JP2011173162A - Method and device for measuring length of hot long-size material - Google Patents

Method and device for measuring length of hot long-size material Download PDF

Info

Publication number
JP2011173162A
JP2011173162A JP2010040730A JP2010040730A JP2011173162A JP 2011173162 A JP2011173162 A JP 2011173162A JP 2010040730 A JP2010040730 A JP 2010040730A JP 2010040730 A JP2010040730 A JP 2010040730A JP 2011173162 A JP2011173162 A JP 2011173162A
Authority
JP
Japan
Prior art keywords
measured
length
radiation thermometer
time
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010040730A
Other languages
Japanese (ja)
Other versions
JP5540767B2 (en
Inventor
Tomomitsu Kimura
智充 木村
Yuji Yamauchi
勇二 山内
Shigeki Takahara
茂樹 高原
Kazutoshi Ishikawa
和俊 石川
Tatsuya Yoshida
竜也 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010040730A priority Critical patent/JP5540767B2/en
Publication of JP2011173162A publication Critical patent/JP2011173162A/en
Application granted granted Critical
Publication of JP5540767B2 publication Critical patent/JP5540767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for measuring the length of a hot long-size material such as a hot steel pipe on a conveyance line, by which the top end and the tail end of a material to be measured are highly accurately detected and constraints on the installation space of equipment are also remarkably improved. <P>SOLUTION: In the method of measuring the length of the hot long-size material, by which the hot long-size material 1 is conveyed on the conveyance line 2 by taking its longitudinal direction as a conveyance direction and its length is measured by taking the hot long-size material as a material 1 to be measured, a radiation thermometer 3 for measuring the temperature of the material 1 to be measured on the conveyance line 2 is provided and the top 1a and the tail end 1b of the material 1 to be measured are detected on the basis of the temperature detected values by the radiation thermometer 3 when the material 1 to be measured is passed through the position of the radiation thermometer 3 and the length of the material 1 to be measured is calculated on the basis of the conveyed amount L of the material 1 to be measured during the time difference between a top end detected time t1 and a tail end detected time t2 of the radiation thermometer 3. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、搬送ライン上を搬送される熱間長尺材の長さを測定する方法および装置に関し、特に、鋼管の圧延プロセス等で行われる熱間鋼材の搬送工程において該熱間鋼材の長さ測定に用いて好適な、熱間長尺材の長さ測定方法および装置に関する。   The present invention relates to a method and an apparatus for measuring the length of a hot long material conveyed on a conveying line, and in particular, in the hot steel material conveying step performed in a steel pipe rolling process or the like, the length of the hot steel material. The present invention relates to a method and an apparatus for measuring the length of a hot long material suitable for use in length measurement.

鋼管、棒鋼、厚鋼板などの熱間で製造された鋼材の製造ラインでは、搬送中の熱間鋼材の長さを測定することが行われている。この長さ測定には、熱間鋼材の長さ方向を搬送方向として搬送ライン上を搬送される熱間鋼材について、熱塊検出器(HMD)や、光電センサ、あるいは、撮像装置により先端および尾端の検出を行い、さらに、先端および尾端の検出タイミングの間の熱間鋼材の搬送量をタイマーおよび搬送ロールのロール周速から求めることで、熱間鋼材の長さを算出することが行われている。   In a production line for steel materials such as steel pipes, steel bars, and thick steel plates, the length of the hot steel material being conveyed is measured. For this length measurement, the hot steel material conveyed on the conveying line with the length direction of the hot steel material as the conveying direction is measured with a hot mass detector (HMD), a photoelectric sensor, or an imaging device. It is possible to calculate the length of the hot steel material by detecting the end and calculating the amount of hot steel material transported between the tip and tail end detection timing from the timer and the roll peripheral speed of the transport roll. It has been broken.

例えば、特許文献1には、熱間鋼管の先端部をリニアアレイカメラによって検出し、これと同時に熱間鋼管の後端部を熱塊検出器によって検出し、これらの検出信号に基づいて鋼管の長さを非接触で測定する方法が開示されている。
また、特許文献2には、搬送経路直上に搬送方向に沿って所定間隔で一列に、かつ、撮像装置の各視野を隙間が生じないように複数の撮像装置を配置し、撮像装置により被搬送材の長さを測定するようにした被搬送材の測長装置が開示されている。
For example, in Patent Document 1, the tip of a hot steel pipe is detected by a linear array camera, and at the same time, the rear end of the hot steel pipe is detected by a hot mass detector, and the steel pipe is detected based on these detection signals. A method for measuring the length in a non-contact manner is disclosed.
Further, in Patent Document 2, a plurality of imaging devices are arranged in a line at predetermined intervals along the conveyance direction directly above the conveyance path so that there is no gap in each field of view of the imaging device. A length-measuring device for a material to be conveyed is disclosed which measures the length of the material.

特開昭60−169704号公報JP 60-169704 A 実開昭63−83609号公報Japanese Utility Model Publication No. 63-83609

しかしながら、熱間圧延後の熱間鋼材では、熱間鋼材の先端や尾端から炎が噴出していることがあり、熱塊検出器により先端および尾端を検出する方法では、この炎を検知してしまうため正確に熱間鋼材の先端の検出、尾端の検出が行えない場合があるという問題がある。光電センサにより先端および尾端を検出する方法では、搬送ラインを挟んで投光器と受光器とを配置する必要があるが、圧延ライン等では搬送設備等の設備配列の制約から、投光器と受光器の双方を配置するスペースの確保が困難な場合もある。また、光電センサによる方法では、マンドレルミル等の鋼管内部にバー(圧延工具)が挿入された鋼材を被測定材とする場合には、適用できないという問題もある。   However, in hot steel after hot rolling, flames may be ejected from the tip or tail of the hot steel, and this flame is detected by the method of detecting the tip and tail using a hot mass detector. As a result, there is a problem that the detection of the tip of the hot steel material and the detection of the tail end may not be performed accurately. In the method of detecting the tip and tail ends with a photoelectric sensor, it is necessary to arrange a projector and a light receiver across the conveyance line. However, in a rolling line, etc. In some cases, it is difficult to secure a space for arranging both. In addition, the method using a photoelectric sensor has a problem that it cannot be applied when a steel material in which a bar (rolling tool) is inserted inside a steel pipe such as a mandrel mill is used as a material to be measured.

また、特許文献2に記載されているような撮像装置を搬送経路に沿って複数台配置する方法では、多数の撮像装置が必要となり設備コストが高くなるという問題や、設備配列の制約からも、設置スペースの確保が困難な場合もある。
本発明は、かかる事情に鑑みてなされたものであり、熱間鋼管等の熱間長尺材の長さを搬送ライン上にて測定する方法および装置について、被測定材の先端および尾端を精度よく検出することができ、かつ、設備の設置スペース上の制約についても大幅に改善でき、かつ、例えばバーが挿入された熱間鋼管についても鋼管の長さの測定が可能である方法および装置を提供することを目的とする。
In addition, in the method of arranging a plurality of imaging devices as described in Patent Document 2 along the transport path, from the problem that a large number of imaging devices are required and the equipment cost is high, and the restrictions on the equipment arrangement, It may be difficult to secure the installation space.
The present invention has been made in view of such circumstances, and relates to a method and an apparatus for measuring the length of a hot long material such as a hot steel pipe on a transport line, and the tip and tail ends of the material to be measured are measured. Method and apparatus capable of detecting with high accuracy, greatly improving the restrictions on the installation space of equipment, and capable of measuring the length of a steel pipe, for example, for a hot steel pipe with a bar inserted The purpose is to provide.

上記課題を解決するために、本発明者らは、鉄鋼の製造プロセスにおいて多く用いられている放射温度計を、被測定材となる熱間長尺材の先端および尾端の検出に用いることにより、上述した熱塊検出器による先端および尾端の検知の際の問題が解決できるとの着想に至り、本発明を完成させた。
すなわち、本発明の要旨構成は以下のとおりである。
(1)熱間長尺材をその長さ方向を搬送方向として搬送ライン上を搬送し、該熱間長尺材を被測定材としてその長さ測定する熱間長尺材の長さ測定方法において、前記搬送ライン上の被測定材の温度を測定する放射温度計を設け、前記被測定材が該放射温度計の位置を通過する際の該放射温度計による温度検出値にもとづいて、前記被測定材の先端および尾端を検知し、該放射温度計の先端検知時刻t1と尾端検知時刻t2との時間差の間の被測定材の搬送量にもとづき、前記被測定材の長さを算出することを特徴とする熱間長尺材の長さ測定方法。
(2) 前記先端検知時刻t1、および、前記尾端検知時刻t2を、前記放射温度計の温度検出値の時間変化から求めた放射温度計の視野占有率から決定することを特徴とする上記(1)に記載の熱間長尺材の長さ測定方法。
(3) 前記放射温度計として、搬送ラインに沿って所定距離Lspanの間隔で2つの放射温度計を設け、下流側の放射温度計が前記被測定材の先端を検知した時刻t1と上流側の放射温度計が前記被測定材の尾端を検知した時刻t2との時間差の間の被測定材の搬送量、および、前記距離Lspanにもとづき、被測定材の長さを算出することを特徴とする上記(1)または(2)に記載の熱間長尺材の長さ測定方法。
(4) 熱間長尺材をその長手方向を搬送方向として搬送ライン上を搬送し、該熱間長尺材を被測定材としてその長さを測定する熱間長尺材の長さ測定装置であって、該搬送ライン上の被測定材の温度を測定する放射温度計と、該放射温度計による温度検出値にもとづき前記被測定材の先端および尾端が前記放射温度計の位置を通過した時刻をそれぞれ先端検知時刻、尾端検知時刻として求め、これら先端検知時刻、尾端検知時刻との時間差、該時間差の間の被測定材の搬送量にもとづき、被測定材の長さを算出する長さ算出手段とを有することを特徴とする熱間長尺材の長さ測定装置。
(5) 前記長さ算出手段は、前記先端検知時刻、尾端検知時刻を、前記放射温度計の温度検出値の時間変化から求めた前記放射温度計の視野占有率から決定することを特徴とする上記(4)に記載の熱間長尺材の長さ測定装置。
(6) 前記放射温度計として、搬送ラインに沿って所定の距離Lspanの間隔で2つの放射温度計が設置されてなり、前記長さ算出手段は、前記時間差の間の被測定材の搬送量および前記距離Lspanにもとづき被測定材の長さを算出することを特徴とする上記(4)または(5)に記載の熱間長尺材の長さ測定装置。
In order to solve the above problems, the present inventors have used a radiation thermometer, which is often used in the steel manufacturing process, to detect the tip and tail end of a hot long material that is a material to be measured. The inventors have arrived at the idea that the problems at the time of detecting the tip and tail by the above-mentioned hot mass detector can be solved, and the present invention has been completed.
That is, the gist configuration of the present invention is as follows.
(1) A method for measuring the length of a hot long material in which the length of the hot long material is transported on a transport line and the length is measured using the hot long material as a material to be measured. A radiation thermometer for measuring the temperature of the material to be measured on the transport line, and based on a temperature detection value by the radiation thermometer when the material to be measured passes through the position of the radiation thermometer, The tip and tail ends of the material to be measured are detected, and the length of the material to be measured is determined based on the transport amount of the material to be measured during the time difference between the tip detection time t1 and the tail end detection time t2 of the radiation thermometer. A method for measuring the length of a hot long material, characterized in that it is calculated.
(2) The tip detection time t1 and the tail end detection time t2 are determined from a field occupancy ratio of a radiation thermometer obtained from a time change of a temperature detection value of the radiation thermometer. The method for measuring the length of a hot long material according to 1).
(3) As the radiation thermometer, two radiation thermometers are provided at a predetermined distance Lspan along the conveyance line, and the time t1 when the downstream radiation thermometer detects the tip of the measured material and the upstream one The length of the material to be measured is calculated based on the transport amount of the material to be measured during the time difference from the time t2 when the radiation thermometer detects the tail end of the material to be measured and the distance Lspan. The method for measuring a length of a hot long material according to (1) or (2) above.
(4) A length measuring apparatus for a hot long material that transports a hot long material on a transport line with the longitudinal direction as a transport direction, and measures the length of the hot long material as a material to be measured. A radiation thermometer for measuring the temperature of the material to be measured on the transport line, and a tip and a tail end of the material to be measured pass through the position of the radiation thermometer based on a temperature detection value by the radiation thermometer. Calculate the length of the material to be measured based on the time difference between the tip detection time and the tail edge detection time, and the transport amount of the material to be measured during the time difference. A length measuring device for measuring the length of a hot long material.
(5) The length calculation means determines the tip detection time and the tail end detection time from the visual field occupation rate of the radiation thermometer obtained from the time change of the temperature detection value of the radiation thermometer. The apparatus for measuring a length of a hot long material as described in (4) above.
(6) As the radiation thermometer, two radiation thermometers are installed at a predetermined distance Lspan along the transport line, and the length calculation means is configured to transport the measured material during the time difference. The length measuring device for a hot long material according to (4) or (5), wherein the length of the material to be measured is calculated based on the distance Lspan.

本発明によれば、被測定材である熱間長尺材の先端および尾端の検出器としては、1台あるいは2台の放射温度計を設置すればよく、設備の設置スペースの確保は容易である。また、放射温度計による温度測定結果にもとづいて、被測定材の先端および尾端の検出を行うので、熱塊検出器(HMD)を用いた場合のように、被測定材の先端あるいは尾端から出る炎の影響で先端または尾端を誤検出することがなく、安定した先端および尾端の検出が可能となり、高精度に被測定材の長さ測定を行うことが可能となる。   According to the present invention, one or two radiation thermometers may be installed as detectors for the tip and tail of the hot long material that is the material to be measured, and it is easy to secure the installation space for the equipment. It is. In addition, since the tip and tail of the material to be measured are detected based on the temperature measurement result by the radiation thermometer, the tip or tail of the material to be measured is used as in the case of using a hot mass detector (HMD). The tip or tail end is not erroneously detected due to the influence of the flame coming out of it, and the tip and tail ends can be detected stably, and the length of the material to be measured can be measured with high accuracy.

本発明の第1の実施形態に係る熱間長尺材の長さ測定装置の装置構成を示す概略図である。It is the schematic which shows the apparatus structure of the length measuring apparatus of the hot elongate material which concerns on the 1st Embodiment of this invention. 放射温度計により測定される温度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the temperature measured with a radiation thermometer. 放射温度計により測定される温度の経時変化を示すグラフであり、先端検出時を示す。It is a graph which shows a time-dependent change of the temperature measured with a radiation thermometer, and shows the time of front-end | tip detection. 鋼管が放射温度計の視野を占める割合(視野占有率)を説明する模式図である。It is a schematic diagram explaining the ratio (visual field occupation rate) for which a steel pipe occupies the visual field of a radiation thermometer. 放射温度計により測定される温度の経時変化を示すグラフであり、尾端検出時を示す。It is a graph which shows a time-dependent change of the temperature measured with a radiation thermometer, and shows the time of a tail end detection. 鋼管が放射温度計の視野を占める割合(視野占有率)を説明する模式図である。It is a schematic diagram explaining the ratio (visual field occupation rate) for which a steel pipe occupies the visual field of a radiation thermometer. 本発明の第2の実施形態に係る熱間長尺材の長さ測定装置の装置構成を示す概略図である。It is the schematic which shows the apparatus structure of the length measuring apparatus of the hot elongate material which concerns on the 2nd Embodiment of this invention. 放射温度計により測定される温度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the temperature measured with a radiation thermometer.

以下、本発明の実施形態について詳細に説明する。
図1は、本発明の第1の実施形態である熱間長尺材の長さ測定方法を実施するための装置構成の一例を示す概略図である。なお、本実施形態において、被測定材である熱間長尺材1が熱間鋼管(以下単に鋼管1という)である場合を例として説明する。
搬送ライン2は、鋼管1を複数のローラ2aからなる搬送テーブルにより鋼管1の長さ方向を搬送方向ASとして搬送するものである。搬送ライン2には鋼管1の温度を測定する放射温度計3が上部に設置してあり、その測定視野を下方に向けてある。放射温度計3は、鋼管1から放射される赤外線や可視光線の強度を測定して、鋼管の温度を測定する公知の非接触温度計である。
Embodiments of the present invention are described in detail below.
FIG. 1 is a schematic diagram showing an example of the configuration of an apparatus for carrying out the method for measuring the length of a hot long material according to the first embodiment of the present invention. In addition, in this embodiment, the case where the hot long material 1 which is a to-be-measured material is a hot steel pipe (henceforth only steel pipe 1) is demonstrated as an example.
The conveyance line 2 conveys the length direction of the steel pipe 1 as the conveyance direction AS by the conveyance table which consists of several roller 2a. A radiation thermometer 3 for measuring the temperature of the steel pipe 1 is installed in the upper part of the transport line 2 and its measurement visual field is directed downward. The radiation thermometer 3 is a known non-contact thermometer that measures the temperature of the steel pipe by measuring the intensity of infrared rays and visible light emitted from the steel pipe 1.

図2は、放射温度計3の位置を鋼管1が通過する際の温度測定結果を示すグラフであり、横軸は時間、縦軸は温度を示す。鋼管1の先端1aが放射温度計の直下を通過する際に急激に温度測定値が上昇し、その後、鋼管1が放射温度計直下にある間は測定値が高い値を示し続け、鋼管1の尾端1bが放射温度計3の直下を通過する際に急激に温度測定値が降下する。   FIG. 2 is a graph showing a temperature measurement result when the steel pipe 1 passes through the position of the radiation thermometer 3, where the horizontal axis indicates time and the vertical axis indicates temperature. When the tip 1a of the steel pipe 1 passes directly under the radiation thermometer, the temperature measurement value suddenly rises. After that, while the steel pipe 1 is directly under the radiation thermometer, the measurement value continues to show a high value. When the tail end 1b passes directly under the radiation thermometer 3, the temperature measurement value drops abruptly.

この、温度測定値の急激な上昇がある時点、および温度測定値の急激な下降を読み取ることで、鋼管1の先端1aおよび尾端1bの検知を行うことができる。
搬送ローラ2aはモータ6により駆動され、搬送制御手段4からの速度指令にもとづいてモータ6の回転数を制御することで搬送速度が制御される。
符号5は、放射温度計3による温度測定値にもとづき、鋼管1の長さを算出する算出手段であり、放射温度計3の温度測定値と、搬送制御手段4からの速度指令値が入力される。
By reading the time when there is a sudden rise in the temperature measurement value and the sudden fall in the temperature measurement value, the tip 1a and tail end 1b of the steel pipe 1 can be detected.
The conveyance roller 2 a is driven by a motor 6, and the conveyance speed is controlled by controlling the number of rotations of the motor 6 based on a speed command from the conveyance control unit 4.
Reference numeral 5 denotes calculation means for calculating the length of the steel pipe 1 based on the temperature measurement value by the radiation thermometer 3. The temperature measurement value of the radiation thermometer 3 and the speed command value from the conveyance control means 4 are input. The

以下、算出手段5による鋼管1の長さの算出方法について説明する。算出手段5は、放射温度計3による温度測定値を記録し、図2における温度測定値が急激に上昇した時点の時刻t1、および、急激に下降した時点の時刻t2を、それぞれ先端検知時刻t1、尾端検知時刻t2として記録する。そして、算出手段5は、搬送制御手段から入力した速度指令値vと、時刻t1と時刻t2から、先端検知時刻t1と尾端検知時刻t2との時間差間の鋼管1の搬送量L=v(t2−t1)を求める。そして、この搬送量を鋼管1の長さ測定値とする。   Hereinafter, a method for calculating the length of the steel pipe 1 by the calculating means 5 will be described. The calculation means 5 records the temperature measurement value by the radiation thermometer 3, and the time t1 when the temperature measurement value in FIG. 2 suddenly rises and the time t2 when the temperature measurement value suddenly falls respectively indicate the tip detection time t1. The tail end detection time t2 is recorded. And the calculation means 5 carries the conveyance amount L = v () of the steel pipe 1 between the time difference between the tip detection time t1 and the tail end detection time t2 from the speed command value v input from the transfer control means and the times t1 and t2. t2-t1) is determined. And let this conveyance amount be the length measurement value of the steel pipe 1.

次に、算出手段5が行う、先端検知時刻t1、尾端検知時刻t2の決定方法の好適例について説明する。
算出手段5は、前述の図2に示したグラフの元データとなる、各時間tにおける温度測定値Tを記録する。そして、算出手段5は、温度測定値の経時変化から先端検知時刻t1および尾端検知時刻t2を決定する。
Next, a preferred example of a method for determining the tip detection time t1 and the tail detection time t2 performed by the calculation means 5 will be described.
The calculation means 5 records the temperature measurement value T at each time t, which is the original data of the graph shown in FIG. And the calculation means 5 determines the front-end | tip detection time t1 and the tail end detection time t2 from the time-dependent change of a temperature measurement value.

図3は、温度測定値の経時変化を先端通過時について詳細に示したグラフである。図4は、図3中のA点、B点、C点における放射温度計3の視野7内の鋼管1の先端1aの位置を示す模式図であり、図4(a)はA点に、図4(b)はB点に、図4(c)はC点にそれぞれ対応する。図4(a)に示すように、鋼管1の先端1aが放射温度計3の視野内に入ると、温度測定値が上昇し始める(図3中のA点)。そして、鋼管1の搬送を続けると図4(a)→(b)→(c)のように、放射温度計の視野7内に鋼管1の面積が占める割合(以下、視野占有率という)が増加していき、それに伴って温度測定値は、図3のA点→B点→C点のように上昇し、視野占有率が100%となった時点で、温度測定値の急激な上昇は止まる。視野占有率が100%となったとき(C点)は急激な温度上昇が止まる時であるから、温度変化の波形から読み取ることができる。そして、この視野占有率が100%となった時点における温度測定値θmから、視野占有率が50%である時の測定温度を計算により求める。視野占有率が50%の時は、先端1aが放射温度計の視野中心にある時点であること意味する。視野内での視野占有率と、その占有率によって測定される温度測定値θとの関係は、下式(1)で表すことができる。   FIG. 3 is a graph showing in detail the time change of the temperature measurement value when passing through the tip. FIG. 4 is a schematic diagram showing the position of the tip 1a of the steel pipe 1 in the visual field 7 of the radiation thermometer 3 at points A, B, and C in FIG. 3, and FIG. 4B corresponds to point B, and FIG. 4C corresponds to point C. As shown to Fig.4 (a), when the front-end | tip 1a of the steel pipe 1 enters in the visual field of the radiation thermometer 3, a temperature measurement value will begin to raise (A point in FIG. 3). And if conveyance of the steel pipe 1 is continued, the ratio (henceforth visual field occupation rate) which the area of the steel pipe 1 occupies in the visual field 7 of a radiation thermometer as FIG.4 (a)-> (b)-> (c). Along with this, the temperature measurement value rises in the order of point A → B point → C point in FIG. 3, and when the visual field occupancy becomes 100%, the temperature measurement suddenly increases. Stop. When the visual field occupancy becomes 100% (point C), when the rapid temperature rise stops, it can be read from the waveform of the temperature change. Then, from the temperature measurement value θm when the visual field occupancy becomes 100%, the measurement temperature when the visual field occupancy is 50% is obtained by calculation. When the visual field occupation ratio is 50%, it means that the tip 1a is at the center of the visual field of the radiation thermometer. The relationship between the visual field occupation ratio in the visual field and the temperature measurement value θ measured by the occupation ratio can be expressed by the following equation (1).

Figure 2011173162
Figure 2011173162

したがって、温度変化の波形から、急激な温度上昇が停止した時点での温度測定値を視野占有率100%での温度測定値θmとし、このθmの値と視野占有率S=50%とを上記式(1)に代入すれば、視野占有率50%における温度θが算出することができる。そして、視野占有率が50%のときの温度となった時刻t1を図3に示す温度変化の波形から読み取り、これを先端検知時刻t1とする。   Therefore, from the waveform of temperature change, the temperature measurement value at the time when the rapid temperature rise stops is the temperature measurement value θm at the visual field occupation rate of 100%, and the value of θm and the visual field occupation rate S = 50% are described above. If it substitutes into Formula (1), temperature (theta) in 50% of visual field occupation rates can be calculated. Then, the time t1 at which the temperature when the visual field occupation ratio is 50% is read from the waveform of the temperature change shown in FIG. 3, and this is set as the tip detection time t1.

図5は、温度測定値の経時変化を尾端通過時について詳細に示したグラフである。図6は、図5中のD点、E点、F点における放射温度計の視野7内の鋼管の尾端1bの位置を示す模式図であり、図6(a)はD点に、図6(b)はE点に、図6(c)はF点にそれぞれ対応する。図6(a)に示すように、鋼管1の尾端1bが放射温度計3の視野内に入る直前までは、視野占有率は100%である。そして、尾端1bが放射温度計3の視野内に入ると温度測定値が下降し始め、鋼管1の搬送を続けると図6(a)→(b)→(c)のように、視野占有率が減少していき、それに伴って温度測定値は図5のD点→E点→F点のように下降し、視野占有率が0%となった時点で、温度測定値の急激な下降は止まる。視野占有率が100%から下がり始めるとき(図5中のD点)は急激な温度下降が始まる時であるから、温度変化の波形から読み取ることができる。そして、この視野占有率が100%から下がり始める時点における温度測定値θmから、視野占有率50%である時の測定温度を計算により求める。視野占有率50%の時は、尾端1bが放射温度計の視野中心にある時点であることを意味する。視野内での視野占有率と、その占有率によって測定される温度測定値θとの関係は、上記式(1)で表すことができるから、温度下降が始まった時点での温度測定値を視野占有率100%での温度測定値θmとし、先端検知時間t1を求めた時と同様に、視野占有率50%のときの温度を求め、この温度となった時刻t2を温度変化の波形から読み取り、これを尾端検知時刻t2とする。   FIG. 5 is a graph showing in detail the change over time of the temperature measurement value when passing through the tail end. FIG. 6 is a schematic diagram showing the position of the tail end 1b of the steel pipe in the visual field 7 of the radiation thermometer at points D, E, and F in FIG. 5, and FIG. 6 (b) corresponds to point E, and FIG. 6 (c) corresponds to point F. As shown in FIG. 6 (a), the visual field occupation ratio is 100% until the tail end 1b of the steel pipe 1 enters the visual field of the radiation thermometer 3. Then, when the tail end 1b enters the field of view of the radiation thermometer 3, the temperature measurement value starts to fall, and when the steel pipe 1 continues to be conveyed, the field of view is occupied as shown in FIGS. 6 (a) → (b) → (c). As the rate decreases, the temperature measurement value decreases as point D → E point → F point in FIG. 5, and when the field occupancy becomes 0%, the temperature measurement value rapidly decreases. Stops. When the visual field occupancy ratio starts to decrease from 100% (point D in FIG. 5), it is a time when a rapid temperature decrease starts, so that it can be read from the waveform of the temperature change. Then, from the temperature measurement value θm when the visual field occupancy starts to decrease from 100%, a measurement temperature when the visual field occupancy is 50% is obtained by calculation. When the visual field occupation ratio is 50%, it means that the tail end 1b is at the center of the visual field of the radiation thermometer. Since the relationship between the visual field occupation ratio in the visual field and the temperature measurement value θ measured by the occupation ratio can be expressed by the above equation (1), the temperature measurement value at the time when the temperature starts to decrease can be represented by the visual field. As with the temperature measurement value θm at the occupation rate of 100%, the temperature at the visual field occupation rate of 50% is obtained in the same manner as when the tip detection time t1 is obtained, and the time t2 when this temperature is reached is read from the waveform of the temperature change. This is the tail end detection time t2.

なお、以上説明した例では、先端1aおよび尾端1bが放射温度計3の視野中心に位置した時をそれぞれ先端検知時刻t1、尾端検知時刻t2とするために、視野占有率が50%になった時間を求めるようにしているが、例えば、尾端検知時刻t1を視野占有率30%の時刻とし、先端検知時刻t2を視野占有率70%の時刻としてもよい。先端検知時刻t1を算出するための視野占有率の値と、尾端検知時刻t2を算出するための視野占有率の値との合計が100%となっていればよい。   In the example described above, when the tip 1a and the tail end 1b are positioned at the center of the field of view of the radiation thermometer 3, the tip detection time t1 and the tail end detection time t2 are set to 50%. However, for example, the tail end detection time t1 may be a time with a visual field occupation rate of 30%, and the tip detection time t2 may be a time with a visual field occupation rate of 70%. The sum of the visual field occupancy value for calculating the tip detection time t1 and the visual field occupancy value for calculating the tail detection time t2 may be 100%.

次に、本発明の第2の実施形態について説明する。図7は、本発明の第2の実施形態である熱間長尺材の長さ測定方法を実施するための装置構成の一例を示す概略図である。なお、本実施形態においても、被測定材である熱間長尺材が熱間鋼管1(以下単に鋼管1という)である場合を例として説明する。また、第1の実施形態と同一の部分については同じ符号を付して説明を省略する。   Next, a second embodiment of the present invention will be described. FIG. 7 is a schematic view showing an example of a device configuration for carrying out the method for measuring the length of a hot long material according to the second embodiment of the present invention. In the present embodiment, a case where the hot long material as the material to be measured is the hot steel pipe 1 (hereinafter simply referred to as the steel pipe 1) will be described as an example. Further, the same portions as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

第2の実施形態では、第1の実施形態に対して、放射温度計を搬送ラインに2つ設けている点が異なっている。すなわち、搬送ライン2に沿って、放射温度計3aと放射温度計3bを設けており、それらの間隔は既知の値Lspanとしてある。そして、下流側の放射温度計3aで鋼管1の先端1aを検出し、上流側の放射温度計3bで鋼管1の尾端1bを検出することにしている。図7では、鋼管1の尾端1bが下流側の放射温度計3bの位置にある場合を示している。   The second embodiment is different from the first embodiment in that two radiation thermometers are provided on the transport line. That is, the radiation thermometer 3a and the radiation thermometer 3b are provided along the transport line 2, and the distance between them is a known value Lspan. Then, the tip 1a of the steel pipe 1 is detected by the downstream radiation thermometer 3a, and the tail end 1b of the steel pipe 1 is detected by the upstream radiation thermometer 3b. In FIG. 7, the case where the tail end 1b of the steel pipe 1 exists in the position of the radiation thermometer 3b of the downstream is shown.

図8は、図7に示した装置を鋼管1が通過した際の放射温度計3aおよび放射温度計3bの温度測定値の経時変化を示すものであり、(a)は鋼管1の長さLpipeが2つの放射温度計3a、3b間の距離Lspanよりも長い場合を、(b)は鋼管1の長さLpipeが2つの放射温度計3a、3b間の距離Lspanよりも短い場合を示す。
放射温度計3bは放射温度計3aよりも距離Lspanだけ上流側にあるから、温度測定値は、Lspan分の搬送時間だけ放射温度計3bの測定値が放射温度計3aの測定値よりも先に立ち上がる。
FIG. 8 shows the change over time of the temperature measurement values of the radiation thermometer 3a and the radiation thermometer 3b when the steel pipe 1 passes through the apparatus shown in FIG. 7, and (a) shows the length Lpipe of the steel pipe 1. Is longer than the distance Lspan between the two radiation thermometers 3a and 3b, and (b) shows the case where the length Lpipe of the steel pipe 1 is shorter than the distance Lspan between the two radiation thermometers 3a and 3b.
Since the radiation thermometer 3b is upstream of the radiation thermometer 3a by the distance Lspan, the temperature measurement value is measured before the measurement value of the radiation thermometer 3a by the conveyance time of Lspan. stand up.

算出手段5は、放射温度計3aによる先端検知時刻t1、放射温度計3bによる尾端検出時刻t2を記録する。先端検知時刻t1、尾端検知時刻t2の決定方法は、上述の第1の実施形態と同様に行う。図8(a)に示すように、放射温度計3aによる先端検知時刻t1が放射温度計3bによる尾端検知時刻t2よりも早い場合、すなわち、t1<t2である場合には、図7に示すように、鋼管1の長さLpipeがLspanよりも長いということであるから、t1とt2との時間差の間の搬送量LをLspanに加えることにより鋼管1の長さLpipeが求まる。逆に、図8(b)に示すように、放射温度計3aによる先端検知時刻t1が放射温度計3bによる尾端検知時刻t2よりも遅い場合、すなわち、t1>t2である場合には、鋼管1の長さLpipeがLspanよりも短いということであるから、t1とt2との時間差の間の搬送量LをLspanから減じることにより鋼管1の長さLpipeが求まる。放射温度計3aによる先端検知時刻t1が放射温度計3bによる尾端検知時刻t2と同時である場合、すなわち、t1=t2である場合には、鋼管1の長さLpipe=Lspanであるということになる。   The calculating means 5 records the tip detection time t1 by the radiation thermometer 3a and the tail end detection time t2 by the radiation thermometer 3b. The method for determining the tip detection time t1 and the tail detection time t2 is performed in the same manner as in the first embodiment. As shown in FIG. 8A, when the tip detection time t1 by the radiation thermometer 3a is earlier than the tail detection time t2 by the radiation thermometer 3b, that is, when t1 <t2, the result is shown in FIG. Thus, since the length Lpipe of the steel pipe 1 is longer than Lspan, the length Lpipe of the steel pipe 1 is obtained by adding the transport amount L during the time difference between t1 and t2 to Lspan. Conversely, as shown in FIG. 8B, when the tip detection time t1 by the radiation thermometer 3a is later than the tail end detection time t2 by the radiation thermometer 3b, that is, when t1> t2, the steel pipe Since the length Lpipe of 1 is shorter than Lspan, the length Lpipe of the steel pipe 1 is obtained by subtracting the conveyance amount L during the time difference between t1 and t2 from Lspan. When the tip detection time t1 by the radiation thermometer 3a is coincident with the tail end detection time t2 by the radiation thermometer 3b, that is, when t1 = t2, the length Lpipe = Lspan of the steel pipe 1 is assumed. Become.

したがって、搬送制御手段からの速度指令値v、時刻t1と時刻t2との時間差から、該時間差間の搬送量L=v・(t2−t1)を求め、以下の式より、鋼管1の長さLpipeを算出することができる。
Lpipe=Lspan+L
本発明の第2の実施形態では、第1の実施形態に比べてt1とt2との時間差が小さくなり、よって、この間について算出される鋼管1の搬送量は小さくなる。そして、搬送量が小さくなった分の長さは、既知の値である2つの放射温度計3a,3b間の距離Lspanの値を用いることができる。t1とt2との時間差が小さく、この間の搬送量も小さくなるので、速度指令vと実際の搬送速度にわずかなずれがある場合であっても、搬送量についての誤差が小さくなり、第1の実施形態に比較して精度の良い鋼管長の測定が可能となる。
Therefore, from the speed command value v from the conveyance control means and the time difference between time t1 and time t2, the conveyance amount L = v · (t2−t1) between the time differences is obtained, and the length of the steel pipe 1 is obtained from the following equation. Lpipe can be calculated.
Lpipe = Lspan + L
In the second embodiment of the present invention, the time difference between t1 and t2 is smaller than in the first embodiment, and thus the transport amount of the steel pipe 1 calculated during this time is smaller. And the length of the amount by which the conveyance amount is reduced can use the value of the distance Lspan between the two radiation thermometers 3a and 3b, which is a known value. Since the time difference between t1 and t2 is small and the conveyance amount therebetween is also small, even if there is a slight deviation between the speed command v and the actual conveyance speed, the error regarding the conveyance amount is small, and the first The steel pipe length can be measured with higher precision than in the embodiment.

本発明例として、上述の第2の実施形態に示した熱間長尺材の長さ測定装置を、シームレス管製造ラインのマンドレルミルの出側に設置し、バーが挿入された長さ4140mm〜8000mmのシームレス鋼管について長さ測定を行った。
また、比較例として、上述の第2の実施形態において放射温度計3a、3bの代わりに、熱塊検出器(HMD)を使用した既設の長さ測定装置にて長さ測定を行った。
As an example of the present invention, the length measuring device for a hot long material shown in the second embodiment described above is installed on the exit side of a mandrel mill of a seamless pipe production line, and a length of 4140 mm to which a bar is inserted. The length of a 8000 mm seamless steel pipe was measured.
As a comparative example, length measurement was performed with an existing length measurement device using a hot mass detector (HMD) instead of the radiation thermometers 3a and 3b in the second embodiment described above.

測定後の鋼管について、メジャーを用いて実測して正確な長さ(実測値)を求め、本発明例あるいは比較例での測定値から実測値を減じた値を測定精度とした。
表1に、前記測定精度データの、各長さ毎のN数と標準偏差σを示す。本発明例では比較例に対して標準偏差が格段に小さくなっており、このことからも測定精度が高いことがわかる。
About the steel pipe after measurement, it measured using the measure, calculated | required exact length (measured value), and made the measurement accuracy the value which subtracted the measured value from the measured value in the example of this invention or a comparative example.
Table 1 shows the N number and the standard deviation σ for each length of the measurement accuracy data. In the example of the present invention, the standard deviation is much smaller than that of the comparative example, which also shows that the measurement accuracy is high.

Figure 2011173162
Figure 2011173162

本発明は、熱間鋼管の長さ測定に限らず、鋼板、棒鋼等の鋼管以外の熱間長尺材の長さの測定に広く適用することができる。また、バーが挿入された鋼管である場合にも長さ測定が可能となり、マンドレルミルにおける搬送ラインに適用することも可能である。   The present invention is not limited to the measurement of the length of a hot steel pipe, but can be widely applied to the measurement of the length of a hot long material other than a steel pipe such as a steel plate or a steel bar. In addition, the length can be measured even in the case of a steel pipe into which a bar is inserted, and it is also possible to apply to a conveyance line in a mandrel mill.

1 鋼管(熱間長尺材、被測定材)
1a 鋼管の先端
1b 鋼管の尾端
2 搬送ライン
3 放射温度計
3a 下流側の放射温度計
3b 上流側の放射温度計
4 搬送制御手段
5 算出手段
6 モータ
7 放射温度計の視野
1 Steel pipe (hot long material, material to be measured)
1a Steel pipe tip 1b Steel pipe tail end 2 Transport line 3 Radiation thermometer 3a Downstream radiation thermometer 3b Upstream radiation thermometer 4 Transport control means 5 Calculation means 6 Motor 7 Field of view of radiation thermometer

Claims (6)

熱間長尺材をその長さ方向を搬送方向として搬送ライン上を搬送し、該熱間長尺材を被測定材としてその長さ測定する熱間長尺材の長さ測定方法において、
前記搬送ライン上の被測定材の温度を測定する放射温度計を設け、
前記被測定材が該放射温度計の位置を通過する際の該放射温度計による温度検出値にもとづいて、前記被測定材の先端および尾端を検知し、該放射温度計の先端検知時刻t1と尾端検知時刻t2との時間差の間の被測定材の搬送量にもとづき、前記被測定材の長さを算出することを特徴とする熱間長尺材の長さ測定方法。
In the method for measuring the length of a hot long material, the length of the hot long material is transported on the transport line as the transport direction, and the length of the hot long material is measured as the material to be measured.
A radiation thermometer for measuring the temperature of the material to be measured on the transport line is provided,
Based on the temperature detected by the radiation thermometer when the material to be measured passes through the position of the radiation thermometer, the tip and tail ends of the material to be measured are detected, and the tip detection time t1 of the radiation thermometer The length measurement method of the hot long material characterized by calculating the length of the said to-be-measured material based on the conveyance amount of the to-be-measured material between the time difference of the time and tail end detection time t2.
前記先端検知時刻t1、および、前記尾端検知時刻t2を、前記放射温度計の温度検出値の時間変化から求めた放射温度計の視野占有率から決定することを特徴とする請求項1に記載の熱間長尺材の長さ測定方法。   2. The front end detection time t1 and the tail end detection time t2 are determined from a field occupancy ratio of a radiation thermometer obtained from a time change of a temperature detection value of the radiation thermometer. Method for measuring the length of hot long materials. 前記放射温度計として、搬送ラインに沿って所定距離Lspanの間隔で2つの放射温度計を設け、
下流側の放射温度計が前記被測定材の先端を検知した時刻t1と上流側の放射温度計が前記被測定材の尾端を検知した時刻t2との時間差の間の被測定材の搬送量、および、前記距離Lspanにもとづき、被測定材の長さを算出することを特徴とする請求項1または2に記載の熱間長尺材の長さ測定方法。
As the radiation thermometer, two radiation thermometers are provided at a predetermined distance Lspan along the transport line,
The conveyance amount of the material to be measured between the time difference between the time t1 when the downstream radiation thermometer detects the tip of the material to be measured and the time t2 when the upstream radiation thermometer detects the tail of the material to be measured. The length measurement method of the hot long material according to claim 1, wherein the length of the material to be measured is calculated based on the distance Lspan.
熱間長尺材をその長手方向を搬送方向として搬送ライン上を搬送し、該熱間長尺材を被測定材としてその長さを測定する熱間長尺材の長さ測定装置であって、
該搬送ライン上の被測定材の温度を測定する放射温度計と、
該放射温度計による温度検出値にもとづき前記被測定材の先端および尾端が前記放射温度計の位置を通過した時刻をそれぞれ先端検知時刻、尾端検知時刻として求め、これら先端検知時刻、尾端検知時刻との時間差、該時間差の間の被測定材の搬送量にもとづき、被測定材の長さを算出する長さ算出手段とを有することを特徴とする熱間長尺材の長さ測定装置。
A hot long material length measuring device that transports a hot long material on a transport line with its longitudinal direction as the transport direction, and measures the length of the hot long material as a material to be measured. ,
A radiation thermometer for measuring the temperature of the material to be measured on the conveying line;
Based on the temperature detection value by the radiation thermometer, the time at which the tip and tail ends of the material to be measured have passed the position of the radiation thermometer are obtained as the tip detection time and the tail detection time, respectively. Length measurement means for calculating a length of a hot material having a length calculation means for calculating a length of the material to be measured based on a time difference from a detection time and a conveyance amount of the material to be measured during the time difference apparatus.
前記長さ算出手段は、前記先端検知時刻、尾端検知時刻を、前記放射温度計の温度検出値の時間変化から求めた前記放射温度計の視野占有率から決定することを特徴とする請求項4に記載の熱間長尺材の長さ測定装置。   The length calculation unit determines the tip detection time and the tail detection time from a visual field occupation ratio of the radiation thermometer obtained from a time change of a temperature detection value of the radiation thermometer. 4. A length measuring apparatus for hot long materials according to 4. 前記放射温度計として、搬送ラインに沿って所定の距離Lspanの間隔で2つの放射温度計が設置されてなり、
前記長さ算出手段は、前記時間差の間の被測定材の搬送量および前記距離Lspanにもとづき被測定材の長さを算出することを特徴とする請求項4または5に記載の熱間長尺材の長さ測定装置。
As the radiation thermometer, two radiation thermometers are installed at a predetermined distance Lspan along the conveyance line,
The hot length according to claim 4 or 5, wherein the length calculation means calculates the length of the material to be measured based on the conveyance amount of the material to be measured during the time difference and the distance Lspan. Material length measuring device.
JP2010040730A 2010-02-25 2010-02-25 Method and apparatus for measuring length of hot long material Active JP5540767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010040730A JP5540767B2 (en) 2010-02-25 2010-02-25 Method and apparatus for measuring length of hot long material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010040730A JP5540767B2 (en) 2010-02-25 2010-02-25 Method and apparatus for measuring length of hot long material

Publications (2)

Publication Number Publication Date
JP2011173162A true JP2011173162A (en) 2011-09-08
JP5540767B2 JP5540767B2 (en) 2014-07-02

Family

ID=44686539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010040730A Active JP5540767B2 (en) 2010-02-25 2010-02-25 Method and apparatus for measuring length of hot long material

Country Status (1)

Country Link
JP (1) JP5540767B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185901A (en) * 2012-03-07 2013-09-19 Jfe Steel Corp Method and device for measuring long body
JP2013221758A (en) * 2012-04-12 2013-10-28 Jfe Steel Corp Method and device for measuring length of elongated body
JP2013221757A (en) * 2012-04-12 2013-10-28 Jfe Steel Corp Method and device for measuring length of elongated body
CN104154887A (en) * 2014-08-27 2014-11-19 李书闯 Steel length measurement device
JP2016020810A (en) * 2014-07-11 2016-02-04 光洋サーモシステム株式会社 Continuous heating furnace, and temperature measuring method
JP2017032545A (en) * 2015-07-28 2017-02-09 ポスコPosco Plate position measurement device, plate shift controller, and plate displacement calculation method
WO2020145390A1 (en) * 2019-01-10 2020-07-16 Jfeスチール株式会社 Control method and device for reforming tub in wire rod coil manufacturing line
CN113399468A (en) * 2021-06-18 2021-09-17 首钢长治钢铁有限公司 High-speed bar tail steel length optimization control device and optimization method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534141A (en) * 1991-07-30 1993-02-09 Toshiba Corp Detecting device of length
JPH06194225A (en) * 1992-12-24 1994-07-15 Sumitomo Metal Ind Ltd Hot lump detector
JP2000117312A (en) * 1998-10-08 2000-04-25 Kawasaki Steel Corp Mill pacing regulating method in hot rolling
JP2011174884A (en) * 2010-02-25 2011-09-08 Jfe Steel Corp Method and device for measuring length of hot-rolled long material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534141A (en) * 1991-07-30 1993-02-09 Toshiba Corp Detecting device of length
JPH06194225A (en) * 1992-12-24 1994-07-15 Sumitomo Metal Ind Ltd Hot lump detector
JP2000117312A (en) * 1998-10-08 2000-04-25 Kawasaki Steel Corp Mill pacing regulating method in hot rolling
JP2011174884A (en) * 2010-02-25 2011-09-08 Jfe Steel Corp Method and device for measuring length of hot-rolled long material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185901A (en) * 2012-03-07 2013-09-19 Jfe Steel Corp Method and device for measuring long body
JP2013221758A (en) * 2012-04-12 2013-10-28 Jfe Steel Corp Method and device for measuring length of elongated body
JP2013221757A (en) * 2012-04-12 2013-10-28 Jfe Steel Corp Method and device for measuring length of elongated body
JP2016020810A (en) * 2014-07-11 2016-02-04 光洋サーモシステム株式会社 Continuous heating furnace, and temperature measuring method
CN104154887A (en) * 2014-08-27 2014-11-19 李书闯 Steel length measurement device
JP2017032545A (en) * 2015-07-28 2017-02-09 ポスコPosco Plate position measurement device, plate shift controller, and plate displacement calculation method
WO2020145390A1 (en) * 2019-01-10 2020-07-16 Jfeスチール株式会社 Control method and device for reforming tub in wire rod coil manufacturing line
CN113286671A (en) * 2019-01-10 2021-08-20 杰富意钢铁株式会社 Method and device for controlling reforming groove in wire coil production line
CN113286671B (en) * 2019-01-10 2023-12-08 杰富意钢铁株式会社 Control method and device for reforming tank in wire coil production line
CN113399468A (en) * 2021-06-18 2021-09-17 首钢长治钢铁有限公司 High-speed bar tail steel length optimization control device and optimization method
CN113399468B (en) * 2021-06-18 2022-08-12 首钢长治钢铁有限公司 High-speed bar tail steel length optimization control device and optimization method

Also Published As

Publication number Publication date
JP5540767B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5540767B2 (en) Method and apparatus for measuring length of hot long material
TWI473965B (en) Thickness measurement system and thickness measurement method
JP2008304286A (en) Bar length measurement method and cutting method using the same
CN105772655A (en) Continuous casting billet online weight fixing system
CN102589449A (en) Length measuring device of slab and measuring method
JP5375663B2 (en) Method and apparatus for measuring length of hot long material
CN103820628A (en) Heating furnace slab positioning device and positioning method thereof
JP6390639B2 (en) Steel length measuring device, steel material manufacturing device, steel length measuring method, and steel material manufacturing method
JP2014132667A5 (en)
US20130274910A1 (en) Method for controlling a production facility by high-resolution location tracking of workpieces
JP4469669B2 (en) Method and apparatus for inspecting radioactive contamination
JP4362829B2 (en) Method and apparatus for detecting bending of pipe material
JP2016087652A (en) Thick steel plate warpage detection method and device
JP2012173132A (en) Length measurement method and device for hot long material
JP2012170997A (en) Method of controlling drive of crop shear
CN103442603A (en) Spatially resolved measurement of at least one physical property of a rod-haped item of the tobacco processing industry
JP2011196755A (en) Radiation measuring instrument
JP7285378B2 (en) Edge crack detection device, rolling equipment, and edge crack detection method
JP6128009B2 (en) Method and apparatus for measuring thickness of striped steel sheet
JP5311184B2 (en) Method and apparatus for determining length of material to be judged having substantially circular cross section
JP6079072B2 (en) Hot length measuring method and apparatus
JP2018161668A (en) Tracking device and tracking method of hot rolling material
JP2014052194A (en) Method and device for detecting hot steel material
JP2015043124A (en) Steel pipe number counter and steel pipe number counting method
JP2005157960A (en) Number counting method and number counting device for round bar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

TRDD Decision of grant or rejection written
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5540767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250