JP2010239151A - Integrated optical waveguide element - Google Patents

Integrated optical waveguide element Download PDF

Info

Publication number
JP2010239151A
JP2010239151A JP2010142603A JP2010142603A JP2010239151A JP 2010239151 A JP2010239151 A JP 2010239151A JP 2010142603 A JP2010142603 A JP 2010142603A JP 2010142603 A JP2010142603 A JP 2010142603A JP 2010239151 A JP2010239151 A JP 2010239151A
Authority
JP
Japan
Prior art keywords
ridge
optical waveguide
layer
emitting device
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010142603A
Other languages
Japanese (ja)
Inventor
Toshihiko Fukamachi
俊彦 深町
Shigeki Makino
茂樹 牧野
Takafumi Taniguchi
隆文 谷口
Masahiro Aoki
雅博 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Opnext Japan Inc
Original Assignee
Opnext Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Opnext Japan Inc filed Critical Opnext Japan Inc
Priority to JP2010142603A priority Critical patent/JP2010239151A/en
Publication of JP2010239151A publication Critical patent/JP2010239151A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that it is difficult to achieve reduction of cost and power consumption without degrading original performance using a conventional semiconductor light emitting device due to its low light output at a constant actuating current and due to restriction in ridge width when it is integrated with an optical element such as a Mach-Zehnder optical modulator. <P>SOLUTION: In the semiconductor light emitting device having a ridge, ridge width is widened while keeping single transverse mode by setting a low refractive index difference between the ridge and other components. In this device, generation of diffusion current and increase in refractive index difference are prevented by forming substantially vertical grooves along both sides of the ridge, and degradation of performance due to regrowth is prevented by forming a diffraction grating on the ridge. When it is integrated with an optical element such as a Mach-Zehnder optical modulator, the semiconductor light emitting device is integrated with the optical element by using a tapered waveguide without increasing the number of growth cycles with no restriction of the ridge with. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体発光装置、および、半導体発光装置と光変調器を集積した集積型光導波路素子に関する。   The present invention relates to a semiconductor light emitting device and an integrated optical waveguide element in which the semiconductor light emitting device and an optical modulator are integrated.

近年、半導体発光装置および半導体発光装置を電界吸収型光変調器と集積した集積型半導体光導波路素子の低消費電力化と低コスト化がますます重要となってきた。半導体発光装置には主にリッジ型と埋込型があり、この内リッジ型は作製が容易で成長回数が少ないので低コスト化に有利な点から、情報用・通信用ともに開発が活発となっている。リッジ型半導体発光装置はn型半導体からなる基板上に、下部クラッド層、多重もしくは単一井戸層、上部クラッド層、リッジを積層することにより形成される。このリッジ型半導体発光装置とリッジを有する電界吸収型光変調器部を共通の基板上に集積して集積型半導体光導波路素子(EA/DFB)が構成される。   In recent years, it has become increasingly important to reduce the power consumption and the cost of integrated semiconductor optical waveguide devices in which semiconductor light-emitting devices and semiconductor light-emitting devices are integrated with electroabsorption optical modulators. Semiconductor light-emitting devices are mainly divided into ridge type and embedded type. Among these, the ridge type is easy to manufacture and has a small number of growths, which is advantageous for cost reduction. ing. A ridge-type semiconductor light-emitting device is formed by laminating a lower clad layer, a multiple or single well layer, an upper clad layer, and a ridge on a substrate made of an n-type semiconductor. The integrated semiconductor optical waveguide device (EA / DFB) is configured by integrating the ridge type semiconductor light emitting device and the electroabsorption optical modulator having the ridge on a common substrate.

情報の分野では記録する情報量の増加とともに、その高速記録が要求され、その結果半導体発光装置の高出力化が求められるようになった。それには動作電流を大きくすればよいが、低消費電力化に不利となっている。一方、通信の分野において現在の幹線系と都市系ネットワークでは、伝送速度は2.5Gbit/sあるいは10Gbit/sが主流となっている。このため、送信器の高速変調には光変調器をモノリシックに集積した集積型半導体光導波路素子の形態が低コスト化には有利である。しかし、一方、伝送距離の増大と高ビットレート化とともに消費電力が増大する。そこで、これを低消費電力化する目的で−5〜85℃において温度調節の必要のないEA/DFBの開発が行われるようになった(非特許文献1:OFCNFOEC OFC POSTDEADLINE PAPERS Thursday, March 10, 2005 PDP14)。これを達成するには半導体発光装置の一定動作電流下におけるさらなる光出力の高出力化が必要となっている。このように情報用と通信用ともに半導体発光装置の低消費電力化には一定動作電流下における光出力の高出力化が求められる。   In the field of information, with the increase in the amount of information to be recorded, high speed recording is required, and as a result, high output of the semiconductor light emitting device has been required. For this purpose, it is sufficient to increase the operating current, but this is disadvantageous for low power consumption. On the other hand, in the field of communication, in the current trunk line system and urban network, the transmission speed is mainly 2.5 Gbit / s or 10 Gbit / s. Therefore, an integrated semiconductor optical waveguide device in which optical modulators are monolithically integrated is advantageous for cost reduction for high-speed modulation of a transmitter. However, on the other hand, power consumption increases as the transmission distance increases and the bit rate increases. Therefore, development of EA / DFB that does not require temperature adjustment at −5 to 85 ° C. has been performed for the purpose of reducing power consumption (Non-patent Document 1: OFCNFOEC OFC POSTDEADLINE PAPERS Thursday, March 10, 2005 PDP14). To achieve this, it is necessary to further increase the light output under a constant operating current of the semiconductor light emitting device. As described above, in order to reduce the power consumption of the semiconductor light emitting device for both information and communication, it is required to increase the optical output under a constant operating current.

半導体発光装置の高出力化の一つの方法はリッジ幅を拡大することである。通常、半導体発光装置では動作電流を大きくすると発熱量が大きくなるため、ある電流値で光出力が飽和してしまい、十分な出力が得られなくなる。それに対し、リッジ幅を拡大した半導体発光装置では電流注入時の電気抵抗が下がるので、その分、発熱量が抑えられ、飽和電流が増大する。その結果、飽和出力も増大し、一定動作電流における光出力が増大する。リッジ幅の拡大は上部クラッド層とリッジの間に上部バッファ層を形成することにより実現できる。上部バッファ層の形成により、積層方向の平均屈折率差がリッジを含む部分とリッジを含まない部分で、上部バッファ層を持たない場合よりも小さくなり、スラブ型導波路でいう、いわゆる、カットオフ幅が増大することになり、横単一モード条件でリッジ幅の拡大が可能となる。   One method for increasing the output of a semiconductor light emitting device is to increase the ridge width. Usually, in a semiconductor light emitting device, when the operating current is increased, the amount of heat generation increases, so that the light output is saturated at a certain current value, and a sufficient output cannot be obtained. On the other hand, in a semiconductor light emitting device with an expanded ridge width, the electrical resistance at the time of current injection is lowered, so that the amount of heat generation is suppressed and the saturation current is increased accordingly. As a result, the saturation output also increases and the light output at a constant operating current increases. The expansion of the ridge width can be realized by forming an upper buffer layer between the upper cladding layer and the ridge. Due to the formation of the upper buffer layer, the difference in the average refractive index in the stacking direction is smaller in the part including the ridge and in the part not including the ridge than in the case where the upper buffer layer is not provided. The width increases, and the ridge width can be increased under the horizontal single mode condition.

別の方法として、半導体発光装置の閾値の上昇を抑制する方法がある。閾値が低ければ一定動作電流における光出力が上昇するので、これにより半導体発光装置の高出力化を図ることができる。閾値の上昇を抑制する方法として、例えば特開2004−214372(特許文献1)に開示されるものがある。これはInP系より形成される従来のリッジ型半導体発光装置のリッジの両側方向にFeを注入した被覆層を再成長によって形成し、これを上部クラッド層へのFe供給源として利用し、上部クラッド層を絶縁化することにより、リッジから注入された電流が上部クラッド層で拡散するのを抑制し閾値の上昇を抑制するものである。これらのレーザをDFB化するとき従来は回折格子をn基板上部や多重井戸層、もしくは上部バッファ層内へ作製していた。   As another method, there is a method of suppressing an increase in the threshold value of the semiconductor light emitting device. If the threshold value is low, the light output at a constant operating current increases, so that the output of the semiconductor light emitting device can be increased. As a method for suppressing an increase in the threshold value, for example, there is one disclosed in JP-A-2004-214372 (Patent Document 1). This is because a coating layer in which Fe is implanted into both sides of a ridge of a conventional ridge type semiconductor light emitting device formed of an InP system is formed by regrowth, and this is used as an Fe supply source to the upper cladding layer. By insulating the layer, the current injected from the ridge is prevented from diffusing in the upper cladding layer, and the threshold is prevented from rising. Conventionally, when these lasers are converted to DFB, a diffraction grating is formed in the upper part of the n substrate, the multiple well layer, or the upper buffer layer.

一方、EA/DFBについてみると、例えば、埋込型半導体発光装置とリッジ型電界吸収型光変調器を集積した半導体光導波路素子では、それぞれの部分でモードの広がりが異なるため、埋込型とリッジ型の結合部をテーパー状にして集積する特開平8−78792(特許文献2)が提案されている。また、ファイバとの光結合を良好にするために半導体光導波路素子の光の出射側をテーパー状にする特開2000−66046(特許文献3)が提案されている。しかし上記のようなリッジを拡大化したり低閾値化した高出力レーザを集積したものはなかった。   On the other hand, regarding EA / DFB, for example, in the semiconductor optical waveguide device in which the embedded semiconductor light emitting device and the ridge type electroabsorption optical modulator are integrated, the mode spread is different in each part. Japanese Patent Laid-Open No. 8-78792 (Patent Document 2) has been proposed in which ridge-type coupling portions are tapered and integrated. Japanese Patent Laid-Open No. 2000-66046 (Patent Document 3) has been proposed in which the light emission side of a semiconductor optical waveguide device is tapered in order to improve optical coupling with a fiber. However, none of the above-mentioned high-power lasers with enlarged ridges or lower thresholds were integrated.

特開2004−214372号公報JP 2004-214372 A 特開平8−78792号公報JP-A-8-78792 特開2000−66046号公報JP 2000-66046 A

OFCNFOEC OFC POSTDEADLINE PAPERS Thursday, March 10, 2005 PDP14OFCNFOEC OFC POSTDEADLINE PAPERS Thursday, March 10, 2005 PDP14

上述したように、半導体発光装置の高出力化のために、上部クラッド層とリッジの間へ上部バッファ層を挿入することが有効であるが、一方で、特にp側のキャリアの横方向への拡散が大きくなり閾値が増大するという問題があった。また、リッジを含む部分とリッジを含まない部分の平均屈折率差が小さくなるので、モード形状が横に広がり遠視野像の広がりが水平方向と垂直方向で大きく異なってきて非対称になる。これはファイバなどの外部との結合損失を増大させる要因となる。   As described above, it is effective to insert the upper buffer layer between the upper clad layer and the ridge in order to increase the output of the semiconductor light emitting device. On the other hand, particularly in the lateral direction of the p-side carrier. There is a problem that diffusion increases and the threshold value increases. In addition, since the difference in average refractive index between the portion including the ridge and the portion not including the ridge is small, the mode shape spreads horizontally, and the spread of the far-field image is greatly different between the horizontal direction and the vertical direction and becomes asymmetric. This increases the coupling loss with the outside such as a fiber.

上記閾値の上昇を抑制するために、特許文献1に開示される方法の適用が考えられるが、この方法では、被覆層を形成するのに結晶の再成長が必要となる。そのため、低コスト化に不利となる。さらに、半導体発光装置がInP系に限られているので、他の材料、例えばGaAs系の半導体発光装置には適用できない。   In order to suppress the increase in the threshold value, application of the method disclosed in Patent Document 1 is conceivable. However, in this method, crystal regrowth is required to form a coating layer. Therefore, it is disadvantageous for cost reduction. Furthermore, since the semiconductor light emitting device is limited to the InP system, it cannot be applied to other materials such as a GaAs semiconductor light emitting device.

半導体発光装置の高出力化のために、上部クラッド層とリッジの間へ上部バッファ層を挿入してリッジ幅を大きくすることが有効であるが、この方法はEA/DFBのような集積型半導体光導波路素子の適用には別の問題があった。例えば、半導体発光装置の高出力化のために、半導体発光装置のリッジ幅を2μmにすると、電界吸収型光変調器部での電気容量が増大し帯域が減少する。一方、電界吸収型光変調器部のリッジ幅1.4μmに合わせて、半導体発光装置のリッジ幅を1.4μmにすると、半導体発光装置の熱特性が悪くなり、高出力が得られない。そのためEA/DFBのリッジ幅は、本来の最適リッジ幅とは異なり、総合的な特性は低下するが、それぞれが、機能を発揮しやすい妥協の値として1.6μm程度にして集積していた。   In order to increase the output of the semiconductor light emitting device, it is effective to increase the ridge width by inserting an upper buffer layer between the upper cladding layer and the ridge. This method is an integrated semiconductor such as EA / DFB. The application of the optical waveguide device has another problem. For example, if the ridge width of the semiconductor light emitting device is set to 2 μm in order to increase the output of the semiconductor light emitting device, the electric capacity in the electroabsorption optical modulator portion increases and the band decreases. On the other hand, if the ridge width of the semiconductor light emitting device is set to 1.4 μm in accordance with the ridge width of 1.4 μm of the electroabsorption optical modulator portion, the thermal characteristics of the semiconductor light emitting device are deteriorated, and high output cannot be obtained. Therefore, the EA / DFB ridge width is different from the original optimum ridge width, and the overall characteristics are deteriorated. However, the EA / DFB ridge width has been integrated to a value of about 1.6 μm as a compromise value that facilitates the function.

さらに回折格子の挿入位置もレーザの特性に影響を与える。従来の回折格子の作製位置はn基板上部や多重井戸層内、または上部バッファ層内であった。多重井戸層内、または上部バッファ層内に回折格子を挿入した場合、回折格子形成後再成長を行うが、その再成長界面にてキャリア濃度変化を起こし、キャリアをトラップしてしまうため高出力化にとって特性劣化を招いてしまう。一方、n基板上部に作製すると上記のような問題は無視できるようになるが、多重井戸層を形成する前に回折格子を形成してしまうため波長の制御性が悪くなってしまう。   Furthermore, the insertion position of the diffraction grating also affects the laser characteristics. Conventional diffraction gratings were manufactured at the top of the n substrate, in the multiple well layer, or in the upper buffer layer. When a diffraction grating is inserted in the multi-well layer or in the upper buffer layer, regrowth occurs after formation of the diffraction grating, but the carrier concentration changes at the regrowth interface and traps the carriers, resulting in higher output. For this reason, the characteristics are deteriorated. On the other hand, when it is fabricated on the n substrate, the above-mentioned problems can be ignored. However, since the diffraction grating is formed before the multi-well layer is formed, the wavelength controllability is deteriorated.

以上のように上記の方法では低消費電力化と低コスト化を両立するには至っておらず、また集積化のために半導体発光装置と電界吸収型光変調器の設計、特にリッジ幅に制限を受けることになっており、各デバイスが最適条件で集積するには至っていなかった。   As described above, the above method has not yet achieved both low power consumption and low cost, and the design of the semiconductor light emitting device and the electroabsorption optical modulator, particularly the ridge width, has been limited for integration. Each device has not been integrated under optimum conditions.

本発明は、半導体発光装置の高出力化を達成し、さらに、高出力化された半導体発光装置を電界吸収型光変調器と集積した集積型半導体光導波路素子の低消費電力化およびそれぞれの特性を劣化させることなく、低コストに集積する。   The present invention achieves higher output of a semiconductor light emitting device, and further reduces the power consumption of integrated semiconductor optical waveguide elements in which the semiconductor light emitting device with higher output is integrated with an electro-absorption optical modulator and the respective characteristics. It accumulates at a low cost without degrading.

まず、半導体発光装置をn型半導体基板に下部クラッド層と、多重もしくは単一井戸層、上部クラッド層、上部バッファ層およびリッジから形成する。さらに、前記リッジ両側面部へ前記上部バッファ層に切り込んだ低屈折率の絶縁性の溝を形成することによりリッジより注入される電流の横方向への拡散を抑制し、それにより閾値の上昇を抑制する。   First, a semiconductor light emitting device is formed on an n-type semiconductor substrate from a lower clad layer, a multiple or single well layer, an upper clad layer, an upper buffer layer, and a ridge. Furthermore, by forming an insulating groove with a low refractive index cut into the upper buffer layer on both sides of the ridge, lateral diffusion of current injected from the ridge is suppressed, thereby suppressing an increase in threshold value. To do.

また、n型半導体基板に下部クラッド層と、多重もしくは単一井戸層、上部クラッド層、リッジなどから形成される半導体発光装置において、前記リッジ内にリッジを主に構成する半導体材料より高い屈折率を持つ半導体材料で回折格子を形成することにより、回折格子を上部クラッド層へ形成するよりも、回折格子形成後の再成長による不純物混入やキャリア濃度変化に起因する特性劣化なく作製する。   Further, in a semiconductor light emitting device formed of an n-type semiconductor substrate with a lower clad layer, a multiple or single well layer, an upper clad layer, a ridge, etc., a refractive index higher than that of a semiconductor material mainly constituting the ridge in the ridge By forming a diffraction grating with a semiconductor material having the above characteristics, the diffraction grating is formed on the upper cladding layer without deterioration in characteristics due to impurity contamination due to regrowth after formation of the diffraction grating and a change in carrier concentration.

一方、EA/DFBのような集積型半導体光導波路素子では、リッジを有する電界吸収型光変調器と半導体発光装置とを集積する際、半導体発光装置のリッジとリッジを有する電界吸収型光変調器のそれぞれのリッジをテーパー状のリッジを有する導波路で結合する。   On the other hand, in an integrated semiconductor optical waveguide device such as EA / DFB, when integrating an electroabsorption optical modulator having a ridge and a semiconductor light emitting device, the electroabsorption optical modulator having the ridge and ridge of the semiconductor light emitting device is integrated. These ridges are coupled by a waveguide having a tapered ridge.

本発明によれば、高出力で且つ閾値の低い半導体発光装置を実現できるとともに、EA/DFBのような集積型半導体光導波路素子では、半導体発光装置と電界吸収型光変調器の特性をそれぞれの最大の特性を発揮させるものとでき、低光損失に、かつ出射する光の遠視野像の垂直方向と水平方向の広がり方の異方性を抑え、かつ集積時の成長回数を増大させることなく低コストで集積可能とできる。   According to the present invention, it is possible to realize a semiconductor light emitting device having a high output and a low threshold, and in an integrated semiconductor optical waveguide element such as EA / DFB, the characteristics of the semiconductor light emitting device and the electroabsorption optical modulator can be changed. The maximum characteristics can be exhibited, low optical loss, suppression of the anisotropy of how the far-field image of the emitted light spreads in the vertical and horizontal directions, and without increasing the number of growth during integration It can be integrated at low cost.

本発明の前提となる上部バッファ層を持つ半導体発光装置の製作過程の前半を説明する図である。It is a figure explaining the first half of the manufacture process of the semiconductor light-emitting device with the upper buffer layer used as the premise of this invention. 本発明の前提となる上部バッファ層を持つ半導体発光装置の製作過程の後半を説明し、完成状態を示す図である。It is a figure which shows the second half of the manufacture process of the semiconductor light-emitting device with the upper buffer layer used as the premise of this invention, and shows a completion state. 本発明の前提となる半導体発光装置とほぼ同一の構成で、上部バッファ層の無い半導体発光装置を構成して動作特性を比較した結果を示す図である。It is a figure which shows the result of having comprised the semiconductor light-emitting device which is substantially the same structure as the semiconductor light-emitting device used as the premise of this invention, and without an upper buffer layer, and having compared the operating characteristic. 本発明の実施例1の半導体発光装置の製作過程を、図2(a)の構成を出発点として、前半を説明する図である。It is a figure explaining the first half of the manufacturing process of the semiconductor light-emitting device of Example 1 of this invention from the structure of Fig.2 (a) as a starting point. 本発明の実施例1の半導体発光装置の製作過程の後半を説明する図である。It is a figure explaining the latter half of the manufacture process of the semiconductor light-emitting device of Example 1 of this invention. 本発明の実施例1の半導体発光装置の完成状態を示す図である。It is a figure which shows the completion state of the semiconductor light-emitting device of Example 1 of this invention. (a)は実施例1の半導体発光装置の特性について説明する図、(b)は上部バッファ層の溝幅とカットオフ幅との関連を評価した特性図である。(A) is a figure explaining the characteristic of the semiconductor light-emitting device of Example 1, (b) is a characteristic figure which evaluated the relationship between the groove width of an upper buffer layer, and a cutoff width. (a)−(c)は本発明の実施例2の半導体発光装置をn型GaAs半導体基板を出発とする構成によって実現した製作過程の主要部と完成状態を示す図である。(A)-(c) is a figure which shows the principal part and completion state of the manufacture process which implement | achieved the semiconductor light-emitting device of Example 2 of this invention by the structure which started the n-type GaAs semiconductor substrate. (a)−(e)は本発明の実施例3の集積型光導波路素子の製作過程の前半を説明する図である。(A)-(e) is a figure explaining the first half of the manufacture process of the integrated optical waveguide element of Example 3 of this invention. (a)−(d)は本発明の実施例3の集積型光導波路素子の製作過程の後半を説明する図である。(A)-(d) is a figure explaining the second half of the manufacture process of the integrated optical waveguide element of Example 3 of this invention. 本発明の実施例3の集積型光導波路素子の完成状態を示す図である。It is a figure which shows the completion state of the integrated optical waveguide element of Example 3 of this invention. 本発明の実施例3の集積型光導波路素子の半導体発光装置のリッジ幅が2.0μmおよび2.5μm、電界吸収型光変調器のリッジ幅が1.4μmの場合について、導波路長を横軸に取り、縦軸に透過率をとって評価した結果を示す図である。In the case where the ridge width of the semiconductor light emitting device of the integrated optical waveguide device of Example 3 of the present invention is 2.0 μm and 2.5 μm, and the ridge width of the electroabsorption optical modulator is 1.4 μm, the waveguide length is It is a figure which shows the result of having taken on the axis | shaft and taking the transmittance | permeability on the vertical axis | shaft. 本発明の集積型光導波路素子を電界吸収型光変調器に代えてマッハ−ツェンダ型光変調器を採用した実施例4の集積型光導波路素子の完成状態を示す図である。It is a figure which shows the completion state of the integrated optical waveguide element of Example 4 which employ | adopted the Mach-Zehnder optical modulator instead of the electro-absorption optical modulator for the integrated optical waveguide element of this invention.

以下、本発明の望ましい実施形態を、実施例1乃至4について関連図面を参照して説明する。   Hereinafter, preferred embodiments of the present invention will be described with respect to Examples 1 to 4 with reference to the related drawings.

[実施例1]
まず、本発明を波長1.5μm帯リッジ導波路型半導体発光装置に適用した実施例1について説明する。ただし、図の大きさと実施例1記載の縮尺は必ずしも一致するものではない。図1および図2を用いて、本発明の前提となる上部バッファ層を持つ半導体発光装置を説明し、その後、リッジ両側面部へ上部バッファ層に切り込んだ低屈折率の絶縁性の溝を形成した本発明の半導体発光装置の実施例を説明する。
[Example 1]
First, a first embodiment in which the present invention is applied to a 1.5 μm band ridge waveguide semiconductor light emitting device will be described. However, the size of the figure does not necessarily match the scale described in the first embodiment. A semiconductor light-emitting device having an upper buffer layer, which is a premise of the present invention, will be described with reference to FIGS. 1 and 2, and then low-refractive-index insulating grooves cut into the upper buffer layer are formed on both sides of the ridge. Examples of the semiconductor light emitting device of the present invention will be described.

図1(a)に示すように、n型InP半導体基板1(厚さ2mm)の上へ有機金属気相成長法(MOCVD法)によりn型InPバッファ層2(厚さ0.15μm)、n型InGaAsP系からなる下部クラッド層3(厚さ0.13μm)、1.0%圧縮歪を有するInGaAsP(厚さ7nm、組成波長1.5μm)の井戸層と0.5%引っ張り歪を有するInGaAsP(厚さ12nm、組成波長1.3μm)の障壁層とを6周期積層した多重量子井戸活性層4(厚さ0.114μm)、InGaAsP系からなる上部クラッド層5(厚さ0.1μm)、p型InPからなる上部バッファ層6(厚さ0.2μm)、InGaAsP系からなるエッチング停止層7(厚さ5nm)、p型InPからなる下スペーサ層8(厚さ20nm)、InGaAsP系からなる回折格子層9(厚さ30nm)を積層する。この例では、多重量子井戸活性層の発光波長は約1.5μmである。   As shown in FIG. 1A, an n-type InP buffer layer 2 (thickness 0.15 μm), n by an organic metal vapor phase growth method (MOCVD method) on an n-type InP semiconductor substrate 1 (thickness 2 mm). Type InGaAsP-based lower cladding layer 3 (thickness 0.13 μm), 1.0% compressive strain InGaAsP (thickness 7 nm, composition wavelength 1.5 μm) well layer and 0.5% tensile strain InGaAsP A multi-quantum well active layer 4 (thickness 0.114 μm) obtained by laminating six periods of a barrier layer (thickness 12 nm, composition wavelength 1.3 μm), an upper cladding layer 5 (thickness 0.1 μm) made of InGaAsP, p-type InP upper buffer layer 6 (thickness 0.2 μm), InGaAsP-based etching stop layer 7 (thickness 5 nm), p-type InP lower spacer layer 8 (thickness 20 nm), InG Consisting AsP system laminating diffraction grating layer 9 (thickness 30 nm). In this example, the emission wavelength of the multiple quantum well active layer is about 1.5 μm.

次に、図1(b)に示すように、回折格子層9上へ公知の干渉露光方式とそれに続くりん酸系溶液でのエッチングを施すことにより、回折格子層9に回折格子を形成する。実施例1では、エッチング停止層7と回折格子層9との間にInPスペーサ層8があるので、フローティング型の回折格子となり、作製毎にエッチング時間が多少異なったとしても回折格子は精度良く作製可能となる。   Next, as shown in FIG. 1B, a diffraction grating is formed on the diffraction grating layer 9 by performing a known interference exposure method and subsequent etching with a phosphoric acid solution on the diffraction grating layer 9. In Example 1, since there is an InP spacer layer 8 between the etching stop layer 7 and the diffraction grating layer 9, a floating type diffraction grating is formed, and the diffraction grating is manufactured with high accuracy even if the etching time is slightly different for each manufacturing. It becomes possible.

引き続き、図1(c)に示すように、MOCVD法により回折格子を形成した回折格子層9上にp型InP層10(厚さ2.0μm)、InGaAsP(組成波長1.3μm)とInGaAsからなるコンタクト層11(厚さ0.3μm)を積層する。   Subsequently, as shown in FIG. 1C, a p-type InP layer 10 (thickness: 2.0 μm), InGaAsP (composition wavelength: 1.3 μm), and InGaAs are formed on the diffraction grating layer 9 on which the diffraction grating is formed by MOCVD. A contact layer 11 (thickness: 0.3 μm) is laminated.

その後、図1(d)に示すように、リッジ(幅2.8μm)を残してエッチング停止層7までエッチングすることで、下スペーサ層8、回折格子層9、p型InP層10およびコンタクト層11よりなるリッジ12の形成を行う。   Thereafter, as shown in FIG. 1 (d), the lower spacer layer 8, the diffraction grating layer 9, the p-type InP layer 10 and the contact layer are etched by etching up to the etching stop layer 7 leaving a ridge (width 2.8 μm). 11 is formed.

続いて、図2(a)に示すように、熱化学気相蒸着(T−CVD:Thermo-Chemical Vapor Deposition)法によりエッチング停止層7より上側の全面にシリコン酸化膜13(厚さ0.1μm)を形成する。次いで、図2(b)に示すように、リッジ12上部のコンタクト層11上にある絶縁膜(シリコン酸化膜13)の除去を行う。ここで実施例1ではシリコン酸化膜13を絶縁膜としているが、シリコン窒化膜等を用いることも可能である。次に、図2(c)に示すように、リッジ12の両側の絶縁膜13上にポリイミド樹脂層14を設け、ウエハ表面を平坦化する。さらに、リッジ12上部にp電極15とn型InP基板1の裏面にn電極16を形成した後、劈開工程により共振器長300μmの素子を切り出し、後端面に反射率95%の反射膜、前端面に反射率0.1%の低反射膜をコートした。   Subsequently, as shown in FIG. 2A, a silicon oxide film 13 (thickness of 0.1 μm) is formed on the entire surface above the etching stopper layer 7 by a thermal-chemical vapor deposition (T-CVD) method. ). Next, as shown in FIG. 2B, the insulating film (silicon oxide film 13) on the contact layer 11 above the ridge 12 is removed. In the first embodiment, the silicon oxide film 13 is used as an insulating film, but a silicon nitride film or the like can also be used. Next, as shown in FIG. 2C, a polyimide resin layer 14 is provided on the insulating film 13 on both sides of the ridge 12, and the wafer surface is flattened. Further, after forming a p-electrode 15 on the ridge 12 and an n-electrode 16 on the back surface of the n-type InP substrate 1, an element having a resonator length of 300 μm is cut out by a cleavage process, and a reflective film having a reflectivity of 95% is formed on the rear end surface. The surface was coated with a low reflection film having a reflectance of 0.1%.

図2(c)に示す半導体発光装置を−5℃〜85℃において動作電流300mAまでの範囲で動作させたところ横単一モードとなることが確認された。また室温、連続発振条件において閾値15〜25mA、発振効率0.3〜0.4W/Aと良好な発振特性を示した。また、動作温度85℃において閾値約35mA、発振効率0.15〜0.2W/Aを得た。   It was confirmed that when the semiconductor light emitting device shown in FIG. 2C was operated in a range of up to 300 mA operating current at −5 ° C. to 85 ° C., a transverse single mode was obtained. In addition, good oscillation characteristics were exhibited with a threshold of 15 to 25 mA and an oscillation efficiency of 0.3 to 0.4 W / A at room temperature and continuous oscillation conditions. A threshold of about 35 mA and an oscillation efficiency of 0.15 to 0.2 W / A were obtained at an operating temperature of 85 ° C.

図3は、図2(c)に示す半導体発光装置とほぼ同一の構成で、上部バッファ層6の無い半導体発光装置を構成して動作特性を比較した結果を示す図である。図3において、横軸は動作電流を、縦軸は光出力である。実線21は、動作温度が85℃における上部バッファ層6の有る半導体発光装置の特性を、破線22は、同じ温度における上部バッファ層6の無い半導体発光装置の特性を、それぞれ、示す。動作電流が150mAについて比較すると、上部バッファ層6の無い半導体発光装置に対し、上部バッファ層6の有る半導体発光装置の光出力は2割程度上昇した。なお、このときの閾値は上部バッファ層6の有る半導体発光装置の方が5〜10mA大きかった。   FIG. 3 is a diagram showing a result of comparing the operating characteristics of a semiconductor light emitting device having substantially the same configuration as that of the semiconductor light emitting device shown in FIG. In FIG. 3, the horizontal axis represents the operating current, and the vertical axis represents the optical output. A solid line 21 indicates the characteristics of the semiconductor light emitting device with the upper buffer layer 6 at an operating temperature of 85 ° C., and a broken line 22 indicates the characteristics of the semiconductor light emitting device without the upper buffer layer 6 at the same temperature. Comparing the operating current of 150 mA, the light output of the semiconductor light emitting device with the upper buffer layer 6 increased by about 20% compared to the semiconductor light emitting device without the upper buffer layer 6. The threshold at this time was 5 to 10 mA larger in the semiconductor light emitting device having the upper buffer layer 6.

尚、上述の構成においては、レーザの発振波長即ち、多重量子井戸活性層の発光波長を1.5μmに設定しているが、波長を1.3μm帯に設定した場合においても同様の効果を得ることができるし、分布帰還型でなくとも分布ブラッグ反射型やファブリ−ペロー型でも同様な効果は得られる。またInGaAsP系の替わりにInGaAlAs系を用いても同様な特性の発光装置を得ることができる。さらに上部バッファ層6はInPでなく、InGaAsP系やInGaAlAs系でもよい。   In the above configuration, the oscillation wavelength of the laser, that is, the emission wavelength of the multiple quantum well active layer is set to 1.5 μm, but the same effect can be obtained even when the wavelength is set to the 1.3 μm band. The same effect can be obtained even with the distributed Bragg reflection type or the Fabry-Perot type, not the distributed feedback type. A light emitting device having similar characteristics can be obtained even when an InGaAlAs system is used instead of the InGaAsP system. Furthermore, the upper buffer layer 6 may be InGaAsP-based or InGaAlAs-based instead of InP.

半導体発光装置の高出力化のために、上部クラッド層5とリッジ12の間へ上部バッファ層6を挿入してリッジ幅を大きくすることが有効であることが理解できるが、発明が解決しようとする課題及び図3を参照した説明でも述べたように、閾値が増加する問題がある。これを解決するために、本発明の実施例1では、リッジ12の側面に沿って上部バッファ層6に食い込む切込みを設けて多重量子井戸活性層4に流入する電流の拡散を抑制して閾値の増加を防止する。   It can be understood that it is effective to increase the ridge width by inserting the upper buffer layer 6 between the upper cladding layer 5 and the ridge 12 in order to increase the output of the semiconductor light emitting device. As described in the problem to be solved and the explanation with reference to FIG. 3, there is a problem that the threshold value increases. In order to solve this problem, in the first embodiment of the present invention, a notch that cuts into the upper buffer layer 6 along the side surface of the ridge 12 is provided to suppress the diffusion of the current flowing into the multiple quantum well active layer 4 to reduce the threshold value. Prevent increase.

図4(a)は、図2(a)と同じ、エッチング停止層7より上側の全面にシリコン酸化膜13を形成した製作過程の構造を示す図であり、実施例1の半導体発光装置の構成の出発点となる図である。   4A is a diagram showing the structure of the manufacturing process in which the silicon oxide film 13 is formed on the entire surface above the etching stopper layer 7 as in FIG. 2A. The structure of the semiconductor light emitting device of Example 1 is shown in FIG. It is a figure used as a starting point.

シリコン酸化膜13を形成した後に、ドライエッチング工程により、シリコン酸化膜13を除去する。このときあらかじめリッジ12上部のコンタクト層の部分を厚めにシリコン酸化膜13を形成すると、図4(b)に示すように、リッジ12にシリコン酸化膜13が残り、エッチング停止層7の上面にシリコン酸化膜13に覆われたリッジ12が乗っている形になる。   After the silicon oxide film 13 is formed, the silicon oxide film 13 is removed by a dry etching process. At this time, if the silicon oxide film 13 is formed in advance so that the contact layer portion above the ridge 12 is thickened, the silicon oxide film 13 remains on the ridge 12 as shown in FIG. The ridge 12 covered with the oxide film 13 is in a riding form.

図4(c)は、リッジ12を避けてエッチング停止層7の上面にレジスト膜17を形成した状態を示す図である。   FIG. 4C is a view showing a state in which a resist film 17 is formed on the upper surface of the etching stopper layer 7 while avoiding the ridge 12.

図4(d)は、これに続けて、フォトリソグラフィー工程でレジスト膜17を残して、シリコン酸化膜13を除去した状態を示す図である。この状態では、図からわかるように、エッチング停止層7の上にリッジ12が乗り、その周辺のレジスト膜17のみが溝状に除去された状態となる。   FIG. 4D is a diagram showing a state in which the silicon oxide film 13 is removed while leaving the resist film 17 in the photolithography process. In this state, as can be seen from the figure, the ridge 12 is placed on the etching stopper layer 7 and only the resist film 17 around the ridge 12 is removed in a groove shape.

図5(a)は、図4(d)に示す状態から、溝状に除去されたレジスト膜17をマスクとして、まず、りん酸系溶液によりエッチング停止層7を溝状に除去し、次いで、塩酸系溶液により上部バッファ層6を溝状にエッチングした状態を示す図である。このときエッチング時間を調節することにより溝の深さを調節できる。実施例1では上部バッファ層6の膜厚0.2μmに対し、深さ0.1μmの溝を形成した。また、シリコン酸化膜13の膜厚を0.1μmとしていたので、上部バッファ層6に形成される溝幅も0.1μmとなる。溝はほぼ垂直に形成できた。より具体的には、前記リッジの両側面と前記上部バッファ層との間に幅が0を超えて200nm以下、深さの中央部分の位置で前記基板の面に対して90°±10°の角度を有する溝が形成できる。   In FIG. 5A, from the state shown in FIG. 4D, using the resist film 17 removed in the groove shape as a mask, the etching stopper layer 7 is first removed in the groove shape with a phosphoric acid-based solution, and then It is a figure which shows the state which etched the upper buffer layer 6 in groove shape with the hydrochloric acid type solution. At this time, the depth of the groove can be adjusted by adjusting the etching time. In Example 1, a groove having a depth of 0.1 μm was formed with respect to the film thickness of the upper buffer layer 6 of 0.2 μm. Since the thickness of the silicon oxide film 13 is 0.1 μm, the width of the groove formed in the upper buffer layer 6 is also 0.1 μm. The grooves could be formed almost vertically. More specifically, the width between the both side surfaces of the ridge and the upper buffer layer is more than 0 and 200 nm or less, and 90 ° ± 10 ° with respect to the surface of the substrate at the position of the central portion of the depth. A groove having an angle can be formed.

図に示した実施例では、上部バッファ層6の厚さの半分に溝を形成するものとしたが、上部バッファ層6の厚さの全部に亘って溝を形成するものとしてもよい。この場合、上部バッファ層6を設けることによる閾値の増加を防止するという点では効果があるが、半導体発光装置の出力光のパターンに影響する可能性があるので、どの程度の深さの溝にするかはケースによって考慮するのがよい。   In the embodiment shown in the figure, the groove is formed in half of the thickness of the upper buffer layer 6, but the groove may be formed over the entire thickness of the upper buffer layer 6. In this case, there is an effect in preventing an increase in threshold value due to the provision of the upper buffer layer 6, but there is a possibility of affecting the output light pattern of the semiconductor light emitting device. Whether to do this should be considered depending on the case.

図5(b)は、次いで、レジスト膜17を除去した状態を示す図である。この状態は、図1(d)と対比して明らかなように、リッジ12に沿ってエッチング停止層7および上部バッファ層6に溝が形成されている点を除けば、図1(d)と同じである。   FIG. 5B is a diagram showing a state in which the resist film 17 has been removed. As apparent from comparison with FIG. 1D, this state is the same as that in FIG. 1D except that grooves are formed in the etching stopper layer 7 and the upper buffer layer 6 along the ridge 12. The same.

図5(c)は、図2(a)で説明したと同様に、熱化学気相蒸着(T−CVD:Thermo-Chemical Vapor Deposition)法によりエッチング停止層7より上側の全面にシリコン酸化膜23(厚さ0.1μm)を形成した状態を示す図である。この状態は、一見すると、図4(a)のシリコン酸化膜13と同じように見えるが、図4(a)のシリコン酸化膜13が、リッジ12に沿って溝を形成するために設けられ、用済み後に除去されるのに対して、シリコン酸化膜23は形成された溝を含めて絶縁層を形成するために設けられるものである。   In FIG. 5C, the silicon oxide film 23 is formed on the entire surface above the etching stop layer 7 by a thermal-chemical vapor deposition (T-CVD) method, as described with reference to FIG. It is a figure which shows the state which formed (thickness 0.1 micrometer). At first glance, this state looks similar to the silicon oxide film 13 of FIG. 4A, but the silicon oxide film 13 of FIG. 4A is provided to form a groove along the ridge 12, The silicon oxide film 23 is provided to form an insulating layer including the formed groove, while it is removed after use.

図5(d)は、次いで、図2(b)で説明したと同様に、リッジ12上部のコンタクト層11上にある絶縁膜(シリコン酸化膜23)の除去を行う。ここで実施例1ではシリコン酸化膜23を絶縁膜としているが、シリコン窒化膜等を用いることも可能である。   5D, the insulating film (silicon oxide film 23) on the contact layer 11 above the ridge 12 is then removed in the same manner as described with reference to FIG. Here, in the first embodiment, the silicon oxide film 23 is an insulating film, but a silicon nitride film or the like can also be used.

図6は、シリコン酸化膜23の上面にポリイミド樹脂24を形成してウエハ表面を平坦化し、次いで、リッジ12の上部にp電極15を形成し、n型InP基板1の裏面にn電極16を形成した状態を示す図である。   In FIG. 6, a polyimide resin 24 is formed on the upper surface of the silicon oxide film 23 to flatten the wafer surface, then a p-electrode 15 is formed on the ridge 12, and an n-electrode 16 is formed on the back surface of the n-type InP substrate 1. It is a figure which shows the state formed.

その後、劈開工程により素子を切り出し、後端面に反射率95%の反射膜、前端面に反射率0.1%の低反射膜をコートして半導体発光装置を完成させる。   Thereafter, the device is cut out by a cleavage process, and a reflective film having a reflectivity of 95% is coated on the rear end face, and a low reflective film having a reflectivity of 0.1% is coated on the front end face to complete a semiconductor light emitting device.

図7(a)は、図6に示す実施例1の半導体発光装置の特性について説明する図であり、図3と対応させて、上部バッファ層6の無い半導体発光装置の動作特性と、上部バッファ層6を備えた場合の上部バッファ層6の半ばに達する溝の有無について動作特性を比較した結果を示す図である。図3と同様、横軸は動作電流を、縦軸は光出力である。実線21’は、実施例1の半導体発光装置における動作温度が85℃の特性を、破線22は、同じ温度における上部バッファ層6の無い半導体発光装置の特性を、それぞれ、示す。細い実線21は、図3に示した上部バッファ層6に溝を持たない場合の特性を示す。実線21’と破線22を比較して分かるように、実施例1によれば、閾値が同等になり、上部バッファ層6を設けることによる閾値の増加を抑制できる。さらに、実線21’と実線21を比較して分かるように、光出力も増大できる。   FIG. 7A is a diagram for explaining the characteristics of the semiconductor light emitting device of Example 1 shown in FIG. 6. Corresponding to FIG. 3, the operating characteristics of the semiconductor light emitting device without the upper buffer layer 6 and the upper buffer are shown. It is a figure which shows the result of having compared the operating characteristic about the presence or absence of the groove | channel which reaches the middle of the upper buffer layer 6 at the time of providing the layer 6. FIG. As in FIG. 3, the horizontal axis represents the operating current, and the vertical axis represents the optical output. A solid line 21 ′ indicates a characteristic at an operating temperature of 85 ° C. in the semiconductor light emitting device of Example 1, and a broken line 22 indicates a characteristic of the semiconductor light emitting device without the upper buffer layer 6 at the same temperature. A thin solid line 21 indicates characteristics when the upper buffer layer 6 shown in FIG. As can be seen by comparing the solid line 21 ′ and the broken line 22, according to the first embodiment, the threshold values are equal, and an increase in the threshold value due to the provision of the upper buffer layer 6 can be suppressed. Further, as can be seen by comparing the solid line 21 'and the solid line 21, the light output can also be increased.

図7(b)は、上部バッファ層6の溝幅とカットオフ幅との関連を評価した特性図であり、横軸に溝幅、縦軸にカットオフ幅を示す。先にも述べたように、リッジ幅の拡大で半導体発光装置の高出力化が計れるが、一方では、単一モード条件にとってはリッジ幅の拡大はマイナスとなる。実施例1に示すように、本発明では、上部バッファ層6を持ち、上部バッファ層6での電流拡散を防止する溝を設けることにより、リッジ幅の拡大を効果的に実現できる。単一モードを満足できる条件の下で、溝幅とカットオフ幅との関連を評価した結果を図7(b)に示す。上述したように、溝幅0.1μmでカットオフ幅(リッジ幅)2.8μmが実現できたが、溝幅0.2μmでもカットオフ幅(リッジ幅)2.8μmが実現できる。しかし、これ以上溝幅が広くなるとカットオフ幅は小さくなってしまうことが分かる。なお、前記した特開2004-214372のように、再成長によって絶縁層を形成した場合について、検討した結果を合わせて表記した。再成長によっては、InP系を再成長させる場合結晶の面がでるため溝の角度は126°以上となり、溝幅0.1μmは形成できず、本発明のように大きなカットオフ幅では単一モードを満足できない。   FIG. 7B is a characteristic diagram in which the relationship between the groove width and the cut-off width of the upper buffer layer 6 is evaluated. The horizontal axis represents the groove width, and the vertical axis represents the cut-off width. As described above, the output of the semiconductor light emitting device can be increased by increasing the ridge width. On the other hand, the increase in the ridge width is negative for the single mode condition. As shown in the first embodiment, in the present invention, the ridge width can be effectively increased by providing the upper buffer layer 6 and providing a groove for preventing current diffusion in the upper buffer layer 6. FIG. 7B shows the result of evaluating the relationship between the groove width and the cut-off width under conditions that can satisfy the single mode. As described above, a cut-off width (ridge width) of 2.8 μm can be realized with a groove width of 0.1 μm, but a cut-off width (ridge width) of 2.8 μm can be realized even with a groove width of 0.2 μm. However, it can be seen that the cut-off width becomes smaller as the groove width becomes wider. Note that, as described in Japanese Patent Application Laid-Open No. 2004-214372 described above, a case where an insulating layer is formed by regrowth is described together with a result of examination. Depending on the regrowth, when the InP system is regrown, the crystal plane appears and the groove angle becomes 126 ° or more, and the groove width of 0.1 μm cannot be formed. Can not be satisfied.

実施例1の半導体発光装置を−5℃〜85℃において動作電流300mAまでの範囲で動作させたところ図7(a)に示す動作特性が得られ、横単一モードとなることが確認された。また、図7(b)の結果から、溝幅は作製誤差などを考慮すると0.8μm以下にするのが望ましいことがわかる。   When the semiconductor light emitting device of Example 1 was operated in a range of up to 300 mA operating current at -5 ° C. to 85 ° C., the operating characteristics shown in FIG. 7A were obtained, and it was confirmed to be in the horizontal single mode. . Further, from the result of FIG. 7B, it is understood that the groove width is desirably 0.8 μm or less in consideration of manufacturing errors and the like.

遠視野像について評価したところ、上部バッファ層6を持つだけで、リッジ12の側面に沿った溝が形成されていない半導体発光装置では、遠視野像の広がりは基板1に対し垂直方向では45°、水平方向では20°であった。これに対して、実施例1の半導体発光装置では、遠視野像の広がりは基板1に対し垂直方向では45°、水平方向では25°となり、広がり方の異方性が緩和されていることが確認された。   When the far-field image was evaluated, in the semiconductor light-emitting device having only the upper buffer layer 6 and not having the groove along the side surface of the ridge 12, the spread of the far-field image is 45 ° in the direction perpendicular to the substrate 1. The horizontal direction was 20 °. On the other hand, in the semiconductor light emitting device of Example 1, the spread of the far-field image is 45 ° in the vertical direction with respect to the substrate 1 and 25 ° in the horizontal direction, and the anisotropy in the spread direction is relaxed. confirmed.

さらに、実施例1の半導体発光装置は、室温、連続発振条件において閾値10〜20mA、発振効率0.3〜0.4W/Aと良好な発振特性を示した。また、動作温度85℃において閾値約20〜30mA、発振効率0.15〜0.2W/Aを得た。85℃において上部バッファ層がない半導体発光装置と同程度の閾値で、動作電流が150mAのときの光出力は2〜4割程度上昇した。   Furthermore, the semiconductor light emitting device of Example 1 showed good oscillation characteristics such as a threshold value of 10 to 20 mA and an oscillation efficiency of 0.3 to 0.4 W / A at room temperature and continuous oscillation conditions. Further, a threshold value of about 20 to 30 mA and an oscillation efficiency of 0.15 to 0.2 W / A were obtained at an operating temperature of 85 ° C. At 85 ° C., the light output increased by about 20 to 40% when the operating current was 150 mA with the same threshold as that of the semiconductor light emitting device without the upper buffer layer.

尚、実施例1においては、レーザの発振波長、すなわち、多重量子井戸活性層の発光波長を1.5μmに設定しているが、波長を1.3μm帯に設定した場合においても同様の効果を得ることができるし、分布帰還型でなくとも分布ブラッグ反射型やファブリ−ペロー型でも同様な効果は得られる。また、作製方法が異なっていても同様な角度を有する溝を形成することができれば、同様な効果を得られるのは言うまでもない。またInGaAsP系の替わりにInGaAlAs系を用いても良い。また、シリコン酸化膜を絶縁膜としているが、シリコン窒化膜等を用いることも可能である。   In Example 1, the oscillation wavelength of the laser, that is, the emission wavelength of the multiple quantum well active layer is set to 1.5 μm, but the same effect can be obtained when the wavelength is set to the 1.3 μm band. The same effect can be obtained with a distributed Bragg reflection type or Fabry-Perot type, even if it is not a distributed feedback type. It goes without saying that the same effect can be obtained if grooves having the same angle can be formed even if the manufacturing methods are different. Further, an InGaAlAs system may be used instead of the InGaAsP system. Further, although the silicon oxide film is used as the insulating film, a silicon nitride film or the like can also be used.

また、実施例1では、上部クラッド層に回折格子を作製することにより、光変調器領域の吸収端波長に合わせ適切な発振波長となる回折格子の作製が可能となり、分布帰還型半導体発光装置の発振光の波長と光変調器領域の吸収端波長の差(ΔH)を一定に保つことが可能となるメリットが有る。   In Example 1, a diffraction grating having an oscillation wavelength suitable for the absorption edge wavelength of the optical modulator region can be manufactured by manufacturing a diffraction grating in the upper cladding layer. There is an advantage that the difference (ΔH) between the wavelength of the oscillation light and the absorption edge wavelength in the optical modulator region can be kept constant.

[実施例2]
本発明を適用した半導体発光装置は、n型InP半導体基板を出発とする構成に代えて、n型GaAs半導体基板を出発とする構成によっても実現できる。図8(a)−(c)はn型GaAs半導体基板を出発とする構成によって実現した半導体発光装置を実施例2として示す図である。
[Example 2]
The semiconductor light emitting device to which the present invention is applied can be realized by a configuration starting from an n-type GaAs semiconductor substrate instead of the configuration starting from an n-type InP semiconductor substrate. FIGS. 8A to 8C are diagrams showing a semiconductor light emitting device realized by a configuration starting from an n-type GaAs semiconductor substrate as a second embodiment.

実施例2に示す半導体発光装置は、出発点となる基板を異にすることにより、材料および一部の製作過程が異なるが、類似した手順で構成できるので、説明は簡略化する。   The semiconductor light-emitting device shown in Example 2 is different in material and part of the manufacturing process by using different substrates as starting points, but can be configured with similar procedures, so the description is simplified.

図8(a)に示すように、n型GaAs半導体基板(厚さ2mm)31の上に、MO−CVD法により、n型GaAsバッファ層(膜厚0.5μm)32、n型(AlGa1−x0.5In0.5P(x=0.60)からなる下部クラッド層(膜厚2.5μm)33、1.1%圧縮歪を有するGaInP(厚さ6nm)の井戸層と0.7%引っ張り歪を有する(AlGa1−x0.5In0.5P(x=0.45)(厚さ6nm)の障壁層とを2周期積層した多重量子井戸活性層(厚さ0.024μm)34、p型(AlGa1−x0.5In0.5P(x=0.50)からなる上部クラッド層(膜厚0.02μm)35、(AlGa1−x0.5In0.5Pからなる上部バッファ層(膜厚0.3μm)36、(AlGa1−x0.5In0.5P(x=0.60)からなる層(膜厚2.0μm)40、GaAsからなるコンタクト層(膜厚0.2μm)41を積層する。この例では、多重量子井戸活性層の発光波長は約0.66μmである。 As shown in FIG. 8A, an n-type GaAs buffer layer (film thickness 0.5 μm) 32, an n-type (Al x ) 32 is formed on an n-type GaAs semiconductor substrate (thickness 2 mm) 31 by MO-CVD. Lower cladding layer (film thickness 2.5 μm) 33 made of Ga 1-x ) 0.5 In 0.5 P (x = 0.60), GaInP (thickness 6 nm) well having 1.1% compressive strain Multi-quantum well in which a layer and a barrier layer of (Al x Ga 1-x ) 0.5 In 0.5 P (x = 0.45) (thickness 6 nm) having a 0.7% tensile strain are stacked in two periods An active layer (thickness 0.024 μm) 34, an upper cladding layer (thickness 0.02 μm) 35 made of p-type (Al x Ga 1-x ) 0.5 In 0.5 P (x = 0.50), (Al x Ga 1-x) upper buffer layer composed of 0.5 In 0.5 P (thickness 0.3μm 36, (Al x Ga 1- x) 0.5 In 0.5 P (x = 0.60) layer (thickness 2.0 .mu.m) of 40, a contact layer made of GaAs (thickness 0.2 [mu] m) 41 Are stacked. In this example, the emission wavelength of the multiple quantum well active layer is about 0.66 μm.

図8(b)に示すように、その後、ドライエッチング工程により、上部バッファ層36の表面が露出するまでエッチングして、リッジ42の形成を行う。リッジ42の幅は1.7μmとした。   As shown in FIG. 8B, the ridge 42 is formed by etching until the surface of the upper buffer layer 36 is exposed by a dry etching process. The width of the ridge 42 was 1.7 μm.

その後、図4(a)−(d)および図5(a)−(d)と同様な過程を経て、図8(c)に示すように、n型GaAs半導体基板を出発とする構成によって半導体発光装置が実現できる。ここで、43はシリコン酸化膜であり、実施例1のシリコン酸化膜23に対応する絶縁層である。44は、ポリイミド樹脂であり、シリコン酸化膜43の上面に設けられてウエハ表面を平坦化する。実施例1のポリイミド樹脂24に対応する。45,46は、それぞれ、p,n電極であり、実施例1のp,n電極15,16に対応する。また、劈開工程により素子を切り出し、後端面に反射率92%の反射膜、前端面に反射率7%の低反射膜をコートする。実施例2の半導体発光装置は、ファブリ−ペロー型のレーザとなるので、リッジ42に回折格子層を形成する必要は無い。   Thereafter, the same process as in FIGS. 4 (a)-(d) and FIGS. 5 (a)-(d) is performed, and as shown in FIG. 8 (c), the semiconductor has a structure starting from an n-type GaAs semiconductor substrate. A light emitting device can be realized. Here, 43 is a silicon oxide film, which is an insulating layer corresponding to the silicon oxide film 23 of the first embodiment. A polyimide resin 44 is provided on the upper surface of the silicon oxide film 43 to flatten the wafer surface. This corresponds to the polyimide resin 24 of Example 1. Reference numerals 45 and 46 denote p and n electrodes, respectively, corresponding to the p and n electrodes 15 and 16 of the first embodiment. Further, the device is cut out by a cleavage process, and a reflective film having a reflectance of 92% is coated on the rear end face, and a low reflective film having a reflectance of 7% is coated on the front end face. Since the semiconductor light emitting device of Example 2 is a Fabry-Perot type laser, it is not necessary to form a diffraction grating layer on the ridge 42.

実施例2でも、リッジ42に沿って、エッチングにより溝を形成する際、エッチング時間を調節することにより溝の深さの調節が可能となる。実施例2では上部バッファ層36の膜厚0.3μmに対し、幅0.1μm、深さ0.1μmの溝を形成した。また溝の角度はほぼ垂直のものが形成できた。   Also in the second embodiment, when the groove is formed by etching along the ridge 42, the depth of the groove can be adjusted by adjusting the etching time. In Example 2, a groove having a width of 0.1 μm and a depth of 0.1 μm was formed with respect to the film thickness of the upper buffer layer 36 of 0.3 μm. Moreover, the groove angle was almost vertical.

実施例2の半導体発光装置を−10℃〜80℃において動作電流450mAまでの範囲で動作させたところ横単一モードとなることが確認された。このように形成された溝が形成されてもリッジ幅を拡大できることを確認した。また室温、連続発振条件において閥値40〜55mA、発振効率1.0〜1.2W/Aと良好な発振特性を示した。このように上部バッファ層がない半導体発光装置と同程度の閥値で、動作電流が400mAのときの光出力は2〜4割程度上昇した。   It was confirmed that when the semiconductor light emitting device of Example 2 was operated in the range of the operating current of 450 mA at −10 ° C. to 80 ° C., the horizontal single mode was obtained. It was confirmed that the width of the ridge can be expanded even if the grooves formed in this way are formed. Further, good oscillation characteristics were exhibited, with a threshold value of 40 to 55 mA and an oscillation efficiency of 1.0 to 1.2 W / A at room temperature and continuous oscillation conditions. Thus, the optical output increased by about 20 to 40% when the operating current was 400 mA at the same threshold value as the semiconductor light emitting device without the upper buffer layer.

尚、実施例2においては、半導体発光装置の発振波長即ち、多重量子井戸活性層の発光波長を0.66μmに設定しているが、それ以外の波長に設定した場合においても同様の効果を得ることができる。以上のようにして作製した半導体発光装置はDVD用のLDへ適用可能となる。   In Example 2, the oscillation wavelength of the semiconductor light emitting device, that is, the emission wavelength of the multiple quantum well active layer is set to 0.66 μm. However, the same effect can be obtained when the wavelength is set to other wavelengths. be able to. The semiconductor light emitting device manufactured as described above can be applied to a DVD LD.

[実施例3]
本発明を適用した集積型光導波路素子の実施形態の一例を、図9(a)−(e)、図10(a)−(d)および図11を参照して説明する。ただし図は飽くまで本実施例を説明するものであって、図の大きさと本実施例記載の縮尺は必ずしも一致するものではない。
[Example 3]
An example of an embodiment of an integrated optical waveguide device to which the present invention is applied will be described with reference to FIGS. 9 (a)-(e), 10 (a)-(d), and FIG. However, the drawings are only for explaining the present embodiment, and the size of the drawings and the scale described in the present embodiment do not always coincide.

図9(a)に示すように、まず、n型InP半導体基板51(厚さ2mm)上へMO−CVD法によりn型InPバッファ層52(膜厚0.5μm)、n型InGaA1As(組成波長0.92μm)からなる電界吸収型光変調器下部クラッド層53(膜厚0.1μm)、0.6%圧縮歪を有するInGaA1Asの井戸層(膜厚7nm、組成波長1.5μm)を、0.6%の引張り歪を有するInGaA1Asの障壁層(膜厚10nm、組成波長1.35μm)の9周期の多重量子井戸活性層54、InGaA1As(組成波長0.92μm)からなる電界吸収型光変調器上部クラッド層55(膜厚0.1μm)を積層する。   As shown in FIG. 9A, first, an n-type InP buffer layer 52 (film thickness 0.5 μm), n-type InGaA1As (composition wavelength) is formed on an n-type InP semiconductor substrate 51 (thickness 2 mm) by MO-CVD. 0.92 μm) of an electroabsorption optical modulator lower cladding layer 53 (film thickness of 0.1 μm), an InGaA1As well layer (film thickness of 7 nm, composition wavelength of 1.5 μm) having 0.6% compression strain, An electro-absorption optical modulator comprising an InGaA1As barrier layer (film thickness: 10 nm, composition wavelength: 1.35 μm) having nine periods and a multi-quantum well active layer 54 of InGaA1As (composition wavelength: 0.92 μm) having a tensile strain of .6% An upper cladding layer 55 (film thickness of 0.1 μm) is laminated.

図9(b)に示すように、次いで、電界吸収型光変調器に対応する幅(例えば、300μm)を残しn型InPバッファ層52の表面までエッチングを行う。   Next, as shown in FIG. 9B, etching is performed to the surface of the n-type InP buffer layer 52 leaving a width (for example, 300 μm) corresponding to the electroabsorption optical modulator.

図9(c)に示すように、次に、n型InGaAsP(組成波長1.10μm)からなる導波路下部クラッド層56(膜厚0.1μm)、InGaAsP(組成波長1.3μm)からなる導波路コア57(膜厚0.16μm)、InGaAsP(組成波長1.15μm)からなる導波路上部クラッド層58(0.1μm)を積層する。   Next, as shown in FIG. 9C, a waveguide lower cladding layer 56 (film thickness 0.1 μm) made of n-type InGaAsP (composition wavelength 1.10 μm) and a conductor made of InGaAsP (composition wavelength 1.3 μm). A waveguide upper cladding layer 58 (0.1 μm) made of a waveguide core 57 (film thickness 0.16 μm) and InGaAsP (composition wavelength 1.15 μm) is laminated.

図9(d)に示すように、次いで、長さ300μmの電界吸収型光変調器と長さ150μmの導波路を残しn型Inpバッファ層52の表面までエッチングを行う。   Next, as shown in FIG. 9D, etching is performed up to the surface of the n-type Inp buffer layer 52 leaving an electroabsorption optical modulator having a length of 300 μm and a waveguide having a length of 150 μm.

図9(e)に示すように、次いで、発光装置のn型InGaAsP(組成波長1.10μm)からなる下部クラッド層59を0.13μm、1.0%圧縮歪を有するInGaAsPの井戸層(膜厚7nm、組成波長1.5μm)、0.5%の引張り歪を有するInGaASPの障壁層(膜厚12nm、組成波長1.3μm)とする5周期の多重量子井戸活性層60、InGaAsP(組成波長1.10μm)からなる上部クラッド層61(膜厚0.10μm)、p型InPからなる上部バッファ層62(膜厚0.2μm)、InGaAsP(組成波長1.3)からなるエッチング停止層63(膜厚0.005μm)、p型InPからなる下スペーサ層64(膜厚0.02μm)、InGaAsP(組成波長1.3μm)からなる回折格子層65(膜厚0.03μm)を積層する。多重量子井戸活性層の発光波長は約1.5μmである。   Next, as shown in FIG. 9E, the lower cladding layer 59 made of n-type InGaAsP (composition wavelength 1.10 μm) of the light emitting device is formed as an InGaAsP well layer (film) having a compressive strain of 0.13 μm and 1.0%. A 5-quantum multi-quantum well active layer 60 having a thickness of 7 nm, a composition wavelength of 1.5 μm, and an InGaASP barrier layer having a tensile strain of 0.5% (film thickness of 12 nm, composition wavelength of 1.3 μm), InGaAsP (composition wavelength) 1.10 μm) upper cladding layer 61 (film thickness 0.10 μm), p-type InP upper buffer layer 62 (film thickness 0.2 μm), InGaAsP (composition wavelength 1.3) etching stop layer 63 (composition wavelength 1.3) 0.005 μm thickness), lower spacer layer 64 made of p-type InP (0.02 μm thickness), and diffraction grating layer 65 made of InGaAsP (composition wavelength 1.3 μm) (film) 0.03μm) are stacked. The emission wavelength of the multiple quantum well active layer is about 1.5 μm.

図10(a)に示すように、次に、回折格子層65上へ公知の干渉露光方式と、それに続くりん酸系溶液でのエッチングにより、回折格子層65へ回折格子を形成する。さらに、電界吸収型光変調器へ窓66を形成する。エッチング停止層63と回折格子層65との間にInpからなる下スペーサ層64があるのでフローティング型の回折格子となり、エッチング時間が多少違っても回折格子は精度良く作製可能となる。   As shown in FIG. 10A, next, a diffraction grating is formed on the diffraction grating layer 65 by a known interference exposure method on the diffraction grating layer 65 and subsequent etching with a phosphoric acid solution. Further, a window 66 is formed in the electroabsorption optical modulator. Since there is a lower spacer layer 64 made of Inp between the etching stop layer 63 and the diffraction grating layer 65, it becomes a floating type diffraction grating, and the diffraction grating can be accurately manufactured even if the etching time is slightly different.

図10(b)に示すように、引き続き、MO−CVD法により回折格子を形成した回折格子層65、上部クラッド層58上および窓66の形成されたn型InPバッファ層52上にp型InP層67(膜厚2.0μm)、InGaAsP(組成波長1.3μm)とInGaAsからなるコンタクト層68(膜厚0.3μm)を積層する。ここで、p型InP層67は膜厚2.0μmが、他の層と比較して桁違いに厚いので、積層された表面は実質的に平坦化される。   As shown in FIG. 10B, subsequently, the p-type InP is formed on the diffraction grating layer 65 in which the diffraction grating is formed by the MO-CVD method, the upper cladding layer 58 and the n-type InP buffer layer 52 in which the window 66 is formed. A layer 67 (thickness 2.0 μm), InGaAsP (composition wavelength 1.3 μm) and InGaAs contact layer 68 (thickness 0.3 μm) are stacked. Here, since the p-type InP layer 67 has a film thickness of 2.0 μm, which is an order of magnitude thicker than other layers, the laminated surface is substantially flattened.

図10(c)に示すように、その後、電界吸収型光変調器上部クラッド層55、導波路上部クラッド層58および発光装置エッチング停止層63までエッチングして、リッジ69の形成を行う。このとき、発光装置のリッジ幅を2.5μmとし、また電界吸収型光変調器のリッジ幅を1.5μmとした。そしてこれらをつなぐ導波路のリッジの幅は発光装置部から電界吸収型光変調器部に向かって連続的に変化するようテーパー状にした。   Thereafter, as shown in FIG. 10C, the ridge 69 is formed by etching the electroabsorption optical modulator upper cladding layer 55, the waveguide upper cladding layer 58, and the light emitting device etching stop layer 63. Then, as shown in FIG. At this time, the ridge width of the light emitting device was set to 2.5 μm, and the ridge width of the electroabsorption optical modulator was set to 1.5 μm. The width of the ridge of the waveguide connecting them is tapered so as to continuously change from the light emitting device portion toward the electroabsorption optical modulator portion.

図10(d)に示すように、次に導波路のコンタクト層68を除去し、発光装置と電界吸収型光変調器のコンタクト層を分離した。   Next, as shown in FIG. 10D, the contact layer 68 of the waveguide was removed, and the contact layer of the light emitting device and the electroabsorption optical modulator was separated.

図11は実施例3の集積型光導波路素子の完成した状態を示す図である。これは、図10(d)に示す構成に続けて、以下の工程の実施により得られる。図5(c)で説明したように、T−CVD法により電界吸収型光変調器上部クラッド層55、導波路上部クラッド層58および発光装置エッチング停止層63より上側の全面にシリコン酸化膜70(厚さ0.1μm)を形成する。次いで、図5(d)で説明したように、半導体発光装置と電界吸収型光変調器のリッジ69上部のコンタクト層68上にある絶縁膜の除去を行う(この際、導波路上部にはシリコン酸化膜70が残る)。ここで、実施例3ではシリコン酸化膜を絶縁膜としているが、シリコン窒化膜等を用いることも可能である。次に、図6で説明したように、ポリイミド樹脂71によりウエハ表面を平坦化する。最後に、半導体発光装置のコンタクト層68の上にp電極72、電界吸収型光変調器のコンタクト層68の上にp電極73を形成し、n型InP基板51の裏面にn電極74を形成の後、劈開工程により素子を切り出し、後端面に反射率95%の反射膜、前端面に反射率0.1%の低反射膜をコートした。   FIG. 11 is a diagram illustrating a completed state of the integrated optical waveguide device according to the third embodiment. This is obtained by performing the following steps following the configuration shown in FIG. As described in FIG. 5C, the silicon oxide film 70 (on the entire surface above the electroabsorption optical modulator upper cladding layer 55, the waveguide upper cladding layer 58, and the light emitting device etching stop layer 63 by T-CVD). A thickness of 0.1 μm) is formed. Next, as described in FIG. 5D, the insulating film on the contact layer 68 on the ridge 69 of the semiconductor light emitting device and the electroabsorption optical modulator is removed (at this time, the silicon is formed on the upper portion of the waveguide). The oxide film 70 remains). Here, although the silicon oxide film is used as the insulating film in the third embodiment, a silicon nitride film or the like can also be used. Next, as described with reference to FIG. 6, the wafer surface is flattened by the polyimide resin 71. Finally, a p-electrode 72 is formed on the contact layer 68 of the semiconductor light emitting device, a p-electrode 73 is formed on the contact layer 68 of the electroabsorption optical modulator, and an n-electrode 74 is formed on the back surface of the n-type InP substrate 51. Thereafter, the element was cut out by a cleavage process, and a reflective film having a reflectance of 95% was coated on the rear end face, and a low reflective film having a reflectance of 0.1% was coated on the front end face.

実施例3では、エッチング停止層63の上に回折格子65が形成されているので、上部クラッド層61や上部バッファ層62の中へ回折格子を形成するのとは異なり、4回の成長で集積が可能となる。尚、電界吸収型光変調器と導波路、半導体発光装置の成長の順番はこれに限るものではない。また半導体発光装置の材料としてInGaAsP系の替わりに、実施例2で説明したように、InGaAlAs系を採用することができる。さらに、電界吸収型光変調器の材料としてInGaAlAs系の替わりにInGaAsP系を使用してもよい。   In the third embodiment, since the diffraction grating 65 is formed on the etching stop layer 63, the diffraction grating is integrated into the upper cladding layer 61 and the upper buffer layer 62 by four times of growth unlike the case where the diffraction grating is formed. Is possible. The order of growth of the electroabsorption optical modulator, the waveguide, and the semiconductor light emitting device is not limited to this. As described in the second embodiment, an InGaAlAs system can be adopted as a material for the semiconductor light emitting device, instead of the InGaAsP system. Further, an InGaAsP system may be used instead of the InGaAlAs system as a material for the electroabsorption optical modulator.

実施例3では、リッジ幅は半導体発光装置の領域では2.0μm、電界吸収型光変調器の領域では1.4μmとし、両者を結ぶ導波路は長さが150μmとしてテーパー状に結合するものとした。この結果、半導体発光装置のリッジと電界吸収型光変調器のリッジとを光損失がほとんどない状態で結合することができた。   In Example 3, the ridge width is 2.0 μm in the region of the semiconductor light emitting device, 1.4 μm in the region of the electroabsorption optical modulator, and the waveguide connecting the both has a length of 150 μm and is coupled in a tapered shape. did. As a result, the ridge of the semiconductor light emitting device and the ridge of the electroabsorption optical modulator could be coupled with almost no optical loss.

図12は、半導体発光装置のリッジ幅が2.0μmおよび2.5μm、電界吸収型光変調器のリッジ幅が1.4μmの場合について、導波路長を横軸に取り、縦軸に透過率をとって評価した結果を示す図である。図からわかるように、それぞれ、導波路長が10μmから150μmの範囲で、実質的に同じ特性が得られる。したがって、極端な段差がある形で結合するのでなければ、テーパーの傾きにはあまり影響を受けずに結合できる。さらに窓66を設けることにより、光ファイバとの光結合が容易となり、結合損失を3dB以下に抑えることが可能となった。   FIG. 12 shows the case where the ridge width of the semiconductor light emitting device is 2.0 μm and 2.5 μm, and the ridge width of the electroabsorption optical modulator is 1.4 μm. It is a figure which shows the result of having taken and evaluated. As can be seen from the figure, substantially the same characteristics are obtained when the waveguide length is in the range of 10 μm to 150 μm. Therefore, unless coupling is performed with an extreme step, coupling can be performed without being affected by the inclination of the taper. Further, by providing the window 66, the optical coupling with the optical fiber is facilitated, and the coupling loss can be suppressed to 3 dB or less.

さらに、実施例3の集積型光導波路素子の遠視野像を測定したところ、半導体発光装置単体での広がりが基板に対し垂直方向では45°、水平方向では20°だったが、実施例3記載の集積型半導体導波路素子では、垂直方向では45°、水平方向では35°となり、広がり方の異方性が緩和されていることが確認された。半導体発光装置の動作電流は−5℃〜85℃において70〜150mAの範囲で動作させた。また電界吸収型光変調器のp電極73へ印加する電圧を−5℃〜85℃においてオフセットバイアスを最適に調節し、変調振幅電圧を2.5V以下にすることにより光出力1dBm以上、動的消光比10dB以上、帯域10Gbps以上を得ることができた。これにより、−5℃〜85℃において温度調節の必要なくビットレート10Gbpsにおいて、伝送距離40km以上で良好なアイ開口を得ることが可能となった。   Further, when the far-field image of the integrated optical waveguide device of Example 3 was measured, the spread of the semiconductor light emitting device alone was 45 ° in the vertical direction and 20 ° in the horizontal direction. In the integrated semiconductor waveguide device, it was confirmed that the spreading anisotropy was relaxed by 45 ° in the vertical direction and 35 ° in the horizontal direction. The operating current of the semiconductor light emitting device was operated in the range of 70 to 150 mA at -5 ° C to 85 ° C. In addition, the offset bias is optimally adjusted in the voltage applied to the p-electrode 73 of the electroabsorption optical modulator at −5 ° C. to 85 ° C., and the modulation amplitude voltage is set to 2.5 V or less, so that the optical output is 1 dBm or more and dynamic. An extinction ratio of 10 dB or more and a bandwidth of 10 Gbps or more could be obtained. As a result, it became possible to obtain a good eye opening at a transmission distance of 40 km or more at a bit rate of 10 Gbps without adjusting the temperature at -5 ° C to 85 ° C.

なお、実施例3の集積型光導波路素子の半導体発光装置は、図1,2で説明した本発明の前提となる半導体発光装置と同じ構成としたが、実施例1で説明した図6に示す溝つきの構造としてよい。   The semiconductor light-emitting device of the integrated optical waveguide element of Example 3 has the same configuration as that of the semiconductor light-emitting device that is the premise of the present invention described in FIGS. 1 and 2, but is shown in FIG. 6 described in Example 1. A grooved structure may be used.

[実施例4]
本発明を適用した集積型光導波路素子の実施例4として、電界吸収型光変調器に代えてマッハ−ツェンダ型光変調器を採用した集積型光導波路素子の一例を、図13を用いて説明する。ただし図は飽くまで本実施例を説明するものであって、図の大きさと本実施例記載の縮尺は必ずしも一致するものではない。
[Example 4]
Example 4 of an integrated optical waveguide device to which the present invention is applied will be described with reference to FIG. 13 as an example of an integrated optical waveguide device that employs a Mach-Zehnder optical modulator instead of an electroabsorption optical modulator. To do. However, the drawings are only for explaining the present embodiment, and the size of the drawings and the scale described in the present embodiment do not always coincide.

図13は実施例4の集積型光導波路素子の構成を示す図である。実施例4の集積型光導波路素子は半導体発光装置LDと、導波路WGと、マッハ−ツェンダ型光変調器MZ及び窓66とがn型InP基板1、InPバッファ層2上に形成され、カスケードに結合されたものである。半導体発光装置LDは、図1,2を参照して説明した本発明の前提としての半導体発光装置と同じ構成であり、同じ参照符号を付した。導波路WGは図9−11を参照して説明した実施例2の集積型光導波路素子の構成における導波路と同じであるが、図が煩雑となるので、参照符号は省略した。マッハ−ツェンダ型光変調器MZは、導波路WGに接続されるとともに二つの光路81,82に分路された後、再び合路されて窓66に接続される。二つの光路81,82の内の一つの光路81には、コンタクト層11が形成される。また、二つの光路81,82にも、導波路WGと同様に、導波路下部クラッド層56、InGaAsP(組成波長1.3μm)からなる導波路コア57、InGaAsP(組成波長1.15μm)からなる導波路上部クラッド層58を積層する。   FIG. 13 is a diagram illustrating a configuration of an integrated optical waveguide device according to the fourth embodiment. In the integrated optical waveguide device of the fourth embodiment, a semiconductor light emitting device LD, a waveguide WG, a Mach-Zehnder optical modulator MZ, and a window 66 are formed on an n-type InP substrate 1 and an InP buffer layer 2, and cascaded. Are combined. The semiconductor light emitting device LD has the same configuration as the semiconductor light emitting device as the premise of the present invention described with reference to FIGS. The waveguide WG is the same as the waveguide in the configuration of the integrated optical waveguide device according to the second embodiment described with reference to FIGS. 9-11, but the drawing is complicated, and thus the reference numerals are omitted. The Mach-Zehnder type optical modulator MZ is connected to the waveguide WG and is shunted to the two optical paths 81 and 82, and then reconnected and connected to the window 66. The contact layer 11 is formed in one of the two optical paths 81 and 82. Similarly to the waveguide WG, the two optical paths 81 and 82 also include a waveguide lower cladding layer 56, a waveguide core 57 made of InGaAsP (composition wavelength 1.3 μm), and InGaAsP (composition wavelength 1.15 μm). A waveguide upper cladding layer 58 is laminated.

製作工程について簡単に説明すると、まず、図1(c)に示したのと同様に、半導体発光装置LDを積層した後、導波路WGおよびマッハ−ツェンダ型光変調器MZの領域の部分をInPバッファ層2の面までエッチングして、その上に導波路分56−58を積層する。窓66を形成した後、p型InP層およびコンタクト層11を積層する。この状態は、図10(b)に示す状況と同様になる。その後、図10(c),(d)に示すのと同様にして、図13に示す構成が得られる。この後、図11と同様にして、実施例4の集積型光導波路素子が完成するが、図示は省略した。   The manufacturing process will be briefly described. First, in the same manner as shown in FIG. 1C, after the semiconductor light emitting devices LD are stacked, the region of the waveguide WG and the Mach-Zehnder type optical modulator MZ is changed to InP. Etching is performed up to the surface of the buffer layer 2, and waveguide portions 56-58 are laminated thereon. After the window 66 is formed, the p-type InP layer and the contact layer 11 are stacked. This state is the same as the situation shown in FIG. Thereafter, in the same manner as shown in FIGS. 10C and 10D, the configuration shown in FIG. 13 is obtained. Thereafter, the integrated optical waveguide device of Example 4 is completed in the same manner as in FIG. 11, but the illustration is omitted.

ここで、二つの光路81,82のそれぞれの光路長は、半導体発光装置LDの発信周波数の波長の1/2だけ異なるように構成される。光路81のコンタクト層11に接続される電極と基板1の下面に設けられる電極との間に加えられる電圧が所定の値になると、光路81の屈折率が変化して、透過的な光路長が変化して、例えば、光路81,82のそれぞれの光路長が等しくなるようになされる。その結果、電極間に電圧が無ければ、光信号は出されず、電極間に電圧が印加されると光信号が出されることになる。   Here, the optical path lengths of the two optical paths 81 and 82 are configured to be different from each other by a half of the wavelength of the transmission frequency of the semiconductor light emitting device LD. When the voltage applied between the electrode connected to the contact layer 11 of the optical path 81 and the electrode provided on the lower surface of the substrate 1 reaches a predetermined value, the refractive index of the optical path 81 changes, and the transparent optical path length is changed. For example, the optical path lengths of the optical paths 81 and 82 are made equal. As a result, when there is no voltage between the electrodes, no optical signal is output, and when a voltage is applied between the electrodes, an optical signal is output.

なお、実施例4においても、例えば、半導体発光装置LDのリッジ幅は2.0μm、マッハ−ツェンダ型光変調器MZのリッジ幅は1.0μmとして、両者を光損失がほとんどなく結合できるように、導波路WGのリッジにテーパーを持たせた。さらに、窓66により光ファイバとの光結合が容易となり、かつ結合損失を3dB以下に抑えることが可能となった。半導体発光装置LDの動作電流は−5℃〜85℃において70〜150mAの範囲で動作させた。またマッハ−ツェンダ型光変調器の電極11へ印加する電圧は−5℃〜85℃においてオフセットバイアスを最適に調節し、変調用振幅電圧を2.5V以下にすることにより光出力3dBm以上、動的消光比10dB以上、帯域10Gbps以上を得ることができた。これにより、−5℃〜85℃において温度調節の必要なくビットレート10Gbpsにおいて、伝送距離40km以上で良好なアイ開口を得ることが可能となった。   Also in the fourth embodiment, for example, the ridge width of the semiconductor light emitting device LD is 2.0 μm, and the ridge width of the Mach-Zehnder type optical modulator MZ is 1.0 μm so that they can be coupled with almost no optical loss. The ridge of the waveguide WG was tapered. Further, the window 66 facilitates optical coupling with the optical fiber, and the coupling loss can be suppressed to 3 dB or less. The operating current of the semiconductor light emitting device LD was operated in the range of 70 to 150 mA at -5 ° C to 85 ° C. Further, the voltage applied to the electrode 11 of the Mach-Zehnder type optical modulator is adjusted to an offset bias optimally at -5 ° C. to 85 ° C., and by adjusting the modulation amplitude voltage to 2.5 V or less, the optical output is 3 dBm or more. An effective extinction ratio of 10 dB or higher and a bandwidth of 10 Gbps or higher were obtained. As a result, it became possible to obtain a good eye opening at a transmission distance of 40 km or more at a bit rate of 10 Gbps without adjusting the temperature at -5 ° C to 85 ° C.

尚、マッハ−ツェンダ光変調器MZはこれに限るものでなく、これと同等な機能を備える光導波路素子であっても構わない。さらに光変調器以外にも光増幅器などとの集積も可能である。   The Mach-Zehnder optical modulator MZ is not limited to this, and may be an optical waveguide element having a function equivalent to this. In addition to the optical modulator, integration with an optical amplifier or the like is also possible.

1…n型InP半導体基板、2…n型InPバッファ層、3…n型InGaAsP下部クラッド層、4…多重量子井戸活性層、5…InGaAsP上部クラッド層、6…p型InP上部バッファ層、7…InGaAsPエッチング停止層、8…p型InP下スペーサ層、9…InGaAsP回折格子層、10…p型InP層、11…InGaAsPとInGaAsからなるInGaAsコンタクト層、12…リッジ、13…シリコン酸化膜、14…ポリイミド樹脂層、15…p電極、16…n電極、17…レジスト膜、23…シリコン酸化膜、24…ポリイミド樹脂層、31…n型GaAs半導体基板、32…n型GaAsバッファ層、33…n型(AlGa1−x0.5In0.5P(x=0.60)下部クラッド層、34…多重量子井戸活性層、35…p型(AlGa1−x0.5In0.5P(x=0.50)上部クラッド層、36…(AlGa1−x0.5In0.5Pからなる上部バッファ層、40…(AlGa1−x0.5In0.5P(x=0.60)層、41…GaAsコンタクト層、42…リッジ、43…シリコン酸化膜、44…ポリイミド樹脂、45…p電極、46…n電極、51…n型InP半導体基板、52…n型InPバッファ層、53…n型InGaA1As電界吸収型光変調器下部クラッド層、54…多重量子井戸活性層、55…InGaA1As電界吸収型光変調器上部クラッド層、56…n型InGaAsP導波路下部クラッド層、57…InGaAsP導波路コア、58…InGaAsP導波路上部クラッド層、59…n型InGaAsP下部クラッド層、60…多重量子井戸活性層、61…InGaAsP上部クラッド層、62…p型InP上部バッファ層、63…InGaAsPエッチング停止層、64…p型InP下スペーサ層、65…回折格子層、66…窓、67…p型InP層、68…InGaAsPとInGaAsからなるコンタクト層、69…リッジ、70…シリコン酸化膜、71…ポリイミド樹脂、72…p電極、73…p電極、74…n電極、81…光路、82…光路、LD…半導体発光装置、WG…導波路、MZ…マッハ−ツェンダ型光変調器。 DESCRIPTION OF SYMBOLS 1 ... n-type InP semiconductor substrate, 2 ... n-type InP buffer layer, 3 ... n-type InGaAsP lower clad layer, 4 ... Multiple quantum well active layer, 5 ... InGaAsP upper clad layer, 6 ... p-type InP upper buffer layer, 7 ... InGaAsP etching stop layer, 8 ... p-type InP lower spacer layer, 9 ... InGaAsP diffraction grating layer, 10 ... p-type InP layer, 11 ... InGaAs contact layer made of InGaAsP and InGaAs, 12 ... ridge, 13 ... silicon oxide film, 14 ... polyimide resin layer, 15 ... p electrode, 16 ... n electrode, 17 ... resist film, 23 ... silicon oxide film, 24 ... polyimide resin layer, 31 ... n-type GaAs semiconductor substrate, 32 ... n-type GaAs buffer layer, 33 ... n-type (Al x Ga 1-x) 0.5 In 0.5 P (x = 0.60) lower cladding layer, 34 ... multi Quantum well active layer, 35 ... p-type (Al x Ga 1-x) 0.5 In 0.5 P (x = 0.50) upper cladding layer, 36 ... (Al x Ga 1 -x) 0.5 In Upper buffer layer made of 0.5 P, 40... (Al x Ga 1-x ) 0.5 In 0.5 P (x = 0.60) layer, 41 GaAs contact layer, 42 ridge, 43 silicon Oxide film, 44 ... polyimide resin, 45 ... p electrode, 46 ... n electrode, 51 ... n-type InP semiconductor substrate, 52 ... n-type InP buffer layer, 53 ... n-type InGaA1As electroabsorption optical modulator lower cladding layer, 54 ... Multiple quantum well active layer, 55 ... InGaA1As electroabsorption optical modulator upper cladding layer, 56 ... n-type InGaAsP waveguide lower cladding layer, 57 ... InGaAsP waveguide core, 58 ... InGaAsP waveguide upper cladding layer Lad layer, 59 ... n-type InGaAsP lower cladding layer, 60 ... multiple quantum well active layer, 61 ... InGaAsP upper cladding layer, 62 ... p-type InP upper buffer layer, 63 ... InGaAsP etching stop layer, 64 ... p-type InP lower spacer 65, diffraction grating layer, 66 ... window, 67 ... p-type InP layer, 68 ... contact layer made of InGaAsP and InGaAs, 69 ... ridge, 70 ... silicon oxide film, 71 ... polyimide resin, 72 ... p electrode, 73 ... p electrode, 74 ... n electrode, 81 ... optical path, 82 ... optical path, LD ... semiconductor light emitting device, WG ... waveguide, MZ ... Mach-Zehnder type optical modulator.

Claims (5)

第1光導波路素子と第2光導波路素子とがカスケードに結合された集積型光導波路素子において、
前記第1光導波路素子は、
第1導電型半導体層の上に配置された井戸層と、
前記井戸層の上に配置された第2導電型半導体層と、
前記第2導電型半導体層の上に配置された第1電極と、
前記第1導電型半導体層の下に配置された第2電極と、を有し、
かつ、
前記井戸層よりも上の前記第2導電型半導体層でリッジが構成されており、
前記第2光導波路素子は、
前記第1導電型半導体層の上で前記第1光導波路素子の井戸層とカスケードに結合され、分路され、さらに、分路された後再び合路する第1リッジ導波路コアと、前記分路に電圧を印加する電極とを備えたマッハーツェンダ型光変調器であることを特徴とする集積型光導波路素子。
In the integrated optical waveguide device in which the first optical waveguide device and the second optical waveguide device are coupled in cascade,
The first optical waveguide element is
A well layer disposed on the first conductivity type semiconductor layer;
A second conductivity type semiconductor layer disposed on the well layer;
A first electrode disposed on the second conductive semiconductor layer;
A second electrode disposed under the first conductivity type semiconductor layer,
And,
A ridge is formed by the second conductivity type semiconductor layer above the well layer,
The second optical waveguide element is
A first ridge waveguide core coupled in cascade with the well layer of the first optical waveguide element on the first conductivity type semiconductor layer, shunted, and shunted again after being shunted; An integrated optical waveguide device comprising a Mach-Zehnder type optical modulator comprising an electrode for applying a voltage to a path.
請求項1において、
前記第1光導波路素子、第3光導波路素子、前記第2光導波路素子の順にカスケード結合される前記第3光導波路素子を備え、
前記第3光導波路素子は、
前記第1導電型半導体層の上にある第2リッジ導波路コアと、
前記第2リッジ導波路コアの上にある絶縁膜と、を有し、
前記第2リッジ導波路コアは、前記第1光導波路素子の井戸層及び前記第2光導波路素子の前記第1リッジ導波路コアとカスケードに結合されていることを特徴とする集積型光導波路素子。
In claim 1,
Including the third optical waveguide element cascade-coupled in the order of the first optical waveguide element, the third optical waveguide element, and the second optical waveguide element;
The third optical waveguide element is
A second ridge waveguide core overlying the first conductivity type semiconductor layer;
An insulating film on the second ridge waveguide core;
The integrated optical waveguide element, wherein the second ridge waveguide core is coupled in cascade with the well layer of the first optical waveguide element and the first ridge waveguide core of the second optical waveguide element .
請求項1において、
前記第1光導波路素子、前記第2光導波路素子、第4光導波路素子の順にカスケード結合された前記第4光導波路素子を備え、
前記第4光導波路素子は窓を構成することを特徴とする集積型光導波路素子。
In claim 1,
The fourth optical waveguide element cascade-coupled in the order of the first optical waveguide element, the second optical waveguide element, and the fourth optical waveguide element,
The integrated optical waveguide device, wherein the fourth optical waveguide device forms a window.
請求項1において、
前記第1光導波路素子の井戸層はInGaAlAsで構成され、
前記第2光導波路素子の第1リッジ導波路コアは前記井戸層よりも組成波長が短いInGaAsPで構成されていることを特徴とする集積型光導波路素子。
In claim 1,
The well layer of the first optical waveguide element is composed of InGaAlAs,
An integrated optical waveguide element, wherein the first ridge waveguide core of the second optical waveguide element is made of InGaAsP having a shorter composition wavelength than the well layer.
請求項2において、
前記第1光導波路素子の井戸層はInGaAsPで構成され、
前記第2光導波路素子の第1リッジ導波路コアは前記井戸層よりも組成波長が短いInGaAsPで構成され、
前記第3光導波路素子の第2リッジ導波路コアは前記井戸層よりも組成波長が短いInGaAsPで構成されていることを特徴とする集積型光導波路素子。
In claim 2,
The well layer of the first optical waveguide element is made of InGaAsP;
The first ridge waveguide core of the second optical waveguide element is composed of InGaAsP having a shorter composition wavelength than the well layer,
An integrated optical waveguide element, wherein the second ridge waveguide core of the third optical waveguide element is made of InGaAsP having a shorter composition wavelength than the well layer.
JP2010142603A 2010-06-23 2010-06-23 Integrated optical waveguide element Pending JP2010239151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010142603A JP2010239151A (en) 2010-06-23 2010-06-23 Integrated optical waveguide element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010142603A JP2010239151A (en) 2010-06-23 2010-06-23 Integrated optical waveguide element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006044887A Division JP4977377B2 (en) 2006-02-22 2006-02-22 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JP2010239151A true JP2010239151A (en) 2010-10-21

Family

ID=43093158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010142603A Pending JP2010239151A (en) 2010-06-23 2010-06-23 Integrated optical waveguide element

Country Status (1)

Country Link
JP (1) JP2010239151A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268765A (en) * 1991-02-25 1992-09-24 Nec Corp Manufacture of optical integrated circuit
JPH0869953A (en) * 1994-06-24 1996-03-12 Hitachi Ltd Semiconductor device and its manufacture
JPH08248364A (en) * 1995-03-08 1996-09-27 Oki Electric Ind Co Ltd Light intensity modulation element and semiconductor laser with light intensity modulation element
JP2003304028A (en) * 2002-04-11 2003-10-24 Mitsubishi Electric Corp Optical modulator integrated semiconductor laser
JP2004273644A (en) * 2003-03-06 2004-09-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser
JP2006019541A (en) * 2004-07-02 2006-01-19 Nippon Telegr & Teleph Corp <Ntt> Wavelength variable semiconductor mode synchronous laser

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268765A (en) * 1991-02-25 1992-09-24 Nec Corp Manufacture of optical integrated circuit
JPH0869953A (en) * 1994-06-24 1996-03-12 Hitachi Ltd Semiconductor device and its manufacture
JPH08248364A (en) * 1995-03-08 1996-09-27 Oki Electric Ind Co Ltd Light intensity modulation element and semiconductor laser with light intensity modulation element
JP2003304028A (en) * 2002-04-11 2003-10-24 Mitsubishi Electric Corp Optical modulator integrated semiconductor laser
JP2004273644A (en) * 2003-03-06 2004-09-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser
JP2006019541A (en) * 2004-07-02 2006-01-19 Nippon Telegr & Teleph Corp <Ntt> Wavelength variable semiconductor mode synchronous laser

Similar Documents

Publication Publication Date Title
JP4977377B2 (en) Semiconductor light emitting device
JP4643794B2 (en) Semiconductor light emitting device
US6455338B1 (en) Method of manufacturing an integrated semiconductor laser-modulator device
JP4983790B2 (en) Optical semiconductor device and manufacturing method thereof
JP2004273993A (en) Wavelength variable distribution reflecting type semiconductor laser device
JP2010232424A (en) Semiconductor optical amplifier, and optical module
JP6213103B2 (en) Semiconductor optical device and optical module
JP5170869B2 (en) Optical semiconductor device and method for manufacturing optical semiconductor device
US20130207140A1 (en) Semiconductor Optical Element Semiconductor Optical Module and Manufacturing Method Thereof
JP2019008179A (en) Semiconductor optical element
JP4547765B2 (en) Optical modulator, semiconductor laser device with optical modulator, and optical communication device
JP4077348B2 (en) Semiconductor laser device and optical pickup device using the same
JP5314435B2 (en) Integrated optical device and manufacturing method thereof
US6204078B1 (en) Method of fabricating photonic semiconductor device using selective MOVPE
CN107623250B (en) Short-cavity long-surface emitting laser and manufacturing method thereof
JP2006203100A (en) Semiconductor laser and light transmitter module
JP3264321B2 (en) Waveguide-type semiconductor optical integrated device and method of manufacturing the same
JP4243506B2 (en) Semiconductor laser and optical module using the same
US6842471B2 (en) Semiconductor laser device having a current non-injection area
JPH10242577A (en) Semiconductor laser and manufacture thereof
JP2010199169A (en) Semiconductor optical element
JP2010239151A (en) Integrated optical waveguide element
JP5163355B2 (en) Semiconductor laser device
JP2009094410A (en) Semiconductor optical integrated device and its manufacturing method
JP2002057405A (en) Semiconductor laser device and its manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20130305

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20130702

Free format text: JAPANESE INTERMEDIATE CODE: A02