JP2010239792A - Method of manufacturing bonded assembly made by bonding and fixing core member and ring-shaped rare earth permanent magnet - Google Patents

Method of manufacturing bonded assembly made by bonding and fixing core member and ring-shaped rare earth permanent magnet Download PDF

Info

Publication number
JP2010239792A
JP2010239792A JP2009085728A JP2009085728A JP2010239792A JP 2010239792 A JP2010239792 A JP 2010239792A JP 2009085728 A JP2009085728 A JP 2009085728A JP 2009085728 A JP2009085728 A JP 2009085728A JP 2010239792 A JP2010239792 A JP 2010239792A
Authority
JP
Japan
Prior art keywords
magnet
adhesive
core member
rare earth
modified silicone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009085728A
Other languages
Japanese (ja)
Inventor
Toshinobu Aranae
稔展 新苗
Masayuki Yoshimura
吉村  公志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009085728A priority Critical patent/JP2010239792A/en
Publication of JP2010239792A publication Critical patent/JP2010239792A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a bonded assembly that bonds a core member made of a magnetic material and a ring-shaped rare earth permanent magnet with a high bonding strength, and provides a superior anti-wettability to the magnet. <P>SOLUTION: In a method of manufacturing a bonded assembly made by bonding and fixing a core member and a ring-shaped rare earth permanent magnet together, a resin film is formed on the surface of the magnet by cation electrodeposition coating and the outer peripheral surface of the core member and the inner peripheral surface of the magnet are bonded using a modified silicone adhesive. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、コア部材とリング状希土類系永久磁石を接着固定してなる接着体の製造方法に関する。より詳細には、磁性素材などからなるコア部材と磁石を高い接着強度で接着し、かつ、磁石に対して優れた耐湿潤性を付与することができる接着体の製造方法に関する。   The present invention relates to a method for manufacturing an bonded body in which a core member and a ring-shaped rare earth-based permanent magnet are bonded and fixed. More specifically, the present invention relates to a method for manufacturing an bonded body that can bond a core member made of a magnetic material or the like and a magnet with high adhesive strength and can impart excellent wet resistance to the magnet.

自動車用モータなどに組み込まれて使用される、例えば珪素鋼や炭素鋼に代表される鉄系素材などの磁性素材などからなるコア部材(ロータコアなど)の外周面と、リング状希土類系永久磁石の内周面を接着固定してなる接着体は、その使用環境が苛酷なため、コア部材と磁石は高い接着強度で接着されていることが求められ、かつ、酸化腐食されやすい希土類系永久磁石に対しては優れた耐湿潤性が付与されていることが求められる。希土類系永久磁石に対して耐湿潤性を付与する方法は各種知られており、例えば磁石の表面に耐湿潤性被膜としての金属被膜を電気めっき法によって形成したり、樹脂被膜をスプレー塗装法によって形成したりする方法がある。しかしながら、磁石がリング状の場合、長尺になればなるほど、電気めっき法やスプレー塗装法ではその内周面に被膜を均一に形成することが困難になる。そのため、耐湿潤性被膜をリング状希土類系永久磁石の表面に形成する方法としては、磁石の内周面にも均一な被膜形成が可能なカチオン電着塗装法によって樹脂被膜を形成する方法が広く採用されている。   For example, an outer peripheral surface of a core member (such as a rotor core) made of a magnetic material such as silicon steel or carbon steel, which is used in an automobile motor, and a ring-shaped rare earth permanent magnet Adhesives formed by bonding and fixing the inner peripheral surface are used in harsh environments, so core members and magnets are required to be bonded with high adhesive strength, and are rare earth permanent magnets that are susceptible to oxidative corrosion. On the other hand, excellent wet resistance is required. Various methods for imparting wet resistance to a rare earth permanent magnet are known. For example, a metal film as a wet resistant film is formed on the surface of the magnet by electroplating, or a resin film is sprayed by spray coating. There is a method of forming. However, when the magnet is ring-shaped, the longer the magnet is, the more difficult it is to form a film uniformly on the inner peripheral surface by electroplating or spray coating. Therefore, as a method of forming a wet resistant coating on the surface of the ring-shaped rare earth permanent magnet, there is a wide range of methods of forming a resin coating by a cationic electrodeposition coating method that can form a uniform coating on the inner peripheral surface of the magnet. It has been adopted.

一方、コア部材と磁石の接着に使用する接着剤の選定も非常に重要である。接着強度だけを考えればエポキシ接着剤が好適であり、さらに例えば特許文献1では接着体の製造に適した熱硬化性エポキシ樹脂か否かを判断する方法が提案されている。しかしながら、エポキシ樹脂は剛直性が高いため、コア部材が鉄系素材からなる場合のように、コア部材と希土類系永久磁石の熱膨張係数が大きく異なると、温度変化によるコア部材と磁石の膨張や収縮に接着剤が追従することが困難になり、その結果、特に肉薄のリング状磁石では磁石が割れてしまう場合があるといった問題がある。そのため、コア部材と磁石の接着に使用する接着剤は、比較的柔軟性を有するものが望まれ、係る観点から、接着強度の点でも耐熱性の点でも優れているシリコーン接着剤が広く採用されている。   On the other hand, the selection of the adhesive used for bonding the core member and the magnet is also very important. Considering only the adhesive strength, an epoxy adhesive is suitable, and for example, Patent Document 1 proposes a method for determining whether or not a thermosetting epoxy resin is suitable for manufacturing an adhesive. However, since the epoxy resin is highly rigid, if the core member and the rare earth permanent magnet have large thermal expansion coefficients, as in the case where the core member is made of an iron-based material, the expansion of the core member and the magnet due to temperature change It becomes difficult for the adhesive to follow the shrinkage, and as a result, there is a problem that the magnet may break, particularly in a thin ring magnet. For this reason, it is desirable that the adhesive used for bonding the core member and the magnet be relatively flexible. From this viewpoint, silicone adhesives that are excellent in terms of adhesive strength and heat resistance are widely used. ing.

特開2005−171002号公報JP-A-2005-171002

以上のように、磁性素材などからなるコア部材とリング状希土類系永久磁石を接着固定してなる接着体の製造に際しては、磁石の表面にカチオン電着塗装法によって樹脂被膜を形成し、両者をシリコーン接着剤で接着する方法が広く採用されているが、それでもなお、時としてコア部材と磁石の間に十分な接着強度が得られなかったり、接着強度が十分であっても接着体が湿潤環境に晒されると、磁石が腐食することでその表面に形成された樹脂被膜の剥離が起こったりする場合がある。
そこで本発明は、磁性素材などからなるコア部材とリング状希土類系永久磁石を高い接着強度で接着し、かつ、磁石に対して優れた耐湿潤性を付与することができる接着体の製造方法を提供することを目的とする。
As described above, in the production of an adhesive body in which a core member made of a magnetic material or the like and a ring-shaped rare earth-based permanent magnet are bonded and fixed, a resin film is formed on the surface of the magnet by a cationic electrodeposition coating method. A method of bonding with a silicone adhesive is widely adopted, but still nonetheless, sufficient adhesive strength between the core member and the magnet is sometimes not obtained, or even if the adhesive strength is sufficient, the adhesive body is in a wet environment When exposed to, the magnet may corrode and the resin film formed on the surface may peel off.
Accordingly, the present invention provides a method for producing an adhesive body that can bond a core member made of a magnetic material or the like and a ring-shaped rare earth-based permanent magnet with high adhesive strength and can impart excellent wet resistance to the magnet. The purpose is to provide.

本発明者は、上記の点に鑑みて鋭意研究を重ねた結果、磁石の表面にカチオン電着塗装法によって樹脂被膜を形成し、コア部材と磁石をシリコーン接着剤で接着した場合に発生する上記の問題は、カチオン電着塗装法によって形成された樹脂被膜中に残存する塗料に含まれていたアミン成分が、シリコーン接着剤の硬化時に、その硬化触媒である白金触媒と反応してしまうことで白金触媒が不活化され、接着剤の硬化阻害が起こることによって未硬化部分が発生し、当該部分に起因して接着強度が十分に高まらなかったり、当該部分が磁石の表面に形成された樹脂被膜の近辺に発生した場合、当該部分に水分が浸入することでその水分が樹脂被膜を介して磁石の表面に到達してしまったりすることがその原因に挙げられることを突き止めた。以上の点に鑑みれば、アミン成分を含まないカチオン電着塗料を用いることで、このような現象を防ぐことが理論上可能となる。しかしながら、カチオン電着塗装法は、塗料を電気的に塗着させる方法であるため、使用される塗料は、樹脂にアミノ基を導入し、酸で中和した化学構造を有している。従って、カチオン電着塗装法を採用する限りは、被膜中へのアミン成分の混入は不可避といわざるを得ない。そこで本発明者は、コア部材と磁石の接着に使用する接着剤の再選定を行ったところ、シリコーン接着剤を変性シリコーン接着剤に代えることで、上記の問題を解決することができることを見出した。   As a result of intensive studies in view of the above points, the present inventors have formed a resin film on the surface of the magnet by a cationic electrodeposition coating method, and the above occurs when the core member and the magnet are bonded with a silicone adhesive The problem is that the amine component contained in the paint film remaining in the resin film formed by the cationic electrodeposition coating method reacts with the platinum catalyst that is the curing catalyst when the silicone adhesive is cured. Resin film in which the platinum catalyst is inactivated and uncured parts are generated due to the inhibition of curing of the adhesive, and the adhesive strength is not sufficiently increased due to the parts, or the part is formed on the surface of the magnet When it occurred in the vicinity of the above, it was found that the cause is that the moisture enters the portion and the moisture reaches the surface of the magnet through the resin film. In view of the above points, it is theoretically possible to prevent such a phenomenon by using a cationic electrodeposition paint that does not contain an amine component. However, since the cationic electrodeposition coating method is a method in which a paint is electrically applied, the paint used has a chemical structure in which an amino group is introduced into a resin and neutralized with an acid. Therefore, as long as the cationic electrodeposition coating method is employed, it is inevitable that the amine component is mixed into the film. Therefore, the present inventor re-selected the adhesive used for bonding the core member and the magnet, and found that the above problem can be solved by replacing the silicone adhesive with a modified silicone adhesive. .

以上の知見に基づいて完成された本発明のコア部材とリング状希土類系永久磁石を接着固定してなる接着体の製造方法は、請求項1記載の通り、磁石の表面にカチオン電着塗装法によって樹脂被膜を形成し、かつ、変性シリコーン接着剤を用いてコア部材の外周面と磁石の内周面を接着することを特徴とする。
また、請求項2記載の方法は、請求項1記載の方法において、変性シリコーン接着剤がアクリル変性シリコーン接着剤またはエポキシ変性シリコーン接着剤であることを特徴とする。
また、請求項3記載の方法は、請求項2記載の方法において、変性シリコーン接着剤がエポキシ変性シリコーン接着剤であって、カチオン電着塗装法によって形成される樹脂被膜がエポキシ樹脂被膜であることを特徴とする。
また、本発明のコア部材とリング状希土類系永久磁石を接着固定してなる接着体は、請求項4記載の通り、磁石の表面にカチオン電着塗装法によって樹脂被膜が形成され、かつ、変性シリコーン接着剤を用いてコア部材の外周面と磁石の内周面が接着されていることを特徴とする。
The method for producing an adhesive body obtained by bonding and fixing the core member of the present invention and a ring-shaped rare earth-based permanent magnet based on the above knowledge, as described in claim 1, includes a cationic electrodeposition coating method on the surface of the magnet. And forming a resin film and bonding the outer peripheral surface of the core member and the inner peripheral surface of the magnet using a modified silicone adhesive.
The method according to claim 2 is characterized in that, in the method according to claim 1, the modified silicone adhesive is an acrylic modified silicone adhesive or an epoxy modified silicone adhesive.
The method according to claim 3 is the method according to claim 2, wherein the modified silicone adhesive is an epoxy-modified silicone adhesive, and the resin film formed by the cationic electrodeposition coating method is an epoxy resin film. It is characterized by.
The bonded body obtained by bonding and fixing the core member of the present invention and the ring-shaped rare earth permanent magnet has a resin film formed on the surface of the magnet by a cationic electrodeposition coating method, and is modified. The outer peripheral surface of the core member and the inner peripheral surface of the magnet are bonded using a silicone adhesive.

本発明によれば、磁性素材などからなるコア部材とリング状希土類系永久磁石を高い接着強度で接着し、かつ、磁石に対して優れた耐湿潤性を付与することができる接着体の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the adhesive body which adhere | attaches the core member and ring-shaped rare earth-based permanent magnet which consist of magnetic materials etc. with high adhesive strength, and can provide the moisture resistance outstanding with respect to the magnet. Can be provided.

本発明のコア部材とリング状希土類系永久磁石を接着固定してなる接着体の製造方法は、磁石の表面にカチオン電着塗装法によって樹脂被膜を形成し、かつ、変性シリコーン接着剤を用いてコア部材の外周面と磁石の内周面を接着することを特徴とするものである。変性シリコーン接着剤は、末端にアルキルジアルコキシシリル基(R(RO)Si−:RとRは同一または異なっていてもよくそれぞれ炭素数1〜6の直鎖状または分岐鎖状のアルキル基、例えばメチル基、エチル基、イソプロピル基、n−ブチル基、n−ヘキシル基などである)を有するポリプロピレンオキシドからなる接着剤であり、硬化触媒を必要とせずに空気中の水分によって末端のアルキルジアルコキシシリル基が加水分解されることで重合反応を繰り返しながら硬化するため、磁石の表面にカチオン電着塗装法によって形成された樹脂被膜中に塗料に含まれていたアミン成分が残存していても、シリコーン接着剤のように硬化触媒の不活化によって接着剤の硬化阻害が起こるといったことがなく、また、硬化途中に水分が内部に浸入しても、当該水分は未硬化部分の硬化を促進し、その結果、接着強度がより高まる。従って、コア部材と磁石を高い接着強度で接着することができる。 The manufacturing method of the bonded body formed by bonding and fixing the core member and the ring-shaped rare earth permanent magnet of the present invention includes forming a resin film on the surface of the magnet by a cationic electrodeposition coating method, and using a modified silicone adhesive The outer peripheral surface of the core member and the inner peripheral surface of the magnet are bonded together. The modified silicone adhesive has a terminal alkyldialkoxysilyl group (R 1 (R 2 O) 2 Si—: R 1 and R 2 may be the same or different and each has a linear or branched structure having 1 to 6 carbon atoms. An adhesive composed of polypropylene oxide having a chain alkyl group, for example, a methyl group, an ethyl group, an isopropyl group, an n-butyl group, an n-hexyl group, and the like in the air without requiring a curing catalyst. The amine component contained in the paint in the resin coating formed on the surface of the magnet by the cationic electrodeposition coating method because the terminal alkyl dialkoxysilyl group is hydrolyzed by moisture and cured while repeating the polymerization reaction. Even if the resin remains, the curing of the adhesive is not inhibited by the inactivation of the curing catalyst as in the case of the silicone adhesive. Even moisture to penetrate into inside, the water will accelerate the curing of the uncured portions, as a result, the adhesive strength is enhanced. Therefore, the core member and the magnet can be bonded with high adhesive strength.

本発明において使用することができる変性シリコーン接着剤の種類は特段制限されるものではなく、例えばアクリル変性シリコーン接着剤やエポキシ変性シリコーン接着剤を挙げることができる。これらはアクリル樹脂(ポリメタクリル酸メチルやポリアクリル酸メチルなど)やエポキシ樹脂(ビスフェノールA型やビスフェノールF型など)を含んだ変性シリコーン接着剤として知られているものであり、市販もされているので汎用性が高い。アクリル変性シリコーン接着剤の市販品としては、セメダイン社製のスーパーX No.8008(商品名)などを例示することができ、エポキシ変性シリコーン接着剤の市販品としては、同社製のEP−001(商品名)などを例示することができる。これらをコア部材の外周面とカチオン電着塗装法によって形成された樹脂被膜を表面に有するリング状希土類系永久磁石の内周面の両方または一方に塗布した後、磁石の内径部にコア部材を挿入し、例えば20℃〜60℃で30分間〜2時間の乾燥処理を行うことで、高い接着強度で両者を接着することができる。なお、接着層の厚みは50μm以上が望ましい。厚みが薄すぎると、十分な接着強度を確保することができない恐れがあるからである。接着層の厚みの上限は特段制限されるものではないが、厚みが厚くなるとそれだけ接着層の形成が困難となり、また、接着剤としての機能が確保しにくくなることから、実用上、200μmがその上限となる。   The kind of the modified silicone adhesive that can be used in the present invention is not particularly limited, and examples thereof include an acrylic modified silicone adhesive and an epoxy modified silicone adhesive. These are known as modified silicone adhesives containing acrylic resins (such as polymethyl methacrylate and polymethyl acrylate) and epoxy resins (such as bisphenol A type and bisphenol F type) and are also commercially available. So versatility is high. Examples of commercially available acrylic-modified silicone adhesives include Super X No. manufactured by Cemedine. 8008 (trade name) and the like, and commercially available products of epoxy-modified silicone adhesives include EP-001 (trade name) manufactured by the same company. After these are applied to both or one of the outer peripheral surface of the core member and the inner peripheral surface of the ring-shaped rare earth permanent magnet having a resin coating formed by the cationic electrodeposition coating method, the core member is applied to the inner diameter portion of the magnet. By inserting and performing a drying treatment at 20 ° C. to 60 ° C. for 30 minutes to 2 hours, for example, both can be bonded with high adhesive strength. The thickness of the adhesive layer is desirably 50 μm or more. It is because there exists a possibility that sufficient adhesive strength cannot be ensured when thickness is too thin. The upper limit of the thickness of the adhesive layer is not particularly limited, but as the thickness increases, it becomes difficult to form the adhesive layer, and it is difficult to ensure the function as an adhesive. It becomes the upper limit.

本発明においてリング状希土類系永久磁石の表面にカチオン電着塗装法によって形成する樹脂被膜としては、例えばエポキシ樹脂被膜(ビスフェノールA型やビスフェノールF型など)を挙げることができる。カチオン電着塗装法によって磁石の表面に耐湿潤性被膜としてエポキシ樹脂被膜を形成し、コア部材との接着にエポキシ変性シリコーン接着剤を使用することで、磁石に対して優れた耐湿潤性を付与することができるとともに、両者をより高い接着強度で接着することができる。エポキシ樹脂系カチオン電着塗料の市販品としては、日本ペイント社製のパワーニクス(商品名)などを例示することができる。カチオン電着塗料の磁石の表面への塗着は、例えば塗料を浴液とし(固形分濃度は5質量%〜30質量%が望ましい)、磁石を陰極として、陽極との間に例えば50V〜450Vの電圧を印加して行うことができる。浴液の温度は例えば10℃〜50℃であり、処理時間は例えば30秒間〜10分間である。このようにして磁石の表面に塗着させた塗膜の乾燥処理(焼き付け処理)は、エポキシ樹脂被膜を形成する場合、例えば170℃〜230℃で30分間〜2時間行えばよい。なお、カチオン電着塗装法によって磁石の表面に形成する樹脂被膜の膜厚は1μm以上が望ましい。膜厚が薄すぎると、磁石に対して十分な耐湿潤性を付与することができない恐れがあるからである。樹脂被膜の膜厚の上限は特段制限されるものではないが、工業規模におけるカチオン電着塗装法での電着効率などに鑑みれば、実用上、50μmがその上限となる。   In the present invention, examples of the resin film formed on the surface of the ring-shaped rare earth permanent magnet by the cationic electrodeposition coating method include epoxy resin films (bisphenol A type, bisphenol F type, etc.). An epoxy resin coating is formed on the surface of the magnet as a moisture-resistant coating by the cationic electrodeposition coating method, and an epoxy-modified silicone adhesive is used for adhesion to the core member, giving the magnet excellent moisture resistance. And can be bonded with higher adhesive strength. Examples of commercially available epoxy resin-based cationic electrodeposition paints include Powernics (trade name) manufactured by Nippon Paint Co., Ltd. The cationic electrodeposition paint is applied to the surface of the magnet, for example, using the paint as a bath liquid (the solid content concentration is preferably 5% by mass to 30% by mass), and using the magnet as the cathode and the anode, for example, 50V to 450V. It can be performed by applying a voltage of. The temperature of the bath liquid is, for example, 10 ° C. to 50 ° C., and the treatment time is, for example, 30 seconds to 10 minutes. The drying treatment (baking treatment) of the coating film applied to the surface of the magnet in this way may be performed at 170 ° C. to 230 ° C. for 30 minutes to 2 hours, for example, when forming an epoxy resin coating. In addition, as for the film thickness of the resin film formed on the surface of a magnet by a cationic electrodeposition coating method, 1 micrometer or more is desirable. This is because if the film thickness is too thin, there is a possibility that sufficient wet resistance cannot be imparted to the magnet. The upper limit of the film thickness of the resin coating is not particularly limited, but in view of the electrodeposition efficiency in the cationic electrodeposition coating method on an industrial scale, 50 μm is practically the upper limit.

なお、リング状希土類系永久磁石により優れた耐湿潤性を付与するため、カチオン電着塗装法によって形成される樹脂被膜の下層にその他の耐湿潤性被膜(例えば化成処理被膜など)を形成してもよい。   In order to impart excellent wet resistance to the ring-shaped rare earth permanent magnet, another wet resistant film (for example, a chemical conversion film) is formed under the resin film formed by the cationic electrodeposition coating method. Also good.

以下、本発明を実施例によってさらに詳細に説明するが、本発明はこれに限定して解釈されるものではない。なお、以下の実施例と比較例は、例えば、米国特許4770723号公報に記載されているようにして、公知の鋳造インゴットを粗粉砕し、微粉砕後に成形、焼結、時効処理、表面加工を行った後、真空中(2Pa)で570℃で3時間の熱処理と460℃で6時間の熱処理を行うことによって得られた17Nd−1Pr−75Fe−7B組成(at%)の外径:43.1mm×内径:37.2mm×長さ:39.0mm寸法のリング状希土類系焼結磁石(以下、磁石体試験片と称する)を用いて行った。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is limited to this and is not interpreted. In the following Examples and Comparative Examples, for example, as described in US Pat. No. 4,770,723, a known cast ingot is roughly pulverized, and after fine pulverization, molding, sintering, aging treatment, and surface treatment are performed. After the heat treatment, the outer diameter of the 17Nd-1Pr-75Fe-7B composition (at%) obtained by heat treatment in vacuum (2 Pa) at 570 ° C. for 3 hours and heat treatment at 460 ° C. for 6 hours: 43. The measurement was performed using a ring-shaped rare earth-based sintered magnet (hereinafter referred to as a magnet specimen) having a size of 1 mm × inner diameter: 37.2 mm × length: 39.0 mm.

(実施例1)
超音波水洗を1分間行った磁石体試験片を、50gのパルシード1000MAと17.5gのAD−4990をイオン交換水1リットルに溶解し、アンモニア塩でpHを3.6に調整して調製した処理液(パルシード1000:日本パーカライジング社の商品名)に浸漬した後、160℃で35分間の乾燥処理を行うことで,磁石体試験片の表面に膜厚が約30nmの化成処理被膜を形成した。
次に、この表面に化成処理被膜を有する磁石体試験片を陰極として、エポキシ樹脂系カチオン電着塗料であるパワーニクス(日本ペイント社の商品名)からなる25℃の浴液(固形分濃度:20質量%)中で電着塗装を行った後(電圧:180V、処理時間:150秒間)、195℃で60分間の焼き付け乾燥を行い、化成処理被膜の表面に膜厚が20μmのエポキシ樹脂被膜を形成した。その後、エポキシ樹脂被膜中のアミン成分をできる限り除去するために、200℃で40分間の熱処理を行った。
アセトンに浸漬してから3分間の超音波洗浄を行った鉄芯からなるロータコア(φ:37.0mm×長さ:65.0mm、材質:SS400)の外周面の全面と、エタノールで拭くことで表面に付着している埃などを除去した、化成処理被膜を介してカチオン電着塗装法によって形成されたエポキシ樹脂被膜を表面に有する磁石体試験片の内周面の全面に、アクリル変性シリコーン接着剤(スーパーX No.8008:セメダイン社の商品名)を塗布し、ロータコアを磁石体試験片の内径部に挿入してから50℃で1.5時間の大気中での熱処理を行い、その後、室温で60時間放置することで、接着層の厚みを100μmとするロータコアと磁石体試験片(ラジアルリング)からなる接着体を得た。
この接着体を、温度が85℃で相対湿度が85%RHの高温高湿環境に250時間放置し、その前後におけるロータコアと磁石体試験片の間の剪断強度を、テンシロン万能試験機(UTM−1−5000C:東洋ボールドウィン社製)を用いて測定した結果、高温高湿環境に放置する前に2.56MPaであった剪断強度が、放置した後は3.27MPaまで上昇し、高温高湿環境に放置することによって接着強度が高まることがわかった。また、高温高湿環境に放置する前後いずれの場合においても、ロータコアと磁石体試験片の分離は接着剤の凝集破壊によるものであり、化成処理被膜を表面に有する磁石体試験片からのエポキシ樹脂被膜の剥離は観察されなかった。また、高温高湿環境に放置した後でも、磁石の腐食は認められず、実用上、問題となる磁気特性の劣化もなかった。
Example 1
A magnet specimen prepared by ultrasonic washing for 1 minute was prepared by dissolving 50 g of Pulseed 1000MA and 17.5 g of AD-4990 in 1 liter of ion-exchanged water and adjusting the pH to 3.6 with ammonia salt. After dipping in a treatment liquid (Pulseed 1000: trade name of Nippon Parkerizing Co., Ltd.), a chemical conversion treatment film having a film thickness of about 30 nm was formed on the surface of the magnet specimen by performing a drying treatment at 160 ° C. for 35 minutes. .
Next, a 25 ° C. bath solution (solid content concentration: made of Powernics (trade name of Nippon Paint Co., Ltd.)), which is an epoxy resin-based cationic electrodeposition paint, with a magnet body test piece having a chemical conversion coating on the surface as a cathode. 20 mass%) after electrodeposition coating (voltage: 180 V, treatment time: 150 seconds), baked and dried at 195 ° C. for 60 minutes to form a 20 μm-thick epoxy resin coating on the surface of the chemical conversion coating Formed. Then, in order to remove the amine component in an epoxy resin film as much as possible, the heat processing for 40 minutes was performed at 200 degreeC.
By wiping with ethanol on the entire outer peripheral surface of a rotor core (φ: 37.0 mm × length: 65.0 mm, material: SS400) made of iron core that has been ultrasonically cleaned for 3 minutes after being immersed in acetone. Adhesion of acrylic-modified silicone to the entire inner peripheral surface of a magnet specimen having an epoxy resin coating formed on the surface through a chemical conversion coating and removing the dust adhering to the surface. Agent (Super X No. 8008: trade name of Cemedine Co., Ltd.), and after the rotor core was inserted into the inner diameter part of the magnet body test piece, heat treatment was performed in the atmosphere at 50 ° C. for 1.5 hours, By leaving it to stand at room temperature for 60 hours, an adhesive body comprising a rotor core and a magnet body test piece (radial ring) with an adhesive layer thickness of 100 μm was obtained.
The bonded body was left in a high-temperature and high-humidity environment having a temperature of 85 ° C. and a relative humidity of 85% RH for 250 hours, and the shear strength between the rotor core and the magnet specimen before and after that was measured using a Tensilon universal testing machine (UTM- 1-5000C: manufactured by Toyo Baldwin), the shear strength, which was 2.56 MPa before being left in a high-temperature and high-humidity environment, increased to 3.27 MPa after being left as it was. It was found that the adhesive strength was increased by leaving it alone. Also, in both cases before and after leaving in a high temperature and high humidity environment, the separation of the rotor core and the magnet specimen is due to cohesive failure of the adhesive, and the epoxy resin from the magnet specimen having the chemical conversion coating on the surface No film peeling was observed. Further, even after being left in a high-temperature and high-humidity environment, no corrosion of the magnet was observed, and there was no practical deterioration of magnetic properties.

(実施例2)
アクリル変性シリコーン接着剤を使用する代わりにエポキシ変性シリコーン接着剤(EP−001:セメダイン社の商品名)を使用すること以外は実施例1と同様にしてロータコアと磁石体試験片からなる接着体を得た。この接着体に対し、実施例1と同様の試験を行った。その結果、高温高湿環境に放置する前に6.12MPaであった剪断強度が、放置した後は7.22MPaまで上昇し、高温高湿環境に放置することによって優れた接着強度がより高まることがわかった。また、高温高湿環境に放置する前後いずれの場合においても、ロータコアと磁石体試験片の分離は接着剤の凝集破壊によるものであり、化成処理被膜を表面に有する磁石体試験片からのエポキシ樹脂被膜の剥離は観察されなかった。また、高温高湿環境に放置した後でも、磁石の腐食は認められず、実用上、問題となる磁気特性の劣化もなかった。
(Example 2)
In the same manner as in Example 1 except that an epoxy-modified silicone adhesive (EP-001: trade name of Cemedine Co.) was used instead of an acrylic-modified silicone adhesive, an adhesive body comprising a rotor core and a magnet specimen was prepared. Obtained. The same test as in Example 1 was performed on this bonded body. As a result, the shear strength, which was 6.12 MPa before being left in a high-temperature and high-humidity environment, rises to 7.22 MPa after being left, and the excellent adhesive strength is further increased by leaving it in a high-temperature and high-humidity environment. I understood. Also, in both cases before and after leaving in a high temperature and high humidity environment, the separation of the rotor core and the magnet specimen is due to cohesive failure of the adhesive, and the epoxy resin from the magnet specimen having the chemical conversion coating on the surface No film peeling was observed. Further, even after being left in a high-temperature and high-humidity environment, no corrosion of the magnet was observed, and there was no practical deterioration of magnetic properties.

(比較例1)
アクリル変性シリコーン接着剤を使用する代わりにシリコーン接着剤(SE1750:東レ・ダウコーニング社の商品名)を使用し、熱処理を150℃で1.5時間行うこと以外は実施例1と同様にしてロータコアと磁石体試験片からなる接着体を得た。この接着体に対し、実施例1と同様の試験を行った。その結果、高温高湿環境に放置する前に3.22MPaであった剪断強度が、放置した後は3.00MPaまで低下した。また、高温高湿環境に放置した後では、化成処理被膜を表面に有する磁石体試験片からのエポキシ樹脂被膜の剥離が、磁石体試験片の内周面の約1/8の面積で観察された。
(Comparative Example 1)
A rotor core was prepared in the same manner as in Example 1 except that a silicone adhesive (SE1750: trade name of Toray Dow Corning) was used in place of the acrylic-modified silicone adhesive and the heat treatment was performed at 150 ° C. for 1.5 hours. And an adhesive body comprising a magnet specimen was obtained. The same test as in Example 1 was performed on this bonded body. As a result, the shear strength, which was 3.22 MPa before leaving in a high temperature and high humidity environment, dropped to 3.00 MPa after being left. In addition, after leaving in a high temperature and high humidity environment, peeling of the epoxy resin coating from the magnet specimen having the chemical conversion coating on the surface is observed in an area of about 1/8 of the inner peripheral surface of the magnet specimen. It was.

(比較例2)
アクリル変性シリコーン接着剤を使用する代わりにシリコーン接着剤(Q3−6611,Black:東レ・ダウコーニング社の商品名)を使用し、熱処理を150℃で1.5時間行うこと以外は実施例1と同様にしてロータコアと磁石体試験片からなる接着体を得た。この接着体に対し、実施例1と同様の試験を行った。その結果、高温高湿環境に放置する前に3.95MPaであった剪断強度が、放置した後は3.46MPaまで低下した。また、高温高湿環境に放置した後では、化成処理被膜を表面に有する磁石体試験片からのエポキシ樹脂被膜の剥離が、磁石体試験片の内周面の約1/3の面積で観察された。
(Comparative Example 2)
Example 1 except that a silicone adhesive (Q3-6611, Black: trade name of Toray Dow Corning) is used instead of the acrylic-modified silicone adhesive, and the heat treatment is performed at 150 ° C. for 1.5 hours. Similarly, an adhesive body composed of a rotor core and a magnet specimen was obtained. The same test as in Example 1 was performed on this bonded body. As a result, the shear strength, which was 3.95 MPa before leaving in a high temperature and high humidity environment, dropped to 3.46 MPa after leaving. In addition, after leaving in a high temperature and high humidity environment, peeling of the epoxy resin coating from the magnet specimen having the chemical conversion coating on the surface is observed in an area of about 1/3 of the inner peripheral surface of the magnet specimen. It was.

(比較例3)
アクリル変性シリコーン接着剤を使用する代わりにウレタン接着剤(アロンマイティーPU−62:東亜合成社の商品名)を使用し、熱処理を80℃で1時間行うこと以外は実施例1と同様にしてロータコアと磁石体試験片からなる接着体を得た。この接着体に対し、実施例1と同様の試験を行った。その結果、高温高湿環境に放置する前後いずれの場合においても、ロータコアと磁石体試験片の分離は接着剤の凝集破壊によるものであり、化成処理被膜を表面に有する磁石体試験片からのエポキシ樹脂被膜の剥離は観察されなかったが、高温高湿環境に放置する前でも1.73MPaしかなかった剪断強度が、放置した後はさらに1.24MPaまで低下した。
(Comparative Example 3)
Rotor core in the same manner as in Example 1 except that urethane adhesive (Aronmighty PU-62: trade name of Toa Gosei Co., Ltd.) was used instead of acrylic modified silicone adhesive, and heat treatment was performed at 80 ° C. for 1 hour. And an adhesive body comprising a magnet specimen was obtained. The same test as in Example 1 was performed on this bonded body. As a result, in both cases before and after leaving in a high temperature and high humidity environment, the separation of the rotor core and the magnet specimen is due to the cohesive failure of the adhesive, and the epoxy from the magnet specimen having the chemical conversion coating on the surface. Although peeling of the resin film was not observed, the shear strength, which was only 1.73 MPa even before being left in a high-temperature and high-humidity environment, further decreased to 1.24 MPa after being left.

(参考例1)
実施例1で得た、化成処理被膜を介してカチオン電着塗装法によって形成されたエポキシ樹脂被膜を表面に有する磁石体試験片を、温度が85℃で相対湿度が85%RHの高温高湿環境に1000時間放置した後、その外周面と内周面の全面で碁盤目テープ試験を行ったところ、化成処理被膜を表面に有する磁石体試験片からのエポキシ樹脂被膜の剥離は観察されなかった。従って、この結果から、化成処理被膜を介してカチオン電着塗装法によって形成されたエポキシ樹脂被膜を表面に有する磁石体試験片自体は、耐湿潤性に優れることが確認できた。
(Reference Example 1)
The magnet body test piece having the epoxy resin coating formed on the surface thereof by the cationic electrodeposition coating method through the chemical conversion coating obtained in Example 1 was subjected to a high temperature and high humidity at a temperature of 85 ° C. and a relative humidity of 85% RH. After leaving in the environment for 1000 hours, a cross-cut tape test was performed on the entire outer peripheral surface and inner peripheral surface, and no peeling of the epoxy resin coating from the magnet specimen having the chemical conversion coating on the surface was observed. . Therefore, from this result, it was confirmed that the magnet body test piece itself having an epoxy resin coating formed on the surface through the chemical conversion coating by the cationic electrodeposition coating method is excellent in moisture resistance.

(参考例2)
実施例1で得た、化成処理被膜を介してカチオン電着塗装法によって形成されたエポキシ樹脂被膜を表面に有する磁石体試験片を、温度が85℃で相対湿度が85%RHの高温高湿環境に1000時間放置した後、磁石体試験片を縦:5mm×横:5mmの大きさに切断し、内周面に形成されたエポキシ樹脂被膜の密着強度をピンテスター装置(Ebastian Five:Quad Group社の商品名)により測定した。その結果、密着強度は55MPaであり、優れた数値を示した。従って、この結果からも、化成処理被膜を介してカチオン電着塗装法によって形成されたエポキシ樹脂被膜を表面に有する磁石体試験片自体は、耐湿潤性に優れることが確認できた。なお、密着強度の測定は、ピンとしてP/N 901106を使用し、接着剤が塗布されているピンの先端を磁石切断片に押し当ててピンを磁石切断片に垂直に起立させ、この状態を専用クリップで固定して150℃で1.5時間の熱処理を行い、室温まで冷却してからピンを磁石切断片と反対方向に引っ張ることで行った。
(Reference Example 2)
The magnet body test piece having the epoxy resin coating formed on the surface thereof by the cationic electrodeposition coating method through the chemical conversion coating obtained in Example 1 was subjected to a high temperature and high humidity at a temperature of 85 ° C. and a relative humidity of 85% RH. After leaving it in the environment for 1000 hours, the magnet body test piece is cut into a size of 5 mm × 5 mm in width, and the adhesion strength of the epoxy resin coating formed on the inner peripheral surface is measured by a pin tester device (Ebastian Five: Quad Group). (Trade name of the company). As a result, the adhesion strength was 55 MPa, indicating an excellent numerical value. Therefore, also from this result, it was confirmed that the magnet body test piece itself having an epoxy resin coating formed on the surface through the chemical conversion coating by the cationic electrodeposition coating method has excellent wet resistance. For the measurement of the adhesion strength, P / N 901106 was used as a pin, the tip of the pin to which the adhesive was applied was pressed against the magnet cutting piece, and the pin was erected vertically to the magnet cutting piece. The sample was fixed with a special clip and heat-treated at 150 ° C. for 1.5 hours. After cooling to room temperature, the pin was pulled in the direction opposite to the magnet cut piece.

(参考例3)
実施例1に記載のロータコアと、実施例1で得た、化成処理被膜だけを表面に有する磁石体試験片を、シリコーン接着剤(SE1750:東レ・ダウコーニング社の商品名)を使用し、熱処理を150℃で1.5時間行うことで接着して得た接着体(接着層の厚み:100μm)に対し、実施例1と同様の試験を行った。その結果、高温高湿環境に放置する前の4.35MPaであった剪断強度が、放置した後は4.06MPaまで低下したが、依然、優れた数値を示した。また、高温高湿環境に放置した後でも、磁石の腐食は認められず、実用上、問題となる磁気特性の劣化もなかった。従って、この結果から、ロータコアと化成処理被膜だけを表面に有する磁石体試験片をシリコーン接着剤で接着した場合、高温高湿環境に放置した後でも、両者は高い接着強度で接着され、磁石体試験片は耐湿潤性に優れることが確認できた。
(Reference Example 3)
The rotor core described in Example 1 and the magnet body test piece obtained in Example 1 having only the chemical conversion coating film on the surface are heat-treated using a silicone adhesive (SE1750: trade name of Toray Dow Corning). The same test as in Example 1 was performed on an adhesive body (adhesive layer thickness: 100 μm) obtained by bonding at 150 ° C. for 1.5 hours. As a result, the shear strength, which was 4.35 MPa before being left in a high-temperature and high-humidity environment, decreased to 4.06 MPa after being left, but still showed excellent numerical values. Further, even after being left in a high-temperature and high-humidity environment, no corrosion of the magnet was observed, and there was no practical deterioration of magnetic properties. Therefore, from this result, when the magnet body test piece having only the rotor core and the chemical conversion coating on the surface is bonded with a silicone adhesive, both are bonded with high adhesive strength even after being left in a high temperature and high humidity environment. It was confirmed that the test piece was excellent in moisture resistance.

(まとめ)
実施例1と実施例2から明らかなように、変性シリコーン接着剤を用いてロータコアと磁石体試験片の接着を行うことで、磁石体試験片が表面にカチオン電着塗装法によって形成されたエポキシ樹脂被膜を有していても、両者を高い接着強度で接着することができること、高温高湿環境に放置することで環境中の水分によって接着剤の硬化が促進されて接着強度が高まること、磁石体試験片には優れた耐湿潤性が付与されていることがわかった。これに対し、比較例1と比較例2から明らかなように、シリコーン接着剤を用いた場合、両者を高い接着強度で接着することができるものの、高温高湿環境に放置すると、接着強度が低下するとともに、カチオン電着塗装法によって形成されたエポキシ樹脂被膜の膜下で磁石体試験片の腐食が進行することによってエポキシ樹脂被膜の剥離が起こることがわかった。参考例1と参考例2において、化成処理被膜を介してカチオン電着塗装法によって形成されたエポキシ樹脂被膜を表面に有する磁石体試験片自体は、耐湿潤性に優れることが確認され、参考例3において、ロータコアと化成処理被膜だけを表面に有する磁石体試験片の接着をシリコーン接着剤を用いて行った場合には、高温高湿環境に放置した後でも磁石体試験片が腐食しないことが確認されたことから、比較例1と比較例2において接着体の接着強度の低下とエポキシ樹脂被膜の剥離が起こったのは、カチオン電着塗装法によって形成されたエポキシ樹脂被膜中に残存する塗料に含まれていたアミン成分が、シリコーン接着剤の硬化時に、その硬化触媒である白金触媒と反応してしまうことで白金触媒が不活化され、接着剤の硬化阻害が起こることがその原因に挙げられることがわかった。また、比較例3から明らかなように、ウレタン接着剤を用いた場合には、ロータコアと磁石体試験片を高い接着強度で接着することができないことがわかった。
(Summary)
As is clear from Example 1 and Example 2, an epoxy in which a magnet body test piece was formed on the surface by a cationic electrodeposition coating method by bonding a rotor core and a magnet body test piece using a modified silicone adhesive. Even if it has a resin coating, both can be bonded with high adhesive strength, and when left in a high-temperature and high-humidity environment, curing of the adhesive is accelerated by moisture in the environment, increasing the adhesive strength, magnet It was found that the body specimen had excellent wet resistance. On the other hand, as is clear from Comparative Example 1 and Comparative Example 2, when a silicone adhesive is used, both can be bonded with high adhesive strength, but when left in a high-temperature and high-humidity environment, the adhesive strength decreases. In addition, it has been found that the epoxy resin coating is peeled off as the corrosion of the magnet specimen proceeds under the epoxy resin coating formed by the cationic electrodeposition coating method. In Reference Example 1 and Reference Example 2, it was confirmed that the magnet test piece itself having an epoxy resin coating formed on the surface thereof by a cationic electrodeposition coating method through a chemical conversion coating was excellent in moisture resistance. 3, when the magnetic body test piece having only the rotor core and the chemical conversion coating film is bonded using a silicone adhesive, the magnetic body test piece may not corrode even after being left in a high temperature and high humidity environment. It was confirmed that the decrease in the adhesive strength of the adhesive and the peeling of the epoxy resin coating in Comparative Examples 1 and 2 occurred in the paint remaining in the epoxy resin coating formed by the cationic electrodeposition coating method. The amine component contained in the catalyst reacts with the platinum catalyst that is the curing catalyst when the silicone adhesive is cured, thereby inactivating the platinum catalyst and inhibiting the curing of the adhesive. Rukoto was found to be mentioned in the cause. Further, as is clear from Comparative Example 3, it was found that when a urethane adhesive was used, the rotor core and the magnet specimen could not be bonded with high adhesive strength.

本発明は、磁性素材などからなるコア部材とリング状希土類系永久磁石を高い接着強度で接着し、かつ、磁石に対して優れた耐湿潤性を付与することができる接着体の製造方法を提供することができる点において産業上の利用可能性を有する。


The present invention provides a method for producing an adhesive body that can bond a core member made of a magnetic material or the like and a ring-shaped rare earth-based permanent magnet with high adhesive strength and can impart excellent wet resistance to the magnet. It has industrial applicability in that it can be done.


Claims (4)

コア部材とリング状希土類系永久磁石を接着固定してなる接着体の製造方法であって、磁石の表面にカチオン電着塗装法によって樹脂被膜を形成し、かつ、変性シリコーン接着剤を用いてコア部材の外周面と磁石の内周面を接着することを特徴とする方法。   A method of manufacturing an adhesive body in which a core member and a ring-shaped rare earth permanent magnet are bonded and fixed, wherein a resin film is formed on the surface of a magnet by a cationic electrodeposition coating method, and a core is formed using a modified silicone adhesive A method comprising bonding an outer peripheral surface of a member and an inner peripheral surface of a magnet. 変性シリコーン接着剤がアクリル変性シリコーン接着剤またはエポキシ変性シリコーン接着剤であることを特徴とする請求項1記載の方法。   The method of claim 1 wherein the modified silicone adhesive is an acrylic modified silicone adhesive or an epoxy modified silicone adhesive. 変性シリコーン接着剤がエポキシ変性シリコーン接着剤であって、カチオン電着塗装法によって形成される樹脂被膜がエポキシ樹脂被膜であることを特徴とする請求項2記載の方法。   The method according to claim 2, wherein the modified silicone adhesive is an epoxy-modified silicone adhesive, and the resin film formed by a cationic electrodeposition coating method is an epoxy resin film. コア部材とリング状希土類系永久磁石を接着固定してなる接着体であって、磁石の表面にカチオン電着塗装法によって樹脂被膜が形成され、かつ、変性シリコーン接着剤を用いてコア部材の外周面と磁石の内周面が接着されていることを特徴とする接着体。


An adhesive body formed by bonding and fixing a core member and a ring-shaped rare earth permanent magnet, a resin film is formed on the surface of the magnet by a cationic electrodeposition coating method, and the outer periphery of the core member is formed using a modified silicone adhesive An adhesive body characterized in that a surface and an inner peripheral surface of a magnet are bonded.


JP2009085728A 2009-03-31 2009-03-31 Method of manufacturing bonded assembly made by bonding and fixing core member and ring-shaped rare earth permanent magnet Pending JP2010239792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009085728A JP2010239792A (en) 2009-03-31 2009-03-31 Method of manufacturing bonded assembly made by bonding and fixing core member and ring-shaped rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009085728A JP2010239792A (en) 2009-03-31 2009-03-31 Method of manufacturing bonded assembly made by bonding and fixing core member and ring-shaped rare earth permanent magnet

Publications (1)

Publication Number Publication Date
JP2010239792A true JP2010239792A (en) 2010-10-21

Family

ID=43093636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009085728A Pending JP2010239792A (en) 2009-03-31 2009-03-31 Method of manufacturing bonded assembly made by bonding and fixing core member and ring-shaped rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP2010239792A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121149A1 (en) * 2015-01-30 2016-08-04 三菱電機株式会社 Magnet adhesive member
CN110771010A (en) * 2017-08-21 2020-02-07 爱信艾达株式会社 Method and apparatus for manufacturing rotor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004135426A (en) * 2002-10-10 2004-04-30 Matsushita Electric Ind Co Ltd Permanent magnet rotor and motor using the same
JP2005020871A (en) * 2003-06-25 2005-01-20 Canon Inc Linear motor, positioning device equipped with it, and exposure system
JP2005039255A (en) * 2003-07-03 2005-02-10 Neomax Co Ltd Rare-earth permanent magnet, rotator, and wind power generator
JP2009033946A (en) * 2007-06-28 2009-02-12 Shin Etsu Chem Co Ltd Axial gap-type rotary machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004135426A (en) * 2002-10-10 2004-04-30 Matsushita Electric Ind Co Ltd Permanent magnet rotor and motor using the same
JP2005020871A (en) * 2003-06-25 2005-01-20 Canon Inc Linear motor, positioning device equipped with it, and exposure system
JP2005039255A (en) * 2003-07-03 2005-02-10 Neomax Co Ltd Rare-earth permanent magnet, rotator, and wind power generator
JP2009033946A (en) * 2007-06-28 2009-02-12 Shin Etsu Chem Co Ltd Axial gap-type rotary machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121149A1 (en) * 2015-01-30 2016-08-04 三菱電機株式会社 Magnet adhesive member
JPWO2016121149A1 (en) * 2015-01-30 2017-08-17 三菱電機株式会社 Elevator hoist motor and actuator
CN107210112A (en) * 2015-01-30 2017-09-26 三菱电机株式会社 Magnet convered structure
CN107210112B (en) * 2015-01-30 2018-12-18 三菱电机株式会社 Magnet convered structure
CN110771010A (en) * 2017-08-21 2020-02-07 爱信艾达株式会社 Method and apparatus for manufacturing rotor
CN110771010B (en) * 2017-08-21 2021-06-18 爱信艾达株式会社 Method and apparatus for manufacturing rotor

Similar Documents

Publication Publication Date Title
JP4452220B2 (en) Composite and production method thereof
Lu et al. Improvement of protection performance of Mg-rich epoxy coating on AZ91D magnesium alloy by DC anodic oxidation
Lu et al. Evaluation of the micro-arc oxidation treatment effect on the protective performance of a Mg-rich epoxy coating on AZ91D magnesium alloy
CN109421207B (en) Method for manufacturing metal-polymer resin bonded member
US9136244B2 (en) Semiconductor package having a metal member and a resin mold, which are bonded to a silane coupling agent and an intermediate layer of an oxide film
WO2016121149A1 (en) Magnet adhesive member
TWI624523B (en) Heat-hardening type magnetic adhesive composition and subsequent sheet
JP2012157991A (en) Metal-resin composite and production process thereof
JP4241906B1 (en) Rare earth permanent magnet
TW202244301A (en) Surface treatment method, surface treatement agent, method for producing bonded body, method for producing substance having conductor coating, method for producing substance on which coating film is formed, method for producing conductor-coated resin substrate, method for producing waveguid, method for producing circuit board or antenna, and compound
JP2010239792A (en) Method of manufacturing bonded assembly made by bonding and fixing core member and ring-shaped rare earth permanent magnet
Fabiano et al. Assessment of corrosion resistance of Nd–Fe–B magnets by silanization for orthodontic applications
JP4363480B2 (en) Rare earth permanent magnet
JPH0347750A (en) Composite damping material and method for damping execution of vibrator
CN103441625B (en) A kind of selective plating method of rare-earth permanent magnet motor rotor magnetic shoe
JP4317827B2 (en) High release silicone rubber roll and method for producing the same
JP2008090052A (en) Method of manufacturing optical isolator, and optical isolator
JP2004123769A (en) Method for adhesion treatment of heat-resistant sheet and pressure-sensitive adhesive sheet
JPWO2013168616A1 (en) MASKING MATERIAL, MASKING MATERIAL MANUFACTURING METHOD, MASKING MEMBER, MASKING METHOD, AND COATING MEMBER MANUFACTURING METHOD
JP2007049834A (en) Permanent magnet type rotor, its manufacturing method and servo motor
JP2015228757A (en) IPM motor
JP2021504447A5 (en)
JP2012188480A (en) Composition and composite of polyphenylene sulfide resin, and method for producing them
JP4706392B2 (en) Magnetic encoder, manufacturing method thereof, and rolling bearing unit
JP2003224944A (en) Permanent magnet rotor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130709