場合、抵抗値が大きく有効な遮熱性能が得られず、また、厚みの合計が35nmを越えると、透明性が損なわれ、建物の窓に用いるには好ましいとはいえなくなる。
Ag膜の比抵抗は実施例と比較例を比較した図4から明らかなように、比較例(従来技術)に対して同じ膜厚でも、小さい比抵抗の膜である。
In the case of n = 2 (two Ag films), the total thickness of the Ag film 12 is preferably in the range of 15 to 35 nm. When the thickness of one layer of Ag film is less than 15 nm, the resistance value is large and an effective heat shielding performance cannot be obtained, and when the total thickness exceeds 35 nm, transparency is impaired and it is used for a window of a building. Is not preferred.
The specific resistance of the Ag film is a film having a small specific resistance even when the film thickness is the same as that of the comparative example (prior art), as is clear from FIG. 4 comparing the example and the comparative example.

実施例と比較例との間の比抵抗値を用いて、Ag膜の膜厚に対する比抵抗の近似曲線を求めると、n=1の場合は、Ag膜の膜厚t1に対して、比抵抗の値は、(35.8/t1+2.3)×10―6Ωcmとなり、n=2の場合は、Ag膜の膜厚t2に対して、(168.6/t2+1.3)×10―6Ωcmとなる。 Using the specific resistance value between the example and the comparative example, an approximate curve of the specific resistance with respect to the film thickness of the Ag film is obtained. When n = 1, the specific resistance with respect to the film thickness t1 of the Ag film. The value of (35.8 / t1 + 2.3) × 10 −6 Ωcm is obtained. When n = 2, the thickness of the Ag film is t2 (168.6 / t2 + 1.3) × 10 −6. Ωcm.

従って、本発明の低放射ガラスの比抵抗は、n=1の場合、(35.8/t1+2.3)×10―6Ωcm以下のものが得られ、n=2の場合、(168.6/t2+1.3)×10―6Ωcm以下のものが得られる。 Therefore, the specific resistance of the low radiation glass of the present invention is (35.8 / t1 + 2.3) × 10 −6 Ωcm or less when n = 1, and when n = 2, (168.6) /T2+1.3)×10 −6 Ωcm or less is obtained.

透明性酸化物膜11は、Si、Sn、Zn、Al、Ti等の酸化物の内、少なくとも1種類以上の酸化物を選択してなり、選択は、酸化物膜の、光学膜厚、吸収特性の他、膜自身の機械強度、隣接層との密着性を考慮して、行うことが望ましい。   The transparent oxide film 11 is formed by selecting at least one kind of oxides such as Si, Sn, Zn, Al, and Ti, and the selection depends on the optical film thickness and absorption of the oxide film. In addition to the characteristics, it is desirable to take into consideration the mechanical strength of the film itself and the adhesion to the adjacent layer.

特に、低放射ガラスの好適な膜強度や耐久性および高い透過率を得るために、透明性酸化物膜として酸化亜鉛が好適であり、ガラス基板3に直接成膜される最下層の透明酸化物膜11の厚みと最上層の透明酸化物膜11の厚みは、20nm〜60nmとすることが好ましく、それ以外の透明酸化物膜11の厚みは、40〜120nmとすることが好ましい。   In particular, in order to obtain suitable film strength and durability of low emission glass and high transmittance, zinc oxide is suitable as the transparent oxide film, and the lowermost transparent oxide formed directly on the glass substrate 3 The thickness of the film 11 and the thickness of the uppermost transparent oxide film 11 are preferably 20 nm to 60 nm, and the thickness of the other transparent oxide film 11 is preferably 40 to 120 nm.

さらに、ガラス基板3に直接成膜される最下層の透明酸化物膜11と低放射ガラスの最上層の透明酸化物膜11の厚さは透過性を高めるために膜厚を同じ程度にすることが好ましい。   Furthermore, the thickness of the lowermost transparent oxide film 11 formed directly on the glass substrate 3 and the uppermost transparent oxide film 11 of the low emission glass should be the same in order to increase the transparency. Is preferred.

さらに、透明性酸化物膜の膜厚の下限値20nmは、隣接層との密着性を維持するために必要な厚みである。また、透明性酸化物膜の膜厚がその上限値(ガラス基板に直接成膜される最下層の透明性酸化物膜と最上層の透明性酸化物膜の場合は60nm、その他の透明性酸化物膜の場合は120nm)を越えると、可視域での好ましい透過率を得られなくなるので、上限値以下の厚みとすることが好ましい。   Furthermore, the lower limit 20 nm of the thickness of the transparent oxide film is a thickness necessary for maintaining the adhesion with the adjacent layer. In addition, the upper limit of the thickness of the transparent oxide film (60 nm for the lowermost transparent oxide film and the uppermost transparent oxide film formed directly on the glass substrate, other transparent oxides) If it exceeds 120 nm in the case of a physical film, a preferable transmittance in the visible range cannot be obtained.

また透明酸化物膜11の代わりに、Si、Sn、Zn、Al、Ti等の窒化物膜や窒酸化物膜を用いても良い。   Instead of the transparent oxide film 11, a nitride film such as Si, Sn, Zn, Al, Ti, or a nitride oxide film may be used.

さらに、Ag膜の酸化を防ぐために、Ag膜と透明性酸化物膜の間に保護金属層を成膜することが望ましい。   Furthermore, in order to prevent oxidation of the Ag film, it is desirable to form a protective metal layer between the Ag film and the transparent oxide film.

保護金属層に用いる亜鉛金属は、Zn,Sn,Ti,Al,NiCr,Cr、Zn及びSn合金(各金属にAl,Sb金属を0.0〜10.0重量%含んだもの)等を用いることができる。   As the zinc metal used for the protective metal layer, Zn, Sn, Ti, Al, NiCr, Cr, Zn, Sn alloy (each metal containing Al or Sb metal in an amount of 0.0 to 10.0% by weight) or the like is used. be able to.

また、保護金属層の代わりに、Alを2〜12原子%含む亜鉛合金(ZnAlO)(以後AZO膜と呼ぶ)を用いることが好ましい。 Further, it is preferable to use a zinc alloy (ZnAlO x ) (hereinafter referred to as an AZO film) containing 2 to 12 atomic% of Al instead of the protective metal layer.

Ag膜12および透明性酸化物膜11は、スパッタリング法で成膜することが好ましく、特に図2に示すような、マグネトロンスパッタリング装置を用いて成膜することが好ましい。     The Ag film 12 and the transparent oxide film 11 are preferably formed by a sputtering method, and particularly preferably formed by using a magnetron sputtering apparatus as shown in FIG.

図2に示す成膜装置において、ターゲット1にAgターゲットを用い、ガラス基板3を基板ホルダー2に保持させた後、真空チャンバー8内を真空ポンプ5を用いて排気し、さらに、真空チャンバー8内にガス導入管7よりArガスを、マスフローコントローラー(図示せず)により制御して導入し、Ag膜を成膜する。
真空チャンバー8内の圧力は、真空ポンプ5と開閉バルブ6により調整し、1Pa以下にして成膜することが好ましい。
In the film forming apparatus shown in FIG. 2, an Ag target is used as the target 1, the glass substrate 3 is held by the substrate holder 2, the inside of the vacuum chamber 8 is evacuated using the vacuum pump 5, and the inside of the vacuum chamber 8 is further evacuated. Ar gas is introduced from the gas introduction pipe 7 by being controlled by a mass flow controller (not shown) to form an Ag film.
It is preferable that the pressure in the vacuum chamber 8 is adjusted by the vacuum pump 5 and the opening / closing valve 6 and the film is formed at 1 Pa or less.

Ag膜12の成膜時の放電電圧は、放電電圧を350V以下とすることが好ましい。放電電圧が350Vを越えると、低抵抗のAg膜が得られず、また放電電圧が200V未満の場合は、放電が不安定となり、安定した成膜が困難となる。   The discharge voltage when forming the Ag film 12 is preferably set to 350 V or less. When the discharge voltage exceeds 350V, a low resistance Ag film cannot be obtained. When the discharge voltage is less than 200V, the discharge becomes unstable and stable film formation becomes difficult.

放電電圧は、ターゲットにDC電源10を用いて印加される電圧で制御され、接地されている基板に対する電位差である。   The discharge voltage is controlled by the voltage applied to the target using the DC power source 10 and is a potential difference with respect to the grounded substrate.

また、Ag膜12の成膜時、Agターゲット1の表面の磁場は、700〜1200エルステッドであることが望ましい。Agターゲット1の表面の磁場が700エルステッド未満の場合は、放電電圧が高くなりAgの表面抵抗が上昇するという不具合があり、一方1200エルステッドを越えても放電電圧は350Vより小さくすることが困難となって、抵抗の低いAg膜が得られない。   In addition, when the Ag film 12 is formed, the magnetic field on the surface of the Ag target 1 is desirably 700 to 1200 Oersted. When the magnetic field on the surface of the Ag target 1 is less than 700 Oersted, there is a problem that the discharge voltage increases and the surface resistance of Ag increases. On the other hand, even if it exceeds 1200 Oersted, it is difficult to make the discharge voltage lower than 350V. Thus, an Ag film with low resistance cannot be obtained.

Agターゲット1の表面の磁場は、カソードマグネット4の磁場を調整して制御することができる。カソードマグネット4の磁場は、磁力の異なる永久磁石の交換や、永久磁石の周囲にコイルを巻いて直流電流を流す等の方法で変えられる。   The magnetic field on the surface of the Ag target 1 can be controlled by adjusting the magnetic field of the cathode magnet 4. The magnetic field of the cathode magnet 4 can be changed by exchanging permanent magnets having different magnetic forces, or by winding a coil around the permanent magnets to pass a direct current.

透明酸化物膜11は、ターゲット1に金属ターゲットを用い、ガス導入管から酸素ガスを導入して成膜するか、あるいは、ターゲット1に、成膜される酸化物と同じ酸化物ターゲットを用いて成膜することができる。   The transparent oxide film 11 is formed by using a metal target for the target 1 and introducing oxygen gas from a gas introduction pipe, or by using the same oxide target as the oxide to be formed for the target 1. A film can be formed.

例えば、Zn0を成膜する場合、Znターゲットをターゲット1に用いて、ガス導入管7から適当な混合比のArガスと酸素ガスを導入して成膜することができる。あるいは、ZnOターゲットをターゲット1に用いて、ガス導入管7からArガスのみを導入し、ZnO膜の成膜をしてもよい。   For example, when forming a ZnO film, it is possible to form the film by using a Zn target as the target 1 and introducing Ar gas and oxygen gas in an appropriate mixing ratio from the gas introduction pipe 7. Alternatively, a ZnO film may be formed by introducing only Ar gas from the gas introduction pipe 7 using a ZnO target as the target 1.

以下、図面を参照しながら本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

実施例1
図3に示すような、ガラス基板3に、透明性酸化物膜11、Ag膜12、透明性酸化物膜11の順に積層した低放射ガラスを作製した。
Example 1
A low emission glass in which a transparent oxide film 11, an Ag film 12, and a transparent oxide film 11 were laminated in this order on a glass substrate 3 as shown in FIG.

Ag膜および透明性酸化物膜の成膜は、図2に示すDCマグネトロンスパッタリング装置を用いて行った。   The Ag film and the transparent oxide film were formed using a DC magnetron sputtering apparatus shown in FIG.

透明酸化物膜11として、ZnO膜を成膜した。ターゲット1にZnターゲットを用い、ガラス基板3を基板ホルダーに保持させた後、真空チャンバー8内を真空ポンプ5を用いて排気した。   A ZnO film was formed as the transparent oxide film 11. A Zn target was used as the target 1 and the glass substrate 3 was held by the substrate holder, and then the inside of the vacuum chamber 8 was evacuated using the vacuum pump 5.

真空チャンバー8内の雰囲気ガスは、ガス導入管7より、Arガスと酸素ガスとを導入し、Arガス、酸素ガスのそれぞれをマスフローコントローラー(図示せず)により制御して調整した。   The atmospheric gas in the vacuum chamber 8 was adjusted by introducing Ar gas and oxygen gas from the gas introduction pipe 7 and controlling each of Ar gas and oxygen gas by a mass flow controller (not shown).

真空ポンプ5にはターボ分子ポンプを用いた。成膜中の真空チャンバ−8内の圧力は、開閉バルブ6により0.5Pa以下に調節した。   A turbo molecular pump was used as the vacuum pump 5. The pressure in the vacuum chamber 8 during film formation was adjusted to 0.5 Pa or less by the opening / closing valve 6.

ZnO膜は、Ag膜とガラス基板との密着性を高めるもので、30nmの膜厚で成膜した。なお、このZnO膜と上層に成膜される透明酸化物膜とにより、低放射ガラスの可視域の透過率を高めている。   The ZnO film increases the adhesion between the Ag film and the glass substrate, and was formed with a film thickness of 30 nm. The visible light transmittance of the low emission glass is increased by the ZnO film and the transparent oxide film formed on the upper layer.

次に、真空チャンバー8内を排気した後、Arガスをガス導入管7からマスフローコントローラー(図示せず)で制御して真空チャンバー8内に導入して、真空チャンバー8内をArガス雰囲気にし、Agターゲットをターゲット1に用いて、ZnO膜11の上にAg膜12を成膜した。   Next, after evacuating the inside of the vacuum chamber 8, Ar gas is controlled by a mass flow controller (not shown) from the gas introduction pipe 7 and introduced into the vacuum chamber 8, and the inside of the vacuum chamber 8 is made into an Ar gas atmosphere. An Ag film 12 was formed on the ZnO film 11 using an Ag target as the target 1.

Ag膜12は、5nm、10nm、15nm、20nm、25nm、30nmの5種類の厚みについて成膜した。   The Ag film 12 was formed in five thicknesses of 5 nm, 10 nm, 15 nm, 20 nm, 25 nm, and 30 nm.

Ag膜12の成膜中、真空チャンバー内の圧力は、真空ポンプ5と開閉バルブ6によって0.5Pa以下を保つようにした。また、カソードマグネット4の磁場を永久磁石(図示せず)を交換して調整し、Agターゲット1表面の磁界の強さを700エルステッドとした。さらに、DC電源の投入電力を調整し、放電電圧を320Vとした。   During the formation of the Ag film 12, the pressure in the vacuum chamber was kept at 0.5 Pa or less by the vacuum pump 5 and the opening / closing valve 6. Further, the magnetic field of the cathode magnet 4 was adjusted by replacing a permanent magnet (not shown), and the strength of the magnetic field on the surface of the Ag target 1 was set to 700 Oersted. Furthermore, the input power of the DC power source was adjusted to set the discharge voltage to 320V.

次に、Ag膜12の上に、AZO(Al2wt%含有ZnO)ターゲットを用い、図3には図示しない、5nmの厚みのAZO膜を成膜した。   Next, an AZO (Al 2 wt% -containing ZnO) target was used on the Ag film 12 to form an AZO film having a thickness of 5 nm (not shown in FIG. 3).

AZO膜の成膜中、圧力チャンバー8内のガス雰囲気および圧力は、Ag膜の成膜と同様にした。   During the formation of the AZO film, the gas atmosphere and pressure in the pressure chamber 8 were the same as in the formation of the Ag film.

さらに、AZO膜の上にZnO膜を30nmの厚みで成膜した。該ZnO膜はガラス基板3に成膜したZnO膜と同様にして行った。   Further, a ZnO film having a thickness of 30 nm was formed on the AZO film. The ZnO film was formed in the same manner as the ZnO film formed on the glass substrate 3.

比較例1
Agターゲット1表面の磁界の強さを300エルステッドに調整しその他条件は実施例と同様にして、同じ膜厚の低放射ガラスを作製した。Ag膜作成時の放電電圧は400Vであった。
Comparative Example 1
A low emission glass having the same film thickness was produced by adjusting the strength of the magnetic field on the surface of the Ag target 1 to 300 Oersted and the other conditions in the same manner as in the example. The discharge voltage at the time of forming the Ag film was 400V.

実施例1と比較例1の低放射ガラスの比抵抗は、Ag膜の厚みに対し、図4に示すような値となり、実施例1の低放射ガラスは、比較例1の低放射ガラスに比べて、同じAg膜の膜厚で比較すると、実施例1の方が比較例1よりも、はるかに比抵抗の小さい低放射ガラスであった。   The specific resistance of the low emission glass of Example 1 and Comparative Example 1 is a value as shown in FIG. 4 with respect to the thickness of the Ag film, and the low emission glass of Example 1 is compared with the low emission glass of Comparative Example 1. When compared with the film thickness of the same Ag film, Example 1 was a low radiation glass having a much smaller specific resistance than Comparative Example 1.

また、実施例1のAg膜については、Ag膜の厚みt1が10〜20nmの範囲において、Ag膜の比抵抗が(37.3/t1+2)×10―6Ωcm以下となるものであった。 Further, regarding the Ag film of Example 1, the specific resistance of the Ag film was (37.3 / t1 + 2) × 10 −6 Ωcm or less when the thickness t1 of the Ag film was in the range of 10 to 20 nm.

さらに、実施例1および比較例1で作製した、厚さ10nmのAg層を用いた低放射ガラスの分光透過率と膜面側の反射率は、それぞれ図5、図6に示すようになり、可視光の透過率は、実施例2、比較例2共に同じ程度でありながら、実施例2の低放射ガラスの方が比較例2の低放射ガラスよりも、赤外領域の反射率が高く、遮熱性の大きいものであった。   Further, the spectral transmittance and the reflectance on the film surface side of the low emission glass using the Ag layer having a thickness of 10 nm prepared in Example 1 and Comparative Example 1 are as shown in FIGS. 5 and 6, respectively. While the transmittance of visible light is the same in both Example 2 and Comparative Example 2, the low emission glass of Example 2 has a higher reflectance in the infrared region than the low emission glass of Comparative Example 2, The heat shielding property was large.

実施例2
図7に示すような、ガラス基板3に、透明性酸化物膜11とAg膜12を交互にそれぞれ2層成膜し、最上膜に透明性酸化物膜11を成膜して、低放射ガラスを作製した。
Ag膜および透明性酸化物膜の成膜は、図3に示すDCマグネトロンスパッタリング装置を用いて行った。Ag膜12の作製時は、Agターゲット1表面の磁界の強さを700エルステッドに調整しその他条件は実施例1と同様とした。
Example 2
As shown in FIG. 7, two transparent oxide films 11 and an Ag film 12 are alternately formed on a glass substrate 3, and the transparent oxide film 11 is formed on the uppermost film. Was made.
The Ag film and the transparent oxide film were formed using a DC magnetron sputtering apparatus shown in FIG. When the Ag film 12 was produced, the strength of the magnetic field on the surface of the Ag target 1 was adjusted to 700 Oersted, and other conditions were the same as in Example 1.

ガラス基板3に成膜される透明酸化物膜11の厚みと最上層の透明酸化物膜11の厚みはともに30nmとし、2層のAg膜の間の透明酸化物膜11の厚みは、60nmとした。透明酸化物膜は全てZnOの膜を用い、実施例1と同様にして成膜した。   The thickness of the transparent oxide film 11 formed on the glass substrate 3 and the thickness of the uppermost transparent oxide film 11 are both 30 nm, and the thickness of the transparent oxide film 11 between the two Ag films is 60 nm. did. All the transparent oxide films were made of ZnO and were formed in the same manner as in Example 1.

また、Ag膜の上に透明性酸化物膜を成膜する前に、Ag膜の上に、実施例1と同様に、図7に図示しないAZO膜を成膜した。
2層のAg膜12は同じ膜厚とし、2層の厚みの合計が20nmと30nmとなる低放射ガラスを作製した。この時、Ag膜作製時の放電電圧は320Vであった。
Further, before forming a transparent oxide film on the Ag film, an AZO film (not shown in FIG. 7) was formed on the Ag film in the same manner as in Example 1.
The two layers of Ag film 12 had the same thickness, and a low emission glass having a total thickness of 20 nm and 30 nm was produced. At this time, the discharge voltage during the production of the Ag film was 320V.

比較例2
Agターゲット1表面の磁界の強さを300エルステッドに調整しその他条件は実施例2と同様として、同じ膜厚の低放射ガラスを作製した。Ag膜作製時の放電電圧は400Vであった。
Comparative Example 2
The intensity of the magnetic field on the surface of the Ag target 1 was adjusted to 300 Oersted, and other conditions were the same as in Example 2 to produce a low emission glass having the same film thickness. The discharge voltage at the time of preparation of the Ag film was 400V.

実施例2と比較例2の低放射ガラスの比抵抗は、Ag膜の厚みに対し、図4に示すような値となり、実施例2では、比較例2に比べて、同じ膜厚で比較例よりも低抵抗の低放射ガラスが得られた。実施例2の低放射ガラスは、Ag膜の総厚みt2が20〜30nmの範囲であって、積層膜の比抵抗が(37.3/(t2―12)+2)×10―6Ωcm以下であった。 The specific resistance of the low emission glass of Example 2 and Comparative Example 2 is a value as shown in FIG. 4 with respect to the thickness of the Ag film. In Example 2, the specific film thickness is the same as that of Comparative Example 2 and is a comparative example. A low-radiation glass with lower resistance was obtained. In the low emission glass of Example 2, the total thickness t2 of the Ag film is in the range of 20 to 30 nm, and the specific resistance of the laminated film is (37.3 / (t2-12) +2) × 10 −6 Ωcm or less. there were.

実施例2および比較例2の、Ag膜の合計厚みが20nmの低放射ガラスについて、図8に示す分光透過率と図9に示す反射率の測定結果を得た。   With respect to the low emission glass having a total thickness of 20 nm of the Ag film of Example 2 and Comparative Example 2, measurement results of the spectral transmittance shown in FIG. 8 and the reflectance shown in FIG. 9 were obtained.

図8に示す可視光の透過率は、実施例の方が大きく、また、図9に示す赤外の反射も実施例の方が大きい。   The visible light transmittance shown in FIG. 8 is larger in the example, and the infrared reflection shown in FIG. 9 is also larger in the example.

従って、本発明によるAg膜の成膜方法による実施例の方が、同じAg膜の厚みとする従来技術に比べ、可視光の透過率の良い、しかも遮熱性能の良い、低放射ガラスであった。   Therefore, the embodiment using the method for forming an Ag film according to the present invention is a low radiation glass having a better visible light transmittance and better heat shielding performance than the conventional technique with the same Ag film thickness. It was.

本発明のAg膜の作製方法は、ガラス基板に限定されるものではなく、透明な樹脂板や樹脂フィルムにも応用されるものであり、従来よりも、可視光透過率の優れた透明な低放射板や低放射フィルム、さらには透明な電磁遮蔽板や電磁遮蔽フィルムの提供を可能にするものである。   The production method of the Ag film of the present invention is not limited to a glass substrate, but can be applied to a transparent resin plate or resin film. It is possible to provide a radiation plate, a low radiation film, and a transparent electromagnetic shielding plate and electromagnetic shielding film.

低放射ガラスの膜構成を示す断面図である。It is sectional drawing which shows the film | membrane structure of low radiation glass. 成膜装置の概略図である。It is the schematic of a film-forming apparatus. 実施例1および比較例1の低放射ガラスの膜構成を示す断面図である。It is sectional drawing which shows the film | membrane structure of the low radiation glass of Example 1 and Comparative Example 1. Ag膜の膜厚と比抵抗の関係を示すグラフである。It is a graph which shows the film thickness of Ag film | membrane, and the relationship of specific resistance. 透過率を示すグラフである。It is a graph which shows the transmittance | permeability. 反射率を示すグラフである。It is a graph which shows a reflectance. 実施例2および比較例2の低放射ガラスの膜構成を示す断面図である。It is sectional drawing which shows the film | membrane structure of the low radiation glass of Example 2 and Comparative Example 2. 透過率を示すグラフである。It is a graph which shows the transmittance | permeability. 反射率を示すグラフである。It is a graph which shows a reflectance.

符号の説明Explanation of symbols

1 ターゲット
2 基板ホルダー
3 ガラス基板
4 カソードマグネット
5 真空ポンプ
6 開閉バルブ
7 ガス導入管
8 真空チャンバー
9 電源コード
10 DC電源
11 酸化物膜
12 Ag膜
DESCRIPTION OF SYMBOLS 1 Target 2 Substrate holder 3 Glass substrate 4 Cathode magnet 5 Vacuum pump 6 On-off valve 7 Gas introduction tube 8 Vacuum chamber 9 Power cord 10 DC power source 11 Oxide film 12 Ag film

Claims (7)

低放射ガラスに用いられるAg膜の成膜方法において、Ag膜がマグネトロンスパッタリング法で成膜時の放電電圧が200〜350Vに保持されて成膜されることを特徴とするAg膜の成膜方法。   In a film formation method for an Ag film used for low emission glass, the Ag film is formed by magnetron sputtering while maintaining a discharge voltage of 200 to 350 V during film formation. . Agターゲット表面の磁界の強さが、Ag膜の成膜時に、700〜1200エルステッドに保持されていることを特徴とする請求項1に記載のAg膜の成膜方法。   2. The method of forming an Ag film according to claim 1, wherein the strength of the magnetic field on the surface of the Ag target is maintained at 700 to 1200 oersted when the Ag film is formed. ガラス基板上に酸化物膜とAg膜とが交互に2n(n≧1)層をなし、かつ最上層のAg膜の上に酸化物膜が積層されてなる低放射ガラスであって、該Ag膜が請求項1または2に記載の成膜方法のAg膜でなることを特徴とする低放射ガラス。   A low emission glass in which an oxide film and an Ag film are alternately formed on a glass substrate to form 2n (n ≧ 1) layers, and an oxide film is laminated on the uppermost Ag film. A low emission glass characterized in that the film is an Ag film of the film forming method according to claim 1 or 2. 請求項3に記載の低放射ガラスであって、n=1であり、第2層のAg膜の厚みt1が5〜30nmの範囲であって、積層膜の比抵抗が(35.8/t1+2.3)×10―6Ωcm以下であることを特徴とする請求項3に記載の低放ガラス。 4. The low emission glass according to claim 3, wherein n = 1, the thickness t1 of the second layer Ag film is in the range of 5 to 30 nm, and the specific resistance of the laminated film is (35.8 / t1 + 2). .3) × 10 −6 Ωcm or less, the low release glass according to claim 3. 第1層の酸化物膜が厚さ20〜60nmの範囲の酸化亜鉛膜でなり、第3層の酸化物膜が厚さ20〜60nmの範囲の酸化亜鉛膜でなり、可視光透過率が70%以上であることを特徴とする請求項4に記載の低放射ガラス。   The first layer oxide film is a zinc oxide film having a thickness of 20 to 60 nm, the third layer oxide film is a zinc oxide film having a thickness of 20 to 60 nm, and has a visible light transmittance of 70. The low emission glass according to claim 4, wherein the low emission glass is at least%. 請求項3に記載の低放射ガラスであって、n=2であり、Ag膜の総厚みt2が15〜35nmの範囲であって、積層膜の比抵抗が(168.6/t2+1.3)×10―6Ωcm以下であることを特徴とする請求項3に記載の低放射ガラス。 The low emission glass according to claim 3, wherein n = 2, the total thickness t2 of the Ag film is in the range of 15 to 35 nm, and the specific resistance of the laminated film is (168.6 / t2 + 1.3). The low emission glass according to claim 3, wherein the low emission glass is × 10 −6 Ωcm or less. 第1層の酸化物膜の厚さが20〜60nmの範囲の酸化亜鉛膜でなり、第2層のAg膜の厚みが7.5〜17.5nmの範囲にあり、第3層の酸化物膜が厚さ40〜120nmの範囲の酸化亜鉛膜でなり、第4層のAg膜の厚みが7.5〜17.5nmの範囲にあり、第5層の酸化物膜が厚さ20〜60nmの範囲の酸化亜鉛膜でなり、可視光透過率が70%以上であることを特徴とする請求項6に記載の低放射ガラス。   The thickness of the oxide film of the first layer is a zinc oxide film in the range of 20 to 60 nm, the thickness of the Ag film of the second layer is in the range of 7.5 to 17.5 nm, and the oxide of the third layer The film is a zinc oxide film having a thickness of 40 to 120 nm, the thickness of the fourth Ag film is in the range of 7.5 to 17.5 nm, and the oxide film of the fifth layer is 20 to 60 nm. The low-emission glass according to claim 6, wherein the low-emission glass is a zinc oxide film in the range of 1 to 5 and has a visible light transmittance of 70% or more.
JP2005280591A 2004-12-27 2005-09-27 Ag FILM FORMING METHOD AND LOW-EMISSIVITY GLASS Withdrawn JP2006206424A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005280591A JP2006206424A (en) 2004-12-27 2005-09-27 Ag FILM FORMING METHOD AND LOW-EMISSIVITY GLASS
PCT/JP2005/023756 WO2006070727A1 (en) 2004-12-27 2005-12-26 Ag FILM FORMING METHOD AND LOW EMISSIVITY GLASS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004377068 2004-12-27
JP2005280591A JP2006206424A (en) 2004-12-27 2005-09-27 Ag FILM FORMING METHOD AND LOW-EMISSIVITY GLASS

Publications (1)

Publication Number Publication Date
JP2006206424A true JP2006206424A (en) 2006-08-10

Family

ID=36614844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005280591A Withdrawn JP2006206424A (en) 2004-12-27 2005-09-27 Ag FILM FORMING METHOD AND LOW-EMISSIVITY GLASS

Country Status (2)

Country Link
JP (1) JP2006206424A (en)
WO (1) WO2006070727A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111455A1 (en) * 2007-03-14 2008-09-18 Central Glass Company, Limited Double glass
EP1975274A1 (en) * 2007-03-14 2008-10-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for manufacturing a heat insulated, highly transparent layer system and layer system produced according to this method
JP2010241638A (en) * 2009-04-06 2010-10-28 Riichi Murakami Thin film laminate with metal nanoparticle layer interposed
JP2012533514A (en) * 2009-07-23 2012-12-27 エルジー・ハウシス・リミテッド Low emission glass and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104773960A (en) * 2006-06-05 2015-07-15 皮尔金顿集团有限公司 Glass article having a zinc oxide coating and method for making same
CN104441815B (en) * 2014-11-12 2016-04-13 揭阳市宏光镀膜玻璃有限公司 A kind of two silver-colored LOW-E glass of golden class of high transmission rate and preparation method
FR3072957B1 (en) * 2017-10-30 2019-10-18 Saint-Gobain Glass France SUBSTRATE PROVIDED WITH A STACK WITH THERMAL PROPERTIES

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241740A (en) * 1985-08-19 1987-02-23 Nippon Sheet Glass Co Ltd Production of heat-reflection glass
JPH0823245A (en) * 1994-07-08 1996-01-23 Matsushita Electric Ind Co Ltd Constant voltage bridge circuit
JPH08104547A (en) * 1994-08-01 1996-04-23 Nippon Sheet Glass Co Ltd Heat insulating glass
JPH0985893A (en) * 1995-06-26 1997-03-31 Asahi Glass Co Ltd Laminate
JPH118066A (en) * 1997-06-13 1999-01-12 Tdk Corp Manufacturing equipment organic el element and organic el element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557462A (en) * 1995-01-17 1996-09-17 Guardian Industries Corp. Dual silver layer Low-E glass coating system and insulating glass units made therefrom
JP3785676B2 (en) * 1996-04-26 2006-06-14 旭硝子株式会社 Substrate with transparent conductive film and method for producing the same
JP2000294980A (en) * 1999-04-06 2000-10-20 Nippon Sheet Glass Co Ltd Translucent electromagnetic wave filter and fabrication thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241740A (en) * 1985-08-19 1987-02-23 Nippon Sheet Glass Co Ltd Production of heat-reflection glass
JPH0823245A (en) * 1994-07-08 1996-01-23 Matsushita Electric Ind Co Ltd Constant voltage bridge circuit
JPH08104547A (en) * 1994-08-01 1996-04-23 Nippon Sheet Glass Co Ltd Heat insulating glass
JPH0985893A (en) * 1995-06-26 1997-03-31 Asahi Glass Co Ltd Laminate
JPH118066A (en) * 1997-06-13 1999-01-12 Tdk Corp Manufacturing equipment organic el element and organic el element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111455A1 (en) * 2007-03-14 2008-09-18 Central Glass Company, Limited Double glass
JP2008222507A (en) * 2007-03-14 2008-09-25 Central Glass Co Ltd Multiple glass
EP1975274A1 (en) * 2007-03-14 2008-10-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for manufacturing a heat insulated, highly transparent layer system and layer system produced according to this method
JP2010241638A (en) * 2009-04-06 2010-10-28 Riichi Murakami Thin film laminate with metal nanoparticle layer interposed
JP2012533514A (en) * 2009-07-23 2012-12-27 エルジー・ハウシス・リミテッド Low emission glass and manufacturing method thereof

Also Published As

Publication number Publication date
WO2006070727A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
JP2006206424A (en) Ag FILM FORMING METHOD AND LOW-EMISSIVITY GLASS
JP3902676B2 (en) Transparent substrate with a thin film stack acting on sunlight and / or infrared
JP4519136B2 (en) Corrosion resistant low emissivity coating
JP2007191384A (en) Low emissivity glass
JP2007501766A (en) Transparent substrate including antireflection film
US20070108043A1 (en) Sputtering target including titanium silicon oxide and method of making coated article using the same
CN105152549A (en) Coated glass and preparation method thereof
EP3004015A2 (en) Low-emissivity glazing
KR20130051521A (en) A temperable low-emissivity glass and a method for preparing the same
JP2008297177A (en) Thermochromic glass and thermochromic double glazing glass
KR102565397B1 (en) Low Emissivity Coatings, Glass Surfaces Including Them, and Methods of Making Them
CN105130209A (en) High-transmittance low-cost color-adjustable low-radiation energy-saving glass and preparation method thereof
JP6024369B2 (en) Glass laminate for windows
JP2011173764A (en) Low radiation film
JP6601419B2 (en) Glass plate with laminated film and multilayer glass
WO2007072877A1 (en) Low emissivity glass
JP6703267B2 (en) Gray tone low emissivity glass
JPH07178866A (en) Heat ray-blocking film and production thereof
JP2022511863A (en) Coated glass plate
JP2007119303A (en) Low radiation laminate
JP2004207383A (en) Electromagnetic shielding film
JP2006317603A (en) Front surface mirror
WO2000048204A1 (en) Conductive nitride film, process for producing the same, and antireflection object
JP6767661B2 (en) Gray tones low emissivity glass
JP2008222507A (en) Multiple glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080411

RD04 Notification of resignation of power of attorney

Effective date: 20100325

Free format text: JAPANESE INTERMEDIATE CODE: A7424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A761 Written withdrawal of application

Effective date: 20111024

Free format text: JAPANESE INTERMEDIATE CODE: A761