JP2010235441A - Magnetic iron oxide nanocomposite powdery particle, method of manufacturing the same, particle dispersion liquid, and resin composition - Google Patents

Magnetic iron oxide nanocomposite powdery particle, method of manufacturing the same, particle dispersion liquid, and resin composition Download PDF

Info

Publication number
JP2010235441A
JP2010235441A JP2010054863A JP2010054863A JP2010235441A JP 2010235441 A JP2010235441 A JP 2010235441A JP 2010054863 A JP2010054863 A JP 2010054863A JP 2010054863 A JP2010054863 A JP 2010054863A JP 2010235441 A JP2010235441 A JP 2010235441A
Authority
JP
Japan
Prior art keywords
iron oxide
magnetic iron
group
particles
oxide nanocomposite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010054863A
Other languages
Japanese (ja)
Inventor
Hideo Sawada
英夫 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Hirosaki University NUC
Original Assignee
Nippon Chemical Industrial Co Ltd
Hirosaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd, Hirosaki University NUC filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2010054863A priority Critical patent/JP2010235441A/en
Publication of JP2010235441A publication Critical patent/JP2010235441A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic iron oxide nanocomposite powdery particle which is highly dispersed for various solvents at a level of several tens of nanometers and has persistency in dispersibility. <P>SOLUTION: The magnetic iron oxide nanocomposite powdery particle is characterized in that magnetic iron oxide particles are combined with fluoroalkyl group-containing oligomer represented by the general formula (1). In the formula, R<SP>1</SP>and R<SP>2</SP>represent -(CF<SB>2</SB>)p-Y group or -CF(CF<SB>3</SB>)-[OCF<SB>2</SB>CF(CF<SB>3</SB>)]q-OC<SB>3</SB>F<SB>7</SB>group, R<SP>1</SP>and R<SP>2</SP>may be the same or different from each other, Y in R<SP>1</SP>and R<SP>2</SP>represents hydrogen atom, fluorine atom or chlorine atom, and p and q denote integers of 0 to 10. B<SB>1</SB>represents 1-5C alkylene group, n3 denotes an integer of 5 to 1,000, and molar ratio of n1 to n2 is in the range of 1/99 to 99/1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、磁性を有する磁性酸化鉄ナノコンポジット粉末状粒子、その製造方法、該コンポジット粉末状粒子を含有する粒子分散液及び樹脂組成物に関するものである。   The present invention relates to magnetic iron oxide nanocomposite powder particles having magnetism, a production method thereof, a particle dispersion containing the composite powder particles, and a resin composition.

マグネタイトなどの強磁性酸化鉄は、化学的に安定で比較的大きな磁性を有する微粒子であることから、これまで磁気記録媒体、磁性流体または磁性トナーなどの様々な用途に広く利用されてきた。   Ferromagnetic iron oxides such as magnetite are chemically stable and relatively large magnetized fine particles, and thus have been widely used in various applications such as magnetic recording media, magnetic fluids, and magnetic toners.

近年では、例えば免疫測定における磁気濃縮・分離担体などをはじめとする医療やバイオテクノロジー等の分野に対して磁性酸化鉄粒子を応用する展開が拡大しており、従来の用途ではあまり重要視されていなかった様々な特性が酸化鉄粒子に要求されるようになってきた。例えば、従来に比べて粒子形状または粒子サイズがよく揃っていることや、溶媒によく分散しうることなどの特性が求められるようになってきた。   In recent years, the application of magnetic iron oxide particles to medical and biotechnology fields such as magnetic concentration / separation carriers in immunoassay has been expanding, and it has been regarded as very important in conventional applications. Various properties that were not available have been required for iron oxide particles. For example, characteristics such as better particle shape or particle size compared to the prior art and good dispersion in a solvent have been demanded.

本発明者らは、先に、水、有機溶媒および高分子材料中にナノ乃至ミクロンレベルで分散することができる磁性酸化鉄として、少なくとも親水性基を有する単位を含むオリゴマー骨格を有し、該骨格の末端がポリフルオロアルキル基からなる含フッ素オリゴマーからなる修飾基を含む分散性磁性酸化鉄を提案した(特許文献1参照)。   The present inventors previously have an oligomer skeleton containing at least a unit having a hydrophilic group as magnetic iron oxide that can be dispersed at a nano to micron level in water, an organic solvent, and a polymer material, A dispersible magnetic iron oxide containing a modifying group composed of a fluorine-containing oligomer having a skeleton end composed of a polyfluoroalkyl group was proposed (see Patent Document 1).

特開2005−289794号公報JP 2005-289794 A

本発明者らは、更に各種溶媒に対して、数十ナノレベルで高分散し、その分散性に持続性がある磁性酸化鉄について研究を進める中で、特定のフルオロアルキル基含有オリゴマーで該磁性酸化鉄を複合化すると、分散性及び分散持続性が更に向上することを見出し、本発明を完成するに至った。   The present inventors further conducted research on magnetic iron oxide that is highly dispersed at several tens of nanometers in various solvents and has a long dispersibility. It has been found that when iron oxide is combined, dispersibility and dispersion sustainability are further improved, and the present invention has been completed.

即ち、本発明の目的は、各種溶媒に対して、数十ナノレベルで高分散し、その分散性に持続性がある磁性酸化鉄ナノコンポジット粉末状粒子、その工業的に有利な製造方法、該磁性酸化鉄ナノコンポジット粉末状粒子が高分散した粒子分散液及び樹脂組成物を提供することにある。   That is, the object of the present invention is to provide magnetic iron oxide nanocomposite powder particles that are highly dispersed at several tens of nanometers in various solvents and have a sustained dispersibility, an industrially advantageous production method thereof, The object is to provide a particle dispersion and a resin composition in which magnetic iron oxide nanocomposite powder particles are highly dispersed.

本発明が提供する第1の発明は、磁性酸化鉄粒子が、下記一般式(1)で表されるフルオロアルキル基含有オリゴマーで複合化されてなることを特徴とする磁性酸化鉄ナノコンポジット粉末状粒子である。

{式中、R及びRは、−(CF)p−Y基、又は−CF(CF)−[OCFCF(CF)]q−OC基を示し、R及びRは、同一の基であっても異なる基であってもよく、R及びR中のYは水素原子、フッ素原子又は塩素原子を示し、p及びqは0〜10の整数である。Bは炭素数1〜5のアルキレン基を示す。n3は5〜1000の整数である。n1とn2のモル比は1:99〜99:1である。}
A first invention provided by the present invention is a magnetic iron oxide nanocomposite powder in which magnetic iron oxide particles are complexed with a fluoroalkyl group-containing oligomer represented by the following general formula (1): Particles.

{In the formula, R 1 and R 2 represent a — (CF 2 ) p—Y group or a —CF (CF 3 ) — [OCF 2 CF (CF 3 )] q—OC 3 F 7 group, and R 1 And R 2 may be the same group or different groups, Y in R 1 and R 2 represents a hydrogen atom, a fluorine atom or a chlorine atom, and p and q are integers of 0 to 10. is there. B 1 represents an alkylene group having 1 to 5 carbon atoms. n3 is an integer of 5 to 1000. The molar ratio of n1 and n2 is 1:99 to 99: 1. }

また、本発明が提供する第2の発明は、磁性酸化鉄粒子が、下記一般式(2)で表されるフルオロアルキル基含有オリゴマーの架橋反応生成物で複合化されてなることを特徴とする磁性酸化鉄ナノコンポジット粉末状粒子である。

{式中、R及びRは、−(CF)p−Y基、又は−CF(CF)−[OCFCF(CF)]q−OC基を示し、R及びRは、同一の基であっても異なる基であってもよく、R及びR中のYは水素原子、フッ素原子又は塩素原子を示し、p及びqは0〜10の整数である。Zはイソシアナート含有基を示す。m3は5〜1000の整数である。m1とm2のモル比は1:99〜99:1である。}
The second invention provided by the present invention is characterized in that the magnetic iron oxide particles are complexed with a crosslinking reaction product of a fluoroalkyl group-containing oligomer represented by the following general formula (2). Magnetic iron oxide nanocomposite powder particles.

{Wherein R 3 and R 4 represent a — (CF 2 ) p—Y group or a —CF (CF 3 ) — [OCF 2 CF (CF 3 )] q—OC 3 F 7 group, and R 3 And R 4 may be the same group or different groups, Y in R 3 and R 4 represents a hydrogen atom, a fluorine atom or a chlorine atom, and p and q are integers of 0 to 10. is there. Z represents an isocyanate-containing group. m3 is an integer of 5 to 1000. The molar ratio of m1 and m2 is 1:99 to 99: 1. }

また、本発明が提供する第3の発明は、磁性酸化鉄粒子と、前記一般式(1)で表されるフルオロアルキル基含有オリゴマーとを溶媒中で接触させることを特徴とする磁性酸化鉄ナノコンポジット粉末状粒子の製造方法である。   According to a third aspect of the present invention, there is provided a magnetic iron oxide nanoparticle characterized by contacting magnetic iron oxide particles with a fluoroalkyl group-containing oligomer represented by the general formula (1) in a solvent. This is a method for producing composite powder particles.

また、本発明が提供する第4の発明は、第一鉄塩と第二鉄塩を含む溶媒に、アルカリを添加して反応を行って磁性酸化鉄を製造する方法において、前記溶媒に前記一般式(1)で表されるフルオロアルキル基含有オリゴマーを含有させて、アルカリを添加し反応を行うことを特徴とする磁性酸化鉄ナノコンポジット粉末状粒子の製造方法である。   The fourth invention provided by the present invention is a method for producing magnetic iron oxide by adding an alkali to a solvent containing a ferrous salt and a ferric salt, and producing the magnetic iron oxide. It is a method for producing magnetic iron oxide nanocomposite powder particles characterized by containing a fluoroalkyl group-containing oligomer represented by formula (1) and adding an alkali to react.

また、本発明が提供する第5の発明は、磁性酸化鉄粒子と、前記一般式(2)で表されるフルオロアルキル基含有オリゴマーを含む溶媒を調製し、次いで前記一般式(2)で表されるフルオロアルキル基含有オリゴマーの架橋反応を行うことを特徴とする磁性酸化鉄ナノコンポジット粉末状粒子の製造方法である。   The fifth invention provided by the present invention is to prepare a solvent containing magnetic iron oxide particles and a fluoroalkyl group-containing oligomer represented by the general formula (2), and then represented by the general formula (2). It is a method for producing magnetic iron oxide nanocomposite powder particles characterized in that a cross-linking reaction of a fluoroalkyl group-containing oligomer is performed.

また、本発明が提供する第6の発明は、第1の発明と第2の発明の磁性酸化鉄ナノコンポジット粉末状粒子が、分散溶媒に分散されていることを特徴とする粒子分散液である。   The sixth invention provided by the present invention is a particle dispersion characterized in that the magnetic iron oxide nanocomposite powder particles of the first and second inventions are dispersed in a dispersion solvent. .

また、本発明が提供する第7の発明は、第1の発明と第2の発明の磁性酸化鉄ナノコンポジット粉末状粒子を含有することを特徴とする樹脂組成物である。   The seventh invention provided by the present invention is a resin composition comprising the magnetic iron oxide nanocomposite powder particles of the first and second inventions.

本発明によれば、各種溶媒に対して、数十ナノレベルの極めて高い分散性を有し、また、分散性に持続性がある磁性酸化鉄ナノコンポジット粉末状粒子を提供することが出来る。また、本発明によれば、該磁性酸化鉄ナノコンポジット粉末状粒子を工業的に有利な方法で提供することができる。   According to the present invention, it is possible to provide magnetic iron oxide nanocomposite powder-like particles having extremely high dispersibility of several tens of nanometers in various solvents and having a long dispersibility. In addition, according to the present invention, the magnetic iron oxide nanocomposite powder particles can be provided by an industrially advantageous method.

実施例1〜6で得られた磁性酸化鉄ナノコンポジット粉末状粒子のFT−IRチャート。The FT-IR chart of the magnetic iron oxide nanocomposite powder-like particle | grains obtained in Examples 1-6. 実施例1〜4で得られた磁性酸化鉄ナノコンポジット粉末状粒子のX線回折図。The X-ray-diffraction figure of the magnetic iron oxide nanocomposite powder-like particle | grains obtained in Examples 1-4. 実施例5〜6で得られた磁性酸化鉄ナノコンポジット粉末状粒子のX線回折図。The X-ray-diffraction figure of the magnetic iron oxide nanocomposite powder-like particle | grains obtained in Examples 5-6. 実施例2で得られた磁性酸化鉄ナノコンポジット粉末状粒子のTEM写真。4 is a TEM photograph of magnetic iron oxide nanocomposite powder particles obtained in Example 2. FIG. 実施例1〜3で得られた磁性酸化鉄ナノコンポジット粉末状粒子をメタノールへ分散させた分散液の吸光度500nmでの光透過率の経時変化を示す図。The figure which shows the time-dependent change of the light transmittance in the light absorbency 500nm of the dispersion liquid which disperse | distributed the magnetic iron oxide nanocomposite powder-form particle obtained in Examples 1-3 to methanol. 実施例1〜3で得られた磁性酸化鉄ナノコンポジット粉末状粒子をメタノールへ分散させた分散液の吸光度500nmでの相対濁度の経時変化を示す図。The figure which shows the time-dependent change of the relative turbidity in the light absorbency 500nm of the dispersion liquid which disperse | distributed the magnetic iron oxide nanocomposite powder-form particle obtained in Examples 1-3 to methanol. 実施例12〜14で得られた磁性酸化鉄ナノコンポジット粉末状粒子のFT−IRチャート。The FT-IR chart of the magnetic iron oxide nanocomposite powder-like particle | grains obtained in Examples 12-14. 実施例12〜14で得られた磁性酸化鉄ナノコンポジット粉末状粒子のX線回折図。The X-ray-diffraction figure of the magnetic iron oxide nanocomposite powder-like particle | grains obtained in Examples 12-14. 実施例14で得られた磁性酸化鉄ナノコンポジット粉末状粒子のTEM写真。4 is a TEM photograph of magnetic iron oxide nanocomposite powder particles obtained in Example 14. FIG. 実施例22で得られた磁性酸化鉄ナノコンポジット粉末状粒子のTEM写真。4 is a TEM photograph of magnetic iron oxide nanocomposite powder particles obtained in Example 22. FIG.

以下、本発明をその好ましい実施形態に基づき説明する。
本発明に係る第1の発明の磁性酸化鉄ナノコンポジット粉末状粒子は、磁性酸化鉄粒子が、下記一般式(1)で表されるフルオロアルキル基含有オリゴマーで複合化されてなることを特徴とするものである。

{式中、R及びRは、−(CF)p−Y基、又は−CF(CF)−[OCFCF(CF)]q−OC基を示し、R及びRは、同一の基であっても異なる基であってもよく、R及びR中のYは水素原子、フッ素原子又は塩素原子を示し、p及びqは0〜10の整数である。Bは炭素数1〜5のアルキレン基を示す。n3は5〜1000の整数である。n1とn2のモル比は1:99〜99:1である。}
Hereinafter, the present invention will be described based on preferred embodiments thereof.
The magnetic iron oxide nanocomposite powdery particles of the first invention according to the present invention are characterized in that the magnetic iron oxide particles are complexed with a fluoroalkyl group-containing oligomer represented by the following general formula (1). To do.

{In the formula, R 1 and R 2 represent a — (CF 2 ) p—Y group or a —CF (CF 3 ) — [OCF 2 CF (CF 3 )] q—OC 3 F 7 group, and R 1 And R 2 may be the same group or different groups, Y in R 1 and R 2 represents a hydrogen atom, a fluorine atom or a chlorine atom, and p and q are integers of 0 to 10. is there. B 1 represents an alkylene group having 1 to 5 carbon atoms. n3 is an integer of 5 to 1000. The molar ratio of n1 and n2 is 1:99 to 99: 1. }

また、本発明に係る第2の発明の磁性酸化鉄ナノコンポジット粉末状粒子は、磁性酸化鉄粒子が、下記一般式(2)で表されるフルオロアルキル基含有オリゴマーの架橋反応生成物で複合化されてなることを特徴とするものである。

{式中、R及びRは、−(CF)p−Y基、又は−CF(CF)−[OCFCF(CF)]q−OC基を示し、R及びRは、同一の基であっても異なる基であってもよく、R及びR中のYは水素原子、フッ素原子又は塩素原子を示し、p及びqは0〜10の整数である。Zはイソシアナート含有基を示す。m3は5〜1000の整数である。m1とm2のモル比は1:99〜99:1である。}
In addition, in the magnetic iron oxide nanocomposite powder particles of the second invention according to the present invention, the magnetic iron oxide particles are combined with a crosslinking reaction product of a fluoroalkyl group-containing oligomer represented by the following general formula (2). It is characterized by being made.

{Wherein R 3 and R 4 represent a — (CF 2 ) p—Y group or a —CF (CF 3 ) — [OCF 2 CF (CF 3 )] q—OC 3 F 7 group, and R 3 And R 4 may be the same group or different groups, Y in R 3 and R 4 represents a hydrogen atom, a fluorine atom or a chlorine atom, and p and q are integers of 0 to 10. is there. Z represents an isocyanate-containing group. m3 is an integer of 5 to 1000. The molar ratio of m1 and m2 is 1:99 to 99: 1. }

第1及び第2の発明で用いる磁性酸化鉄粒子は、マグネタイト(Fe)及びγ−マグヘマイト(γ−Fe)が好ましく用いられる。 Magnetite (Fe 3 O 4 ) and γ-maghemite (γ-Fe 2 O 3 ) are preferably used as the magnetic iron oxide particles used in the first and second inventions.

かかる磁性酸化鉄粒子の好ましい諸物性は、ナノ粒子であれば特に制限なく用いることができるが、特に本発明によれば数十ナノレベルでの分散が可能である点で、磁性酸化鉄粒子の平均粒子径は100nm以下、好ましくは1〜100nmの範囲のものが好適に用いられる。なお、該磁性酸化鉄粒子には、本発明の効果を損なわない範囲で、他の鉄化合物、例えばα−ヘマタイト、水酸化鉄等を含有していてもよい。   The preferred physical properties of such magnetic iron oxide particles can be used without particular limitation as long as they are nanoparticles, but in particular, according to the present invention, the magnetic iron oxide particles can be dispersed at a level of several tens of nanometers. An average particle diameter of 100 nm or less, preferably in the range of 1 to 100 nm is suitably used. The magnetic iron oxide particles may contain other iron compounds such as α-hematite and iron hydroxide as long as the effects of the present invention are not impaired.

第1の発明で用いる前記一般式(1)で表わされるフルオロアルキル基含有オリゴマーは、公知の化合物であり、例えば、下記反応式(A-1)に従って製造することが出来る。

(式中、R、R、B、n1、n2及びn3は前記と同義。)
The fluoroalkyl group-containing oligomer represented by the general formula (1) used in the first invention is a known compound and can be produced, for example, according to the following reaction formula (A-1).

(In the formula, R 1 , R 2 , B 1 , n1, n2, and n3 are as defined above.)

即ち、一般式(a1)で表される過酸化フルオロアルカノイル類と、前記一般式(a2)で表されるスルホン酸化合物及び(3a)で表されるアダマンチル基含有化合物とをモル比で通常1:1〜100:1〜100、好ましくは1:1〜50:1〜50で、100℃以下、好ましくは10〜50℃で20時間以内、好ましくは2〜5時間、ハロゲン化脂肪族系の溶媒中で反応を行うことにより目的とする前記一般式(1)で表されるフルオロアルキル基含有オリゴマーを製造することができる(例えば、Langmuir, Vol.23, No.11, 5848−5851p(2007)参照)   That is, the fluoroalkanoyl peroxide represented by the general formula (a1) and the sulfonic acid compound represented by the general formula (a2) and the adamantyl group-containing compound represented by (3a) are usually 1 in molar ratio. : 1 to 100: 1 to 100, preferably 1: 1 to 50: 1 to 50, 100 ° C. or lower, preferably 10 to 50 ° C. within 20 hours, preferably 2 to 5 hours. The target fluoroalkyl group-containing oligomer represented by the general formula (1) can be produced by carrying out the reaction in a solvent (for example, Langmuir, Vol. 23, No. 11, 5848-5851p (2007). )reference)

本発明の第1の発明の磁性酸化鉄ナノコンポジット粉末状粒子は、TEM(透過型電子顕微鏡)観察では、1個又は2個以上の磁性酸化鉄粒子が前記一般式(1)で表わされるフルオロアルキル基含有オリゴマー中に包接されて含有されるか、フルオロアルキル基含有オリゴマー粒子表面に吸着されて含有されるか、或いはフルオロアルキル基含有オリゴマーの粒子内部と粒子表面の両方に存在して含有される。
磁性酸化鉄ナノコンポジット粉末状粒子の磁性酸化鉄の含有量は1重量%以上、好ましくは2〜95重量%であることが各種用途に適用できる観点から好ましい。
The magnetic iron oxide nanocomposite powder particles of the first invention of the present invention are one or more of the magnetic iron oxide particles represented by the general formula (1) as observed by TEM (transmission electron microscope). Included by inclusion in the alkyl group-containing oligomer, adsorbed on the surface of the fluoroalkyl group-containing oligomer particle, or present both inside and on the particle surface of the fluoroalkyl group-containing oligomer Is done.
The content of magnetic iron oxide in the magnetic iron oxide nanocomposite powdery particles is preferably 1% by weight or more, and preferably 2 to 95% by weight from the viewpoint of being applicable to various applications.

本発明の第2の発明で用いるフルオロアルキル基含有オリゴマーは、前記一般式(2)で表わされる。該フルオロアルキル基含有オリゴマーは架橋反応可能なイソシアナート含有基を有し、本発明の第2の発明では、磁性酸化鉄を複合化するフルオロアルキル基含有オリゴマーは、前記一般式(2)で表わされるフルオロアルキル基含有オリゴマーの架橋反応生成物である。   The fluoroalkyl group-containing oligomer used in the second invention of the present invention is represented by the general formula (2). The fluoroalkyl group-containing oligomer has an isocyanate-containing group capable of cross-linking reaction. In the second invention of the present invention, the fluoroalkyl group-containing oligomer for complexing magnetic iron oxide is represented by the general formula (2). It is a crosslinking reaction product of a fluoroalkyl group-containing oligomer.

一般式(2)の式中のZはイソシアナート含有基を示す。該イソシアナート含有基としては、例えば、下記一般式(3)又は(4)で表わされる基を用いることが好ましい。

(式中、Bはアルキレン基を示す。A及びAはアルキル基を示す。)
前記一般式(3)の式中のBのアルキレン基としては、炭素数1〜5、好ましくは1〜4のアルキレン基が好ましい。一般式(3)の式中のA及びAのアルキル基としては、炭素数1〜5、好ましくは1〜3のアルキル基が好ましい。A及びAは異なる基であっても同一の基であってもよい。
Z in the formula (2) represents an isocyanate-containing group. As the isocyanate-containing group, for example, a group represented by the following general formula (3) or (4) is preferably used.

(In the formula, B 2 represents an alkylene group. A 1 and A 2 represent an alkyl group.)
The alkylene group represented by B 2 in the general formula (3) is preferably an alkylene group having 1 to 5 carbon atoms, preferably 1 to 4 carbon atoms. As the alkyl group of A 1 and A 2 in the formula of the general formula (3), an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms is preferable. A 1 and A 2 may be different groups or the same group.


(式中、Bはアルキレン基を示す。)
前記一般式(4)の式中のBのアルキレン基としては、炭素数1〜5、好ましくは1〜3のアルキレン基が好ましい。

(In the formula, B 3 represents an alkylene group.)
The alkylene group represented by B 3 in the formula (4) is preferably an alkylene group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms.

本発明において、特に一般式(2)の式中のZは、前記一般式(3)で表されるイソシアナート含有基が特に好ましく用いられる。   In the present invention, an isocyanate-containing group represented by the general formula (3) is particularly preferably used as Z in the general formula (2).

前記一般式(2)で表わされるフルオロアルキル基含有オリゴマーは公知の化合物であり、例えば、下記反応式(A−2)に従って製造することが出来る。

(式中、R、R、Z、m1、m2及びm3は前記と同義。)
The fluoroalkyl group-containing oligomer represented by the general formula (2) is a known compound and can be produced, for example, according to the following reaction formula (A-2).

(Wherein R 3 , R 4 , Z, m1, m2 and m3 have the same meanings as described above.)

即ち、一般式(a1)で表される過酸化フルオロアルカノイル類と、前記一般式(a4)で表されるイソシアネート基含有化合物とをモル比で通常1:1〜100:1〜100、好ましくは1:1〜50:1〜50で、100℃以下、好ましくは10〜50℃で20時間以内、好ましくは2〜5時間、ハロゲン化脂肪族系の溶媒中で反応を行うことにより目的とする前記一般式(2)で表されるフルオロアルキル基含有オリゴマーを製造することができる(例えば、特開2007−238760号公報、特開2007−239022号公報参照)。   That is, the fluoroalkanoyl peroxide represented by the general formula (a1) and the isocyanate group-containing compound represented by the general formula (a4) are usually in a molar ratio of usually 1: 1 to 100: 1 to 100, preferably The target is obtained by carrying out the reaction in a halogenated aliphatic solvent at 1: 1 to 50: 1 to 50 at 100 ° C. or less, preferably within 10 to 50 ° C. within 20 hours, preferably 2 to 5 hours. A fluoroalkyl group-containing oligomer represented by the general formula (2) can be produced (see, for example, JP 2007-238760 A and JP 2007-239022 A).

本発明の第2の発明の磁性酸化鉄ナノコンポジット粉末状粒子は、TEM(透過型電子顕微鏡)観察では、1個又は2個以上の磁性酸化鉄粒子が該フルオロアルキル基オリゴマーの架橋反応生成物中に包接されて存在する。磁性酸化鉄ナノコンポジット粉末状粒子の磁性酸化鉄の含有量は1重量%以上、好ましくは2〜95重量%であることが各種用途に適用できる観点から好ましい。   The magnetic iron oxide nanocomposite powder particles according to the second invention of the present invention are, when observed with a TEM (transmission electron microscope), one or more magnetic iron oxide particles are cross-linked reaction products of the fluoroalkyl group oligomer. Included inside. The content of magnetic iron oxide in the magnetic iron oxide nanocomposite powdery particles is preferably 1% by weight or more, and preferably 2 to 95% by weight from the viewpoint of being applicable to various applications.

本発明の第1の発明及び第2の発明の磁性酸化鉄ナノコンポジット粉末状粒子において、他の好ましい物性は、平均粒子径が10〜990nm、好ましくは20〜600nmである。平均粒子径が前記範囲内にあると、種々の分散溶媒又は樹脂材料等への分散性が良好である点で好ましい。   In the magnetic iron oxide nanocomposite powder particles of the first and second inventions of the present invention, another preferable physical property is an average particle diameter of 10 to 990 nm, preferably 20 to 600 nm. It is preferable that the average particle diameter is in the above range in terms of good dispersibility in various dispersion solvents or resin materials.

第1の発明の磁性酸化鉄ナノコンポジット粉末状粒子は、以下の2つの方法により工業的に有利に製造することができる。
(A)磁性酸化鉄粒子と、前記一般式(1)で表されるフルオロアルキル基含有オリゴマーとを溶媒中で接触させる方法(以下、「A法」と呼ぶ)。
(B)第一鉄塩と第二鉄塩を含む溶媒に、アルカリを添加して反応を行って磁性酸化鉄を製造する方法において、前記溶媒に前記一般式(1)で表されるフルオロアルキル基含有オリゴマーを含有させて、アルカリを添加し反応を行う方法(以下、「B法」と呼ぶ)。
The magnetic iron oxide nanocomposite powder particles of the first invention can be industrially advantageously produced by the following two methods.
(A) A method in which magnetic iron oxide particles and a fluoroalkyl group-containing oligomer represented by the general formula (1) are contacted in a solvent (hereinafter referred to as “Method A”).
(B) In the method of producing magnetic iron oxide by adding an alkali to a solvent containing a ferrous salt and a ferric salt and reacting, the fluoroalkyl represented by the general formula (1) is used as the solvent. A method of reacting by adding a group-containing oligomer and adding an alkali (hereinafter referred to as “Method B”).

前記A法における接触方法は、例えば前記一般式(1)で表わされるフルオロアルキル基含有オリゴマーを溶媒に溶解した溶液に、前記磁性酸化鉄粒子を添加して、攪拌及び/又は超音波処理をすることにより行われる。
A法では、磁性酸化鉄粒子がフルオロアルキル基含有オリゴマー粒子表面に吸着されて複合化されたもが得られやすい。
In the contact method in the method A, for example, the magnetic iron oxide particles are added to a solution obtained by dissolving the fluoroalkyl group-containing oligomer represented by the general formula (1) in a solvent, followed by stirring and / or ultrasonic treatment. Is done.
In the method A, the magnetic iron oxide particles are easily adsorbed on the surface of the fluoroalkyl group-containing oligomer particles to be composited.

A法に係る溶媒は、前記一般式(1)で表わされるフルオロアルキル基含有オリゴマーを溶解でき、該フルオロアルキル基含有オリゴマー及び磁性酸化鉄に対して不活性な溶媒が用いられる。例えば、メタノール、エタノール、イソプロピルアルコール等の低級アルコールが挙げられ、この中で、メタノールが特に好ましい。   The solvent according to Method A can dissolve the fluoroalkyl group-containing oligomer represented by the general formula (1), and a solvent inert to the fluoroalkyl group-containing oligomer and magnetic iron oxide is used. Examples thereof include lower alcohols such as methanol, ethanol and isopropyl alcohol, and among these, methanol is particularly preferable.

A法におけるフルオロアルキル基含有オリゴマーを溶解した溶液の濃度は、該フルオロアルキル基含有オリゴマーが溶解可能な濃度であれば、特に制限されるものではないが、通常1〜70重量%、好ましくは2〜50重量%である。   The concentration of the solution in which the fluoroalkyl group-containing oligomer is dissolved in Method A is not particularly limited as long as the fluoroalkyl group-containing oligomer can be dissolved, but is usually 1 to 70% by weight, preferably 2 ~ 50% by weight.

A法における磁性酸化鉄の添加量は、フルオロアルキル基含有オリゴマー100重量部に対して100〜80000重量部、好ましくは200〜70000重量部である。   The amount of magnetic iron oxide added in Method A is 100 to 80000 parts by weight, preferably 200 to 70000 parts by weight, based on 100 parts by weight of the fluoroalkyl group-containing oligomer.

A法における接触条件は接触温度が、5〜100℃、好ましくは10〜50℃である。また、接触時間は、0.1時間以上、好ましくは0.5〜10時間である。   The contact condition in Method A is that the contact temperature is 5 to 100 ° C, preferably 10 to 50 ° C. The contact time is 0.1 hour or longer, preferably 0.5 to 10 hours.

所定の時間接触させた後、反応液から目的物を回収し、回収物を乾燥して第1の発明の磁性酸化鉄ナノコンポジット粉末状粒子を得ることができる。なお、反応溶液から目的物を回収する方法としては、例えば該反応液を遠心分離処理し、未反応の磁性酸化鉄を沈殿物として沈降させ、該沈殿物を反応液から除去し、必要により精製を行って、本発明の磁性酸化鉄ナノコンポジット粉末状粒子を得ることができる。   After contacting for a predetermined time, the target product can be recovered from the reaction solution, and the recovered product can be dried to obtain the magnetic iron oxide nanocomposite powder particles of the first invention. In addition, as a method for recovering the target product from the reaction solution, for example, the reaction solution is centrifuged, and unreacted magnetic iron oxide is precipitated as a precipitate, the precipitate is removed from the reaction solution, and purified if necessary. The magnetic iron oxide nanocomposite powdery particles of the present invention can be obtained.

前記B法では、通常、前記一般式(1)で表わされるフルオロアルキル基含有オリゴマーを溶媒に溶解した溶液に、第一鉄塩と第二鉄塩を添加し、次いでアルカリを添加し第一鉄塩と第二鉄塩の加水分解反応を行うことにより行われる。
B法では、TEM(透過型電子顕微鏡)観察では、1個又は2個以上の磁性酸化鉄粒子が前記一般式(1)で表わされるフルオロアルキル基含有オリゴマー中に包接されて含有されて複合化されたもの、或いは磁性酸化鉄粒子がフルオロアルキル基含有オリゴマーの粒子内部と粒子表面の両方に存在して含有されて複合化されたものが得られやすい。
In the method B, a ferrous salt and a ferric salt are usually added to a solution obtained by dissolving the fluoroalkyl group-containing oligomer represented by the general formula (1) in a solvent, and then an alkali is added to the ferrous iron. It is carried out by conducting a hydrolysis reaction between the salt and the ferric salt.
In the method B, in TEM (transmission electron microscope) observation, one or two or more magnetic iron oxide particles are included in the fluoroalkyl group-containing oligomer represented by the general formula (1) and are combined. It is easy to obtain a composite or a composite in which magnetic iron oxide particles are present both inside and on the surface of the fluoroalkyl group-containing oligomer.

B法に係る溶媒は、前記一般式(1)で表わされるフルオロアルキル基含有オリゴマー及び第一鉄塩と第二鉄塩を溶解できるものであれば特に制限はないが、多くの場合は溶媒として水が用いられる。   The solvent according to Method B is not particularly limited as long as it can dissolve the fluoroalkyl group-containing oligomer represented by the general formula (1) and the ferrous salt and ferric salt, but in many cases, as the solvent Water is used.

B法におけるフルオロアルキル基含有オリゴマーを溶解した溶液の濃度は、該フルオロアルキル基含有オリゴマーが溶解可能な濃度であれば、特に制限されるものではないが、通常1〜80重量%、好ましくは5〜50重量%である。   The concentration of the solution in which the fluoroalkyl group-containing oligomer is dissolved in Method B is not particularly limited as long as the fluoroalkyl group-containing oligomer can be dissolved, but is usually 1 to 80% by weight, preferably 5 ~ 50% by weight.

第一鉄塩としては、塩化第一鉄(FeCl2)、硫酸第一鉄(FeSO4)、 硝酸第一鉄( Fe(NO3)2) 等が、また第二鉄塩としては、塩化第二鉄(FeCl3)、硫酸第二鉄(Fe2(SO4)3) 、硝酸第二鉄( Fe(NO3)3)等が使用し得るが、塩化第一鉄および塩化第二鉄が特に好ましく用いられる。なお、該第一鉄塩及び第二鉄塩は含水物であっても無水物であってもよい。 Ferrous salts include ferrous chloride (FeCl 2 ), ferrous sulfate (FeSO 4 ), ferrous nitrate (Fe (NO3) 2 ), etc., and ferric chloride includes ferric chloride. Iron (FeCl 3 ), ferric sulfate (Fe 2 (SO 4 ) 3 ), ferric nitrate (Fe (NO 3 ) 3 ), etc. can be used, but ferrous chloride and ferric chloride are particularly Preferably used. The ferrous salt and ferric salt may be hydrated or anhydrous.

第一鉄塩と第二鉄塩を用いる反応は、下記反応式(B)が示す如く行われ、マグネタイトが生成される。
2Fe3++Fe2++4OH- →FeO・Fe2 3 +4H+ ・・(B)
Reaction using ferrous salt and ferric salt is performed as shown in the following reaction formula (B), and magnetite is generated.
2Fe 3+ + Fe 2+ + 4OH → FeO.Fe 2 O 3 + 4H + .. (B)

第一鉄塩の第二鉄塩の添加割合は、第一鉄イオン(Fe2+)及び第二鉄イオン(Fe3+)とを、両者のモル比(Fe2+/Fe3+)で0.1〜10とすることが好ましい。また、第一鉄塩と第二鉄塩のフルオロアルキル基含有オリゴマーを溶解した溶液への添加量は、一般式(1)で表わされるフルオロアルキル基含有オリゴマー100重量部に対して、生成されるマグネタイトが1〜99重量部、好ましくは5〜95重量部となるように添加することが好ましい。 The addition ratio of the ferric salt of the ferrous salt is such that the ferrous ion (Fe 2+ ) and the ferric ion (Fe 3+ ) are 0.1 to 0.1 in terms of the molar ratio of both (Fe 2+ / Fe 3+ ). 10 is preferable. Moreover, the addition amount to the solution which melt | dissolved the fluoroalkyl group containing oligomer of ferrous salt and ferric salt is produced | generated with respect to 100 weight part of fluoroalkyl group containing oligomers represented by General formula (1). It is preferable to add so that the magnetite is 1 to 99 parts by weight, preferably 5 to 95 parts by weight.

使用できるアルカリとしては、水酸化ナトリウム、水酸化カリウム、或いはアンモニア水等を用いることができる。アルカリの添加量は、反応当量以上で行うことが好ましい。   As the alkali that can be used, sodium hydroxide, potassium hydroxide, aqueous ammonia, or the like can be used. The amount of alkali added is preferably at least the reaction equivalent.

B法における反応温度は5〜50℃、好ましくは10〜40℃で、反応時間は0.5時間以上、好ましくは0.5〜5時間である。   The reaction temperature in Method B is 5 to 50 ° C., preferably 10 to 40 ° C., and the reaction time is 0.5 hours or more, preferably 0.5 to 5 hours.

反応終了後、反応液から常法により沈殿物を回収し、回収した沈殿物を乾燥して第1の発明の磁性酸化鉄ナノコンポジット粉末状粒子を得ることができる。   After completion of the reaction, the precipitate is recovered from the reaction solution by a conventional method, and the recovered precipitate can be dried to obtain the magnetic iron oxide nanocomposite powder particles of the first invention.

第2の発明の磁性酸化鉄ナノコンポジット粉末状粒子は、磁性酸化鉄粒子と、前記一般式(2)で表されるフルオロアルキル基含有オリゴマーを含む溶媒を調製し、次いで前記一般式(2)で表されるフルオロアルキル基含有オリゴマーの架橋反応を行うことにより製造することが出来る。   The magnetic iron oxide nanocomposite powdery particle of the second invention is prepared by preparing a solvent containing magnetic iron oxide particles and a fluoroalkyl group-containing oligomer represented by the general formula (2), and then the general formula (2). It can manufacture by performing the crosslinking reaction of the fluoroalkyl group containing oligomer represented by these.

具体的な反応操作は、前記一般式(2)で表されるフルオロアルキル基含有オリゴマーを溶媒に溶解し、該溶液に磁性酸化鉄を添加し、次いで反応系を加熱してイソシアネート基の架橋反応を行う。   Specifically, the fluoroalkyl group-containing oligomer represented by the general formula (2) is dissolved in a solvent, magnetic iron oxide is added to the solution, and then the reaction system is heated to crosslink the isocyanate group. I do.

前記一般式(2)で表されるフルオロアルキル基含有オリゴマーを溶解する溶媒としては、該フルオロアルキル基含有オリゴマー及び磁性酸化鉄に対して不活性な溶媒であれば特に制限はないが、N,N−ジメチルホルムアミドを用いると未反応の磁性酸化鉄と生成物との反応液からの分離が容易となる点で特に好ましい。   The solvent for dissolving the fluoroalkyl group-containing oligomer represented by the general formula (2) is not particularly limited as long as it is an inert solvent for the fluoroalkyl group-containing oligomer and magnetic iron oxide. The use of N-dimethylformamide is particularly preferred in that separation of unreacted magnetic iron oxide and product from the reaction solution is facilitated.

前記一般式(2)で表されるフルオロアルキル基含有オリゴマーを溶解した溶液の濃度は、該フルオロアルキル基含有オリゴマーが溶解可能な濃度であれば、特に制限されるものではないが、通常1〜50重量%、好ましくは5〜20重量%である。   The concentration of the solution in which the fluoroalkyl group-containing oligomer represented by the general formula (2) is dissolved is not particularly limited as long as the fluoroalkyl group-containing oligomer can be dissolved. 50% by weight, preferably 5 to 20% by weight.

磁性酸化鉄の添加量は、前記一般式(2)で表されるフルオロアルキル基含有オリゴマー100重量部に対して100〜80000重量部、好ましくは200〜70000重量部である。   The amount of magnetic iron oxide added is 100 to 80000 parts by weight, preferably 200 to 70000 parts by weight, based on 100 parts by weight of the fluoroalkyl group-containing oligomer represented by the general formula (2).

架橋反応は加熱を行うことにより行われる。加熱温度は100〜150℃、好ましくは110〜130℃で、加熱時間は0.5時間以上、好ましくは1〜5時間である。   The crosslinking reaction is performed by heating. The heating temperature is 100 to 150 ° C, preferably 110 to 130 ° C, and the heating time is 0.5 hours or more, preferably 1 to 5 hours.

架橋反応終了後、反応液を遠心分離処理し、未反応の磁性酸化鉄を沈降させ、次いで沈殿物を除去した反応液から溶媒を除去し、必要により再結晶等の精製を行って、本発明の第2の発明の磁性酸化鉄ナノコンポジット粉末状粒子を得ることができる。   After completion of the cross-linking reaction, the reaction solution is centrifuged, the unreacted magnetic iron oxide is precipitated, the solvent is then removed from the reaction solution from which the precipitate has been removed, and purification, such as recrystallization, is performed as necessary. The magnetic iron oxide nanocomposite powder particles of the second invention can be obtained.

本発明の第1の発明及び第2の発明に係る磁性酸化鉄ナノコンポジット粉末状粒子は、例えば、磁気テープ、高密度磁気記録媒体、電磁波遮断用材料、バイオ診断薬等の磁性材料の用途に好適に用いることができる。また、磁性酸化鉄として、マグヘマイト粒子を用いたものは、特に600nmの可視光を効果的に吸収する。また、光を吸収し親水性を示す等の特性を有する。従って、該磁性酸化鉄として、マグヘマイト粒子を用いたものは、光触媒や太陽電池の電極の用途に対しても期待できる。   The magnetic iron oxide nanocomposite powder particles according to the first and second inventions of the present invention are used for magnetic materials such as magnetic tapes, high-density magnetic recording media, electromagnetic wave shielding materials, biodiagnostics, etc. It can be used suitably. In addition, magnetic iron oxide using maghemite particles effectively absorbs visible light of 600 nm. Moreover, it has characteristics such as absorbing light and showing hydrophilicity. Therefore, the magnetic iron oxide using maghemite particles can be expected for photocatalysts and solar cell electrodes.

本発明の磁性酸化鉄ナノコンポジット粉末状粒子分散液は、本発明の磁性酸化鉄ナノコンポジット粉末状粒子が、分散溶媒に分散されている分散液である。   The magnetic iron oxide nanocomposite powdery particle dispersion of the present invention is a dispersion in which the magnetic iron oxide nanocomposite powdery particle of the present invention is dispersed in a dispersion solvent.

本発明の磁性酸化鉄ナノコンポジット粉末状粒子は、種々の分散溶媒に対して高い分散性を示す。そのため、本発明の磁性酸化鉄ナノコンポジット粉末状粒子を分散溶媒に分散させて得られる分散液、すなわち、本発明の磁性酸化鉄ナノコンポジット粉末状粒子分散液では、磁性酸化鉄ナノコンポジット粉末状粒子が凝集せずに分散しているので、目視において固形物が観察されない。   The magnetic iron oxide nanocomposite powder particles of the present invention exhibit high dispersibility in various dispersion solvents. Therefore, in a dispersion obtained by dispersing the magnetic iron oxide nanocomposite powder particles of the present invention in a dispersion solvent, that is, in the magnetic iron oxide nanocomposite powder particle dispersion of the present invention, the magnetic iron oxide nanocomposite powder particles Are dispersed without agglomeration, so that no solid matter is visually observed.

また、本発明の磁性酸化鉄ナノコンポジット粉末状粒子分散液は、特開2005−289794号公報の磁性酸化鉄ナノコンポジット粉末状粒子に比べ、、分散性に持続性がある。即ち、従来のものは、時間の経過とともに徐々に分散状態に変化が見られるが、本発明の磁性酸化鉄ナノコンポジット粉末状粒子分散液は少なくと12時間以上経過してもその分散状態に変化が認められない。即ち12時間以上も沈殿物が全くと言ってよいほど観察されず、従来のもの以上に磁性酸化鉄ナノコンポジット粉末状粒子が溶媒に高分散し、なお且つその分散持続性にも優れている。   Moreover, the magnetic iron oxide nanocomposite powder-like particle dispersion of the present invention has a long dispersibility compared to the magnetic iron oxide nanocomposite powder-like particle disclosed in JP-A-2005-289794. That is, the conventional one gradually changes in the dispersion state over time, but the magnetic iron oxide nanocomposite powder-like particle dispersion of the present invention changes to the dispersion state even after at least 12 hours. Is not allowed. That is, no precipitate was observed for more than 12 hours, and the magnetic iron oxide nanocomposite powder particles were highly dispersed in the solvent, and the dispersion persistence was superior to that of the conventional one.

また、本発明に係る磁性酸化鉄ナノコンポジット粉末状粒子分散液は、遠心分離処理を行っても、沈澱物が僅かに観察されるだけで、遠心分離後も溶媒に高分散している。一方、分散液に永久磁石を近づけると沈殿物が沈降し、綺麗な上澄み液が得られるが永久磁石から遠ざけると自然に均一に再分散する等の特性を有する。   In addition, the magnetic iron oxide nanocomposite powder-like particle dispersion according to the present invention is highly dispersed in a solvent even after centrifugation, with only a small amount of precipitate being observed even after centrifugation. On the other hand, when the permanent magnet is brought close to the dispersion, the precipitate is settled, and a beautiful supernatant is obtained. However, when the permanent magnet is moved away from the permanent magnet, it naturally re-disperses uniformly.

本発明の磁性酸化鉄ナノコンポジット粉末状粒子分散液に係る分散溶媒としては、本発明の磁性酸化鉄ナノコンポジット粉末状粒子に不活性で、均一分散可能なものであれば特に制限はなく、水又は有機溶媒のいずれでもよく、また、有機溶媒としては、極性有機溶媒又は非極性有機溶媒のいずれでもよい。本発明の磁性酸化鉄ナノコンポジット粉末状粒子分散液に係る有機溶媒としては、例えば、メタノール、エタノール、ジメチルスルホキシド、ジメチルホルムアミド、tert−ブチルアルコール、水等が挙げられ、特に本発明の第1の発明の磁性酸化鉄ナノコンポジット粉末状粒子は、水、メタノール、ジメチルスルホキシド、ジメチルホルムアミド、tert−ブチルアルコールに対して極めて高い分散性を示す。また、本発明の第2の発明の磁性酸化鉄ナノコンポジット粉末状粒子は、メタノールに対して極めて高い分散性を示す。   The dispersion solvent for the magnetic iron oxide nanocomposite powder particle dispersion of the present invention is not particularly limited as long as it is inert and can be uniformly dispersed in the magnetic iron oxide nanocomposite powder particle of the present invention. Alternatively, any organic solvent may be used, and the organic solvent may be either a polar organic solvent or a nonpolar organic solvent. Examples of the organic solvent according to the magnetic iron oxide nanocomposite powder particle dispersion of the present invention include methanol, ethanol, dimethyl sulfoxide, dimethylformamide, tert-butyl alcohol, water, and the like. The magnetic iron oxide nanocomposite powder particles of the invention exhibit extremely high dispersibility in water, methanol, dimethyl sulfoxide, dimethylformamide, and tert-butyl alcohol. The magnetic iron oxide nanocomposite powder particles of the second invention of the present invention exhibit extremely high dispersibility in methanol.

本発明の磁性酸化鉄ナノコンポジット粉末状粒子分散液中、磁性酸化鉄の濃度は、用途や使用方法等を考慮して適宜調整すればよく特に制限されるものではなく、多くの場合、0.1〜90重量%である。   The concentration of the magnetic iron oxide in the magnetic iron oxide nanocomposite powder dispersion of the present invention is not particularly limited as long as it is appropriately adjusted in consideration of the application and usage method. 1 to 90% by weight.

本発明の樹脂組成物は、本発明の磁性酸化鉄ナノコンポジット粉末状粒子を含有する。言い換えると、本発明の樹脂組成物は、本発明の磁性酸化鉄ナノコンポジット粉末状粒子が、樹脂材料に分散されている。そして、本発明の磁性酸化鉄ナノコンポジット粉末状粒子は、微細でありかつ樹脂材料への分散性が高いので、本発明の樹脂組成物は、磁性酸化鉄ナノコンポジット粉末状粒子が微細でかつ均一に分散された樹脂組成物である。   The resin composition of the present invention contains the magnetic iron oxide nanocomposite powder particles of the present invention. In other words, in the resin composition of the present invention, the magnetic iron oxide nanocomposite powder particles of the present invention are dispersed in a resin material. Since the magnetic iron oxide nanocomposite powder particles of the present invention are fine and highly dispersible in the resin material, the resin composition of the present invention has fine and uniform magnetic iron oxide nanocomposite powder particles. It is the resin composition disperse | distributed to.

本発明の樹脂組成物において、磁性酸化鉄ナノコンポジット粉末状粒子を分散させる樹脂材料としては、特に限定はなく、ゴムの組成物として用いる場合には、例えば天然ゴム、スチレン−ブタジエン系ゴム(SBR)、アクロニトリル−ブタジエン系ゴム(NBR)、ブチルゴム(IIR)、ポリブタジエンゴム(BR)、エチレン−プロピレン系ゴム(EPPM)、クロロブチレンゴム(CR)、ポリイソブチレンゴム、アルリルゴム、水素化アクロニトリル−ブタジエンゴム、多硫化ゴム、ウレタンゴム、クリリスルホン化ゴム、シリコーンゴム及びこれらの変性物等が挙げられ、これらは、2種以上のブレンドゴムであってもよい。また、その他シート、フィルム、容器、繊維等の樹脂成型品を得る場合にマトリックスとなる樹脂類としては、例えばポリ塩化ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリスチレン樹脂、ABS樹脂、AS樹脂、熱可塑性アクリル樹脂等の熱可塑性樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ジアリールフタレート樹脂、フェノール樹脂、尿素樹脂等の熱硬化性樹脂、アルキド樹脂、メラニン樹脂、グアナジン樹脂、ビニル系樹脂、エポキシ樹脂、ポリアミン樹脂、アクリル樹脂、ポリブタジエン樹脂、ウレタン樹脂、ケイ素樹脂、含フッ素樹脂及びそれらの変性物等が挙げられる。   In the resin composition of the present invention, the resin material in which the magnetic iron oxide nanocomposite powder particles are dispersed is not particularly limited. When used as a rubber composition, for example, natural rubber, styrene-butadiene rubber (SBR) is used. ), Acrylonitrile-butadiene rubber (NBR), butyl rubber (IIR), polybutadiene rubber (BR), ethylene-propylene rubber (EPPM), chlorobutylene rubber (CR), polyisobutylene rubber, allyl rubber, hydrogenated acrylonitrile- Examples thereof include butadiene rubber, polysulfide rubber, urethane rubber, chlorinated sulfonated rubber, silicone rubber, and modified products thereof, and these may be two or more kinds of blend rubbers. In addition, as resins used as a matrix when obtaining resin molded products such as sheets, films, containers, fibers, etc., for example, polyvinyl chloride resin, polyethylene resin, polypropylene resin, polyamide resin, polycarbonate resin, polyester resin, polystyrene resin , ABS resin, AS resin, thermoplastic resin such as thermoplastic acrylic resin, epoxy resin, unsaturated polyester resin, diaryl phthalate resin, phenol resin, thermosetting resin such as urea resin, alkyd resin, melanin resin, guanazine resin, Examples thereof include vinyl resins, epoxy resins, polyamine resins, acrylic resins, polybutadiene resins, urethane resins, silicon resins, fluorine-containing resins, and modified products thereof.

本発明の樹脂組成物中、本発明の磁性酸化鉄ナノコンポジット粉末状粒子の含有量は、通常0.01〜50重量%、好ましくは0.5〜50重量%である。   In the resin composition of the present invention, the content of the powdered magnetic iron oxide nanocomposite particles of the present invention is usually 0.01 to 50% by weight, preferably 0.5 to 50% by weight.

また、本発明の樹脂組成物は、他の成分として、ホワイトカーボン、カーボンブラック、ゼオライト、炭酸カルシウム、クレー、硫酸バリウム、炭酸マグネシウム等の無機質充填剤、ハイスチレン樹脂、リグニン、フェノール樹脂等の有機質充填剤、抗菌剤、紫外線吸収剤、酸化防止剤、体質顔料、分散助剤、加硫剤、加硫促進剤、加硫助剤、軟化剤、老化防止剤、可塑剤等のかかる分野で公知の添加剤を含有することができる。   In addition, the resin composition of the present invention includes, as other components, organic fillers such as white carbon, carbon black, zeolite, calcium carbonate, clay, barium sulfate, and magnesium carbonate, high styrene resin, lignin, phenol resin, and the like. Known in such fields as fillers, antibacterial agents, ultraviolet absorbers, antioxidants, extenders, dispersion aids, vulcanizing agents, vulcanization accelerators, vulcanization aids, softeners, anti-aging agents, plasticizers, etc. The additive may be contained.

本発明の樹脂組成物は、例えば、本発明の磁性酸化鉄ナノコンポジット粉末状粒子と、所望の樹脂材料とを混合し、溶融ブレンド等することにより、樹脂材料に本発明の磁性酸化鉄ナノコンポジット粉末状粒子を分散させて製造される。また、本発明の樹脂組成物は、例えば、所望の樹脂材料を溶媒に溶解させた樹脂溶液に、本発明の磁性酸化鉄ナノコンポジット粉末状粒子又は本発明の磁性酸化鉄ナノコンポジット粉末状粒子分散液を添加し、混合した後、例えば、フィルム状等所望の形状に成形し、乾燥して、溶媒を蒸発除去することにより製造される。   The resin composition of the present invention is obtained by, for example, mixing the magnetic iron oxide nanocomposite powder particles of the present invention with a desired resin material, melt blending, and the like, thereby adding the magnetic iron oxide nanocomposite of the present invention to the resin material. Manufactured by dispersing powder particles. The resin composition of the present invention is, for example, a magnetic iron oxide nanocomposite powder particle of the present invention or a magnetic iron oxide nanocomposite powder particle dispersion of the present invention in a resin solution in which a desired resin material is dissolved in a solvent. After the liquid is added and mixed, for example, it is formed into a desired shape such as a film, dried, and evaporated to remove the solvent.

本発明にかかる磁性酸化鉄ナノコンポジット粉末状粒子を含有する樹脂組成物は、撥水撥油性を有し、特に電磁波遮断用等の用途で好適に使用することができる。   The resin composition containing magnetic iron oxide nanocomposite powder particles according to the present invention has water and oil repellency and can be suitably used particularly for applications such as electromagnetic wave shielding.

以下、本発明を実施例により詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

<フルオロアルキル基含有オリゴマーの調製>
(前記一般式(1)で表されるフルオロアルキル基含有オリゴマー(以下、「Rf−AMPSオリゴマー」ということもある)の合成))
(合成例A1)
フッ素系溶媒AK−225(商品名:旭硝子社製アサヒクリンAK−225)中、開始剤:過酸化フルオロアルカノイル(RCO[R:−CF(CF3)OC]の2.95mモルを用い、2−アクリルアミド−2−メチルプロパンスルホン酸の2.95mモルおよび3−ヒドロキシ−1−アダマンチルアクリラートの17.7mモルを、窒素下45℃で5時間攪拌し、反応を行った。反応後、遠心分離を行って未反応モノマーを除去した後、AK−225で数回洗浄し、さらに遠心分離して、反応生成物を回収した。得られた反応生成物を真空乾燥機で1日間乾燥して、目的のオリゴマーを得た。
得られたオリゴマーのH−NMRで求めた共重合比(モル比)n1:n2=11:89であった。
サイズ排除クロマトグラフィー(SEC)(Shodex社製DS−4)で分子量を測定しが、数平均分子量Mnは測定不可であった。
<Preparation of oligomer containing fluoroalkyl group>
(Synthesis of fluoroalkyl group-containing oligomer represented by the general formula (1) (hereinafter also referred to as “Rf-AMPS oligomer”))
(Synthesis Example A1)
In the fluorine-based solvent AK-225 (trade name: Asahi Clin AK-225 manufactured by Asahi Glass Co., Ltd.), the initiator: fluoroalkanoyl peroxide (R F CO 2 ) 2 [R F : —CF (CF 3 ) OC 3 F 7 ] Of 2.acrylamido-2-methylpropanesulfonic acid and 17.7 mmol of 3-hydroxy-1-adamantyl acrylate were stirred at 45 ° C. for 5 hours under nitrogen, Reaction was performed. After the reaction, the mixture was centrifuged to remove unreacted monomers, washed with AK-225 several times, and further centrifuged to collect the reaction product. The obtained reaction product was dried with a vacuum dryer for 1 day to obtain the target oligomer.
The copolymerization ratio (molar ratio) obtained by 1 H-NMR of the obtained oligomer was n1: n2 = 11: 89.
The molecular weight was measured by size exclusion chromatography (SEC) (DS-4 manufactured by Shodex), but the number average molecular weight Mn was not measurable.

(合成例A2〜A6)
各原料の仕込みモル比を変えた以外は、合成例A1と同様な反応操作で目的とするオリゴマーを得た。
(Synthesis Examples A2 to A6)
The target oligomer was obtained by the same reaction operation as in Synthesis Example A1, except that the charged molar ratio of each raw material was changed.

(合成例2;前記一般式(2)で表されるフルオロアルキル基含有オリゴマー(以下、「Rf−IEMオリゴマー」と略記することもある))
フッ素系溶媒AK−225(商品名:旭硝子社製アサヒクリンAK−225)中、開始剤:過酸化フルオロアルカノイル(RCO[R:−CF(CF3)OC]の11.9mモルを用い、アクリル酸 2−([1’−メチルプロピリデンアミノ]カルボキシアミノ)エチルの11.9mモルおよび3−ヒドロキシ−1−アダマンチルアクリラートの11.9mモルを、窒素下45℃で5時間攪拌し、反応を行った。反応後、遠心分離を行って未反応モノマーを除去した後、AK−225で数回洗浄し、さらに遠心分離して、反応生成物を回収した。得られた反応生成物を真空乾燥機で1日間乾燥して、目的のオリゴマー15.1gを得た。収率は58%であった。
得られたオリゴマーのH−NMRで求めた共重合比(モル比)m1:m2=21:79であった。
サイズ排除クロマトグラフィー(SEC)(Shodex社製DS−4)で分子量を測定した。数平均分子量Mnは9130、分子量分布(Mw/Mn)は1.85であった。
(Synthesis Example 2; fluoroalkyl group-containing oligomer represented by the general formula (2) (hereinafter sometimes abbreviated as “Rf-IEM oligomer”))
In the fluorine-based solvent AK-225 (trade name: Asahi Clin AK-225 manufactured by Asahi Glass Co., Ltd.), the initiator: fluoroalkanoyl peroxide (R F CO 2 ) 2 [R F : —CF (CF 3 ) OC 3 F 7 ] 11.9 mol of 2-([1′-methylpropylideneamino] carboxyamino) ethyl acrylate and 11.9 mmol of 3-hydroxy-1-adamantyl acrylate under nitrogen. The reaction was conducted by stirring at 45 ° C. for 5 hours. After the reaction, the mixture was centrifuged to remove unreacted monomers, washed with AK-225 several times, and further centrifuged to collect the reaction product. The obtained reaction product was dried in a vacuum dryer for 1 day to obtain 15.1 g of the target oligomer. The yield was 58%.
The copolymerization ratio (molar ratio) obtained by 1 H-NMR of the obtained oligomer was m1: m2 = 21: 79.
The molecular weight was measured by size exclusion chromatography (SEC) (DS-4 manufactured by Shodex). The number average molecular weight Mn was 9130, and the molecular weight distribution (Mw / Mn) was 1.85.

(磁性酸化鉄)
実施例で使用した磁性酸化鉄粒子は、以下の市販のものを使用した。なお、平均粒子径はレーザー光散乱法により求めた値である。
(1)マグネタイト(Fe);平均粒子径10nm、戸田工業社製
(2)マグヘマイト(Fe);平均粒子径50nm、戸田工業社製
(Magnetic iron oxide)
The following commercially available magnetic iron oxide particles were used in the examples. The average particle diameter is a value obtained by a laser light scattering method.
(1) Magnetite (Fe 3 O 4 ); average particle size 10 nm, manufactured by Toda Kogyo Co., Ltd. (2) Maghemite (Fe 2 O 3 ); average particle size 50 nm, manufactured by Toda Kogyo Co., Ltd.

{実施例1〜6}
N,N−ジメチルホルムアミドを溶媒として、上記で調製したフルオロアルキル基含有オリゴマー試料(B1)1g、表3に示す割合でマグネタイト粒子を加え、2日間超音波を照射した。次いで130℃で1時間、架橋反応を行った。反応終了後、遠心分離により反応液から未反応のマグネタイト粒子を除去した。次いで、反応液を濃縮し、残渣を得た後、得られた残渣をアセトンで再沈殿を行い、デカンテーションし、真空乾燥機で1日間乾燥して磁性酸化鉄ナノコンポジット粉末状粒子試料を得た。
得られた磁性酸化鉄ナノコンポジット粉末状粒子試料をIRで分析した結果、いずれの実施例においてもフルオロアルキル基含有オリゴマー試料(B1)の架橋生成物に起因するピークが観察された(図1参照)。また、得られた磁性酸化鉄ナノコンポジット粉末状粒子試料をX線回折分析した結果、Feに由来するピークが観察された(図2、図3参照)。
また、TEM観察により、マグネタイト粒子がフルオロアルキル基含有オリゴマー試料(B1)の架橋生成物中に取り込まれ、該マグネタイト粒子がカプセル化されていることが確認できた。実施例2で得られた磁性酸化鉄ナノコンポジット粉末状粒子試料のTEM写真を図4に示す。
{Examples 1-6}
Using N, N-dimethylformamide as a solvent, 1 g of the fluoroalkyl group-containing oligomer sample (B1) prepared above, magnetite particles were added at the ratio shown in Table 3, and the mixture was irradiated with ultrasonic waves for 2 days. Subsequently, the crosslinking reaction was performed at 130 degreeC for 1 hour. After completion of the reaction, unreacted magnetite particles were removed from the reaction solution by centrifugation. Next, after concentrating the reaction solution to obtain a residue, the obtained residue is reprecipitated with acetone, decanted, and dried in a vacuum drier for 1 day to obtain a magnetic iron oxide nanocomposite powder particle sample. It was.
As a result of analyzing the obtained magnetic iron oxide nanocomposite powdery particle sample by IR, a peak due to the cross-linked product of the fluoroalkyl group-containing oligomer sample (B1) was observed in all examples (see FIG. 1). ). Further, as a result of X-ray diffraction analysis of the obtained magnetic iron oxide nanocomposite powdery particle sample, a peak derived from Fe 3 O 4 was observed (see FIGS. 2 and 3).
Moreover, it was confirmed by TEM observation that the magnetite particles were taken into the crosslinked product of the fluoroalkyl group-containing oligomer sample (B1) and the magnetite particles were encapsulated. A TEM photograph of the magnetic iron oxide nanocomposite powder particle sample obtained in Example 2 is shown in FIG.


注)収率はフルオロアルキル基含有オリゴマーとマグネタイトに基づく収率を示す。

Note) Yield is based on fluoroalkyl group-containing oligomer and magnetite.

<物性評価>
実施例1〜6で得られた磁性酸化鉄ナノコンポジット粉末状粒子試料について、マグネタイト粒子の含有量、平均粒子径について評価した。
<Physical property evaluation>
About the magnetic iron oxide nanocomposite powdery particle sample obtained in Examples 1 to 6, the content of magnetite particles and the average particle diameter were evaluated.

(マグネタイト粒子の含有量の評価)
得られた磁性酸化鉄ナノコンポジット粉末状粒子についてTGA測定を行った。TGAカーブからマグネタイト粒子の含有量を求めた。
(Evaluation of magnetite particle content)
The obtained magnetic iron oxide nanocomposite powder particles were subjected to TGA measurement. The content of magnetite particles was determined from the TGA curve.

(平均粒子径の評価)
得られた磁性酸化鉄ナノコンポジット粉末状粒子をメタノールに再分散させて光散乱光度計(大塚電子製のDLS−6000HL)を用いて測定した。
(Evaluation of average particle size)
The obtained magnetic iron oxide nanocomposite powder particles were redispersed in methanol and measured using a light scattering photometer (DLS-6000HL manufactured by Otsuka Electronics).

(溶媒に対する分散性の評価)
(評価1);
得られた磁性酸化鉄ナノコンポジット粉末状粒子の各分散溶媒に対する分散性を試験した。その結果を表5に示す。なお、評価は溶媒5mlに磁性酸化鉄ナノコンポジット粉末状粒子0.01gを添加し、分散状態を目視で観察した。その評価を表5に示す。
なお、表中の記号は以下のことを示す。
×;分散しない
△;一部分散
○;全部分散
◎;良好な分散
(Evaluation of dispersibility in solvent)
(Evaluation 1);
The dispersibility of the obtained magnetic iron oxide nanocomposite powder particles in each dispersion solvent was tested. The results are shown in Table 5. For evaluation, 0.01 g of magnetic iron oxide nanocomposite powder particles were added to 5 ml of a solvent, and the dispersion state was visually observed. The evaluation is shown in Table 5.
In addition, the symbol in a table | surface shows the following.
×: Not dispersed △; Partially dispersed ○; Completely dispersed ◎; Good dispersed


注)AK−225(ClCHCFCFとCClFCFCHClFとの重量比1:1の混合溶媒)、DE(1,2−ジクロロエタン)、THF(テトラヒドロフラン)、DMSO(ジメチルスルホキシド)、DMF(ジメチルホルムアミド)

Note) AK-225 (Cl 2 CHCF 2 CF 3 and CClF 2 CF 2 CHClF the weight ratio of 1: mixed solvent of 1), DE (1,2-dichloroethane), THF (tetrahydrofuran), DMSO (dimethylsulfoxide), DMF (dimethylformamide)

(評価2);
実施例1〜3で得られた磁性酸化鉄ナノコンポジット粉末状粒子を用いて、該磁性酸化鉄ナノコンポジット粉末状粒子を0.174g/dmの濃度でメタノールに分散させた粒子分散液を調製した。得られた分散液について30℃の恒温槽中で、分散後の分散液の吸光度500nmでの光透過率及び濁度の経時変化を測定した。その結果を図5、図6に示す。
図5、図6の結果より、分散時と比べて、12時間経過後においても光透過率及び濁度に変化がない。従って、本発明の磁性酸化鉄ナノコンポジット粉末状粒子は持続性のある分散が可能で、極めて分散性が高い粒子であることが分かる。
(Evaluation 2);
Using the magnetic iron oxide nanocomposite powder particles obtained in Examples 1 to 3, a particle dispersion was prepared by dispersing the magnetic iron oxide nanocomposite powder particles in methanol at a concentration of 0.174 g / dm 3. did. The obtained dispersion was measured for changes in light transmittance and turbidity with time of absorbance at 500 nm of the dispersion after dispersion in a thermostatic bath at 30 ° C. The results are shown in FIGS.
From the results of FIGS. 5 and 6, there is no change in light transmittance and turbidity even after 12 hours have elapsed, compared to the time of dispersion. Therefore, it can be seen that the magnetic iron oxide nanocomposite powder-like particles of the present invention are particles that can be persistently dispersed and have extremely high dispersibility.

(評価3);
実施例3及び実施例6で得られた磁性酸化鉄ナノコンポジット粉末状粒子を用いて、該磁性酸化鉄ナノコンポジット粉末状粒子を0.02g/Lの濃度でメタノールに分散させた粒子分散液を調製した。得られた分散液を800Gで30分、800Gで60分の条件で遠心分離処理し、遠心分離処理前と処理後の分散状態を目視にて観察した。いずれの実施例の場合も遠心分離後、ほんの僅かな沈殿物が確認できる程度で、遠心分離処理後も該磁性酸化鉄ナノコンポジット粉末状粒子が高分散していた。
(Evaluation 3);
Using the magnetic iron oxide nanocomposite powdery particles obtained in Example 3 and Example 6, a particle dispersion obtained by dispersing the magnetic iron oxide nanocomposite powdery particles in methanol at a concentration of 0.02 g / L. Prepared. The obtained dispersion was centrifuged at 800 G for 30 minutes and at 800 G for 60 minutes, and the dispersion state before and after the centrifugation was visually observed. In any of the examples, the magnetic iron oxide nanocomposite powder particles were highly dispersed even after the centrifugation process, so that only a slight precipitate could be confirmed after the centrifugation.

(評価4);
実施例3及び実施例6で得られた磁性酸化鉄ナノコンポジット粉末状粒子を用いて、サンプルビンに該磁性酸化鉄ナノコンポジット粉末状粒子を0.02g/Lの濃度でメタノールに分散させた粒子分散液を調製した。サンプルビンの底面に永久磁石を置くと、沈殿物が沈降した。更に、永久磁石をサンプルビンの底面から除くとすぐ沈殿物が再分散した。
(Evaluation 4);
Particles obtained by dispersing the magnetic iron oxide nanocomposite powder particles in methanol at a concentration of 0.02 g / L in a sample bottle using the magnetic iron oxide nanocomposite powder particles obtained in Example 3 and Example 6. A dispersion was prepared. When a permanent magnet was placed on the bottom of the sample bottle, the precipitate settled. Furthermore, as soon as the permanent magnet was removed from the bottom of the sample bottle, the precipitate redispersed.

(樹脂組成物)
(評価1);
実施例1、4及び5で得られた磁性酸化鉄ナノコンポジット粉末状粒子をメタノール5mlに分散させて分散液を調製した。これとは別に、ポリメチルメタクリレート樹脂(PMMA)0.99gをジクロロエタン20mlに溶解させた溶液を調製した。次いで、該溶液と分散液とを混合しキャスト法により1%PMMA改質膜(ナノコンポジット粒子10mg配合)及び3%PMMA改質膜(ナノコンポジット粒子30mg配合)を調製した。得られたフィルムの表面及び裏面のドデカンの室温(25℃)での接触角を測定した。
また、得られた3%PMMA改質膜(ナノコンポジット粒子30mg配合)に永久磁石を近づけると、PMMA改質膜は磁石に引きつけられた。
(Resin composition)
(Evaluation 1);
The magnetic iron oxide nanocomposite powder particles obtained in Examples 1, 4 and 5 were dispersed in 5 ml of methanol to prepare a dispersion. Separately, a solution in which 0.99 g of polymethyl methacrylate resin (PMMA) was dissolved in 20 ml of dichloroethane was prepared. Next, the solution and the dispersion were mixed, and a 1% PMMA modified film (containing 10 mg of nanocomposite particles) and a 3% PMMA modified film (containing 30 mg of nanocomposite particles) were prepared by a casting method. The contact angles at room temperature (25 ° C.) of dodecane on the front and back surfaces of the obtained film were measured.
Moreover, when a permanent magnet was brought close to the obtained 3% PMMA modified film (containing 30 mg of nanocomposite particles), the PMMA modified film was attracted to the magnet.

(評価2);
実施例1〜6で得られた磁性酸化鉄ナノコンポジット粉末状粒子を上記評価1と同様にして3%PMMA改質膜(ナノコンポジット粒子30mg配合)を調製し、得られたフィルムの表面及び裏面のドデカン及び水の室温(25℃)での接触角を測定した。
(Evaluation 2);
The magnetic iron oxide nanocomposite powder particles obtained in Examples 1 to 6 were prepared in the same manner as in Evaluation 1 above to prepare a 3% PMMA modified film (containing 30 mg of nanocomposite particles), and the front and back surfaces of the obtained films The contact angle of dodecane and water at room temperature (25 ° C.) was measured.

{実施例7}
メタノール15mlにフルオロアルキル基含有オリゴマー試料(A3)150mg、マグネタイト粒子15mgを入れ、室温下(25℃)で6時間超音波を照射した。次いで、遠心分離処理して未反応のマグネタイト粒子を反応液から除去した。次に反応液を濃縮し、残渣を得た後、真空乾燥機で1日間乾燥して磁性酸化鉄ナノコンポジット粉末状粒子試料を得た(収率68%)。
得られた磁性酸化鉄ナノコンポジット粉末状粒子試料をIRで分析した結果、フルオロアルキル基含有オリゴマー試料(A3)に起因するピークが観察された。また、得られた磁性酸化鉄ナノコンポジット粉末状粒子試料をX線回折分析した結果、Feに由来するピークが観察された。
また、TEM観察により、マグネタイト粒子がフルオロアルキル基含有オリゴマー粒子の粒子表面に存在し、複合化されていることが確認できた。
{Example 7}
In 15 ml of methanol, 150 mg of a fluoroalkyl group-containing oligomer sample (A3) and 15 mg of magnetite particles were placed and irradiated with ultrasonic waves at room temperature (25 ° C.) for 6 hours. Next, the unreacted magnetite particles were removed from the reaction solution by centrifugation. Next, the reaction solution was concentrated to obtain a residue, which was then dried in a vacuum dryer for 1 day to obtain a magnetic iron oxide nanocomposite powdery particle sample (yield 68%).
As a result of analyzing the obtained magnetic iron oxide nanocomposite powdery particle sample by IR, a peak attributable to the fluoroalkyl group-containing oligomer sample (A3) was observed. Further, as a result of X-ray diffraction analysis of the obtained magnetic iron oxide nanocomposite powdery particle sample, a peak derived from Fe 3 O 4 was observed.
Moreover, it was confirmed by TEM observation that magnetite particles were present on the particle surface of the fluoroalkyl group-containing oligomer particles and were combined.

{実施例8}
メタノール15mlにフルオロアルキル基含有オリゴマー試料(A3)150mg、マグヘマイト粒子15mgを入れ、室温下(25℃)で6時間超音波を照射した。次いで、遠心分離処理して未反応のマグヘマイト粒子を反応液から除去した。次に反応液を濃縮し、残渣を得た後、真空乾燥機で1日間乾燥して磁性酸化鉄ナノコンポジット粉末状粒子試料を得た(収率68%)。
得られた磁性酸化鉄ナノコンポジット粉末状粒子試料をIRで分析した結果、フルオロアルキル基含有オリゴマー試料(A3)に起因するピークが観察された。また、得られた磁性酸化鉄ナノコンポジット粉末状粒子試料をX線回折分析した結果、Feに由来するピークが観察された。
また、TEM観察により、マグネタイト粒子がフルオロアルキル基含有オリゴマー粒子の粒子表面に存在し、複合化されていることが確認できた。
{Example 8}
In 15 ml of methanol, 150 mg of a fluoroalkyl group-containing oligomer sample (A3) and 15 mg of maghemite particles were placed and irradiated with ultrasonic waves at room temperature (25 ° C.) for 6 hours. Subsequently, the unreacted maghemite particles were removed from the reaction solution by centrifugation. Next, the reaction solution was concentrated to obtain a residue, which was then dried in a vacuum dryer for 1 day to obtain a magnetic iron oxide nanocomposite powdery particle sample (yield 68%).
As a result of analyzing the obtained magnetic iron oxide nanocomposite powdery particle sample by IR, a peak attributable to the fluoroalkyl group-containing oligomer sample (A3) was observed. Further, as a result of X-ray diffraction analysis of the obtained magnetic iron oxide nanocomposite powdery particle sample, a peak derived from Fe 2 O 3 was observed.
Moreover, it was confirmed by TEM observation that magnetite particles were present on the particle surface of the fluoroalkyl group-containing oligomer particles and were combined.

<物性評価>
実施例7〜8で得られた磁性酸化鉄ナノコンポジット粉末状粒子試料について、実施例1〜6と同様にしてマグネタイト粒子又はマグヘマイト粒子の含有量、平均粒子径について評価した。
<Physical property evaluation>
About the magnetic iron oxide nanocomposite powder-form particle sample obtained in Examples 7-8, it carried out similarly to Examples 1-6, and evaluated about content of a magnetite particle or a maghemite particle | grain, and an average particle diameter.

<溶媒に対する分散性の評価>
実施例7で得られた磁性酸化鉄ナノコンポジット粉末状粒子試料を用い、該該磁性酸化鉄ナノコンポジット粉末状粒子を4g/Lの濃度でt−ブチルアルコールに分散さた粒子分散液を調製した。得られた分散液について昇温しながら動的光散乱測定を行った。その結果を表9に示す。

表7の結果より、本発明の磁性酸化鉄ナノコンポジット粉末状粒子は、少なくとも30〜70℃の温度範囲では、安定な分散状態を保持していることが分かる。
<Evaluation of dispersibility in solvent>
Using the magnetic iron oxide nanocomposite powdery particle sample obtained in Example 7, a particle dispersion was prepared by dispersing the magnetic iron oxide nanocomposite powdery particle in t-butyl alcohol at a concentration of 4 g / L. . The obtained dispersion was subjected to dynamic light scattering measurement while raising the temperature. The results are shown in Table 9.

From the results in Table 7, it can be seen that the magnetic iron oxide nanocomposite powder particles of the present invention maintain a stable dispersion state in a temperature range of at least 30 to 70 ° C.

{実施例9〜21}
水20mlにフルオロアルキル基含有オリゴマー試料40mgを加え、室温(25℃)でマグネチックスターラーを用いて一晩攪拌を行った。次いで、塩化鉄(II)四水和物と塩化鉄(III)六水和物を添加し、超音波で30分間照射した。次に、25%アンモニア水を添加し、室温(25℃)で6時間反応を行った。原料の仕込み量及び収率を表9に示す。
反応終了後、沈殿物をろ過して回収し、回収物を真空乾燥機で1日間乾燥して磁性酸化鉄ナノコンポジット粉末状粒子試料を得た。
得られた磁性酸化鉄ナノコンポジット粉末状粒子試料をIRで分析した結果、いずれの実施例においてもフルオロアルキル基含有オリゴマー試料(Rf−AMPSオリゴマー)に起因するピークが観察された(図7参照)。また、得られた磁性酸化鉄ナノコンポジット粉末状粒子試料をX線回折分析した結果、Feに由来するピークが観察された(図8参照)。
また、TEM観察により、マグヘマイト粒子がフルオロアルキル基含有オリゴマー試料中に取り込まれ、該マグヘマイト粒子がカプセル化されていることが確認できた。実施例14で得られた磁性酸化鉄ナノコンポジット粉末状粒子試料のTEM写真を図9に示す。
{Examples 9 to 21}
40 mg of a fluoroalkyl group-containing oligomer sample was added to 20 ml of water, and the mixture was stirred overnight at room temperature (25 ° C.) using a magnetic stirrer. Then, iron (II) chloride tetrahydrate and iron (III) chloride hexahydrate were added and irradiated with ultrasonic waves for 30 minutes. Next, 25% aqueous ammonia was added, and the reaction was performed at room temperature (25 ° C.) for 6 hours. Table 9 shows the raw material charge and yield.
After the reaction was completed, the precipitate was collected by filtration, and the collected product was dried for 1 day with a vacuum dryer to obtain a magnetic iron oxide nanocomposite powder particle sample.
As a result of analyzing the obtained magnetic iron oxide nanocomposite powdery particle sample by IR, a peak attributed to a fluoroalkyl group-containing oligomer sample (Rf-AMPS oligomer) was observed in all examples (see FIG. 7). . Further, as a result of X-ray diffraction analysis of the obtained magnetic iron oxide nanocomposite powdery particle sample, a peak derived from Fe 3 O 4 was observed (see FIG. 8).
Moreover, it was confirmed by TEM observation that the maghemite particles were taken into the fluoroalkyl group-containing oligomer sample and the maghemite particles were encapsulated. FIG. 9 shows a TEM photograph of the magnetic iron oxide nanocomposite powder particle sample obtained in Example 14.

(物性評価)
得られた磁性酸化鉄ナノコンポジット粉末状粒子試料について、実施例1〜6と同様にしてマグネタイト粒子の含有量、平均粒子径、ゼータ電位について評価した。
なお、平均粒子径の測定については、分散媒として水及びメタノールを用いた。また、ゼータ電位は得られた磁性酸化鉄ナノコンポジット粉末状粒子を0.01g/Lの濃度で水に分散さた粒子分散液(pH7)を用いて測定した。
(Evaluation of the physical properties)
About the obtained magnetic iron oxide nanocomposite powder-like particle sample, it carried out similarly to Examples 1-6, and evaluated about content, average particle diameter, and zeta potential of a magnetite particle.
In addition, about the measurement of an average particle diameter, water and methanol were used as a dispersion medium. The zeta potential was measured using a particle dispersion (pH 7) in which the obtained magnetic iron oxide nanocomposite powder particles were dispersed in water at a concentration of 0.01 g / L.

(溶媒に対する分散性の評価)
(評価1);
実施例11、15、16、19で得られた磁性酸化鉄ナノコンポジット粉末状粒子の各分散溶媒に対する分散性を試験した。その結果を表10に示す。なお、評価は溶媒5mlに磁性酸化鉄ナノコンポジット粉末状粒子0.01gを添加し、分散状態を目視で観察した。
なお、表中の記号は以下のことを示す。
×;分散しない
△;一部分散
○;全部分散
◎;良好な分散

注)AK−225(ClCHCFCFとCClFCFCHClFとの重量比1:1の混合溶媒)、DE(1,2−ジクロロエタン)、THF(テトラヒドロフラン)、DMSO(ジメチルスルホキシド)、DMF(ジメチルホルムアミド)
(Evaluation of dispersibility in solvent)
(Evaluation 1);
The dispersibility of the magnetic iron oxide nanocomposite powder particles obtained in Examples 11, 15, 16, and 19 in each dispersion solvent was tested. The results are shown in Table 10. For evaluation, 0.01 g of magnetic iron oxide nanocomposite powder particles were added to 5 ml of a solvent, and the dispersion state was visually observed.
In addition, the symbol in a table | surface shows the following.
×: Not dispersed △; Partially dispersed ○; Completely dispersed ◎; Good dispersed

Note) AK-225 (Cl 2 CHCF 2 CF 3 and CClF 2 CF 2 CHClF the weight ratio of 1: mixed solvent of 1), DE (1,2-dichloroethane), THF (tetrahydrofuran), DMSO (dimethylsulfoxide), DMF (dimethylformamide)

(評価2);
実施例19で得られた磁性酸化鉄ナノコンポジット粉末状粒子を用いて、該磁性酸化鉄ナノコンポジット粉末状粒子を0.02g/Lの濃度でメタノールに分散さた粒子分散液を調製した。得られた分散液を800Gで30分、800Gで1時間の条件で遠心分離処理し、遠心分離処理前と処理後の分散状態の目視にて観察した。いずれの実施例の場合も遠心分離後、ほんの僅かな沈殿物が確認できる程度で、遠心分離処理後も該磁性酸化鉄ナノコンポジット粉末状粒子が高分散していた。
(Evaluation 2);
Using the magnetic iron oxide nanocomposite powdery particles obtained in Example 19, a particle dispersion was prepared by dispersing the magnetic iron oxide nanocomposite powdery particles in methanol at a concentration of 0.02 g / L. The obtained dispersion was centrifuged at 800 G for 30 minutes and 800 G for 1 hour, and the dispersion state before and after the centrifugation was visually observed. In any of the examples, the magnetic iron oxide nanocomposite powder particles were highly dispersed even after the centrifugation process, so that only a slight precipitate could be confirmed after the centrifugation.

(評価3);
実施例19で得られた磁性酸化鉄ナノコンポジット粉末状粒子を用いて、サンプルビンに該磁性酸化鉄ナノコンポジット粉末状粒子を0.02g/Lの濃度でメタノールに分散さた粒子分散液を調製した。サンプルビンの底面に永久磁石を置くと、沈殿物が沈降した。更に、永久磁石をサンプルビンの底面から除くとすぐ沈殿物が再分散した。
(Evaluation 3);
Using the magnetic iron oxide nanocomposite powdery particles obtained in Example 19, a particle dispersion was prepared by dispersing the magnetic iron oxide nanocomposite powdery particles in methanol at a concentration of 0.02 g / L in a sample bottle. did. When a permanent magnet was placed on the bottom of the sample bottle, the precipitate settled. Furthermore, as soon as the permanent magnet was removed from the bottom of the sample bottle, the precipitate redispersed.

{実施例22〜27}
メタノール15mlにフルオロアルキル基含有オリゴマー試料(A3)150mg、表13に示す量のマグネタイト粒子を入れ、室温下(20℃)に6時間超音波を照射した。次いで、遠心分離処理して未反応のマグネタイト粒子を反応液から除去した。次に反応液を濃縮し、残渣を得た後、真空乾燥機で1日間乾燥して磁性酸化鉄ナノコンポジット粉末状粒子試料を得た。
得られた磁性酸化鉄ナノコンポジット粉末状粒子試料をIRで分析した結果、フルオロアルキル基含有オリゴマー試料(A3)に起因するピークが観察された。また、得られた磁性酸化鉄ナノコンポジット粉末状粒子試料をX線回折分析した結果、Feに由来するピークが観察された。
また、TEM観察により、マグネタイト粒子がフルオロアルキル基含有オリゴマー粒子の粒子表面に存在し、複合化されていることが確認できた。図10に実施例22で得られた磁性酸化鉄ナノコンポジット粉末状粒子試料のTEM写真を示す。
{Examples 22 to 27}
In 15 ml of methanol, 150 mg of a fluoroalkyl group-containing oligomer sample (A3) and the amount of magnetite particles shown in Table 13 were placed, and ultrasonic waves were irradiated at room temperature (20 ° C.) for 6 hours. Next, the unreacted magnetite particles were removed from the reaction solution by centrifugation. Next, the reaction solution was concentrated to obtain a residue, and then dried in a vacuum dryer for 1 day to obtain a magnetic iron oxide nanocomposite powder particle sample.
As a result of analyzing the obtained magnetic iron oxide nanocomposite powdery particle sample by IR, a peak attributable to the fluoroalkyl group-containing oligomer sample (A3) was observed. Further, as a result of X-ray diffraction analysis of the obtained magnetic iron oxide nanocomposite powdery particle sample, a peak derived from Fe 3 O 4 was observed.
Moreover, it was confirmed by TEM observation that magnetite particles were present on the particle surface of the fluoroalkyl group-containing oligomer particles and were combined. FIG. 10 shows a TEM photograph of the magnetic iron oxide nanocomposite powder particle sample obtained in Example 22.

<物性評価>
実施例22〜27で得られた磁性酸化鉄ナノコンポジット粉末状粒子試料について、実施例1〜6と同様にしてマグネタイト粒子の含有量、平均粒子径について評価した。
<Physical property evaluation>
About the magnetic iron oxide nanocomposite powder-like particle sample obtained in Examples 22 to 27, the content of magnetite particles and the average particle diameter were evaluated in the same manner as in Examples 1 to 6.

<溶媒に対する分散性の評価>
実施例で得られた磁性酸化鉄ナノコンポジット粉末状粒子試料を用い、該該磁性酸化鉄ナノコンポジット粉末状粒子を4g/Lの濃度でt−ブチルアルコールに分散さた粒子分散液を調製した。下記に示す方法で下部臨界溶液温度(Lower Critical Solution Temperature:「LCST」とも言う)を測定し、また、得られた分散液について昇温しながら動的光散乱測定を行った。その結果を表15に示す。
(下部臨界溶液温度(LCST)の評価)
実施例22、23、25、26及び27で得られた磁性酸化鉄ナノコンポジット粉末状粒子試料を用い、該該磁性酸化鉄ナノコンポジット粉末状粒子を4g/Lの濃度でt−ブチルアルコールに分散さた粒子分散液を調製した。
次いで、昇温しながら500nmの波長で光透過率を測定し、30℃で光透過率を100とした場合に、50%の光透過率になる温度を下部臨界溶液温度(LCST)とした。なお、Rf−AMPSオリゴマー4g/Lの濃度でt−ブチルアルコールに添加したもの(ブランク)の場合では、下部臨界溶液温度(LCST)は78℃であった。
<Evaluation of dispersibility in solvent>
Using the magnetic iron oxide nanocomposite powder particles obtained in the examples, a particle dispersion was prepared by dispersing the magnetic iron oxide nanocomposite powder particles in t-butyl alcohol at a concentration of 4 g / L. The lower critical solution temperature (also referred to as “LCST”) was measured by the method described below, and dynamic light scattering measurement was performed while raising the temperature of the obtained dispersion. The results are shown in Table 15.
(Evaluation of lower critical solution temperature (LCST))
Using the magnetic iron oxide nanocomposite powder particles obtained in Examples 22, 23, 25, 26 and 27, the magnetic iron oxide nanocomposite powder particles were dispersed in t-butyl alcohol at a concentration of 4 g / L. A particle dispersion was prepared.
Next, the light transmittance was measured at a wavelength of 500 nm while raising the temperature, and when the light transmittance was 100 at 30 ° C., the temperature at which the light transmittance was 50% was defined as the lower critical solution temperature (LCST). In addition, in the case of what was added to t-butyl alcohol by the density | concentration of Rf-AMPS oligomer 4g / L (blank), the lower critical solution temperature (LCST) was 78 degreeC.


注)「−」は測定を行っていないことを示す。

Note) "-" indicates that no measurement is performed.

本発明によれば、各種溶媒に対して、数十ナノレベルの極めて高い分散性を有し、また、分散性に持続性がある磁性酸化鉄ナノコンポジット粉末状粒子を提供することが出来る。また、本発明によれば、該磁性酸化鉄ナノコンポジット粉末状粒子を工業的に有利な方法で提供することができる。   According to the present invention, it is possible to provide magnetic iron oxide nanocomposite powder-like particles having extremely high dispersibility of several tens of nanometers in various solvents and having a long dispersibility. In addition, according to the present invention, the magnetic iron oxide nanocomposite powder particles can be provided by an industrially advantageous method.

Claims (10)

磁性酸化鉄粒子が、下記一般式(1)で表されるフルオロアルキル基含有オリゴマーで複合化されてなることを特徴とする磁性酸化鉄ナノコンポジット粉末状粒子。

{式中、R及びRは、−(CF)p−Y基、又は−CF(CF)−[OCFCF(CF)]q−OC基を示し、R及びRは、同一の基であっても異なる基であってもよく、R及びR中のYは水素原子、フッ素原子又は塩素原子を示し、p及びqは0〜10の整数である。Bは炭素数1〜5のアルキレン基を示す。n3は5〜1000の整数である。n1とn2のモル比は1:99〜99:1である。}
Magnetic iron oxide nanocomposite powdery particles, wherein magnetic iron oxide particles are composited with a fluoroalkyl group-containing oligomer represented by the following general formula (1).

{In the formula, R 1 and R 2 represent a — (CF 2 ) p—Y group or a —CF (CF 3 ) — [OCF 2 CF (CF 3 )] q—OC 3 F 7 group, and R 1 And R 2 may be the same group or different groups, Y in R 1 and R 2 represents a hydrogen atom, a fluorine atom or a chlorine atom, and p and q are integers of 0 to 10. is there. B 1 represents an alkylene group having 1 to 5 carbon atoms. n3 is an integer of 5 to 1000. The molar ratio of n1 and n2 is 1:99 to 99: 1. }
磁性酸化鉄粒子が、下記一般式(2)で表されるフルオロアルキル基含有オリゴマーの架橋反応生成物で複合化されてなることを特徴とする磁性酸化鉄ナノコンポジット粉末状粒子。

{式中、R及びRは、−(CF)p−Y基、又は−CF(CF)−[OCFCF(CF)]q−OC基を示し、R及びRは、同一の基であっても異なる基であってもよく、R及びR中のYは水素原子、フッ素原子又は塩素原子を示し、p及びqは0〜10の整数である。Zはイソシアナート含有基を示す。m3は5〜1000の整数である。m1とm2のモル比は1:99〜99:1である。}
Magnetic iron oxide nanocomposite powder-like particles, wherein magnetic iron oxide particles are composited with a crosslinking reaction product of a fluoroalkyl group-containing oligomer represented by the following general formula (2).

{Wherein R 3 and R 4 represent a — (CF 2 ) p—Y group or a —CF (CF 3 ) — [OCF 2 CF (CF 3 )] q—OC 3 F 7 group, and R 3 And R 4 may be the same group or different groups, Y in R 3 and R 4 represents a hydrogen atom, a fluorine atom or a chlorine atom, and p and q are integers of 0 to 10. is there. Z represents an isocyanate-containing group. m3 is an integer of 5 to 1000. The molar ratio of m1 and m2 is 1:99 to 99: 1. }
一般式(2)で表されるフルオロアルキル基含有オリゴマーの式中のZが下記一般式(3)で表される基であることを特徴とする粉末状の磁性酸化鉄コンポジット粉末状粒子。

(式中、Bはアルキレン基を示す。A及びAはアルキル基を示す。)
A powdered magnetic iron oxide composite powder particle, wherein Z in the formula of the fluoroalkyl group-containing oligomer represented by the general formula (2) is a group represented by the following general formula (3).

(In the formula, B 2 represents an alkylene group. A 1 and A 2 represent an alkyl group.)
平均粒子径が10〜900nmであることを特徴とする請求項1又は2記載の磁性酸化鉄ナノコンポジット粉末状粒子。   3. The magnetic iron oxide nanocomposite powder particles according to claim 1 or 2, wherein the average particle size is 10 to 900 nm. 磁性酸化鉄粒子が、マグネタイト粒子又はマグヘマイト粒子であることを特徴とする請求項1又は2記載の磁性酸化鉄ナノコンポジット粉末状粒子。   The magnetic iron oxide nanocomposite powder particles according to claim 1 or 2, wherein the magnetic iron oxide particles are magnetite particles or maghemite particles. 磁性酸化鉄粒子と前記一般式(1)で表されるフルオロアルキル基含有オリゴマーとを溶媒中で接触させることを特徴とする請求項1記載の磁性酸化鉄ナノコンポジット粉末状粒子の製造方法。   The method for producing magnetic iron oxide nanocomposite powder particles according to claim 1, wherein the magnetic iron oxide particles and the fluoroalkyl group-containing oligomer represented by the general formula (1) are contacted in a solvent. 第一鉄塩と第二鉄塩を含む溶媒に、アルカリを添加して反応を行って磁性酸化鉄を製造する方法において、前記溶媒に前記一般式(1)で表されるフルオロアルキル基含有オリゴマーを含有させて、アルカリを添加し反応を行うことを特徴とする請求項1記載の磁性酸化鉄ナノコンポジット粉末状粒子の製造方法。   In the method for producing magnetic iron oxide by adding an alkali to a solvent containing a ferrous salt and a ferric salt and performing a reaction, the fluoroalkyl group-containing oligomer represented by the general formula (1) is used as the solvent 2. The method for producing magnetic iron oxide nanocomposite powder particles according to claim 1, wherein the reaction is carried out by adding an alkali. 磁性酸化鉄粒子と前記一般式(2)で表されるフルオロアルキル基含有オリゴマーを含む溶媒を調製し、次いで前記一般式(2)で表されるフルオロアルキル基含有オリゴマーの架橋反応を行うことを特徴とする請求項2記載の磁性酸化鉄ナノコンポジット粉末状粒子の製造方法。   Preparing a solvent containing magnetic iron oxide particles and a fluoroalkyl group-containing oligomer represented by the general formula (2), and then performing a crosslinking reaction of the fluoroalkyl group-containing oligomer represented by the general formula (2). 3. The method for producing magnetic iron oxide nanocomposite powder particles according to claim 2. 請求項1ないし5のいずれか一項記載の磁性酸化鉄ナノコンポジット粉末状粒子が、分散溶媒に分散されていることを特徴とする粒子分散液。   6. A particle dispersion liquid, wherein the magnetic iron oxide nanocomposite powder particles according to any one of claims 1 to 5 are dispersed in a dispersion solvent. 請求項1ないし5のいずれか一項記載の磁性酸化鉄ナノコンポジット粉末状粒子を含有することを特徴とする樹脂組成物。   A resin composition comprising the magnetic iron oxide nanocomposite powder particles according to any one of claims 1 to 5.
JP2010054863A 2009-03-12 2010-03-11 Magnetic iron oxide nanocomposite powdery particle, method of manufacturing the same, particle dispersion liquid, and resin composition Pending JP2010235441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010054863A JP2010235441A (en) 2009-03-12 2010-03-11 Magnetic iron oxide nanocomposite powdery particle, method of manufacturing the same, particle dispersion liquid, and resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009060100 2009-03-12
JP2010054863A JP2010235441A (en) 2009-03-12 2010-03-11 Magnetic iron oxide nanocomposite powdery particle, method of manufacturing the same, particle dispersion liquid, and resin composition

Publications (1)

Publication Number Publication Date
JP2010235441A true JP2010235441A (en) 2010-10-21

Family

ID=43090134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010054863A Pending JP2010235441A (en) 2009-03-12 2010-03-11 Magnetic iron oxide nanocomposite powdery particle, method of manufacturing the same, particle dispersion liquid, and resin composition

Country Status (1)

Country Link
JP (1) JP2010235441A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8426214B2 (en) 2009-06-12 2013-04-23 University Of Washington System and method for magnetically concentrating and detecting biomarkers
US8507283B2 (en) 2007-03-08 2013-08-13 University Of Washington Stimuli-responsive magnetic nanoparticles and related methods
US9080933B2 (en) 2009-11-09 2015-07-14 University Of Washington Through Its Center For Commercialization Stimuli-responsive polymer diagnostic assay comprising magnetic nanoparticles and capture conjugates
CN110862107A (en) * 2018-08-28 2020-03-06 富士胶片株式会社 β -powder of iron oxyhydroxide compound, sol, powder of epsilon-iron oxide compound, and method for producing magnetic recording medium
JP2020063375A (en) * 2018-10-17 2020-04-23 日本化学工業株式会社 Composite particle, method for producing the same, oil separation agent, and oil-water separation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8507283B2 (en) 2007-03-08 2013-08-13 University Of Washington Stimuli-responsive magnetic nanoparticles and related methods
US8426214B2 (en) 2009-06-12 2013-04-23 University Of Washington System and method for magnetically concentrating and detecting biomarkers
US9080933B2 (en) 2009-11-09 2015-07-14 University Of Washington Through Its Center For Commercialization Stimuli-responsive polymer diagnostic assay comprising magnetic nanoparticles and capture conjugates
US9429570B2 (en) 2009-11-09 2016-08-30 University Of Washington Through Its Center For Commercialization Stimuli-responsive polymer diagnostic assay comprising magnetic nanoparticles and capture conjugates
CN110862107A (en) * 2018-08-28 2020-03-06 富士胶片株式会社 β -powder of iron oxyhydroxide compound, sol, powder of epsilon-iron oxide compound, and method for producing magnetic recording medium
JP2020063375A (en) * 2018-10-17 2020-04-23 日本化学工業株式会社 Composite particle, method for producing the same, oil separation agent, and oil-water separation method

Similar Documents

Publication Publication Date Title
TWI596124B (en) Block copolymer
JP2010235441A (en) Magnetic iron oxide nanocomposite powdery particle, method of manufacturing the same, particle dispersion liquid, and resin composition
Wan et al. High-performance magnetic poly (arylene ether nitrile) nanocomposites: Co-modification of Fe3O4 via mussel inspired poly (dopamine) and amino functionalized silane KH550
JP5531232B2 (en) Polymer-coated inorganic fine particles and method for producing the same
JP2008536965A (en) Method for preparing polymer nanocomposites with surface modified nanoparticles
JP2012214554A (en) Thermoplastic resin composition
JP4868909B2 (en) Nanocomposite
JPWO2005010100A1 (en) Ultrafine particle-containing resin composition
WO2014042142A1 (en) Surface-modified iron oxide particles for cancer cauterization
JP2003183414A (en) Formed body of crosslinked resin composition containing super fine particle
JPWO2007023919A1 (en) Stabilizer composition for synthetic resin
CN110507829B (en) Preparation method and application of iron-tungsten composite oxide nanocrystalline cluster
JP2009084544A (en) Resin composition and method of manufacturing the same
EP1585147A2 (en) Magnetic iron oxide particles and magnetic toner using the same
JPH0625869B2 (en) Method of manufacturing magnetic toner
JP2006348216A (en) Method for producing polymer composite product and thermoplastic resin composition
JP2010132897A (en) Method for producing inorganic compound-containing polymer, thermoplastic resin composition, and molded product
JP2002129156A (en) Semiconductor ultrafine particle and resin composition containing the same
Alosmanov et al. Magnetic nanocomposites based on phosphorus-containing polymers—structural characterization and thermal analysis
JP2006265451A (en) Magnetic microsphere having functional group on surface
JP2010095679A (en) Method of producing dispersion containing metal oxide microparticles and dispersion containing metal oxide microparticles
JP2016191681A (en) Magnetic particle coated with polymer and method for manufacturing the same
JP2003112925A (en) Magnetite crystal nanoparticle
US7649069B2 (en) Free radical living polymerization initiator attached nanoclusters and nanocomposites therefrom
JP2005289794A (en) Dispersive magnetic iron oxide, magnetic shaped article, and their manufacturing methods