JP2020063375A - Composite particle, method for producing the same, oil separation agent, and oil-water separation method - Google Patents

Composite particle, method for producing the same, oil separation agent, and oil-water separation method Download PDF

Info

Publication number
JP2020063375A
JP2020063375A JP2018196168A JP2018196168A JP2020063375A JP 2020063375 A JP2020063375 A JP 2020063375A JP 2018196168 A JP2018196168 A JP 2018196168A JP 2018196168 A JP2018196168 A JP 2018196168A JP 2020063375 A JP2020063375 A JP 2020063375A
Authority
JP
Japan
Prior art keywords
oil
particles
group
composite particles
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018196168A
Other languages
Japanese (ja)
Inventor
英夫 澤田
Hideo Sawada
英夫 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Kankyo Kogaku Co Ltd
Hirosaki University NUC
Original Assignee
Nippon Chemical Industrial Co Ltd
Kankyo Kogaku Co Ltd
Hirosaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd, Kankyo Kogaku Co Ltd, Hirosaki University NUC filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2018196168A priority Critical patent/JP2020063375A/en
Publication of JP2020063375A publication Critical patent/JP2020063375A/en
Pending legal-status Critical Current

Links

Abstract

To provide composite particles that are suitably usable as an oil adsorption agent, an industrially advantageous production method of the same, and an oil adsorption agent and an oil-water separation method using the composite particles.SOLUTION: Composite particles contain a condensate of a fluoroalkyl group-containing oligomer having an alkoxysilyl group, and magnetic iron oxide particles. The particles are produced by adding alkali to a reaction raw material solution containing a fluoroalkyl group-containing oligomer having an alkoxysilyl group and magnetic iron oxide particles, and subjecting the solution to a hydrolysis reaction. There is also provided an oil adsorbent agent containing the composite particles. There are also provided an oil-water separation method that brings the oil adsorption agent into contact with a treatment liquid containing water and oil, and adsorbs oil of the treatment liquid on the oil adsorption agent.SELECTED DRAWING: Figure 1

Description

本発明は、コンポジット粒子、その製造方法、該コンポジット粒子を用いた油分離剤及び油水分離方法に関するものである。   The present invention relates to composite particles, a method for producing the same, an oil separating agent and an oil / water separating method using the composite particles.

フッ素化合物は、撥水・撥油性、酸素透過性、低屈折率などの特徴を有しており、これらの特徴を活かして、塗料や化粧品、排水処理等への応用が検討されている。しかし、フッ素化合物は、撥水・撥油性が非常に高いので、非フッ素原料に対する分散安定性を維持することが困難である。また、空気中で高い撥油性を発現するフッ素化合物を水中で用いると、撥油性が消失し油が濡れ拡がるという欠点がある。   Fluorine compounds have characteristics such as water repellency / oil repellency, oxygen permeability, and low refractive index. Utilizing these characteristics, application to paints, cosmetics, wastewater treatment, etc. is being studied. However, since the fluorine compound has very high water repellency and oil repellency, it is difficult to maintain the dispersion stability in a non-fluorine raw material. Further, when a fluorine compound that exhibits high oil repellency in air is used in water, there is a drawback that the oil repellency disappears and the oil spreads wet.

ところで、工場等から排出された油分を含む廃水は、環境汚染の防止の観点から、適切に処理することが求められている。従来、油水分離処理には、静置分離及び遠心分離等の比重の違いを利用した分離や、吸着分離等の方法が用いられている。しかし、静置分離は多大な時間を要し、遠心分離は大がかりな装置を必要とし、吸着分離は大量の油水混合液の処理に不向きである。   By the way, wastewater containing oil discharged from factories is required to be appropriately treated from the viewpoint of preventing environmental pollution. Conventionally, in the oil-water separation treatment, methods such as static separation and centrifugal separation that utilize the difference in specific gravity and adsorption separation have been used. However, the stationary separation requires a lot of time, the centrifugal separation requires a large-scale device, and the adsorption separation is not suitable for treating a large amount of oil-water mixed liquid.

油水分離処理に使用可能なフッ素化合物として、本発明者は、先にフルオロアルキル基含有オリゴマーを用い、フルオロアルキル基含有オリゴマーに起因した優れた特性を付与した各種の新しい機能性材料及び油水分離材を提案した(特許文献1〜5参照)。また本発明者は、磁性酸化鉄粒子をフルオロアルキル基含有オリゴマーで複合化処理した磁性酸化鉄ナノコンポジット粉末状粒子を提案した(特許文献6参照)。   As a fluorine compound that can be used for oil / water separation treatment, the present inventor previously used a fluoroalkyl group-containing oligomer, and provided various new functional materials and oil / water separation materials to which excellent properties due to the fluoroalkyl group-containing oligomer were imparted. Has been proposed (see Patent Documents 1 to 5). The present inventor also proposed magnetic iron oxide nanocomposite powder particles obtained by complexing magnetic iron oxide particles with a fluoroalkyl group-containing oligomer (see Patent Document 6).

特開2016−191039号公報JP, 2016-191039, A 特開2016−180097号公報JP, 2016-180097, A 特開2016−172249号公報JP, 2016-172249, A 特開2018−39895号公報JP, 2008-39895, A 特開2018−87275号公報JP, 2018-87275, A 特開2010−235441号公報JP, 2010-235441, A

しかし、特許文献1〜5に記載の機能性材料及び油水分離材は、撥水性及び親油性の向上について改善の余地があった。また、特許文献6の方法で得られるコンポジット粒子は、フルオロアルキル基含有オリゴマー中に包接されない酸化鉄粒子も存在しており、包接率の向上の点で改善の余地があった(例えば、特許文献6の図10参照)。   However, the functional materials and oil-water separators described in Patent Documents 1 to 5 have room for improvement in improving water repellency and lipophilicity. Further, in the composite particles obtained by the method of Patent Document 6, there are also iron oxide particles that are not included in the fluoroalkyl group-containing oligomer, and there is room for improvement in terms of improving the inclusion rate (for example, (See FIG. 10 of Patent Document 6).

従って、本発明の目的は、油吸着剤として好適に利用することが出来るコンポジット粒子、その工業的に有利な製造方法、及び該コンポジット粒子を用いた油吸着剤及び油水分離方法を提供することにある。   Therefore, an object of the present invention is to provide a composite particle that can be suitably used as an oil adsorbent, an industrially advantageous production method thereof, and an oil adsorbent and an oil-water separation method using the composite particle. is there.

本発明者は、フルオロアルキル基含有オリゴマーを用いた新しい機能性材料の開発を進める中で、アルコキシシリル基を有する特定のフルオロアルキル基含有オリゴマー及び磁性酸化鉄粒子を含む反応原料溶液に、アルカリを加えて、加水分解反応を行う反応工程を行って得られるコンポジット粒子は、(1)フルオロアルキル基含有オリゴマーの縮合物中に磁性酸化鉄粒子が容易に包接され、優れた撥水性、親油性を有するになること、(2)油に対して優れた吸着性能を有する油吸着剤となること、(3)水と油を含む処理液から油を選択的に吸着し、磁気分離により該油吸着剤を容易に回収できること、及び(4)油を吸着した油吸着剤は有機溶剤で洗浄処理することで再使用可能になることを見出し、本発明を完成するに到った。   While advancing the development of a new functional material using a fluoroalkyl group-containing oligomer, the present inventor added an alkali to a reaction raw material solution containing a specific fluoroalkyl group-containing oligomer having an alkoxysilyl group and magnetic iron oxide particles. In addition, the composite particles obtained by carrying out the reaction step of performing the hydrolysis reaction have excellent water repellency and lipophilicity because (1) the magnetic iron oxide particles are easily included in the condensate of the fluoroalkyl group-containing oligomer. And (2) it becomes an oil adsorbent having excellent adsorption performance for oil, and (3) oil is selectively adsorbed from a treatment liquid containing water and oil, and the oil is separated by magnetic separation. They have found that the adsorbent can be easily recovered, and that (4) the oil adsorbent having adsorbed the oil can be reused by washing with an organic solvent, and thus the present invention has been completed.

すなわち、本発明が提供しようとする第一の発明は、下記一般式(1)で表されるアルコキシシリル基を有するフルオロアルキル基含有オリゴマーの縮合物と磁性酸化鉄粒子とを含むコンポジット粒子である。

(式中、R1及びR2は、−(CF2)p−Y基、又は−CF(CF3)−[OCF2CF(CF3)]q−OC37基を示し、R1及びR2は、同一の基であっても異なる基であってもよく、R1及びR2中のYは水素原子、フッ素原子又は塩素原子を示し、p及びqはそれぞれ独立に0〜10の整数である。R3、R4及びR5は同一の基であっても異なる基であってもよく、R3、R4及びR5は炭素数1〜5の直鎖状若しくは分岐状のアルキル基を示す。mは2〜3の整数である。)
That is, the first invention to be provided by the present invention is a composite particle containing a condensate of a fluoroalkyl group-containing oligomer having an alkoxysilyl group represented by the following general formula (1) and magnetic iron oxide particles. .

(Wherein, R 1 and R 2, - (CF 2) p- Y group, or -CF (CF 3) - [OCF 2 CF (CF 3)] indicates the q-OC 3 F 7 group, R 1 And R 2 may be the same group or different groups, Y in R 1 and R 2 represents a hydrogen atom, a fluorine atom or a chlorine atom, and p and q each independently represent 0 to 10 R 3 , R 4 and R 5 may be the same group or different groups, and R 3 , R 4 and R 5 are linear or branched having 1 to 5 carbon atoms. Represents an alkyl group, and m is an integer of 2 to 3.)

また、本発明が提供しようとする第二の発明は、下記一般式(1)で表されるアルコキシシリル基を有するフルオロアルキル基含有オリゴマーと磁性酸化鉄粒子とを含む反応原料溶液に、アルカリを加えて、加水分解反応を行う反応工程を備える、コンポジット粒子の製造方法である。

(式中、R1及びR2は、−(CF2)p−Y基、又は−CF(CF3)−[OCF2CF(CF3)]q−OC37基を示し、R1及びR2は、同一の基であっても異なる基であってもよく、R1及びR2中のYは水素原子、フッ素原子又は塩素原子を示し、p及びqはそれぞれ独立に0〜10の整数である。R3、R4及びR5は同一の基であっても異なる基であってもよく、R3、R4及びR5は炭素数1〜5の直鎖状若しくは分岐状のアルキル基を示す。mは2〜3の整数である。)
The second invention to be provided by the present invention is to add an alkali to a reaction raw material solution containing a fluoroalkyl group-containing oligomer having an alkoxysilyl group represented by the following general formula (1) and magnetic iron oxide particles. In addition, it is a manufacturing method of composite particles provided with a reaction process of performing a hydrolysis reaction.

(Wherein, R 1 and R 2, - (CF 2) p- Y group, or -CF (CF 3) - [OCF 2 CF (CF 3)] indicates the q-OC 3 F 7 group, R 1 And R 2 may be the same group or different groups, Y in R 1 and R 2 represents a hydrogen atom, a fluorine atom or a chlorine atom, and p and q each independently represent 0 to 10 R 3 , R 4 and R 5 may be the same group or different groups, and R 3 , R 4 and R 5 are linear or branched having 1 to 5 carbon atoms. Represents an alkyl group, and m is an integer of 2 to 3.)

また、本発明が提供しようとする第三の発明は、前記第一の発明のコンポジット粒子を含む油吸着剤である。   A third invention to be provided by the present invention is an oil adsorbent containing the composite particles of the first invention.

また、本発明が提供しようとする第四の発明は、前記第三の発明の油吸着剤と、水及び油を含む処理液とを接触させて、該処理液の油を該油吸着剤に吸着させる吸着工程を備える油水分離方法である。   A fourth aspect of the present invention is to provide an oil adsorbent of the third aspect of the present invention and a treatment liquid containing water and oil in contact with each other to convert the oil of the treatment liquid to the oil adsorbent. It is an oil-water separation method including an adsorption step of adsorbing.

本発明によれば、撥水性及び親油性に優れたコンポジット粒子を提供することができる。また、該コンポジット粒子は、油吸着剤として好適に使用することができる。更に、本発明の油吸着剤は、油の吸着後に洗浄して再使用することができる。   According to the present invention, composite particles excellent in water repellency and lipophilicity can be provided. Further, the composite particles can be suitably used as an oil adsorbent. Further, the oil adsorbent of the present invention can be washed and reused after adsorbing oil.

また、本発明によれば、該コンポジット粒子を工業的に有利な方法で提供することができる。   Further, according to the present invention, the composite particles can be provided by an industrially advantageous method.

図1は、実施例3で得られたコンポジット粒子試料の透過型電子顕微鏡(TEM)写真である。FIG. 1 is a transmission electron microscope (TEM) photograph of the composite particle sample obtained in Example 3. 図2は、実施例10で得られたコンポジット粒子試料の透過型電子顕微鏡(TEM)写真である。FIG. 2 is a transmission electron microscope (TEM) photograph of the composite particle sample obtained in Example 10. 図3は、比較例1及び実施例3の試料をドデカンを含む処理液に添加し、その後、ビンの側面に磁石を置いたときの状態を示す写真である。FIG. 3 is a photograph showing a state in which the samples of Comparative Example 1 and Example 3 were added to the treatment liquid containing dodecane, and then a magnet was placed on the side surface of the bottle. 図4は、比較例1及び実施例12の試料をドデカンを含む処理液に添加し、その後、シャーレの上方に磁石を配したときの状態を示す写真である。FIG. 4 is a photograph showing a state in which the samples of Comparative Example 1 and Example 12 were added to the treatment liquid containing dodecane, and then a magnet was placed above the petri dish. 図5は、比較例3及び実施例20の試料を処理液(W/O型エマルション)に添加して、その後、ビンの側面に磁石を置いたときの状態を示す写真である。FIG. 5 is a photograph showing a state in which the samples of Comparative Example 3 and Example 20 were added to the treatment liquid (W / O type emulsion), and then a magnet was placed on the side surface of the bottle. 図6は、実施例16〜20及び比較例3の試料を用いて処理液(W/O型エマルション)を処理した後の上澄み液のDemulsification efficiency(光透過率)を示すグラフである。FIG. 6 is a graph showing the Demulsification efficiency (light transmittance) of the supernatant after treating the treatment liquid (W / O type emulsion) with the samples of Examples 16 to 20 and Comparative Example 3. 図7は、比較例3及び実施例19の試料を処理液(O/W型エマルション)に添加して、その後、ビンの側面に磁石を置いたときの状態を示す写真である。FIG. 7 is a photograph showing a state in which the samples of Comparative Example 3 and Example 19 were added to the treatment liquid (O / W type emulsion), and then a magnet was placed on the side surface of the bottle. 図8は、実施例16〜20及び比較例3の試料を用いて、処理液(O/W型エマルション)を処理した後の上澄み液のDemulsification efficiency(光透過率)を示すグラフである。FIG. 8: is a graph which shows the Demulsification efficiency (light transmittance) of the supernatant liquid after processing a processing liquid (O / W type emulsion) using the sample of Examples 16-20 and the comparative example 3. 図9は、実施例18のコンポジット粒子試料に対して、吸着工程、回収工程及び洗浄工程のサイクルを5回繰り返したときの、油吸着量の変化を示すグラフである。FIG. 9 is a graph showing changes in the amount of oil adsorbed when the cycle of the adsorption step, the recovery step and the washing step was repeated 5 times for the composite particle sample of Example 18.

以下、本発明をその好ましい実施形態に基づき説明する。本発明に係るコンポジット粒子は、下記一般式(1)で表されるアルコキシシリル基を有するフルオロアルキル基含有オリゴマー(以下、単に「フルオロアルキル基含有オリゴマー」ということもある。)の縮合物と磁性酸化鉄粒子とを含む。以下の説明では、「L〜M」(L及びMはそれぞれ任意の数字)と記載した場合、特に断らない限り「L以上M以下」を意味する。   The present invention will be described below based on its preferred embodiments. The composite particles according to the present invention are magnetic and a condensate of a fluoroalkyl group-containing oligomer having an alkoxysilyl group represented by the following general formula (1) (hereinafter, also simply referred to as “fluoroalkyl group-containing oligomer”). And iron oxide particles. In the following description, when described as “L to M” (where L and M are arbitrary numbers), it means “L or more and M or less” unless otherwise specified.


(式中、R1及びR2は、−(CF2)p−Y基、又は−CF(CF3)−[OCF2CF(CF3)]q−OC37基を示し、R1及びR2は、同一の基であっても異なる基であってもよく、R1及びR2中のYは水素原子、フッ素原子又は塩素原子を示し、p及びqはそれぞれ独立に0〜10の整数である。R3、R4及びR5は同一の基であっても異なる基であってもよく、R3、R4及びR5は炭素数1〜5の直鎖状又は分岐状のアルキル基を示す。mは2〜3の整数である。)

(Wherein, R 1 and R 2, - (CF 2) p- Y group, or -CF (CF 3) - [OCF 2 CF (CF 3)] indicates the q-OC 3 F 7 group, R 1 And R 2 may be the same group or different groups, Y in R 1 and R 2 represents a hydrogen atom, a fluorine atom or a chlorine atom, and p and q each independently represent 0 to 10 R 3 , R 4 and R 5 may be the same or different, and R 3 , R 4 and R 5 are linear or branched having 1 to 5 carbon atoms. Represents an alkyl group, and m is an integer of 2 to 3.)

前記一般式(1)で表されるフルオロアルキル基含有オリゴマーは、本発明のコンポジット粒子に優れた撥水性を付与させるために用いられる。   The fluoroalkyl group-containing oligomer represented by the general formula (1) is used to impart excellent water repellency to the composite particles of the present invention.

一般式(1)中のR1及びR2の−(CF2)p−Y基、又は−CF(CF3)−[OCF2CF(CF3)]q−OC37基のp及びqは、それぞれ独立して、0〜10の整数であり、好ましくは0〜3の整数である。R1及びR2は、同一の基であっても異なる基であってもよい。特に、撥水性及び親油性を一層優れたものとする観点から、R1及びR2はともに、−CF(CF3)OC37基であることが好ましい。 Formula (1) of R 1 and R 2 - (CF 2) p -Y group, or -CF (CF 3) - [OCF 2 CF (CF 3)] p and q-OC 3 F 7 group q is independently an integer of 0 to 10, and preferably an integer of 0 to 3. R 1 and R 2 may be the same group or different groups. In particular, from the viewpoint of further improving water repellency and lipophilicity, both R 1 and R 2 are preferably —CF (CF 3 ) OC 3 F 7 groups.

前記一般式(1)に示すように、フルオロアルキル基含有オリゴマーは、加水分解可能なアルコキシシリル基を有している。前記一般式(1)中のR3、R4及びR5で示される炭素数1〜5の直鎖状又は分岐状のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、及びペンチル基等が挙げられる。R3、R4及びR5は、それぞれ同一の基であっても異なる基であってもよい。 As shown in the general formula (1), the fluoroalkyl group-containing oligomer has a hydrolyzable alkoxysilyl group. Examples of the linear or branched alkyl group having 1 to 5 carbon atoms represented by R 3 , R 4 and R 5 in the general formula (1) include a methyl group, an ethyl group, a propyl group, a butyl group, and Examples thereof include a pentyl group. R 3 , R 4 and R 5 may be the same group or different groups.

一般式(1)で表されるフルオロアルキル基含有オリゴマーは、例えば、トリメトキシビニルシラン等のトリアルコキシビニルシランを過酸化フルオロアルカノイルと反応させることにより製造される。オリゴマーの製法方法は、例えば、特開2002−338691号公報又は特開2010−77383号公報に記載の方法によって得ることができる。   The fluoroalkyl group-containing oligomer represented by the general formula (1) is produced, for example, by reacting trialkoxyvinylsilane such as trimethoxyvinylsilane with fluoroalkanoyl peroxide. The method for producing the oligomer can be obtained, for example, by the method described in JP-A-2002-338691 or JP-A-2010-77383.

本発明のコンポジット粒子は、磁性酸化鉄粒子を含む。磁性を有する酸化鉄粒子としては、例えばマグネタイト(Fe)、マグヘマイト(γ−Fe)等の粒子や、FeO・Fe、MnO・Fe、NiO・Fe、CoO・Fe等のフェライト粒子が挙げられ、これらは単独で又は複数組み合わせて用いられる。本発明のコンポジット粒子は、フルオロアルキル基含有オリゴマーの縮合物に加えて、磁性酸化鉄粒子を用いて、これらを複合化させることによって、従来技術と比較して一層優れた撥水性及び親油性が発現している。このような特性を有するコンポジット粒子は、後述する油吸着剤としても好適に使用される。 The composite particles of the present invention include magnetic iron oxide particles. Examples of magnetic iron oxide particles include particles of magnetite (Fe 3 O 4 ), maghemite (γ-Fe 2 O 3 ), FeO.Fe 2 O 3 , MnO.Fe 2 O 3 , NiO.Fe 2 Examples thereof include ferrite particles such as O 3 and CoO.Fe 2 O 3, which may be used alone or in combination. The composite particles of the present invention have more excellent water repellency and lipophilicity as compared with the prior art by using magnetic iron oxide particles in addition to the condensate of the fluoroalkyl group-containing oligomer to compound them. It is expressed. The composite particles having such characteristics are also suitably used as an oil adsorbent described later.

撥水性及び親油性に優れたコンポジット粒子を首尾よく製造する観点から、磁性酸化鉄粒子は、マグネタイト粒子又はマグヘマイト粒子であることが好ましい。磁性酸化鉄粒子は、本発明の効果を損なわない範囲で、例えばα−ヘマイト、水酸化鉄等の他の鉄化合物や、ニッケル、コバルト、マンガン及びアルミニウムなどの他の金属元素を含有していてもよい。   From the viewpoint of successfully producing composite particles having excellent water repellency and lipophilicity, the magnetic iron oxide particles are preferably magnetite particles or maghemite particles. The magnetic iron oxide particles contain other iron compounds such as α-hemite and iron hydroxide, and other metal elements such as nickel, cobalt, manganese, and aluminum as long as the effects of the present invention are not impaired. Good.

磁性酸化鉄粒子の平均粒子径は、撥水性及び親水性に優れたコンポジット粒子を首尾よく得る観点から、平均粒子径が好ましくは5nm〜1000nm、更に好ましくは10nm〜800nmの範囲のものが好適に用いられる。平均粒子径は、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50として求めることができ、例えばメタノール又はエタノール等の溶媒に分散させた磁性酸化鉄粒子を、実施例にて詳述する粒度分布測定装置を用いることにより測定できる。   The average particle size of the magnetic iron oxide particles is preferably 5 nm to 1000 nm, more preferably 10 nm to 800 nm, from the viewpoint of successfully obtaining composite particles having excellent water repellency and hydrophilicity. Used. The average particle diameter can be determined as a volume cumulative particle diameter D50 at a cumulative volume of 50% by volume by a laser diffraction / scattering particle size distribution measuring method. For example, magnetic iron oxide particles dispersed in a solvent such as methanol or ethanol can be used in Examples. It can be measured by using the particle size distribution measuring device described in detail in.

本発明のコンポジット粒子は、図1及び図2に示すように、透過型電子顕微鏡(以下、「TEM」ともいう。)による観察では、1個又は2個以上の磁性酸化鉄粒子が、フルオロアルキル基オリゴマーの縮合物中に包接されて存在することが好ましい。特に、本発明のコンポジット粒子は、磁性酸化鉄粒子の表面に、フルオロアルキル基含有オリゴマーの縮合物が分散配置されている構造を有することが更に好ましい。フルオロアルキル基含有オリゴマーの縮合物は、芯材である磁性酸化鉄粒子の表面に均一に分散して包接していることが好ましい。「均一に分散」とは、(i)芯材である磁性酸化鉄粒子の表面が露出するように、まばらで且つ均一にフルオロアルキル基含有オリゴマーの縮合物が配置されている場合、及び(ii)芯材である磁性酸化鉄粒子の表面が露出しないように、緻密に且つ均一にフルオロアルキル基含有オリゴマーの縮合物が配置されている場合の双方の分散状態を包含する。本発明のコンポジット粒子が親油性及び撥水性を容易に発現する観点からは、フルオロアルキル基含有オリゴマーの縮合物は、芯材である磁性酸化鉄粒子の表面に、(i)の状態で分散配置されていることが好ましい。   As shown in FIG. 1 and FIG. 2, the composite particles of the present invention show that one or two or more magnetic iron oxide particles are fluoroalkyl when observed by a transmission electron microscope (hereinafter, also referred to as “TEM”). It is preferably present in the form of inclusion in the condensate of the group oligomer. In particular, the composite particles of the present invention more preferably have a structure in which the condensate of the fluoroalkyl group-containing oligomer is dispersed and arranged on the surface of the magnetic iron oxide particles. The condensate of the fluoroalkyl group-containing oligomer is preferably uniformly dispersed and clathrated on the surface of the magnetic iron oxide particles as the core material. The term “uniformly dispersed” means that (i) the condensate of fluoroalkyl group-containing oligomers is sparsely and uniformly arranged so that the surface of the magnetic iron oxide particles as the core material is exposed, and (ii) ) Both dispersion states in the case where the condensate of the fluoroalkyl group-containing oligomer is densely and uniformly arranged so that the surface of the magnetic iron oxide particles as the core material are not exposed are included. From the viewpoint that the composite particles of the present invention easily exhibit lipophilicity and water repellency, the condensate of the fluoroalkyl group-containing oligomer is dispersed and arranged in the state of (i) on the surface of the magnetic iron oxide particles as the core material. Is preferably provided.

撥水性及び親油性を一層高くし、油に対する吸着能を高める観点から、コンポジット粒子中の磁性酸化鉄粒子の含有量は、フルオロアルキル基含有オリゴマーの縮合物100mgに対して、好ましくは5mg〜1000mg、更に好ましくは10mg〜700mgである。コンポジット粒子中の磁性酸化鉄粒子の含有量は、例えば、熱重量分析装置を用いた熱重量分析で測定することができる。   From the viewpoint of further enhancing the water repellency and lipophilicity and enhancing the adsorption ability to oil, the content of the magnetic iron oxide particles in the composite particles is preferably 5 mg to 1000 mg with respect to 100 mg of the condensate of the fluoroalkyl group-containing oligomer. , And more preferably 10 mg to 700 mg. The content of magnetic iron oxide particles in the composite particles can be measured, for example, by thermogravimetric analysis using a thermogravimetric analyzer.

本発明のコンポジット粒子は、その平均粒子径が、好ましくは10nm〜7000nmであり、更に好ましくは50nm〜5000nmである。平均粒子径がこの範囲内にあると、コンポジット粒子が備える撥水性及び親油性を効果的に発現しつつ、種々の分散溶媒、樹脂材料及び各種基材等への分散性が良好になる。また、油吸着剤として用いたときに、油吸着性が優れたものになる。平均粒子径は、例えばメタノール又はエタノール等の溶媒に分散させたコンポジット粒子を後述する粒度分布測定装置を用いて、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50として求めることができる。   The average particle size of the composite particles of the present invention is preferably 10 nm to 7000 nm, more preferably 50 nm to 5000 nm. When the average particle diameter is within this range, the water repellency and lipophilicity of the composite particles are effectively exhibited, and the dispersibility in various dispersion solvents, resin materials, various base materials and the like is improved. Further, when used as an oil adsorbent, the oil adsorbability becomes excellent. The average particle diameter is, for example, the volume cumulative particle diameter D50 at a cumulative volume of 50% by volume measured by a laser diffraction / scattering particle size distribution measurement method using a particle size distribution measuring device described below using composite particles dispersed in a solvent such as methanol or ethanol. You can ask.

本発明のコンポジット粒子は、フルオロアルキル基含有オリゴマーと磁性酸化鉄粒子とを含む反応原料溶液に、アルカリを加えて、加水分解反応を行う反応工程を備えた方法によって好適に製造される。   The composite particles of the present invention are preferably produced by a method including a reaction step of adding an alkali to a reaction raw material solution containing a fluoroalkyl group-containing oligomer and magnetic iron oxide particles and performing a hydrolysis reaction.

反応工程に係るフルオロアルキル基含有オリゴマーは、前記一般式(1)で表されるオリゴマーであり、加水分解可能なアルコキシシリル基を有するものである。磁性酸化鉄粒子は、上述のものを用いることができる。   The fluoroalkyl group-containing oligomer relating to the reaction step is an oligomer represented by the above general formula (1) and has a hydrolyzable alkoxysilyl group. As the magnetic iron oxide particles, those mentioned above can be used.

フルオロアルキル基含有オリゴマーと磁性酸化鉄粒子とを含む反応原料溶液は、例えばフルオロアルキル基含有オリゴマーと、磁性酸化鉄粒子と、反応溶媒とを含む分散液とすることができる。反応溶媒としては、フルオルアルキル基含有オリゴマーが溶解できるものが好ましく用いられる。このような反応溶媒としては、例えば、メタノール、エタノール、n−プロパノール、及びイソプロパノール等の低級アルコールが挙げられ、これらのうち、メタノール又はエタノールが、製造効率の観点から特に好ましい。   The reaction raw material solution containing a fluoroalkyl group-containing oligomer and magnetic iron oxide particles can be a dispersion liquid containing, for example, a fluoroalkyl group-containing oligomer, magnetic iron oxide particles, and a reaction solvent. As the reaction solvent, those capable of dissolving the fluoroalkyl group-containing oligomer are preferably used. Examples of such a reaction solvent include lower alcohols such as methanol, ethanol, n-propanol, and isopropanol. Of these, methanol or ethanol is particularly preferable from the viewpoint of production efficiency.

反応工程において、反応原料溶液を調製する際に、フルオロアルキル基含有オリゴマー及び磁性酸化鉄粒子を混合する順序は特に制限されない。混合順序としては、例えば、フルオロアルキル基含有オリゴマー及び磁性酸化鉄粒子のうち一方を反応溶媒に添加し、次いで他方を更に添加して反応原料溶液としてもよく、両者を一度に反応溶媒に添加して反応原料溶液としてもよく、フルオロアルキル基含有オリゴマー及び磁性酸化鉄粒子を混合した後に反応溶媒を添加して、反応原料溶液としてもよい。   In the reaction step, the order of mixing the fluoroalkyl group-containing oligomer and the magnetic iron oxide particles when preparing the reaction raw material solution is not particularly limited. As the mixing order, for example, one of the fluoroalkyl group-containing oligomer and the magnetic iron oxide particles may be added to the reaction solvent, and then the other may be further added to form a reaction raw material solution, and both may be added to the reaction solvent at once. May be used as the reaction raw material solution, or the reaction solvent may be added after mixing the fluoroalkyl group-containing oligomer and the magnetic iron oxide particles to obtain the reaction raw material solution.

反応原料溶液中の磁性酸化鉄粒子の含有量は、前記一般式(1)で表されるフルオロアルキル基含有オリゴマー100mgに対して、好ましくは5mg〜1000mg、更に好ましくは10mg〜700mgである。反応原料溶液中の前記磁性酸化鉄粒子の含有量がこのような範囲にあることにより、得られるコンポジット粒子は、撥水性及び親油性が首尾よく発現したものとなる。   The content of the magnetic iron oxide particles in the reaction raw material solution is preferably 5 mg to 1000 mg, more preferably 10 mg to 700 mg, based on 100 mg of the fluoroalkyl group-containing oligomer represented by the general formula (1). When the content of the magnetic iron oxide particles in the reaction raw material solution is in such a range, the resulting composite particles have successfully exhibited water repellency and lipophilicity.

反応原料溶液における反応溶媒の含有量は、フルオロアルキル基含有オリゴマー及び磁性酸化鉄粒子の合計質量部100質量部に対して、好ましくは500質量部〜10000質量部であり、更に好ましくは1000質量部〜8000質量部である。   The content of the reaction solvent in the reaction raw material solution is preferably 500 parts by mass to 10000 parts by mass, and more preferably 1000 parts by mass with respect to 100 parts by mass as the total mass of the fluoroalkyl group-containing oligomer and the magnetic iron oxide particles. ~ 8000 parts by mass.

撥水性及び親油性を効果的に発現したコンポジット粒子を得る観点から、磁性酸化鉄粒子として、平均粒子径が、好ましくは5nm〜1000nm、更に好ましくは10nm〜800nmの範囲のものを用いて、反応工程を行うことが好ましい。   From the viewpoint of obtaining composite particles effectively exhibiting water repellency and lipophilicity, the magnetic iron oxide particles having an average particle size of preferably 5 nm to 1000 nm, more preferably 10 nm to 800 nm are used for the reaction. It is preferred to perform the steps.

反応工程において、反応原料溶液に加えるアルカリとしては、フルオロアルキル基含有オリゴマー中のアルコキシシリル基を加水分解することができ、且つフルオロアルキル基含有オリゴマーを縮合可能なものであれば、特に制限されない。このようなアルカリとしては、例えば水酸化アンモニウム、水酸化ナトリウム、水酸化カリウム等の水酸化物が挙げられ、反応性を高くして製造効率を高める点で、好ましくは水酸化アンモニウムである。   In the reaction step, the alkali added to the reaction raw material solution is not particularly limited as long as it can hydrolyze the alkoxysilyl group in the fluoroalkyl group-containing oligomer and can condense the fluoroalkyl group-containing oligomer. Examples of such an alkali include hydroxides such as ammonium hydroxide, sodium hydroxide, and potassium hydroxide. Ammonium hydroxide is preferable from the viewpoint of increasing reactivity and increasing production efficiency.

反応原料溶液に加えるアルカリの混合量は、特に制限されず適宜選択される。また、反応原料溶液にアルカリを混合して加水分解を行う際の反応温度は、好ましくは−5℃〜50℃であり、更に好ましくは0℃〜30℃である。反応温度が−5℃以上であれば、アルコキシシリル基の加水分解速度が過度に遅くならず、十分な反応効率を得ることができ、また50℃以下であれば、製造されるコンポジット粒子の分散安定性を高めることができる。また、反応原料溶液にアルカリを混合して加水分解を行う時間は、特に制限されず適宜選択されるが、好ましくは1時間〜72時間、更に好ましくは1時間〜50時間である。反応工程では、必要に応じて反応原料溶液を撹拌して、加水分解反応を行ってもよい。   The mixing amount of the alkali added to the reaction raw material solution is not particularly limited and is appropriately selected. The reaction temperature at the time of carrying out hydrolysis by mixing an alkali with the reaction raw material solution is preferably -5 ° C to 50 ° C, more preferably 0 ° C to 30 ° C. When the reaction temperature is -5 ° C or higher, the hydrolysis rate of the alkoxysilyl group does not become excessively slow, and sufficient reaction efficiency can be obtained. The stability can be increased. The time for mixing the reaction raw material solution with an alkali for hydrolysis is appropriately selected without limitation, but is preferably 1 hour to 72 hours, and more preferably 1 hour to 50 hours. In the reaction step, the reaction raw material solution may be stirred to carry out the hydrolysis reaction, if necessary.

以上の工程を経て、本発明に係るコンポジット粒子を含有する反応後分散液が得られる。この分散液に含まれるコンポジット粒子は、シロキサン結合を主骨格としたフルオロアルキル基含有オリゴマーの縮合物が磁性酸化鉄粒子の表面に形成されたものとなる。反応終了後、常法により減圧下に溶媒を除去するか、或いは濾過等による固液分離や、磁石等による磁気分離によって固形分を回収し、必要に応じて、洗浄、乾燥等の精製を更に行って、目的とするコンポジット粒子を得ることができる。   Through the above steps, a post-reaction dispersion containing the composite particles according to the present invention is obtained. The composite particles contained in this dispersion have a condensate of a fluoroalkyl group-containing oligomer having a siloxane bond as the main skeleton formed on the surface of the magnetic iron oxide particles. After completion of the reaction, the solvent is removed under reduced pressure by a conventional method, or the solid content is recovered by solid-liquid separation by filtration or magnetic separation by a magnet or the like, and further purified by washing, drying or the like, if necessary. Then, the desired composite particles can be obtained.

本発明に係るコンポジット粒子は、これを単独で、又は該粒子と、ガラス、フィルム、天然繊維又は合成繊維、シリカ、アルミナ、砂などの他の基材とを組み合わせて、例えば磁気テープ、高密度磁気記録媒体、電磁波遮断用材料、体外診断薬等の磁性材料、或いは油吸着剤等として用いることができる。特に本発明に係るコンポジット粒子は、油吸着剤として好適に用いることができる。   The composite particles according to the present invention may be used alone or in combination with other base materials such as glass, film, natural fiber or synthetic fiber, silica, alumina and sand, for example, magnetic tape, high density. It can be used as a magnetic recording medium, an electromagnetic wave shielding material, a magnetic material such as an in vitro diagnostic agent, or an oil adsorbent. In particular, the composite particles according to the present invention can be suitably used as an oil adsorbent.

本発明の油吸着剤は、上述のコンポジット粒子を含むものである。本発明の油吸着剤は、例えば油としてドデカンを用いた場合、コンポジット粒子1g当たりのドデカンの吸着量が1g以上、好ましくは1.1g〜3gである。特に、本発明の油吸着剤は、フルオロアルキル基含有オリゴマーの縮合物及び磁性酸化鉄粒子が複合化したコンポジット粒子を含んでいるので、該粒子が有する優れた親油性が発現したものとなる。   The oil adsorbent of the present invention contains the composite particles described above. For example, when dodecane is used as the oil, the oil adsorbent of the present invention has an adsorption amount of 1 g or more, preferably 1.1 g to 3 g, per 1 g of composite particles. In particular, the oil adsorbent of the present invention contains the composite particles in which the condensate of the fluoroalkyl group-containing oligomer and the magnetic iron oxide particles are complexed, so that the excellent lipophilicity of the particles is exhibited.

本明細書における「油」とは、一般に、油溶性基を有する化合物であり、水と油とが互いに分離して混合しない性質、水と油とが均一若しくは不均一な分散液を形成する性質、又はこれらを組み合わせた性質を有するものである。これらの性質は、例えば目視や、水と油とが乳化等によって分散している場合には光学顕微鏡を用いて、上述の性質を確認又は測定できる。このような性質を満たす油の具体例としては、ドデカン、シクロヘキサン等の非環状又は環状炭化水素、植物性油、動物性脂等の油脂、並びに重油、灯油、軽油、ガソリン等の鉱油等が挙げられる。   The "oil" in the present specification is generally a compound having an oil-soluble group, the property that water and oil are not separated from each other and mixed, and the property that water and oil form a uniform or non-uniform dispersion liquid. , Or a combination of these. These properties can be confirmed or measured, for example, visually or using an optical microscope when water and oil are dispersed by emulsification or the like. Specific examples of oils satisfying such properties include acyclic or cyclic hydrocarbons such as dodecane and cyclohexane, oils and fats such as vegetable oils and animal fats, and mineral oils such as heavy oil, kerosene, gas oil and gasoline. To be

本発明の油吸着剤を用いた油水分離方法は、該油吸着剤と、油水分離の処理対象となる水及び油を含む処理液とを接触させて、処理液中の油を油吸着剤に吸着させる吸着工程を備える。吸着工程の例としては、粉末の油吸着剤を、水及び油を含む処理液に添加して、処理液に含まれる油を選択的に油吸着剤に吸着させて、水と油とを分離する。本発明の油吸着剤は、これを水及び油を含む処理水に静置状態で添加してもよく、必要に応じて、超音波分散等の撹拌下に吸着工程を行ってもよい。   The oil-water separation method using the oil adsorbent of the present invention comprises contacting the oil adsorbent with a treatment liquid containing water and oil to be treated in the oil-water separation, and converting the oil in the treatment liquid into the oil adsorbent. An adsorption step of adsorbing is provided. As an example of the adsorption step, a powdery oil adsorbent is added to a treatment liquid containing water and oil, and the oil contained in the treatment liquid is selectively adsorbed on the oil adsorbent to separate water and oil. To do. The oil adsorbent of the present invention may be added to treated water containing water and oil in a stationary state, and if necessary, the adsorption step may be carried out under stirring such as ultrasonic dispersion.

油水分離方法における処理対象となる処理液は、水及び油を含むものであれば特に制限はない。詳細には、例えば工場や飲食店等から排水される油を含む産業排水、油を含む生活排水、或いは油を含む海水、河川水、湖沼水等が挙げられる。処理液における水及び油の混合形態は、水及び油が二層以上に分離した形態であってもよく、澄明な溶液の形態であってもよく、W/O型エマルションやO/W型エマルションといったエマルション等の乳濁液の形態であってもよい。簡便且つ効果的な油水分離を実現する観点から、処理液の形態が溶液又はエマルションであるものを処理対象として、油水分離を行うことが好ましい。   The treatment liquid to be treated in the oil-water separation method is not particularly limited as long as it contains water and oil. In detail, for example, industrial wastewater containing oil drained from factories, restaurants, etc., domestic wastewater containing oil, seawater containing oil, river water, lake water, etc. may be mentioned. The mixed form of water and oil in the treatment liquid may be a form in which water and oil are separated into two or more layers, may be a clear solution form, and may be a W / O type emulsion or an O / W type emulsion. It may be in the form of emulsion such as emulsion. From the viewpoint of realizing simple and effective oil-water separation, it is preferable to perform oil-water separation by treating a treatment liquid in the form of a solution or an emulsion.

油吸着剤の処理液への添加量は、処理液に含まれる油の種類や量、並びに水及び油の混合形態等に応じて適宜変更することができる。例えば、油としてドデカンを含む処理水を処理対象とする場合は、ドデカン1gに対して油吸着剤を0.3g〜3g、好ましくは0.6g〜2.5g添加することができる。油水分離を首尾よく行う観点から、油吸着剤の処理液への添加量は、処理対象の処理液を用いて、予め実験により求めておくことが好ましい。   The amount of the oil adsorbent added to the treatment liquid can be appropriately changed depending on the type and amount of oil contained in the treatment liquid, the mixing form of water and oil, and the like. For example, when treated water containing dodecane as oil is to be treated, 0.3 g to 3 g, preferably 0.6 g to 2.5 g of an oil adsorbent can be added to 1 g of dodecane. From the viewpoint of successfully performing oil-water separation, the amount of the oil adsorbent added to the treatment liquid is preferably determined in advance by an experiment using the treatment liquid to be treated.

油水分離に用いた油吸着剤を処理液から首尾よく回収するとともに、処理液に含まれる油を選択的且つ効果的に回収可能とする観点から、本発明の油水分離方法は、吸着工程を行った後、油が吸着した油吸着剤を磁気分離して、処理液から油吸着剤を回収する回収工程を更に備えることが好ましい。   While successfully recovering the oil adsorbent used for oil-water separation from the treatment liquid, from the viewpoint of enabling the oil contained in the treatment liquid to be selectively and effectively recovered, the oil-water separation method of the present invention performs the adsorption step. After that, it is preferable to further include a recovery step of magnetically separating the oil adsorbent on which the oil is adsorbed and recovering the oil adsorbent from the treatment liquid.

上述のとおり、本発明の油吸着剤は、コンポジット粒子を含んでいるので、処理液に含まれる油に対する親和性が高く、且つ処理液に含まれる水に対する撥水性が高いものとなる。また、コンポジット粒子は芯材に磁性酸化鉄粒子を含んでいるので、外部から付与された磁力によって容易に引き寄せられる。磁力の発生材料として、例えば磁石を用いた場合には、吸着工程後の油吸着剤は、処理液中の油を吸着した状態のまま、磁石の磁力によって、磁石側へ引き寄せられる。このようにして、添加した油吸着剤を回収しつつ、処理液から水と油とを簡便且つ効果的に分離することができる。   As described above, since the oil adsorbent of the present invention contains the composite particles, it has a high affinity for the oil contained in the treatment liquid and a high water repellency for the water contained in the treatment liquid. Further, since the composite particles contain magnetic iron oxide particles in the core material, they can be easily attracted by the magnetic force applied from the outside. When, for example, a magnet is used as the material for generating the magnetic force, the oil adsorbent after the adsorption step is attracted to the magnet side by the magnetic force of the magnet while adsorbing the oil in the treatment liquid. In this way, it is possible to easily and effectively separate water and oil from the treatment liquid while recovering the added oil adsorbent.

回収工程における磁気分離に用いることができる磁石としては、特に制限はないが、例えば、永久磁石、超電導バルク磁石、あるいは電磁石等を用いることができる。   The magnet that can be used for magnetic separation in the recovery step is not particularly limited, but for example, a permanent magnet, a superconducting bulk magnet, an electromagnet, or the like can be used.

本発明の油水分離方法は、吸着工程を行った後、回収した油吸着剤を有機溶剤で洗浄して、油吸着材として再使用可能にする洗浄工程を更に備えることが好ましい。吸着した油を油有機材から洗浄除去するための有機溶剤としては、油を溶解でき、且つ該油吸着剤に対して不活性なものであれば特に制限なく用いることができる。このような有機溶剤としては、例えばメタノール、エタノール、n−プロパノール、イソプロパノール等の低級アルコール、アセトン等のケトン、ジエチルエーテル、テトラヒドロフラン等の非環状又は環状エーテル、n−ヘキサン、シクロヘキサン等の非環状又は環状アルカン、並びにこれらの混合物を用いることができる。このような工程を経ることによって、新しい油吸着剤を用いることなく、油水分離を効果的に複数回行うことができるので、油水分離のコストを一層低減することができる。   It is preferable that the oil-water separation method of the present invention further comprises a washing step of washing the collected oil adsorbent with an organic solvent after the adsorption step so that the oil adsorbent can be reused as an oil adsorbent. As the organic solvent for washing and removing the adsorbed oil from the oil-organic material, any organic solvent that can dissolve the oil and is inert to the oil adsorbent can be used without particular limitation. Examples of such organic solvents include lower alcohols such as methanol, ethanol, n-propanol and isopropanol, ketones such as acetone, acyclic or cyclic ethers such as diethyl ether and tetrahydrofuran, acyclic or cyclic ethers such as n-hexane and cyclohexane. Cyclic alkanes as well as mixtures thereof can be used. By going through such a step, oil-water separation can be effectively performed a plurality of times without using a new oil adsorbent, so that the cost of oil-water separation can be further reduced.

洗浄工程における油吸着剤の洗浄方法は特に限定されず、例えば有機溶媒中での撹拌や超音波分散、有機溶媒への浸漬等の方法を行うことができる。洗浄工程後、乾燥等の精製を更に行って、再使用可能な油吸着剤としてもよい。   The method for cleaning the oil adsorbent in the cleaning step is not particularly limited, and for example, methods such as stirring in an organic solvent, ultrasonic dispersion, and immersion in an organic solvent can be performed. After the washing step, purification such as drying may be further performed to obtain a reusable oil adsorbent.

また、本発明の油吸着剤は、粉末で用いてもよく、必要に応じて常法に従い成形加工し、それによって得られた成形体を油吸着材として用いてもよい。   Further, the oil adsorbent of the present invention may be used in the form of powder, and if necessary, the oil adsorbent may be molded by a conventional method, and the molded product obtained thereby may be used as the oil adsorbent.

前記の成形加工としては、例えば粉末状の油吸着剤を顆粒状に成形するための造粒加工、或いは樹脂芯材の表面に本発明の油吸着剤を添着被覆処理する方法、天然繊維又は合成繊維で形成された不織布の表面及び/又は内部に油吸着剤を付着させて固定化してシート状にする方法などを挙げることができる。造粒加工の方法としては、公知の方法が挙げられ、例えば攪拌混合造粒、転動造粒、押し出し造粒、破砕造粒、流動層造粒、噴霧乾燥造粒(スプレードライ)、圧縮造粒等を挙げることができる。造粒の過程において必要に応じバインダーや溶媒を添加、混合してもよい。バインダーとしては、公知のもの、例えばポリビニルアルコール、ポリエチレンオキサイド、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、デンプン、コーンスターチ、糖蜜、乳糖、ゼラチン、デキストリン、アラビアゴム、アルギン酸、ポリアクリル酸、グリセリン、ポリエチレングリコール、ポリビニルピロリドン等を挙げることができる。溶媒としては水性溶媒や有機溶媒等各種のものを用いることができる。   Examples of the molding process include a granulation process for molding a powdery oil adsorbent into granules, or a method of coating the surface of a resin core material with the oil adsorbent of the present invention, natural fiber or synthetic fiber. An example is a method in which an oil adsorbent is adhered to the surface and / or the inside of a nonwoven fabric formed of fibers to fix the nonwoven fabric into a sheet. Examples of the granulation method include known methods, for example, stirring and mixing granulation, tumbling granulation, extrusion granulation, crush granulation, fluidized bed granulation, spray drying granulation (spray dry), compression granulation. Examples thereof include grains. If necessary, a binder or solvent may be added and mixed in the granulation process. As the binder, known binders such as polyvinyl alcohol, polyethylene oxide, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, carboxymethyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, starch, corn starch, molasses, lactose, gelatin. , Dextrin, gum arabic, alginic acid, polyacrylic acid, glycerin, polyethylene glycol, polyvinylpyrrolidone and the like. Various solvents such as an aqueous solvent and an organic solvent can be used as the solvent.

以下、本発明を実施例により説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described with reference to examples, but the scope of the present invention is not limited to these examples.

<フルオロアルキル基含有オリゴマー>
フルオロアルキル基含有オリゴマー(以下、「VM」という。)として、前記一般式(1)の骨格を有し、以下の表1に示す置換基を有するものを使用した。表1に示す分子量は、ゲル浸透クロマトグラフィー(GPC、ポリスチレン換算)による数平均分子量である。
<Fluoroalkyl group-containing oligomer>
As the fluoroalkyl group-containing oligomer (hereinafter referred to as “VM”), an oligomer having the skeleton of the general formula (1) and the substituents shown in Table 1 below was used. The molecular weights shown in Table 1 are number average molecular weights by gel permeation chromatography (GPC, polystyrene conversion).

〔実施例1ないし9〕
以下の表2に示す量のVMをメタノール20mLに溶解してVM溶液とし、この溶液に、表2に示す量のマグネタイト粒子(Fe:戸田工業社製)を添加し、反応原料溶液をそれぞれ調製した。マグネタイト粒子の平均粒子径D50は表2に示すとおりである。これらの反応原料溶液に25質量%アンモニア水0.3mLを添加し、マグネティックスターラーを用いて室温(25℃)で5時間撹拌を行って、コンポジット粒子を含む反応後分散液を得た。反応後分散液に永久磁石を近づけて目的物を磁気分離して回収し、回収した目的物を乾燥してコンポジット粒子試料を得た。添加したマグネタイト粒子の質量を、得られたコンポジット粒子試料の質量の割合で除すことで、コンポジット粒子試料の収率(%)を算出した。収率は、コンポジット粒子の製造効率を示し、収率が高いほど工業的に有利であることを意味する。
TEM観察の結果、各実施例のコンポジット粒子試料は、マグネタイト粒子がフフルオロアルキル基含有オリゴマーの縮合物中に包接され、複合化されていることが確認された。実施例3で得られたコンポジット粒子試料のTEM写真を図1に示す。
[Examples 1 to 9]
The amount of VM shown in Table 2 below was dissolved in 20 mL of methanol to prepare a VM solution, and the amount of magnetite particles (Fe 3 O 4 : manufactured by Toda Kogyo Co., Ltd.) shown in Table 2 was added to this solution to prepare a reaction raw material solution. Were prepared respectively. The average particle diameter D50 of the magnetite particles is as shown in Table 2. 0.3 mL of 25 mass% ammonia water was added to these reaction raw material solutions, and the mixture was stirred for 5 hours at room temperature (25 ° C.) using a magnetic stirrer to obtain a post-reaction dispersion containing composite particles. After the reaction, a permanent magnet was brought close to the dispersion liquid to magnetically separate and collect the target substance, and the collected target substance was dried to obtain a composite particle sample. The yield (%) of the composite particle sample was calculated by dividing the mass of the added magnetite particles by the ratio of the mass of the obtained composite particle sample. The yield indicates the production efficiency of composite particles, and the higher the yield, the more industrially advantageous.
As a result of TEM observation, it was confirmed that in the composite particle samples of the respective examples, the magnetite particles were included in the condensate of the fluorofluoroalkyl group-containing oligomer to form a composite. A TEM photograph of the composite particle sample obtained in Example 3 is shown in FIG.

〔比較例1ないし3〕
平均粒子径D50が10nm(比較例1)、40nm(比較例2)、200nm(比較例3)のマグネタイト粒子のみを用いた。つまり、各比較例は、フルオロアルキル基含有オリゴマーの縮合物を有しない磁性酸化鉄粒子の試料である。
[Comparative Examples 1 to 3]
Only magnetite particles having an average particle diameter D50 of 10 nm (Comparative Example 1), 40 nm (Comparative Example 2) and 200 nm (Comparative Example 3) were used. That is, each comparative example is a sample of magnetic iron oxide particles having no condensate of fluoroalkyl group-containing oligomer.

<物性評価>
実施例で得られたコンポジット粒子試料及び比較例の粒子試料について、平均粒子径D50、並びにドデカンとの接触角及び水との接触角を測定した。また、同試料について、溶媒に対する分散性を評価した。
<Physical property evaluation>
The average particle size D50, the contact angle with dodecane, and the contact angle with water were measured for the composite particle sample obtained in the example and the particle sample of the comparative example. In addition, the same sample was evaluated for dispersibility in a solvent.

(1.平均粒子径D50の評価)
実施例で得られたコンポジット粒子試料をメタノールに分散させて、レーザー回折式粒度分布測定装置(島津製作所社製、SALD−300V)を用いて測定した。
(1. Evaluation of average particle diameter D50)
The composite particle sample obtained in the example was dispersed in methanol and measured using a laser diffraction particle size distribution analyzer (manufactured by Shimadzu Corporation, SALD-300V).

(2.ドデカンとの接触角及び水との接触角の評価)
実施例で得られたコンポジット粒子を含む反応後分散液に、ガラス板を1分間、室温(25℃)で浸した。ガラス板を引き上げた後、自然乾燥させ、その後、20℃で一晩真空乾燥を行った。このようにして得られた改質ガラス板の表面に対するドデカンとの接触角(°)、及び水との接触角(°)を協和界面科学製のDrop Master.300を用いてそれぞれ測定した。接触角が小さいほど、ドデカン又は水との親和性が高いことを示す。結果を以下の表3に示す。表中の「−」は接触角に変化がなかったことを示す。
(2. Evaluation of contact angle with dodecane and water)
The glass plate was immersed in the post-reaction dispersion containing the composite particles obtained in the example for 1 minute at room temperature (25 ° C.). After pulling up the glass plate, it was naturally dried, and then vacuum dried at 20 ° C. overnight. The contact angle (°) with dodecane and the contact angle (°) with water on the surface of the modified glass plate thus obtained were measured by Kyowa Interface Science Drop Master. 300 was used for each measurement. The smaller the contact angle, the higher the affinity with dodecane or water. The results are shown in Table 3 below. "-" In the table indicates that the contact angle did not change.

(3.溶媒に対する分散性の評価)
実施例1、3、4、6、7及び9で得られたコンポジット粒子試料、並びに比較例の粒子試料を用いて、以下の溶媒に対する分散性を以下の基準で評価した。評価は、実施例又は比較例の試料0.01gを溶媒5mLに添加し、その分散状態を目視で観察した。用いた溶媒は、水(HO)、メタノール(MeOH)、エタノール(EtOH)、テトラヒドロフラン(THF)、1,2−ジクロロエタン(DE)、ClCHCFCFとCClFCFCHClFとの質量比1:1の混合溶媒(AK−225、AGC社製)、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)とした。結果を以下の表4に示す。
(3. Evaluation of dispersibility in a solvent)
Using the composite particle samples obtained in Examples 1, 3, 4, 6, 7, and 9 and the comparative particle sample, the dispersibility in the following solvents was evaluated according to the following criteria. For the evaluation, 0.01 g of the sample of the Example or Comparative Example was added to 5 mL of the solvent, and the dispersion state was visually observed. The solvent used was water (H 2 O), methanol (MeOH), ethanol (EtOH), tetrahydrofuran (THF), 1,2-dichloroethane (DE), Cl 2 CHCF 2 CF 3 and CClF 2 CF 2 CHClF. A mixed solvent having a mass ratio of 1: 1 (AK-225, manufactured by AGC Co.), dimethyl sulfoxide (DMSO), and dimethylformamide (DMF) were used. The results are shown in Table 4 below.

(分散性の評価基準)
×:粒子試料が溶媒に浮遊又は沈殿し、全く分散しない。
△:粒子試料が溶媒に一部浮遊又は沈殿しているが、分散しているものもある。
○:粒子試料が溶媒に浮遊又は沈殿することなく、略均一に分散している。
(Dispersion evaluation criteria)
X: The particle sample floats or precipitates in the solvent and is not dispersed at all.
B: Part of the particle sample is suspended or precipitated in the solvent, but some are dispersed.
◯: The particle sample is substantially uniformly dispersed without floating or settling in the solvent.

表2に示すように、各実施例に示すコンポジット粒子は、いずれも収率が高く、工業的に有利な方法で製造できることが判る。特に、磁性酸化鉄粒子の平均粒子径を大きくしたり、磁性酸化鉄粒子の添加量を多くしたりすることによって、コンポジット粒子の収率が高くなり、工業的に一層有利な方法で製造できることも判る。   As shown in Table 2, it is understood that the composite particles shown in each of the examples have a high yield and can be produced by an industrially advantageous method. In particular, by increasing the average particle diameter of the magnetic iron oxide particles or increasing the addition amount of the magnetic iron oxide particles, the yield of the composite particles is increased, and it can be produced by a more industrially advantageous method. I understand.

また表3に示すように、各実施例に示すコンポジット粒子は、ドデカンの接触角が小さく、且つ水との接触角が非常に大きいので、親油性及び撥水性を有するものであることが判る。一方、各比較例に示す粒子は、ドデカンの接触角及び水の接触角がともに小さく、撥水性でないことが判る。   Further, as shown in Table 3, the composite particles shown in each of the examples have a small contact angle with dodecane and a very large contact angle with water, and thus it is understood that they have lipophilicity and water repellency. On the other hand, it can be seen that the particles shown in each of the comparative examples have a small contact angle of dodecane and a small contact angle of water, and are not water repellent.

更に表4に示すように、各実施例に示すコンポジット粒子は、水には全く分散せず、親油性を有する各溶媒には分散可能であることも判る。   Further, as shown in Table 4, it can be seen that the composite particles shown in each example are not dispersed in water at all and can be dispersed in each solvent having lipophilicity.

〔実施例10〜20〕
以下の表5に示す添加量のVMをメタノール5mLに溶解してVM溶液とし、表5に示す平均粒子径及び添加量の磁性酸化鉄粒子(マグネタイト粒子)を用いた他は、実施例1ないし9と同様にコンポジット粒子試料を製造した。TEM観察の結果、各実施例のコンポジット粒子試料は、マグネタイト粒子がフルオロアルキル基含有オリゴマーの縮合物中に包接され、複合化されていることが確認された。実施例10で得られたコンポジット粒子試料のTEM写真を図2に示す。
[Examples 10 to 20]
The amount of VM shown in Table 5 below was dissolved in 5 mL of methanol to form a VM solution, and the magnetic iron oxide particles (magnetite particles) having the average particle size and the amount shown in Table 5 were used, and the results of Examples 1 to 3 were used. Composite particle samples were prepared as in 9. As a result of TEM observation, it was confirmed that in the composite particle samples of each example, the magnetite particles were included in the condensate of the fluoroalkyl group-containing oligomer to form a composite. A TEM photograph of the composite particle sample obtained in Example 10 is shown in FIG.

<物性評価>
実施例10ないし18で得られたコンポジット粒子試料について、平均粒子径D50、並びにドデカンとの接触角及び水との接触角を上述の方法で測定した。また、実施例19及び20のコンポジット粒子試料について平均粒子径を測定した。結果を以下の表6に示す。
<Physical property evaluation>
With respect to the composite particle samples obtained in Examples 10 to 18, the average particle diameter D50, the contact angle with dodecane, and the contact angle with water were measured by the methods described above. The average particle size of the composite particle samples of Examples 19 and 20 was measured. The results are shown in Table 6 below.

表5に示すように、実施例10ないし20に示すコンポジット粒子は、実施例1ないし9と同様に、いずれも収率が高く、工業的に有利な方法で製造できることが判る。特に、磁性酸化鉄粒子の平均粒子径を大きくしたり、磁性酸化鉄粒子の添加量を多くしたりすることによって、コンポジット粒子の収率が高くなり、工業的に一層有利な方法で製造できることも判る。   As shown in Table 5, it can be seen that the composite particles shown in Examples 10 to 20 have high yields and can be produced by an industrially advantageous method, as in Examples 1 to 9. In particular, by increasing the average particle diameter of the magnetic iron oxide particles or increasing the addition amount of the magnetic iron oxide particles, the yield of the composite particles is increased, and it can be produced by a more industrially advantageous method. I understand.

また表6に示すように、実施例10ないし20に示すコンポジット粒子は、ドデカンとの接触角が小さく、且つ水との接触角が非常に大きいので、親油性及び撥水性を有するものであることが判る。   Further, as shown in Table 6, the composite particles shown in Examples 10 to 20 have a small contact angle with dodecane and a very large contact angle with water, and thus have lipophilicity and water repellency. I understand.

<油水分離性能の評価>
上述の方法によって得られたコンポジット粒子を油吸着剤として用いたときの油水分離性能を、以下の評価1ないし4に記載の方法で評価した。
<Evaluation of oil-water separation performance>
The oil-water separation performance when the composite particles obtained by the above method was used as an oil adsorbent was evaluated by the methods described in Evaluations 1 to 4 below.

(評価1)
図3に示すように、水2mLを入れたガラス製サンプルビンに、油として、予めpigment green MCにより青に着色されたドデカン20μLを水面に浮遊させるように添加し、水及び油が二層に分離した処理液1とした。この処理液1に、20mgの実施例3で得られたコンポジット粒子試料又は比較例1の粒子試料をそれぞれ静置状態で添加し、吸着工程を行った。次いで、サンプルビンの側面に永久磁石を近づけ、各試料を処理液から磁気分離し、回収工程を行った。回収工程後のサンプルビンの状態を目視で観察し、以下の基準で油水分離性能(油吸着性能)を評価した。結果を図3及び表7に示す。
(Evaluation 1)
As shown in FIG. 3, 20 μL of dodecane, which was previously colored blue by pigment green MC, was added as an oil to a glass sample bottle containing 2 mL of water so as to float on the water surface. The separated processing liquid 1 was used. 20 mg of the composite particle sample obtained in Example 3 or the particle sample of Comparative Example 1 was added to the treatment liquid 1 in a stationary state, and an adsorption step was performed. Next, a permanent magnet was brought close to the side surface of the sample bottle, each sample was magnetically separated from the treatment liquid, and a recovery step was performed. The state of the sample bottle after the collecting step was visually observed, and the oil-water separation performance (oil adsorption performance) was evaluated according to the following criteria. The results are shown in FIG. 3 and Table 7.

(評価2)
図4に示すように、水30mLを入れたシャーレに、青色に着色されたドデカン20μLを浮遊させるように添加し、水及び油が二層に分離した処理液2とした。この処理液2に、50mgの実施例12で得られたコンポジット粒子試料又は比較例1の粒子試料をそれぞれ静置状態で添加し、吸着工程を行った。次いで、シャーレの上方に永久磁石を近づけ、各試料を処理液から磁気分離し、回収工程を行った。回収工程後のシャーレの状態を目視で観察し、以下の基準で油水分離性能(油吸着性能)を評価した。結果を図4及び表8に示す。
(Evaluation 2)
As shown in FIG. 4, 20 μL of blue-colored dodecane was added to a petri dish containing 30 mL of water so as to be suspended, to obtain a treatment liquid 2 in which water and oil were separated into two layers. 50 mg of the composite particle sample obtained in Example 12 or the particle sample of Comparative Example 1 was added to the treatment liquid 2 in a stationary state, and an adsorption step was performed. Then, a permanent magnet was brought close to above the petri dish to magnetically separate each sample from the treatment liquid, and a recovery step was performed. The state of the petri dish after the collecting step was visually observed, and the oil-water separation performance (oil adsorption performance) was evaluated according to the following criteria. The results are shown in FIG. 4 and Table 8.

(油吸着性能の評価)
×:着色されたドデカンが水面に観察され、油吸着性能が不良である。
〇:着色されたドデカンが水面に観察されず、油吸着性能が良好である。
(Evaluation of oil adsorption performance)
X: Colored dodecane is observed on the water surface, and the oil adsorption performance is poor.
◯: Colored dodecane was not observed on the water surface, and the oil adsorption performance was good.

図3及び図4、並びに表7及び表8に示すように、実施例3及び12のコンポジット粒子は、比較例1の粒子と比較して、油吸着性能が高く、水及び油を含む処理液から簡便且つ効果的に油を分離できることが判る。   As shown in FIGS. 3 and 4, and Tables 7 and 8, the composite particles of Examples 3 and 12 have higher oil adsorption performance than the particles of Comparative Example 1, and the treatment liquid containing water and oil. It can be seen from the above that the oil can be separated easily and effectively.

(評価3)
5mLのドデカンと、0.468mLの水と、乳化剤として468mgのSpan80とをサンプルビンに入れ、超音波処理を1時間行った。次いで、これを水で50倍に希釈して、図5に示すW/O型エマルションを作製し、これを処理液3とした。次いで、3mLの処理液3を入れたサンプルビンに、50mgの実施例16ないし20のコンポジット粒子試料又は比較例3の粒子試料を添加して、吸着工程を行った。このサンプルビンに蓋をして、該サンプルビンを超音波装置(ASU CLEANER ASU−6、アズワン株式会社製)に入れて、内容物を室温で30分間撹拌し、その後、3分間静置した。続いて、サンプルビンの側面に永久磁石を近づけて、各試料を処理液から磁気分離し、回収工程を行った。回収工程の概要を図5に示す。
(Evaluation 3)
5 mL of dodecane, 0.468 mL of water, and 468 mg of Span 80 as an emulsifier were placed in a sample bottle and subjected to ultrasonication for 1 hour. Next, this was diluted 50 times with water to prepare the W / O type emulsion shown in FIG. Then, 50 mg of the composite particle sample of Examples 16 to 20 or the particle sample of Comparative Example 3 was added to a sample bottle containing 3 mL of the treatment liquid 3, and the adsorption step was performed. The sample bottle was capped, placed in an ultrasonic device (ASU CLEANER ASU-6, manufactured by As One Co., Ltd.), and the contents were stirred at room temperature for 30 minutes and then left standing for 3 minutes. Then, a permanent magnet was brought close to the side surface of the sample bottle to magnetically separate each sample from the treatment liquid, and a recovery step was performed. The outline of the recovery process is shown in FIG.

回収工程後のサンプルビンから上澄み液を採取し、該液の500nmでの光透過率をUVスペクトル装置(島津製作所製、UV−1800)を用いて、ドデカンをブランクとして測定した。光透過率の測定結果は、「Demulsification efficiency」として、図6に示す。光透過率の値が高いほど、エマルションの破壊が起こり、油と水とを容易に分離可能であることを示す。   The supernatant liquid was collected from the sample bottle after the collecting step, and the light transmittance of the liquid at 500 nm was measured using a UV spectrum device (manufactured by Shimadzu Corporation, UV-1800) with dodecane as a blank. The measurement result of the light transmittance is shown in FIG. 6 as “Demulsification efficiency”. The higher the value of the light transmittance, the more the emulsion breaks, indicating that the oil and water can be easily separated.

(評価4)
0.833mLのドデカンと、5mLの水と、乳化剤として625mgのTween80とをサンプルビンに入れ、超音波処理を1時間行った。次いで、これを水で50倍に希釈して、図7に示すO/W型エマルションを作製し、これを処理液4とした。次いで、3mLの処理液4を入れたサンプルビンに、50mgの実施例16ないし20のコンポジット粒子試料又は比較例3の粒子試料を添加して、評価3と同様の方法で吸着工程及び回収工程を行った。回収工程の概要を図7に示す。回収工程後のサンプルビンから上澄み液を採取し、光透過率の測定を評価3と同様に行った。結果を図8に示す。
(Evaluation 4)
0.833 mL of dodecane, 5 mL of water, and 625 mg of Tween 80 as an emulsifier were put in a sample bottle and sonicated for 1 hour. Next, this was diluted 50 times with water to prepare an O / W type emulsion shown in FIG. Then, 50 mg of the composite particle sample of Examples 16 to 20 or the particle sample of Comparative Example 3 was added to a sample bottle containing 3 mL of the treatment liquid 4, and the adsorption step and the recovery step were performed in the same manner as in Evaluation 3. went. The outline of the recovery process is shown in FIG. The supernatant was collected from the sample bottle after the collecting step, and the light transmittance was measured in the same manner as in Evaluation 3. The results are shown in Fig. 8.

図6及び図8に示すように、実施例16ないし20のコンポジット粒子によって処理された処理液は、比較例3の粒子と比較して、光透過率が高くなっている。つまり、実施例のコンポジット粒子は、親油性が高いことに起因して、水と油とが微細に分散したエマルション等の処理液を処理対象とした場合であっても、油水分離性能を首尾よく発現できることが判る。   As shown in FIGS. 6 and 8, the treatment liquids treated with the composite particles of Examples 16 to 20 have higher light transmittance than the particles of Comparative Example 3. That is, due to the high lipophilicity, the composite particles of the examples successfully exhibit oil-water separation performance even when a treatment liquid such as an emulsion in which water and oil are finely dispersed is treated. It is understood that it can be expressed.

<洗浄工程後の油水分離性能の評価>
油を吸着させた油吸着剤を洗浄したときの油水分離性能の変化を、以下の方法で評価した。
<Evaluation of oil-water separation performance after washing process>
The change in oil-water separation performance when the oil adsorbent having adsorbed oil was washed was evaluated by the following method.

(評価5)
実施例18のコンポジット粒子試料を油吸着剤として用いて、評価2と同様に吸着工程及び回収工程を行って、ドデカンを吸着させたコンポジット粒子を回収し、該粒子の質量A1(mg)を測定した。次いで、回収したコンポジット粒子を25℃で1時間乾燥し、乾燥後の粒子を5mLのヘキサンで洗浄して、洗浄工程を行った。更に80℃で12時間乾燥して、再使用可能なコンポジット粒子を得た(これらの一連の工程を「1サイクル」とする。)。更に、再使用可能なコンポジット粒子を用いて、前記サイクルを4回繰り返して行い、各サイクルでの粒子の質量A2〜A5(mg)を測定した。
(Evaluation 5)
Using the composite particle sample of Example 18 as an oil adsorbent, the adsorption step and the recovery step were performed in the same manner as in Evaluation 2, the dodecane-adsorbed composite particles were recovered, and the mass A1 (mg) of the particles was measured. did. Next, the collected composite particles were dried at 25 ° C. for 1 hour, and the dried particles were washed with 5 mL of hexane to perform a washing step. After further drying at 80 ° C. for 12 hours, reusable composite particles were obtained (the series of steps is referred to as “1 cycle”). Further, the above cycle was repeated four times using reusable composite particles, and the mass A2 to A5 (mg) of the particles in each cycle was measured.

対照試料として、ドデカンを含まない液に実施例18のコンポジット粒子試料を添加して、上述の吸着工程及び回収工程を行ってコンポジット粒子を回収し、該粒子の質量B1(mg)を測定した。次いで、上述の洗浄工程を行い、再使用可能なコンポジット粒子を得た。更に再使用可能なコンポジット粒子を用いて、前記サイクルを4回繰り返して行い、各サイクルでの粒子の質量B2〜B5(mg)を測定した。   As a control sample, the composite particle sample of Example 18 was added to a liquid containing no dodecane, the above adsorption step and the recovery step were performed to recover the composite particles, and the mass B1 (mg) of the particles was measured. Then, the above-mentioned washing process was performed to obtain reusable composite particles. The cycle was repeated 4 times using reusable composite particles, and the mass B2 to B5 (mg) of particles in each cycle was measured.

油水分離性能は、吸着したドデカンの質量(Weight gain)として評価した。詳細には、以下の式(a)のように、各サイクルにおける粒子の質量の差を算出した。結果を図9に示す。
吸着したドデカンの質量(mg)=Ax(mg)-Bx(mg)・・・(a)
(xはサイクルの回数を示し、1〜5の整数である。)
The oil-water separation performance was evaluated as the mass of adsorbed dodecane (Weight gain). Specifically, the difference in the mass of particles in each cycle was calculated as in the following formula (a). The results are shown in Fig. 9.
Mass of adsorbed dodecane (mg) = Ax (mg) -Bx (mg) (a)
(X indicates the number of cycles and is an integer of 1 to 5.)

図9に示すように、本発明のコンポジット粒子は、複数回洗浄工程を行った後でも、親油性及び撥水性が十分に保持されており、高い油水分離性能を発現し、且つ再使用可能なものであることが判る。
As shown in FIG. 9, the composite particles of the present invention have sufficient lipophilicity and water repellency even after being subjected to multiple washing steps, exhibit high oil-water separation performance, and are reusable. It turns out to be a thing.

Claims (11)

下記一般式(1)で表されるアルコキシシリル基を有するフルオロアルキル基含有オリゴマーの縮合物と磁性酸化鉄粒子とを含むコンポジット粒子。

(式中、R1及びR2は、−(CF2)p−Y基、又は−CF(CF3)−[OCF2CF(CF3)]q−OC37基を示し、R1及びR2は、同一の基であっても異なる基であってもよく、R1及びR2中のYは水素原子、フッ素原子又は塩素原子を示し、p及びqはそれぞれ独立に0〜10の整数である。R3、R4及びR5は同一の基であっても異なる基であってもよく、R3、R4及びR5は炭素数1〜5の直鎖状又は分岐状のアルキル基を示す。mは2〜3の整数である。)
Composite particles containing a condensate of a fluoroalkyl group-containing oligomer having an alkoxysilyl group represented by the following general formula (1) and magnetic iron oxide particles.

(Wherein, R 1 and R 2, - (CF 2) p- Y group, or -CF (CF 3) - [OCF 2 CF (CF 3)] indicates the q-OC 3 F 7 group, R 1 And R 2 may be the same group or different groups, Y in R 1 and R 2 represents a hydrogen atom, a fluorine atom or a chlorine atom, and p and q each independently represent 0 to 10 R 3 , R 4 and R 5 may be the same or different, and R 3 , R 4 and R 5 are linear or branched having 1 to 5 carbon atoms. Represents an alkyl group, and m is an integer of 2 to 3.)
一般式(1)の式中のR1及びR2が、−CF(CF3)OC37である、請求項1に記載のコンポジット粒子。 The composite particle according to claim 1, wherein R 1 and R 2 in the formula of the general formula (1) are —CF (CF 3 ) OC 3 F 7 . 前記磁性酸化鉄粒子が、マグネタイト粒子又はマグヘマイト粒子である、請求項1又は2に記載のコンポジット粒子。   The composite particles according to claim 1 or 2, wherein the magnetic iron oxide particles are magnetite particles or maghemite particles. 平均粒子径が10nm〜7000nmである、請求項1ないし3のいずれか一項に記載のコンポジット粒子。   The composite particle according to any one of claims 1 to 3, having an average particle diameter of 10 nm to 7000 nm. 下記一般式(1)で表されるアルコキシシリル基を有するフルオロアルキル基含有オリゴマーと磁性酸化鉄粒子とを含む反応原料溶液に、アルカリを加えて、加水分解反応を行う反応工程を備える、コンポジット粒子の製造方法。

(式中、R1及びR2は、−(CF2)p−Y基、又は−CF(CF3)−[OCF2CF(CF3)]q−OC37基を示し、R1及びR2は、同一の基であっても異なる基であってもよく、R1及びR2中のYは水素原子、フッ素原子又は塩素原子を示し、p及びqはそれぞれ独立に0〜10の整数である。R3、R4及びR5は同一の基であっても異なる基であってもよく、R3、R4及びR5は炭素数1〜5の直鎖状又は分岐状のアルキル基を示す。mは2〜3の整数である。)
Composite particles including a reaction step of adding an alkali to a reaction raw material solution containing a fluoroalkyl group-containing oligomer having an alkoxysilyl group represented by the following general formula (1) and magnetic iron oxide particles to carry out a hydrolysis reaction Manufacturing method.

(Wherein, R 1 and R 2, - (CF 2) p- Y group, or -CF (CF 3) - [OCF 2 CF (CF 3)] indicates the q-OC 3 F 7 group, R 1 And R 2 may be the same group or different groups, Y in R 1 and R 2 represents a hydrogen atom, a fluorine atom or a chlorine atom, and p and q each independently represent 0 to 10 R 3 , R 4 and R 5 may be the same or different, and R 3 , R 4 and R 5 are linear or branched having 1 to 5 carbon atoms. Represents an alkyl group, and m is an integer of 2 to 3.)
平均粒子径が5nm〜1000nmである前記磁性酸化鉄粒子を用いて、前記反応工程を行う、請求項5に記載のコンポジット粒子の製造方法。   The method for producing composite particles according to claim 5, wherein the reaction step is performed using the magnetic iron oxide particles having an average particle diameter of 5 nm to 1000 nm. 請求項1ないし4のいずれか一項に記載のコンポジット粒子を含む油吸着剤。   An oil adsorbent containing the composite particles according to any one of claims 1 to 4. 請求項7に記載の油吸着剤と、水及び油を含む処理液とを接触させて、該処理液の油を該油吸着剤に吸着させる吸着工程を備える、油水分離方法。   An oil-water separation method comprising an adsorption step of bringing the oil adsorbent according to claim 7 into contact with a treatment liquid containing water and oil to adsorb the oil of the treatment liquid to the oil adsorbent. 油が吸着した油吸着剤を磁気分離して、前記処理液から該油吸着剤を回収する回収工程を更に備える、請求項8に記載の油水分離方法。   The oil-water separation method according to claim 8, further comprising a recovery step of magnetically separating the oil adsorbent on which the oil is adsorbed and recovering the oil adsorbent from the treatment liquid. 回収した油吸着剤を有機溶剤で洗浄して、油吸着材として再使用可能にする洗浄工程を更に備える、請求項9に記載の油水分離方法。   The oil-water separation method according to claim 9, further comprising a cleaning step of cleaning the recovered oil adsorbent with an organic solvent so that the oil adsorbent can be reused as an oil adsorbent. 前記処理液の形態が、溶液又はエマルションである、請求項8ないし10のいずれか一項に記載の油水分離方法。   The oil-water separation method according to any one of claims 8 to 10, wherein the form of the treatment liquid is a solution or an emulsion.
JP2018196168A 2018-10-17 2018-10-17 Composite particle, method for producing the same, oil separation agent, and oil-water separation method Pending JP2020063375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018196168A JP2020063375A (en) 2018-10-17 2018-10-17 Composite particle, method for producing the same, oil separation agent, and oil-water separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018196168A JP2020063375A (en) 2018-10-17 2018-10-17 Composite particle, method for producing the same, oil separation agent, and oil-water separation method

Publications (1)

Publication Number Publication Date
JP2020063375A true JP2020063375A (en) 2020-04-23

Family

ID=70388115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018196168A Pending JP2020063375A (en) 2018-10-17 2018-10-17 Composite particle, method for producing the same, oil separation agent, and oil-water separation method

Country Status (1)

Country Link
JP (1) JP2020063375A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113501564A (en) * 2021-08-05 2021-10-15 天华化工机械及自动化研究设计院有限公司 Variable magnetic oil-water separation magnetic separator
CN113620394A (en) * 2021-08-05 2021-11-09 天华化工机械及自动化研究设计院有限公司 Controllable magnetic oil-water separation magnetic separator and oil-water separation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000176306A (en) * 1998-12-18 2000-06-27 Kawasaki Heavy Ind Ltd Method for recovering oil by magnetic separation and magnetic body for oil recovery
JP2005177532A (en) * 2003-12-16 2005-07-07 Hitachi Ltd Oil-polluted water treatment apparatus
JP2010235441A (en) * 2009-03-12 2010-10-21 Nippon Chem Ind Co Ltd Magnetic iron oxide nanocomposite powdery particle, method of manufacturing the same, particle dispersion liquid, and resin composition
WO2011013169A1 (en) * 2009-07-29 2011-02-03 株式会社 東芝 Oil content adsorbent material and method for producing oil content adsorbent material
JP2016172249A (en) * 2015-03-06 2016-09-29 日本化学工業株式会社 Oil water separation material and oil water separation method
JP2016180097A (en) * 2015-03-06 2016-10-13 日本化学工業株式会社 Composite particle, method for producing the same and oil-water separating material
JP2018087275A (en) * 2016-11-28 2018-06-07 日本化学工業株式会社 Composite particle, method for producing the same, and oil-water separation material comprising the same
JP2018087277A (en) * 2016-11-28 2018-06-07 日本化学工業株式会社 Composite particle, method for producing the same, and oil-water separation material comprising the same
JP2018087276A (en) * 2016-11-28 2018-06-07 日本化学工業株式会社 Composite particle, method for producing the same, and oil-water separation material comprising the same
JP2018141062A (en) * 2017-02-28 2018-09-13 藤倉ゴム工業株式会社 Nanocomposite particle and method for producing the same, column filler, surface treatment agent, filter, and method for producing nanocomposite particle dispersion liquid, and surface treatment method
JP2018141063A (en) * 2017-02-28 2018-09-13 藤倉ゴム工業株式会社 Surface treatment agent and method for producing the same, filter, and surface treatment method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000176306A (en) * 1998-12-18 2000-06-27 Kawasaki Heavy Ind Ltd Method for recovering oil by magnetic separation and magnetic body for oil recovery
JP2005177532A (en) * 2003-12-16 2005-07-07 Hitachi Ltd Oil-polluted water treatment apparatus
JP2010235441A (en) * 2009-03-12 2010-10-21 Nippon Chem Ind Co Ltd Magnetic iron oxide nanocomposite powdery particle, method of manufacturing the same, particle dispersion liquid, and resin composition
WO2011013169A1 (en) * 2009-07-29 2011-02-03 株式会社 東芝 Oil content adsorbent material and method for producing oil content adsorbent material
JP2016172249A (en) * 2015-03-06 2016-09-29 日本化学工業株式会社 Oil water separation material and oil water separation method
JP2016180097A (en) * 2015-03-06 2016-10-13 日本化学工業株式会社 Composite particle, method for producing the same and oil-water separating material
JP2018087275A (en) * 2016-11-28 2018-06-07 日本化学工業株式会社 Composite particle, method for producing the same, and oil-water separation material comprising the same
JP2018087277A (en) * 2016-11-28 2018-06-07 日本化学工業株式会社 Composite particle, method for producing the same, and oil-water separation material comprising the same
JP2018087276A (en) * 2016-11-28 2018-06-07 日本化学工業株式会社 Composite particle, method for producing the same, and oil-water separation material comprising the same
JP2018141062A (en) * 2017-02-28 2018-09-13 藤倉ゴム工業株式会社 Nanocomposite particle and method for producing the same, column filler, surface treatment agent, filter, and method for producing nanocomposite particle dispersion liquid, and surface treatment method
JP2018141063A (en) * 2017-02-28 2018-09-13 藤倉ゴム工業株式会社 Surface treatment agent and method for producing the same, filter, and surface treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113501564A (en) * 2021-08-05 2021-10-15 天华化工机械及自动化研究设计院有限公司 Variable magnetic oil-water separation magnetic separator
CN113620394A (en) * 2021-08-05 2021-11-09 天华化工机械及自动化研究设计院有限公司 Controllable magnetic oil-water separation magnetic separator and oil-water separation method thereof

Similar Documents

Publication Publication Date Title
Yang et al. In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water
Ballav et al. L-cysteine doped polypyrrole (PPy@ L-Cyst): a super adsorbent for the rapid removal of Hg+ 2 and efficient catalytic activity of the spent adsorbent for reuse
Cheng et al. Competitive sorption of As (V) and Cr (VI) on carbonaceous nanofibers
Baig et al. Removal of hazardous azo dye from water using synthetic nano adsorbent: Facile synthesis, characterization, adsorption, regeneration and design of experiments
Wang et al. Removal of Pb2+ from water environment using a novel magnetic chitosan/graphene oxide imprinted Pb2+
Li et al. Ultrahigh uranium uptake by magnetic magnesium ferrite loaded hydrothermal carbon nanosheets under acidic condition
Ali et al. Adsorptive remediation of environmental pollutants using magnetic hybrid materials as platform adsorbents
JP5317771B2 (en) Adsorbent, organic matter recovery method and oil recovery method
Pourjavadi et al. Efficient removal of cationic dyes using a new magnetic nanocomposite based on starch-g-poly (vinylalcohol) and functionalized with sulfate groups
Saini et al. Sunlight induced photodegradation of toxic azo dye by self-doped iron oxide nano-carbon from waste printer ink
Zafar et al. SrFe2O4 nanoferrites and SrFe2O4/ground eggshell nanocomposites: fast and efficient adsorbents for dyes removal
JP6681220B2 (en) Oil-water separation material and oil-water separation method
Shahbazi et al. Synergistic and antagonistic effects in simultaneous adsorption of Pb (II) and Cd (II) from aqueous solutions onto chitosan functionalized EDTA-silane/mGO
Lei et al. Monolithic magnetic carbonaceous beads for efficient Cr (VI) removal from water
Jiang et al. Enhanced adsorption for malachite green by functionalized lignin magnetic composites: Optimization, performance and adsorption mechanism
JP2020063375A (en) Composite particle, method for producing the same, oil separation agent, and oil-water separation method
EP3257578B1 (en) Preparation process of functionalized superparamagnetic adsorbents with diphenyldimethoxysilane (dpdms) as precursor
Dai et al. Synthesis and characterization of a novel core–shell magnetic nanocomposite via surface-initiated RAFT polymerization for highly efficient and selective adsorption of uranium (VI)
EP3257580B1 (en) Preparation process for of functionalized superparamagnetic adsorbents with dimethyl-dichlorosilane (dmdcls) as precursor
JP2010099575A (en) Method for recovering oil
JP6678044B2 (en) Composite particles, method for producing the same, and oil / water separation material
CA2767437A1 (en) Oil adsorbent and method of manufacturing oil adsorbent
WO2016143651A1 (en) Oil-water separating material and oil-water separation method
Wang et al. Fabrication of nitrogen-doped graphene quantum dots hybrid membranes and its sorption for Cu (II), Co (II) and Pb (II) in mixed polymetallic solution
JP6807576B2 (en) Composite particles, their manufacturing method, oil-water separator using it

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20181030

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20181115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230131