JP2010236999A - Device for measurement of circularity in bar steel - Google Patents

Device for measurement of circularity in bar steel Download PDF

Info

Publication number
JP2010236999A
JP2010236999A JP2009084622A JP2009084622A JP2010236999A JP 2010236999 A JP2010236999 A JP 2010236999A JP 2009084622 A JP2009084622 A JP 2009084622A JP 2009084622 A JP2009084622 A JP 2009084622A JP 2010236999 A JP2010236999 A JP 2010236999A
Authority
JP
Japan
Prior art keywords
steel bar
bar steel
diameter
edge
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009084622A
Other languages
Japanese (ja)
Other versions
JP5582280B2 (en
Inventor
Teruhisa Iwata
輝久 岩田
Toshibumi Kodama
俊文 児玉
Kentaro Hirayama
健太郎 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009084622A priority Critical patent/JP5582280B2/en
Publication of JP2010236999A publication Critical patent/JP2010236999A/en
Application granted granted Critical
Publication of JP5582280B2 publication Critical patent/JP5582280B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circularity measuring device for measuring circularity of a bar steel under online conveyance highly accurately over the whole length of the bar steel. <P>SOLUTION: Three light projection/reception type outer diameter meters 1 are arranged so that each edge of the bar steel can be detected by each meter, on a residual surface acquired by excluding a bar steel passing part from one plane perpendicular to a conveyance direction 15 of the bar steel 2, to thereby form one set of a sensor unit 5. At least four sets of the sensor units are arranged in series in the bar steel conveyance direction on each different edge detectable position between each different set. A diameter of a circle passing three points of each edge position detected by each sensor unit is determined, and three-point micro-method operation for deriving circularity based on a difference between the maximum value and the minimum value thereof can be executed over the whole length of the bar steel. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、棒鋼の真円度測定装置に関し、詳しくは、棒鋼の真円度を全長にわたって10μm程度の高精度に測定する、棒鋼の真円度測定装置に関する。   The present invention relates to a roundness measuring apparatus for a steel bar, and more particularly to a roundness measuring apparatus for a steel bar that measures the roundness of a steel bar with high accuracy of about 10 μm over the entire length.

背景となる従来技術として、特許文献1に記載の3ロール圧延材のプロフィール測定方法がある。これは、図5に示されるように、投光器1aと受光器1bの対で3ロール圧延機の出側の圧延材(棒鋼)2を挟む投影ビーム法による外径計1を少なくとも6台(投光器1aと受光器1bとの対を6対)、圧延材2の横断面に平行な同一平面内で圧延材軸線の周囲に周方向等間隔に固定配置し、また、該固定配置の位置は3ロール圧延機の中心から圧延材直径の100倍以内の位置を好適としている。   As a conventional technique as a background, there is a method for measuring a profile of a three-roll rolled material described in Patent Document 1. This is because, as shown in FIG. 5, at least six outer diameter meters 1 by a projection beam method in which a pair of a projector 1a and a receiver 1b sandwich a rolled material (steel) 2 on the exit side of a three-roll rolling mill (projector) 6 pairs of 1a and light receivers 1b), fixedly arranged at equal intervals in the circumferential direction around the axis of the rolled material in the same plane parallel to the cross section of the rolled material 2, and the position of the fixed arrangement is 3 A position within 100 times the diameter of the rolled material from the center of the roll mill is suitable.

特許第3845255号公報Japanese Patent No. 3845255

背景技術による測定装置では、棒鋼のプロフィールをより正確に測定するには、棒鋼外周上のエッジ位置を多数同時に検出すること、すなわち下記<1><2>が必要である。
<1> 外径計を同一断面上に多数(片側エッジ検出の場合で概ね10〜20台以上)、固定配置する。
<2> それらを同一タイミングで測定(同期をとって測定)する。
In the measuring apparatus according to the background art, in order to measure the profile of the bar more accurately, it is necessary to simultaneously detect a large number of edge positions on the outer circumference of the bar, that is, <1><2> below.
<1> A large number of outer diameter meters (approximately 10 to 20 or more in the case of edge detection on one side) are fixedly arranged on the same cross section.
<2> Measure them at the same timing (measured in synchronization).

一方、図6に示すように、投受光式外径計においては、投光器1a〜受光器1b間の距離(投受光器間隔)は、測定精度や測定範囲にもよるが、30mm程度の測定範囲で一般的に数百mm程度とされ、また、μmオーダの高精度測定をするには、受光器1bから棒鋼2のエッジ位置を占める対象点Pまでの距離(対象点受光器間隔)に上限を設ける必要があるとされているように、距離制約がある。   On the other hand, as shown in FIG. 6, in the light emitting / receiving outer diameter meter, the distance between the light projector 1a and the light receiver 1b (the distance between the light projector and the light receiver) depends on the measurement accuracy and the measurement range, but is about 30 mm. In general, the upper limit is the distance from the light receiver 1b to the target point P occupying the edge position of the steel bar 2 for high-precision measurement of the order of several hundred millimeters. There is a distance constraint as it is said that it is necessary to provide.

そのため、投受光器間隔の短い外径計を多数、同一断面上に配置しようとすると、図7に例示するように、隣り合う外径計1同士の干渉20が生じてしまうので、上記<1>は実現不可能である。また、多数の外径計の同期をとるには、特殊仕様・設計が不可欠で、莫大なコストアップになることや、同期をとれる台数にも限度があることから、上記<2>は現実的とはいえない。   Therefore, if a large number of outer diameter meters having a short interval between the light emitter and the receiver are arranged on the same cross section, as shown in FIG. 7, interference 20 between adjacent outer diameter meters 1 occurs. > Is not feasible. Also, in order to synchronize a large number of outer diameter meters, special specifications and design are indispensable, and the above-mentioned <2> is realistic because there is a huge cost increase and the number of units that can be synchronized is limited. That's not true.

上述のように、従来技術では投受光式外径計を用いた棒鋼真円度のオンライン高精度測定は不可能であるという未解決の課題があった。   As described above, the conventional technique has an unsolved problem that online high-precision measurement of the roundness of a steel bar using a light emitting / receiving type outer diameter meter is impossible.

本発明は、前記課題を解決するために、オフラインで静止した棒鋼の真円度測定方法として知られる3点マイクロ法を、オンライン搬送中の棒鋼の真円度測定に適用することに着目した。
3点マイクロ法で静止した棒鋼の外径を測定する場合、図1(a)に示すように3点マイクロメータ30の3つの当接面31,32,33(3面のうち当接面31,32は固定、当接面33は可動)を棒鋼2に外接させ、可動当接面33を先端面とする計測ロッド34の目盛から外径値を求める。
In order to solve the above-mentioned problems, the present invention has focused on applying a three-point micro method known as a method for measuring the roundness of a steel bar stationary offline to the measurement of the roundness of a steel bar during online conveyance.
When measuring the outer diameter of a stationary steel bar by the three-point micro method, as shown in FIG. 1 (a), the three contact surfaces 31, 32, 33 of the three-point micrometer 30 (the contact surface 31 of the three surfaces). , 32 is fixed, and the contact surface 33 is movable), and the outer diameter value is obtained from the scale of the measuring rod 34 having the movable contact surface 33 as the tip surface.

前記3つの当接面は、同一円周の三等分点に外接するように(相互隣接面間角度60°に)配置されているので、図1(b)に示すように、前記同一円周の円O(円Oを中心とする円の意)と当接面31,32,33との接線は正三角形(△ABC)をなし、円Oの直径Dと△ABCの高さhとは、h=(3/2)×D、の関係を有する。よって、3点マイクロ法では計測ロッド34の目盛系を、点Aがゼロ点で目盛単位幅が2点マイクロ法の場合の3/2倍になる目盛系とすることで、2点マイクロ法の場合と同様に直径Dを目盛から直読することができる。   Since the three abutment surfaces are arranged so as to circumscribe the trisection point of the same circumference (at an angle between the adjacent surfaces of 60 °), as shown in FIG. The tangent line between the circumferential circle O (meaning a circle centered on the circle O) and the contact surfaces 31, 32, 33 forms an equilateral triangle (ΔABC), the diameter D of the circle O and the height h of ΔABC, Has a relationship of h = (3/2) × D. Therefore, in the 3-point micro method, the scale system of the measuring rod 34 is a scale system in which the point A is zero and the scale unit width is 3/2 times that of the 2-point micro method. As in the case, the diameter D can be read directly from the scale.

3点マイクロ法は2点マイクロ法に比べ、真円度測定の信頼性が高い。その理由を図2を用いて説明する。
図2に示すように、棒鋼の真円度は、棒鋼断面図形の最大径と最小径の差で表される。最大径が前記棒鋼断面図形の外接円の直径(真の最大径)に近いほど、かつ、最小径が前記棒鋼断面図形の内接円の直径(真の最小径)に近いほど測定信頼性は高い。この点に関して、3点マイクロ法と2点マイクロ法を比較すると、3点マイクロ法では、図2(a)に示すように、棒鋼2の一断面図形と3つの当接面31,32,33との3点接触で円40が定まり、この円40は、最大径検出時では前記外接円に極めて近い円であり、最小径検出時では前記内接円に極めて近い円である。これに対し、2点マイクロ法では、図2(b)に示すように、棒鋼2の一断面図形(図2(a)のそれと合同な図形)と2つの互いに平行な当接面31,33との2点接触で円41が定まり、この円41は、長径(最大径とみなされる)検出時では3点マイクロ法で定まる円40の最大径検出時より小さく、短径(最小径とみなされる)検出時では3点マイクロ法で定まる円40の最小径検出時より大きいのが一般的である。すなわち、2点マイクロ法に比べて3点マイクロ法の方が、検出した最大径が真の最大径により近く、かつ、検出した最小径が真の最小径により近いので、真円度の測定信頼性はより高いといえる。
The three-point micro method is more reliable in roundness measurement than the two-point micro method. The reason will be described with reference to FIG.
As shown in FIG. 2, the roundness of the steel bar is represented by the difference between the maximum diameter and the minimum diameter of the cross section of the steel bar. As the maximum diameter is closer to the diameter of the circumscribed circle (true maximum diameter) of the cross section of the steel bar, and the minimum diameter is closer to the diameter of the inscribed circle (true minimum diameter) of the cross section of the steel bar, the measurement reliability is high. In this regard, the three-point micro method is compared with the two-point micro method. In the three-point micro method, as shown in FIG. The circle 40 is determined by the three-point contact, and the circle 40 is very close to the circumscribed circle when the maximum diameter is detected, and is very close to the inscribed circle when the minimum diameter is detected. On the other hand, in the two-point micro method, as shown in FIG. 2 (b), one cross-sectional figure of the steel bar 2 (figure congruent with that of FIG. 2 (a)) and two parallel contact surfaces 31, 33 The circle 41 is determined by the two-point contact, and this circle 41 is smaller when the major axis (considered as the maximum diameter) is detected than when the maximum diameter of the circle 40 determined by the three-point micro method is detected. In general, the detection time is larger than the detection of the minimum diameter of the circle 40 determined by the three-point micro method. In other words, compared to the two-point micro method, the three-point micro method is closer to the true maximum diameter and the detected minimum diameter is closer to the true minimum diameter. It can be said that the nature is higher.

なお、真円度の定義式は、図2に示した式:真円度=最大径−最小径、に限らず、真円度=(最大径−最小径)/公称径×100(%)、真円度=(1−(最大径−最小径)/公称径)×100(%)、などとしてもよい。
本発明者らは、投受光式の外径計を用いた3点マイクロ法による棒鋼真円度測定について検討し、次の知見を得た。
1) 棒鋼通材方向に直交する1つの平面から棒鋼通材部分を除いた残りの面を配置面として該配置面内に3台の外径計を、各台が棒鋼のエッジ検出可能であるように、配置する必要がある。
2) 前記配置面は、面内の外径計によるエッジ検出可能位置が配置面ごとに異なるものを棒鋼通材方向沿いに少なくとも計4組もつ必要がある。
3) 同一配置面内の3台の外径計は、円周方向に120°間隔で配置するのが好ましいが、それ以外の場合でも、真円度測定は可能である。
4) 外径計は、棒鋼の片側エッジ検出するものが好ましいが、両側エッジ検出するものであってもよい。
5) 同一配置面内の3台の外径計で検出されるエッジ位置の計3点を通る円の直径を、少なくとも4組の相異なる配置面ごとに求め、それらのうちの最大値を最大径、最小値を最小径とし、最大径と最小径の差から真円度を導出できる。
6) 前記5)の真円度の導出は棒鋼全長にわたって行うことができる。
Note that the definition of roundness is not limited to the formula shown in FIG. 2: roundness = maximum diameter-minimum diameter, roundness = (maximum diameter-minimum diameter) / nominal diameter x 100 (%) , Roundness = (1− (maximum diameter−minimum diameter) / nominal diameter) × 100 (%), etc.
The present inventors examined the roundness measurement of the steel bar by a three-point micro method using a light emitting / receiving type outer diameter meter, and obtained the following knowledge.
1) With the remaining surface excluding the steel bar threading portion from one plane perpendicular to the steel bar threading direction as the placement surface, three outer diameter meters can be detected in the placement surface, and each stand can detect the edge of the steel bar. Need to be arranged.
2) It is necessary that the arrangement surface has at least four sets along the steel bar threading direction in which the position where the edge can be detected by the outer diameter meter varies depending on the arrangement surface.
3) The three outer diameter meters in the same arrangement plane are preferably arranged at 120 ° intervals in the circumferential direction, but roundness measurement is possible even in other cases.
4) The outer diameter meter is preferably one that detects one edge of a steel bar, but may be one that detects both edges.
5) Find the diameter of the circle that passes through the three points of the edge position detected by the three outer diameter meters in the same arrangement plane for each of at least four different arrangement planes, and maximize the maximum value among them. The roundness can be derived from the difference between the maximum diameter and the minimum diameter, with the diameter and the minimum value as the minimum diameter.
6) The roundness of 5) can be derived over the entire length of the steel bar.

本発明は、上記知見を基になされたものであり、その要旨は以下のとおりである。
(請求項1) 棒鋼搬送方向に直交する一平面から棒鋼通材部分を除いた残りの面内に投受光式の外径計3台を、各台による棒鋼のエッジ検出可能に配置して1組のセンサユニットとなし、該センサユニットの少なくとも4組を、異組間でエッジ検出可能位置を相異させて棒鋼搬送方向に直列に配置してなり、センサユニットごとに検出したエッジ位置3点を通る円の直径を求め、それらの最大値と最小値の差に基づいて真円度を導出する3点マイクロ法演算を、棒鋼の全長にわたって実行可能とされたことを特徴とする棒鋼の真円度測定装置。
(請求項2) 同一センサユニット内の3台の外径計は円周方向の120°ごとの角度位置に配置されていることを特徴とする請求項1に記載の棒鋼の真円度測定装置。
(請求項3) 前記棒鋼のエッジ検出が、棒鋼の片側エッジ検出であることを特徴とする請求項1または2に記載の棒鋼の真円度測定装置。
This invention is made | formed based on the said knowledge, The summary is as follows.
(Claim 1) Three light emitting / receiving type outer diameter meters are arranged in the remaining plane excluding the bar passing part from one plane orthogonal to the bar conveying direction so that the edge of the bar can be detected by each unit. The sensor unit is a set, and at least four of the sensor units are arranged in series in the steel bar conveyance direction with different edge detectable positions between the different sets, and three edge positions detected for each sensor unit. The true value of a steel bar is characterized by the fact that a three-point micro method of calculating the diameter of a circle passing through the bar and deriving the roundness based on the difference between the maximum value and the minimum value can be executed over the entire length of the steel bar. Circularity measuring device.
(Claim 2) The apparatus for measuring roundness of a steel bar according to claim 1, wherein the three outer diameter meters in the same sensor unit are arranged at angular positions every 120 ° in the circumferential direction. .
(Claim 3) The roundness measuring apparatus for a steel bar according to claim 1 or 2, wherein the edge detection of the steel bar is one-side edge detection of the steel bar.

本発明によれば、次のような効果を奏する。
(1)外径計の投受光器間隔を狭めても3台ならば干渉なく同一平面上に配置できる。
(2)3点マイクロ法では、同一タイミングで検出される棒鋼円周方向のエッジ位置が少なくとも3点あれば直径の演算ができるので、必要最小限の3台の外径計の同期をとらなくても最低限の誤差内で測定できる。
(3)同期をとる場合でも、3台同期化程度であれば特殊仕様の改造費も抑えることが可能である。
The present invention has the following effects.
(1) Even if the distance between the light emitter and the light receiver of the outer diameter meter is narrowed, it can be arranged on the same plane without interference if there are three.
(2) In the three-point micro method, the diameter can be calculated if there are at least three edge positions in the circumferential direction of the steel bar detected at the same timing, so the minimum required three outer diameter meters are not synchronized. However, it can be measured within the minimum error.
(3) Even when synchronizing, it is possible to reduce the cost of remodeling special specifications as long as three units are synchronized.

これらのことから、本発明によれば、オンライン搬送中の棒鋼の真円度を棒鋼全長にわたって高精度に測定できる。   For these reasons, according to the present invention, the roundness of the steel bar being conveyed online can be measured with high accuracy over the entire length of the steel bar.

3点マイクロ法の概念を示す説明図Explanatory diagram showing the concept of the three-point micro method 3点マイクロ法(a)と2点マイクロ法(b)の差異を示す説明図Explanatory drawing which shows the difference between the three-point micro method (a) and the two-point micro method (b) 本発明の実施形態の1例を示す概略図Schematic showing an example of an embodiment of the present invention 3点マイクロ法演算の原理を示す説明図Explanatory diagram showing the principle of 3-point micro method calculation 従来技術の実施形態を示す概略図Schematic showing an embodiment of the prior art 投受光式外径計の距離制約を示す説明図Explanatory drawing showing the distance constraints of the light emitting / receiving outer diameter meter 従来技術の問題点を示す説明図Explanatory drawing showing the problems of the prior art

図3は、本発明の実施形態の1例を示す概略図である。1組のセンサユニット5は、搬送ライン12上の棒鋼2の搬送方向15に直交する一平面から棒鋼通材部分を除いた残りの面内に、投光器1aと受光器1bとからなる投受光式の外径計1を3台、各台による棒鋼2のエッジ検出が可能なように配置したものを有する。そして4組のセンサユニット5が、異組間で円周方向のエッジ検出可能位置が相異するように各組内の3台の外径計1の配置形態を調整(配置位置を設定)されて、搬送方向15に直列に配置されている。ここで、センサユニットの配置組数が3組以下であるとエッジ検出点数が9点以下(検出直径のデータ個数が3個以下)と少なすぎて高精度な真円度測定が望めないため、センサユニットは少なくとも4組配置するものとした。図示の例ではセンサユニットの配置組数を4組としたが、5組以上としてもよい。   FIG. 3 is a schematic diagram showing an example of an embodiment of the present invention. One set of sensor units 5 is a light emitting / receiving type consisting of a light projector 1a and a light receiver 1b in a remaining plane excluding a bar threading portion from one plane perpendicular to the conveying direction 15 of the steel bar 2 on the conveying line 12. The three outer diameter meters 1 are arranged so that the edge of the steel bar 2 can be detected by each unit. The four sensor units 5 are adjusted (the arrangement positions are set) so that the three outer diameter meters 1 in each group have different circumferential edge detection detectable positions. Are arranged in series in the transport direction 15. Here, if the number of sensor unit arrangement groups is 3 or less, the number of edge detection points is 9 or less (the number of detected diameter data is 3 or less) and the roundness measurement with high accuracy cannot be expected. At least four sensor units are arranged. In the illustrated example, the number of sensor unit arrangement groups is four, but may be five or more.

各外径計1の受光器1bで検出されたエッジ位置の位置情報は、制御盤6に具備された対応する外径計コントローラ7を経てパソコン9に送られる。パソコン8は、送られてきた位置情報から、センサユニットごとに検出されたエッジ位置に対応する3点を通る円(3点マイクロ法で定まる円)の直径を算出し、該算出したデータから、全部のセンサユニットでの最大値と最小値を求め、両者の差に基づいて真円度を導出する3点マイクロ法演算を行う。なお、8は演算結果その他の情報を表示可能なモニタである。   The position information of the edge position detected by the light receiver 1 b of each outer diameter meter 1 is sent to the personal computer 9 via the corresponding outer diameter meter controller 7 provided in the control panel 6. The personal computer 8 calculates the diameter of a circle (circle determined by the three-point micro method) passing through three points corresponding to the edge position detected for each sensor unit from the sent position information, and from the calculated data, The maximum value and the minimum value in all the sensor units are obtained, and a three-point micro method calculation for deriving the roundness based on the difference between the two is performed. Reference numeral 8 denotes a monitor capable of displaying calculation results and other information.

前記3点マイクロ法演算は、棒鋼の全長にわたって適宜のデータサンプリング周期で実施できるから、棒鋼全長にわたって真円度を測定することができる。
図4(a)に示すとおり、同じセンサユニット内の3台の外径計により検出される3箇所のエッジ位置に対応する3点ABCを通る円40の中心Oは、△ABCの各辺AB,BC,CAの垂直二等分線の唯一の交点として定まるから、線分OC(OA,OBでも同様)の長さが円40の半径Rになり、円40の直径D=2Rが算出できる。ところで、同じセンサユニット内の3台の外径計1(詳しくは、外径計1によるエッジ検出可能位置)を、円周方向の120°ごとの角度位置に配置しておくと、図4(b)に示すように、前記△ABCは正三角形となり、円40の直径Dは、前記正三角形の一辺の長さLとのごく簡単な関係式、D=2L/√3、を用いて算出できる(120°ごとの角度位置以外の配置形態の場合は、3点の位置座標全部を変数とする、より複雑な関数式を用いる必要がある)。それゆえ、同一センサユニット内の3台の外径計は円周方向の120°ごとの角度位置に配置することが好ましい。
Since the three-point micro method calculation can be performed at an appropriate data sampling period over the entire length of the steel bar, the roundness can be measured over the entire length of the steel bar.
As shown in FIG. 4A, the center O of the circle 40 passing through the three points ABC corresponding to the three edge positions detected by the three outer diameter meters in the same sensor unit is represented by each side AB of ΔABC. , BC, CA is determined as the only intersection of the perpendicular bisectors, the length of the segment OC (same for OA, OB) is the radius R of the circle 40, and the diameter D = 2R of the circle 40 can be calculated. . By the way, if the three outer diameter meters 1 in the same sensor unit (specifically, positions where edges can be detected by the outer diameter meter 1) are arranged at angular positions every 120 ° in the circumferential direction, FIG. As shown in b), ΔABC is an equilateral triangle, and the diameter D of the circle 40 is calculated by using a very simple relational expression with the length L of one side of the equilateral triangle, D = 2L / √3. (In the case of an arrangement form other than the angular position every 120 °, it is necessary to use a more complicated function expression having all three position coordinates as variables). Therefore, the three outer diameter meters in the same sensor unit are preferably arranged at angular positions every 120 ° in the circumferential direction.

また、図3の例では、棒鋼のエッジ検出を、片側エッジ検出としたが、本発明はこれに限定されず、例えば図5のような両側エッジ検出としてもよい。ただし、両側エッジ検出では、検出に用いる光のビーム幅を棒鋼直径よりも大きくする必要があり、そのため外径計のサイズが片側エッジ検出の場合よりも大きくなって、3台の外径計の干渉の問題や距離制約による精度低下の問題が再発生しかねないから、本発明では、棒鋼のエッジ検出は片側エッジ検出とするのが好ましい。   Further, in the example of FIG. 3, the steel bar edge detection is the one-side edge detection, but the present invention is not limited to this, and for example, both-side edge detection as shown in FIG. However, in both-side edge detection, it is necessary to make the beam width of the light used for detection larger than the diameter of the steel bar. Therefore, the size of the outer diameter meter is larger than that in the case of one-side edge detection, and the three outer diameter meters In the present invention, it is preferable that the edge detection of the steel bar is the one-side edge detection because the problem of interference and the problem of accuracy reduction due to the distance restriction may occur again.

なお、装置のメンテナンス容易化の観点から、図3に示されるように、センサユニット5は、その複数組の全部を1つの架台に固定し、この架台ごと、搬送ライン12の内と外の各所定位置(オンライン位置とオフライン位置)間の往復移動13が可能であるように構成するのが好ましい。   From the viewpoint of facilitating maintenance of the apparatus, as shown in FIG. 3, the sensor unit 5 fixes all of the plurality of sets to one gantry, and each gantry, inside and outside the transport line 12. It is preferable that the reciprocating movement 13 between a predetermined position (online position and offline position) is possible.

実施例では、図3に示した真円度測定装置において、外径計1は、すべて片側エッジ検出型とし、センサユニット5の各組の3台で円周方向120°ごと、計4組の全12台では30°ごとになる(すなわち、エッジ検出可能位置が円周十二等分点の各点になる)角度位置に配置し、真円度の定義式は、真円度=最大径−最小径、とした形態の真円度測定装置とした。これを用いた真円度測定方法について説明する。
(手順1)測定前の準備;
センサユニット5(全4組)をオフライン位置からオンライン位置へ移動させる。上位計算機等から送られる、棒鋼2の通材サイズ(公称径、長さ)、真円度の合否判定基準などの情報を、パソコン9で受信し、センサユニット5の高さを前記受信した通材サイズに適合した高さに設定(調整)する。
(手順2)通材中の測定;
棒鋼2を搬送し、外径計1で“材在り認識”(材料到着を検知)される棒鋼2の先端から一定長(搬送速度一定とみなすなら一定時間)周期でエッジ位置検出(サンプリング)し、サンプリングごとに3点マイクロ法で定まる円の直径Dをパソコン9で演算(図4(b)参照)し、得られる計4個の直径データから真円度(=最大径−最小径)を導出する。この導出を棒鋼全長にわたって実行する。
(手順3)棒鋼真円度の合否判定;
前記手順2で得られた棒鋼全長の真円度が、合否判定基準を超えたものは不合格品と判定し、パソコン9から上位計算機等へ当該不合格品の判定結果を送る。なお、当該不合格品は不合格ゾーンに払い出される。
(手順4)前記手順2,3の測定,判定を繰り返す。
In the embodiment, in the roundness measuring apparatus shown in FIG. 3, the outer diameter meters 1 are all of the one-side edge detection type, and each of the sensor units 5 has three sets of four sets, each in a circumferential direction of 120 °. All 12 units are arranged at an angular position that is every 30 ° (that is, the edge detectable position becomes each point of the circumference twelve equally-divided points), and the definition of roundness is roundness = maximum diameter -A roundness measuring apparatus having a minimum diameter. A roundness measurement method using this will be described.
(Procedure 1) Preparation before measurement;
The sensor units 5 (4 sets in total) are moved from the offline position to the online position. The computer 9 receives information such as the passing size (nominal diameter and length) of the steel bar 2 and the pass / fail judgment criteria for the roundness sent from the host computer, etc., and the height of the sensor unit 5 is received. Set (adjust) the height to match the material size.
(Procedure 2) Measurement during threading;
The steel bar 2 is transported, and the edge position is detected (sampled) at a fixed length (a constant time if it is considered that the transport speed is constant) from the tip of the steel bar 2 that is “recognized by the outer diameter meter 1” (material arrival is detected). The diameter D of the circle determined by the three-point micro method for each sampling is calculated by the personal computer 9 (see FIG. 4B), and the roundness (= maximum diameter−minimum diameter) is calculated from the total four diameter data obtained. To derive. This derivation is performed over the entire length of the bar.
(Procedure 3) Pass / fail judgment of roundness of steel bars;
If the roundness of the entire length of the steel bar obtained in the procedure 2 exceeds the pass / fail criterion, it is determined as a rejected product, and the determination result of the rejected product is sent from the personal computer 9 to the host computer or the like. The rejected product is paid out to the reject zone.
(Procedure 4) The measurement and determination in the procedures 2 and 3 are repeated.

1 外径計
1a 投光器
1b 受光器
2 棒鋼(圧延材)
5 センサユニット
6 制御盤
7 外径計コントローラ
8 モニタ
9 パソコン
10 3ロール圧延機のロール
11 3ロール圧延機のロール軸線
12 搬送ライン
13 往復移動
15 搬送方向
20 干渉
30 3点マイクロメータ
31,32 当接面(固定)
33 当接面(可動)
40 3点マイクロ法で定まる円
41 2点マイクロ法で定まる円
1 Outer diameter meter
1a Floodlight
1b Receiver 2 Bar steel (rolled material)
5 Sensor unit 6 Control panel 7 Outside diameter controller 8 Monitor 9 PC
10 Roll of 3 roll mill
11 Roll axis of 3 roll mill
12 Transport line
13 Reciprocating movement
15 Transport direction
20 Interference
30 3-point micrometer
31,32 Contact surface (fixed)
33 Contact surface (movable)
40 Circle determined by the three-point micro method
41 Circle determined by the two-point micro method

Claims (3)

棒鋼搬送方向に直交する一平面から棒鋼通材部分を除いた残りの面内に投受光式の外径計3台を、各台による棒鋼のエッジ検出可能に配置して1組のセンサユニットとなし、該センサユニットの少なくとも4組を、異組間でエッジ検出可能位置を相異させて棒鋼搬送方向に直列に配置してなり、センサユニットごとに検出したエッジ位置3点を通る円の直径を求め、それらの最大値と最小値の差に基づいて真円度を導出する3点マイクロ法演算を、棒鋼の全長にわたって実行可能とされたことを特徴とする棒鋼の真円度測定装置。   Three light emitting / receiving type outer diameter meters are arranged on the remaining plane excluding the bar threading part from one plane perpendicular to the bar conveying direction so that the edge of the bar can be detected by each unit and a set of sensor units None, at least four pairs of sensor units are arranged in series in the steel bar conveying direction with different edge detectable positions between different pairs, and the diameter of a circle passing through three edge positions detected for each sensor unit A roundness measuring apparatus for steel bars, characterized in that a three-point micro method calculation for deriving roundness based on the difference between the maximum value and the minimum value can be performed over the entire length of the steel bar. 同一センサユニット内の3台の外径計は円周方向の120°ごとの角度位置に配置されていることを特徴とする請求項1に記載の棒鋼の真円度測定装置。   The roundness measuring apparatus for steel bars according to claim 1, wherein the three outer diameter meters in the same sensor unit are arranged at angular positions every 120 ° in the circumferential direction. 前記棒鋼のエッジ検出が、棒鋼の片側エッジ検出であることを特徴とする請求項1または2に記載の棒鋼の真円度測定装置。   The roundness measuring apparatus for a steel bar according to claim 1, wherein the edge detection of the steel bar is one-side edge detection of the steel bar.
JP2009084622A 2009-03-31 2009-03-31 Roundness measuring device for steel bars Expired - Fee Related JP5582280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009084622A JP5582280B2 (en) 2009-03-31 2009-03-31 Roundness measuring device for steel bars

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009084622A JP5582280B2 (en) 2009-03-31 2009-03-31 Roundness measuring device for steel bars

Publications (2)

Publication Number Publication Date
JP2010236999A true JP2010236999A (en) 2010-10-21
JP5582280B2 JP5582280B2 (en) 2014-09-03

Family

ID=43091453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009084622A Expired - Fee Related JP5582280B2 (en) 2009-03-31 2009-03-31 Roundness measuring device for steel bars

Country Status (1)

Country Link
JP (1) JP5582280B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102160690A (en) * 2011-01-17 2011-08-24 大树智能科技(南京)有限公司 Online detection and control method and device of periphery of filtering rod
JP2014178161A (en) * 2013-03-14 2014-09-25 Oishi Sokki Kk Circularity measuring device and circularity measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105043278B (en) * 2015-05-06 2018-02-13 天津大学 A kind of method of contactless multimetering bore inner diameter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59183312A (en) * 1983-04-04 1984-10-18 Fujikura Ltd Inspecting device for filamentous body
JPS62140316U (en) * 1986-02-25 1987-09-04
JPS63205504A (en) * 1987-02-20 1988-08-25 Sumitomo Metal Ind Ltd Profile measuring method
JPH0755434A (en) * 1993-08-16 1995-03-03 Nkk Corp Dimension measuring equipment for transfer line
JPH0783635A (en) * 1993-09-14 1995-03-28 Sumitomo Metal Ind Ltd Measuring apparatus for profile of hot-rolled steel product
JPH09210665A (en) * 1996-02-06 1997-08-12 Kobe Steel Ltd Method and device for plate width measurement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59183312A (en) * 1983-04-04 1984-10-18 Fujikura Ltd Inspecting device for filamentous body
JPS62140316U (en) * 1986-02-25 1987-09-04
JPS63205504A (en) * 1987-02-20 1988-08-25 Sumitomo Metal Ind Ltd Profile measuring method
JPH0755434A (en) * 1993-08-16 1995-03-03 Nkk Corp Dimension measuring equipment for transfer line
JPH0783635A (en) * 1993-09-14 1995-03-28 Sumitomo Metal Ind Ltd Measuring apparatus for profile of hot-rolled steel product
JPH09210665A (en) * 1996-02-06 1997-08-12 Kobe Steel Ltd Method and device for plate width measurement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102160690A (en) * 2011-01-17 2011-08-24 大树智能科技(南京)有限公司 Online detection and control method and device of periphery of filtering rod
CN102160690B (en) * 2011-01-17 2013-09-18 南京大树智能科技股份有限公司 Online detection and control method and device of periphery of filtering rod
JP2014178161A (en) * 2013-03-14 2014-09-25 Oishi Sokki Kk Circularity measuring device and circularity measuring method

Also Published As

Publication number Publication date
JP5582280B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
CN102650516B (en) On-line measuring method and device for outer diameter and ovality of large-diameter steel pipe end
RU2644086C2 (en) Method and device for measuring verticality on vessel
JP2023126516A (en) Tubing dimensional measurement system
CN107200042A (en) A kind of train wheel diameter wears away high-precision online test method and its detection means with circularity
JP2010155272A (en) Device for straightening shape of steel sheet
US20160003608A1 (en) Method for determining the alignment of a laser light beam referred to an axis of rotation of a device that is rotatable around the axis of rotation and laser light detection device
US9476697B2 (en) Method for determining a closed trajectory by means of a laser and a laser light sensor and apparatus for determining a closed trajectory
JP6248887B2 (en) Apparatus and method for measuring thread shape of threaded member having hook-like flank
JP5582280B2 (en) Roundness measuring device for steel bars
US20220335586A1 (en) Workpiece surface defect detection device and detection method, workpiece surface inspection system, and program
JP2013134218A (en) Method of measuring shape of end of tube with screw
JP2011173162A (en) Method and device for measuring length of hot long-size material
JP6616226B2 (en) Roundness measuring method and roundness measuring apparatus for welded steel pipe
JP2015175761A (en) Surface flaw detection method and surface flaw detection device
JP6101120B2 (en) Straightness measuring device and straightness measuring method
JP2017100161A (en) Piercer mill shaft cor measuring system, piercer mill shaft core measuring method, and program
EP1447645B1 (en) Method and device to control the straightness and torsion of long products
JP3747661B2 (en) Measuring device for bending amount of rod-shaped body
RU2397491C1 (en) Method for ultrasonic inspection of cylindrical articles, including pipes and device for realising said method
JP6474335B2 (en) Relative position measurement method between rolls
JP2015169475A (en) displacement measuring device
JP6079072B2 (en) Hot length measuring method and apparatus
JP4391901B2 (en) Dimension measuring method and apparatus for annular measuring object
JP6393666B2 (en) Steel plate behavior detection method
JP2016093827A (en) Steel plate cutting position setting device and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140407

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140701

R150 Certificate of patent or registration of utility model

Ref document number: 5582280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees