JP2010232454A - Substrate and positioning method thereof, photoelectric conversion device and manufacturing method and apparatus therefor, and solar cell - Google Patents

Substrate and positioning method thereof, photoelectric conversion device and manufacturing method and apparatus therefor, and solar cell Download PDF

Info

Publication number
JP2010232454A
JP2010232454A JP2009078913A JP2009078913A JP2010232454A JP 2010232454 A JP2010232454 A JP 2010232454A JP 2009078913 A JP2009078913 A JP 2009078913A JP 2009078913 A JP2009078913 A JP 2009078913A JP 2010232454 A JP2010232454 A JP 2010232454A
Authority
JP
Japan
Prior art keywords
substrate
light
photoelectric conversion
specific wavelength
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2009078913A
Other languages
Japanese (ja)
Other versions
JP2010232454A5 (en
Inventor
Shigeo Yago
栄郎 矢後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2009078913A priority Critical patent/JP2010232454A/en
Priority to US12/749,332 priority patent/US20100243030A1/en
Publication of JP2010232454A publication Critical patent/JP2010232454A/en
Publication of JP2010232454A5 publication Critical patent/JP2010232454A5/ja
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/206Particular processes or apparatus for continuous treatment of the devices, e.g. roll-to roll processes, multi-chamber deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54473Marks applied to semiconductor devices or parts for use after dicing
    • H01L2223/54486Located on package parts, e.g. encapsulation, leads, package substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily form a positioning marker on a substrate, to position the substrate with high precision, and to form the positioning marker on the substrate without the need to provide the substrate with a lug end which is not finally used. <P>SOLUTION: The substrate has the positioning marker formed with a light absorbing agent that selectively absorbs light of a specific wavelength region or with a light reflecting agent that selectively reflects light of a specific wavelength region. Preferably, the light of a specific wavelength range is near infrared light, infrared light, near ultraviolet light, or ultraviolet light. Preferably, the positioning marker is formed on a rear surface of the substrate. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光電変換素子用等として好適な基板とその位置決め方法、光電変換素子とその製造方法及び製造装置、及び光電変換素子を用いた太陽電池に関するものである。   The present invention relates to a substrate suitable for a photoelectric conversion element and the like, a positioning method thereof, a photoelectric conversion element, a manufacturing method and manufacturing apparatus thereof, and a solar cell using the photoelectric conversion element.

下部電極(裏面電極)と光吸収により電流を発生する光電変換半導体層と上部電極との積層構造を有する光電変換素子が、太陽電池等の用途に使用されている。
従来、太陽電池においては、バルクの単結晶Si又は多結晶Si、あるいは薄膜のアモルファスSiを用いたSi系太陽電池が主流であったが、Siに依存しない化合物半導体系太陽電池の研究開発がなされている。化合物半導体系太陽電池としては、GaAs系等のバルク系と、Ib族元素とIIIb族元素とVIb族元素とからなるCIS(Cu−In−Se)系あるいはCIGS(Cu−In−Ga−Se)系等の薄膜系とが知られている。CIS系あるいはCIGS系は、光吸収率が高く、高エネルギー変換効率が報告されている。
A photoelectric conversion element having a laminated structure of a lower electrode (back surface electrode), a photoelectric conversion semiconductor layer that generates current by light absorption, and an upper electrode is used for applications such as solar cells.
Conventionally, in solar cells, Si-based solar cells using bulk single-crystal Si or polycrystalline Si, or thin-film amorphous Si have been mainstream, but research and development of Si-independent compound semiconductor solar cells has been made. ing. As a compound semiconductor solar cell, CIS (Cu-In-Se) system or CIGS (Cu-In-Ga-Se) composed of a bulk system such as a GaAs system, an Ib group element, an IIIb group element, and a VIb group element is used. And other thin film systems are known. The CIS system or CIGS system has a high light absorption rate, and high energy conversion efficiency has been reported.

薄膜系光電変換素子等の各種電子デバイスの分野においては、可撓性基板上に各種機能膜を成膜及び加工して、デバイス全体を薄板状に加工する技術の開発が進められている。かかるプロセスでは、原材料使用量を低減でき、製造工程を連続工程(Roll to Roll工程)とすることができるので、製造コストを低減することができる。光電変換素子用の可撓性基板としては、金属基材の表面に絶縁膜を形成した基板等が挙げられる。   In the field of various electronic devices such as thin film photoelectric conversion elements, development of a technique for forming and processing various functional films on a flexible substrate and processing the entire device into a thin plate shape is in progress. In such a process, the amount of raw materials used can be reduced, and the manufacturing process can be a continuous process (Roll to Roll process), so that the manufacturing cost can be reduced. Examples of the flexible substrate for the photoelectric conversion element include a substrate in which an insulating film is formed on the surface of a metal base material.

従来より、高効率化及び低コスト化等を目的として、集積デバイスをモノリシックに作製することが行なわれている。その際、鍵となる技術の一つが、薄膜に開溝部を設けて多数のセルに分割する技術である。多数のセルに分割するための上記開溝部を形成する際には、基板の位置を高精度に検出する必要がある。   Conventionally, an integrated device has been manufactured monolithically for the purpose of high efficiency and low cost. At that time, one of the key technologies is a technology in which an open groove portion is provided in a thin film and divided into a large number of cells. When forming the above-mentioned groove portion for dividing into a large number of cells, it is necessary to detect the position of the substrate with high accuracy.

特許文献1,2には、基板に位置決め用のマーカを設けて、基板の位置検出を行うことが記載されている。特許文献1の請求項3には、基板に形成されたマーカを基準としてパターニングの位置決めを行うことが開示されており、段落0028にマーカとして基板に開けた直径1.5mmの孔が挙げられている。特許文献2の請求項10には最終的に光電変換素子に使用されない基板の耳端部を裁断除去する際に、基板に形成されたマーカを検出して裁断位置信号を得ることが記載されており、図2(A)にマーカ(1m)として孔が図示されている。これら文献に示されているように、従来、基板の位置決め用のマーカとしては孔が一般的である。   Patent Documents 1 and 2 describe that the position of the substrate is detected by providing a positioning marker on the substrate. Claim 3 of Patent Document 1 discloses that patterning positioning is performed with reference to a marker formed on the substrate. In paragraph 0028, a hole having a diameter of 1.5 mm is formed as a marker. Yes. In claim 10 of Patent Document 2, it is described that, when the edge portion of the substrate that is not finally used for the photoelectric conversion element is cut and removed, a marker formed on the substrate is detected to obtain a cutting position signal. In FIG. 2A, a hole is shown as a marker (1m). As shown in these documents, conventionally, a hole is generally used as a substrate positioning marker.

特開2003-110224号公報JP2003-110224 特開2000-183387号公報JP 2000-183387 A

特許文献1,2に記載された孔からなるマーカでは、基板にマーカを形成する加工が大掛かりであり、基板の削りカスが生じるため、削りカスの洗浄工程が必須となる。また、基板に対して最終的に光電変換素子に使用されない耳端部を設けてマーカを形成する必要があり、基板の全面を有効に活用することができない。   In the marker composed of holes described in Patent Documents 1 and 2, processing for forming the marker on the substrate is large, and scraping of the substrate is generated. Therefore, a cleaning step for scraping is indispensable. Further, it is necessary to form a marker by providing an ear end portion that is not finally used for the photoelectric conversion element with respect to the substrate, and the entire surface of the substrate cannot be effectively used.

半導体デバイスでは、Siウエハに元々利用できない耳端部があるので、耳端部にマーカを設けても基板の有効利用面積に変わりはないが、光電変換素子では、耳端部をなくすことができれば、基板の有効利用面積が大きくなり、耳端部の裁断除去工程も不要となるので、好ましい。   In semiconductor devices, since there is an ear end portion that cannot be originally used in the Si wafer, even if a marker is provided on the ear end portion, there is no change in the effective use area of the substrate, but in the photoelectric conversion element, if the ear end portion can be eliminated. The effective use area of the substrate is increased, and the cutting and removing process of the ear end portion is not necessary, which is preferable.

本発明は上記事情に鑑みてなされたものであり、基板に位置決め用のマーカを簡易に形成することができ、基板の位置決めを高精度に実施できる基板とその位置決め方法を提供することを目的とするものである。
本発明はまた、基板に対して最終的に使用されない耳端部を設ける必要なく、基板に位置決め用のマーカを形成することができる基板とその位置決め方法を提供することを目的とするものである。
本発明はまた、上記基板を用いた光電変換素子とその製造方法及び製造装置を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a substrate that can easily form a positioning marker on a substrate and can perform substrate positioning with high accuracy and a positioning method thereof. To do.
Another object of the present invention is to provide a substrate capable of forming a positioning marker on the substrate and a positioning method therefor without the need to provide an ear end portion that is not finally used for the substrate. .
Another object of the present invention is to provide a photoelectric conversion element using the substrate, a manufacturing method thereof, and a manufacturing apparatus.

本発明の基板は、特定波長域の光を選択的に吸収する光吸収剤、又は特定波長域の光を選択的に反射する光反射剤を用いて形成された位置決め用のマーカを有することを特徴とするものである。   The substrate of the present invention has a positioning marker formed by using a light absorber that selectively absorbs light in a specific wavelength region or a light reflector that selectively reflects light in a specific wavelength region. It is a feature.

本発明の光電変換素子は、
基板上に下部電極と光吸収により電流を発生する光電変換半導体層と上部電極との積層構造を有し、かつ該積層構造が複数の開溝部によって複数のセルに分割された光電変換素子において、
前記基板は、特定波長域の光を選択的に吸収する光吸収剤、又は特定波長域の光を選択的に反射する光反射剤を用いて形成された位置決め用のマーカを有することを特徴とするものである。
The photoelectric conversion element of the present invention is
In a photoelectric conversion element having a laminated structure of a lower electrode, a photoelectric conversion semiconductor layer that generates current by light absorption, and an upper electrode on a substrate, and the laminated structure is divided into a plurality of cells by a plurality of groove portions. ,
The substrate has a positioning marker formed by using a light absorber that selectively absorbs light in a specific wavelength range, or a light reflector that selectively reflects light in a specific wavelength range. To do.

本発明の太陽電池は、上記の本発明の光電変換素子を備えたことを特徴とするものである。   The solar cell of the present invention comprises the above-described photoelectric conversion element of the present invention.

本発明の基板の位置決め方法は、
特定波長域の光を選択的に吸収する光吸収剤、又は特定波長域の光を選択的に反射する光反射剤を用いて形成された位置決め用のマーカを有する基板を用い、
前記位置決め用のマーカに対して前記特定波長域内の検出光を照射し、前記位置決め用のマーカからの反射光を検出することで、前記基板の位置決めを行うことを特徴とするものである。
The substrate positioning method of the present invention includes:
Using a substrate having a positioning marker formed using a light absorber that selectively absorbs light in a specific wavelength range, or a light reflector that selectively reflects light in a specific wavelength range,
The substrate is positioned by irradiating the positioning marker with detection light in the specific wavelength range and detecting reflected light from the positioning marker.

本発明の光電変換素子の製造方法は、
基板上に下部電極と光吸収により電流を発生する光電変換半導体層と上部電極との積層構造を有し、かつ該積層構造が複数の開溝部によって複数のセルに分割された光電変換素子の製造方法において、
前記基板として、特定波長域の光を選択的に吸収する光吸収剤、又は特定波長域の光を選択的に反射する光反射剤を用いて形成された位置決め用のマーカを有する基板を用い、
前記位置決め用のマーカに対して前記特定波長域内の検出光を照射し、前記位置決め用のマーカからの反射光を検出することで、前記基板の位置決めを行う工程を有することを特徴とするものである。
The method for producing the photoelectric conversion element of the present invention is as follows.
A photoelectric conversion element having a stacked structure of a lower electrode, a photoelectric conversion semiconductor layer that generates current by light absorption, and an upper electrode on a substrate, and the stacked structure is divided into a plurality of cells by a plurality of groove portions. In the manufacturing method,
As the substrate, a light absorber that selectively absorbs light in a specific wavelength range, or a substrate having a positioning marker formed by using a light reflector that selectively reflects light in a specific wavelength range,
The method includes the step of positioning the substrate by irradiating the positioning marker with detection light in the specific wavelength range and detecting reflected light from the positioning marker. is there.

本発明の光電変換素子の製造方法において、
前記基板の位置決めを行う工程を実施した後に、得られた前記基板の位置データに基づいて、前記複数の開溝部を形成する工程を有することが好ましい。
In the method for producing a photoelectric conversion element of the present invention,
It is preferable to have a step of forming the plurality of groove portions based on the obtained position data of the substrate after performing the step of positioning the substrate.

本発明の光電変換素子の製造装置は、上記の本発明の光電変換素子を製造する製造装置であって、
前記位置決め用のマーカに対して前記特定波長域内の検出光を照射する光照射手段と、
前記位置決め用のマーカからの反射光を検出する検出手段とを備えたことを特徴とするものである。
本発明の光電変換素子の製造装置はさらに、前記複数の開溝部を形成するスクライブ加工手段を備えたことが好ましい。
The photoelectric conversion element manufacturing apparatus of the present invention is a manufacturing apparatus for manufacturing the above-described photoelectric conversion element of the present invention,
A light irradiation means for irradiating the positioning marker with detection light in the specific wavelength range;
And detecting means for detecting reflected light from the positioning marker.
It is preferable that the apparatus for manufacturing a photoelectric conversion element of the present invention further includes a scribing means for forming the plurality of groove portions.

本発明によれば、基板に位置決め用のマーカを簡易に形成することができ、基板の位置決めを高精度に実施できる基板とその位置決め方法を提供することができる。
本発明によれば、基板に対して最終的に使用されない耳端部を設ける必要なく、基板に位置決め用のマーカを形成することができる基板とその位置決め方法を提供することができる。
本発明によれば、上記基板を用いた光電変換素子とその製造方法及び製造装置を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the marker for positioning can be formed in a board | substrate simply and the board | substrate which can implement the board | substrate positioning with high precision and its positioning method can be provided.
ADVANTAGE OF THE INVENTION According to this invention, the board | substrate which can form the marker for positioning on a board | substrate, and its positioning method can be provided, without providing the edge part which is not used finally with respect to a board | substrate.
According to this invention, the photoelectric conversion element using the said board | substrate, its manufacturing method, and a manufacturing apparatus can be provided.

本発明に係る一実施形態の光電変換素子の短手方向の模式断面図1 is a schematic cross-sectional view in a short direction of a photoelectric conversion element according to an embodiment of the present invention 本発明に係る一実施形態の光電変換素子の長手方向の模式断面図1 is a schematic sectional view in a longitudinal direction of a photoelectric conversion element according to an embodiment of the present invention. 陽極酸化基板の構成を示す模式断面図Schematic sectional view showing the structure of the anodized substrate 陽極酸化基板の製造方法を示す斜視図The perspective view which shows the manufacturing method of an anodized substrate 陽極酸化基板の裏面を示す平面図Plan view showing the back of the anodized substrate I−III−VI化合物半導体における格子定数とバンドギャップとの関係を示す図Diagram showing the relationship between lattice constant and band gap in I-III-VI compound semiconductors 本発明に係る一実施形態の製造装置(スクライブ加工装置)の概略斜視図1 is a schematic perspective view of a manufacturing apparatus (scribing apparatus) according to an embodiment of the present invention.

「基板」
本発明の基板は、特定波長域の光を選択的に吸収する光吸収剤、又は特定波長域の光を選択的に反射する光反射剤を用いて形成された位置決め用のマーカを有することを特徴とするものである。
光吸収剤による光吸収率、光反射剤による光反射率は特に制限なく、位置検出が可能なレベルであればよい。
"substrate"
The substrate of the present invention has a positioning marker formed by using a light absorber that selectively absorbs light in a specific wavelength region or a light reflector that selectively reflects light in a specific wavelength region. It is a feature.
The light absorptivity by the light absorber and the light reflectance by the light reflector are not particularly limited, and may be any level as long as position detection is possible.

前記特定波長域の光は特に制限されず、近赤外線、赤外線、近紫外線、又は紫外線であることが好ましい。   The light in the specific wavelength range is not particularly limited, and is preferably near infrared, infrared, near ultraviolet, or ultraviolet.

本明細書において、「近赤外線」は700〜2500nmの波長域内の光、「赤外線」は700〜1000μmの波長域内の光、「近紫外線」は290〜380nmの波長域内の光、「紫外線」は100〜380nmの波長域内の光であると定義する。   In the present specification, “near infrared” is light in the wavelength range of 700 to 2500 nm, “infrared” is light in the wavelength range of 700 to 1000 μm, “near ultraviolet” is light in the wavelength range of 290 to 380 nm, and “ultraviolet” is It is defined as light within a wavelength range of 100 to 380 nm.

光吸収剤又は光反射剤の形態は特に制限されず、基板に塗布可能な染料、顔料、あるいはこれらを含むインク等が好ましい。かかる材形であれば、基板上にインクジェット法等により光吸収剤又は光反射剤を所望のパターンで塗布印刷し、その後、必要に応じて加熱等により乾燥することで、位置決め用マーカを簡易に形成できる。   The form of the light absorbing agent or the light reflecting agent is not particularly limited, and a dye, pigment or ink containing these that can be applied to the substrate is preferable. With such a material shape, a light-absorbing agent or a light-reflecting agent is applied and printed in a desired pattern on the substrate by an ink jet method or the like, and then dried by heating or the like as needed, so that the positioning marker can be simplified. Can be formed.

検出光の光源としては特に制限されない。近赤外線又は赤外線を吸収又は反射するマーカの場合、750〜850nmの近赤外線を発光する近赤外LED等が使用できる。近紫外線又は紫外線を吸収又は反射するマーカの場合、ブラックライト等が使用できる。   The light source for the detection light is not particularly limited. In the case of a marker that absorbs or reflects near infrared rays or infrared rays, a near infrared LED that emits near infrared rays of 750 to 850 nm can be used. In the case of a marker that absorbs or reflects near ultraviolet rays or ultraviolet rays, black light or the like can be used.

近赤外線又は赤外線を吸収する光吸収剤としては、特開2008-284817号公報段落[0029]〜[0041]に記載の波長760〜1200nmに吸収極大を有する染料又は顔料が挙げられる。
近赤外線又は赤外線を吸収する染料としては、市販の染料及び例えば「染料便覧」(有機合成化学協会編集、昭和45年刊)等の文献に記載されている公知のものが利用できる。具体的には、アゾ染料、金属錯塩アゾ染料、ピラゾロンアゾ染料、ナフトキノン染料、アントラキノン染料、フタロシアニン染料、カルボニウム染料、キノンイミン染料、メチン染料、シアニン染料、スクワリリウム色素、ピリリウム塩、金属チオレート錯体等の染料が挙げられる。
Examples of the light absorbing agent that absorbs near infrared rays or infrared rays include dyes or pigments having an absorption maximum at wavelengths of 760 to 1200 nm described in paragraphs [0029] to [0041] of JP-A-2008-284817.
As the near-infrared or infrared-absorbing dye, commercially available dyes and known dyes described in documents such as “Dye Handbook” (edited by the Society for Synthetic Organic Chemistry, published in 1970) can be used. Specifically, dyes such as azo dyes, metal complex azo dyes, pyrazolone azo dyes, naphthoquinone dyes, anthraquinone dyes, phthalocyanine dyes, carbonium dyes, quinoneimine dyes, methine dyes, cyanine dyes, squarylium dyes, pyrylium salts, metal thiolate complexes, etc. Is mentioned.

好ましい染料としては、例えば、特開昭58−125246号、特開昭59−84356号、特開昭60−78787号等の公報に記載されているシアニン染料、特開昭58−173696号、特開昭58−181690号、特開昭58−194595号等の公報に記載されているメチン染料、特開昭58−112793号、特開昭58−224793号、特開昭59−48187号、特開昭59−73996号、特開昭60−52940号、特開昭60−63744号等の公報に記載されているナフトキノン染料、特開昭58−112792号公報等に記載されているスクワリリウム色素、英国特許第434,875号明細書記載のシアニン染料等を挙げることができる。   Preferred dyes include, for example, cyanine dyes described in JP-A-58-125246, JP-A-59-84356, JP-A-60-78787, JP-A-58-173696, The methine dyes described in JP-A-58-181690 and JP-A-58-194595, JP-A-58-112793, JP-A-58-224793, JP-A-59-48187, Naphthoquinone dyes described in JP-A-59-73996, JP-A-60-52940, JP-A-60-63744, and the like, squarylium dyes described in JP-A-58-112792, and the like; And cyanine dyes described in British Patent No. 434,875.

米国特許第5,156,938号明細書記載の近赤外吸収増感剤も好適に用いられ、また、米国特許第3,881,924号明細書記載の置換されたアリールベンゾ(チオ)ピリリウム塩、特開昭57−142645号公報(米国特許第4,327,169号明細書)記載のトリメチンチアピリリウム塩、特開昭58−181051号、同58−220143号、同59−41363号、同59−84248号、同59−84249号、同59−146063号、同59−146061号の各公報に記載されているピリリウム系化合物、特開昭59−216146号公報記載のシアニン色素、米国特許第4,283,475号明細書に記載のペンタメチンチオピリリウム塩等や特公平5−13514号、同5−19702号の各公報に開示されているピリリウム化合物も好ましく用いられる。また、染料として好ましい別の例として米国特許第4,756,993号明細書中に式(I)及び(II)として記載されている近赤外吸収染料を挙げることができる。   Near-infrared absorption sensitizers described in US Pat. No. 5,156,938 are also preferably used, and substituted arylbenzo (thio) pyrylium described in US Pat. No. 3,881,924. Salt, trimethine thiapyrylium salt described in JP-A-57-142645 (US Pat. No. 4,327,169), JP-A-58-181051, 58-220143, 59-41363 59-84248, 59-84249, 59-146063, and 59-146061, the pyrylium compounds described in JP-A-59-216146, cyanine dyes described in US Pat. It is disclosed in the pentamethine thiopyrylium salt and the like described in Japanese Patent No. 4,283,475, and Japanese Patent Publication Nos. 5-13514 and 5-19702. And pyrylium compounds are also preferably used. Another preferable example of the dye includes near infrared absorbing dyes described as the formulas (I) and (II) in US Pat. No. 4,756,993.

赤外線吸収色素の好ましい他の例としては、特開2002−278057号公報に記載の特定インドレニンシアニン色素が挙げられる。これらの染料のうち中でも好ましいものとしては、シアニン色素、スクワリリウム色素、ピリリウム塩、ニッケルチオレート錯体、インドレニンシアニン色素が挙げられる。   Other preferable examples of the infrared absorbing dye include specific indolenine cyanine dyes described in JP-A-2002-278057. Among these dyes, preferred are cyanine dyes, squarylium dyes, pyrylium salts, nickel thiolate complexes, and indolenine cyanine dyes.

近赤外線又は赤外線を吸収する顔料としては、市販の顔料及びカラーインデックス(C.I.)便覧、「最新顔料便覧」(日本顔料技術協会編、1977年刊)、「最新顔料応用技術」(CMC出版、1986年刊)、「印刷インキ技術」CMC出版、1984年刊)に記載されている顔料が利用できる。   Near-infrared or infrared-absorbing pigments include commercially available pigments and Color Index (CI) Handbook, “Latest Pigment Handbook” (edited by Japan Pigment Technology Association, published in 1977), “Latest Pigment Applied Technology” (CMC Publishing) 1986), “Printing Ink Technology” CMC Publishing, 1984) can be used.

顔料の種類としては、黒色顔料、黄色顔料、オレンジ色顔料、褐色顔料、赤色顔料、紫色顔料、青色顔料、緑色顔料、蛍光顔料、金属粉顔料、その他、ポリマー結合色素が挙げられる。具体的には、不溶性アゾ顔料、アゾレーキ顔料、縮合アゾ顔料、キレートアゾ顔料、フタロシアニン系顔料、アントラキノン系顔料、ペリレン及びペリノン系顔料、チオインジゴ系顔料、キナクリドン系顔料、ジオキサジン系顔料、イソインドリノン系顔料、キノフタロン系顔料、染付けレーキ顔料、アジン顔料、ニトロソ顔料、ニトロ顔料、天然顔料、蛍光顔料、無機顔料、カーボンブラック等が使用できる。   Examples of the pigment include black pigments, yellow pigments, orange pigments, brown pigments, red pigments, purple pigments, blue pigments, green pigments, fluorescent pigments, metal powder pigments, and other polymer-bonded dyes. Specifically, insoluble azo pigments, azo lake pigments, condensed azo pigments, chelate azo pigments, phthalocyanine pigments, anthraquinone pigments, perylene and perinone pigments, thioindigo pigments, quinacridone pigments, dioxazine pigments, isoindolinone pigments In addition, quinophthalone pigments, dyed lake pigments, azine pigments, nitroso pigments, nitro pigments, natural pigments, fluorescent pigments, inorganic pigments, carbon black, and the like can be used.

近赤外線又は赤外線を吸収するインクとしては、富士フイルム(株)製「赤外線吸収インクPro-JET」等が挙げられる。   Examples of the ink that absorbs near infrared rays or infrared rays include “Infrared absorbing ink Pro-JET” manufactured by Fuji Film Co., Ltd.

近紫外線又は紫外線を吸収する光吸収剤としては、特開2008-195830号公報段落[0028]〜[0034]に記載のものが挙げられる。   Examples of the light absorber that absorbs near ultraviolet rays or ultraviolet rays include those described in paragraphs [0028] to [0034] of JP-A-2008-195830.

近紫外線又は紫外線を吸収する光吸収剤としては、ベンゾトアゾール系、ベンゾフェノン系、サリチル酸系、シアノアクリレート系、及び環状イミノエステル系等が挙げられる。   Examples of the light absorber that absorbs near ultraviolet rays or ultraviolet rays include benzotoazole, benzophenone, salicylic acid, cyanoacrylate, and cyclic imino ester.

ベンゾトリアゾール系紫外線吸収剤としては、例えば2−(2’−ヒドロキシ−5’−メチルフェニル)−2H−ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−t−ブチルフェニル)−2H−ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−t−ブチルフェニル)−2H−ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)−2H−ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−メチルフェニル)−5−クロロ−2H−ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−t−アミルフェニル)−2H−ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−(メタクリロイルオキシメチル)フェニル)−2H−ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−(メタクリロイルオキシプロピル)フェニル)−2H−ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−t−ブチル−5’−(メタクリロイルオキシエチル)フェニル)−2H−ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−t−ブチル−3’−(メタクリロイルオキシエチル)フェニル)−2H−ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−(メタクリロイルオキシエチル)フェニル)−5−クロロ−2H−ベンゾトリアゾールなどが挙げられる。
さらに、アデカスタブLA−31(商品名:旭電化社製)等のように、紫外線吸収骨格がメチレン等を介して2量化した分子量の大きい化合物もまた好ましく用いられる。
Examples of the benzotriazole ultraviolet absorber include 2- (2′-hydroxy-5′-methylphenyl) -2H-benzotriazole and 2- (2′-hydroxy-5′-t-butylphenyl) -2H-benzo. Triazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) -2H-benzotriazole, 2- (2′-hydroxy-3′-tert-butyl-5′-methylphenyl) -2H-benzotriazole, 2- (2'-hydroxy-5'-methylphenyl) -5-chloro-2H-benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-t-amylphenyl) ) -2H-benzotriazole, 2- (2′-hydroxy-5 ′-(methacryloyloxymethyl) phenyl) -2H-benzotriazole, 2- (2′-hydroxy-5 ′-(methacryl) Royloxypropyl) phenyl) -2H-benzotriazole, 2- (2′-hydroxy-3′-t-butyl-5 ′-(methacryloyloxyethyl) phenyl) -2H-benzotriazole, 2- (2′-hydroxy -5'-t-butyl-3 '-(methacryloyloxyethyl) phenyl) -2H-benzotriazole, 2- (2'-hydroxy-5'-(methacryloyloxyethyl) phenyl) -5-chloro-2H-benzo And triazole.
Further, a compound having a large molecular weight in which the ultraviolet absorption skeleton is dimerized through methylene or the like such as ADK STAB LA-31 (trade name: manufactured by Asahi Denka Co., Ltd.) is also preferably used.

環状イミノエステル系紫外線吸収剤としては、例えば以下のものを挙げることができる。2,2’−(1,4−フェニレン)ビス(4H−3,1−ベンズオキサジノン−4−オン)、2−メチル−3,1−ベンゾオキサジン−4−オン、2−ブチル−3,1−ベンゾオキサジン−4−オン、2−フェニル−3,1−ベンゾオキサジン−4−オン、2−(1−又は2−ナフチル)−3,1−ベンゾオキサジン−4−オン、2−(4−ビフェニル)−3,1−ベンゾオキサジン−4−オン、2−p−ニトロフェニル−3,1−ベンゾオキサジン−4−オン、2−m−ニトロフェニル−3,1−ベンゾオキサジン−4−オン、2−p−ベンゾイルフェニル−3,1−ベンゾオキサジン−4−オン、2−p−メトキシフェニル−3,1−ベンゾオキサジン−4−オン、2−o−メトキシフェニル−3,1−ベンゾオキサジン−4−オン、2−シクロヘキシル−3,1−ベンゾオキサジン−4−オン、2−p−(又はm−)フタルイミドフェニル−3,1−ベンゾオキサジン−4−オン、2,2’−(1,4−フェニレン)ビス(4H−3,1−ベンズオキサジノン−4−オン)、2、2’−ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−エチレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−テトラメチレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−デカメチレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−m−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(4,4’−ジフェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(2,6−又は1,5−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(2−メチル−p−フェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(2−ニトロ−p−フェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(2−クロロ−p−フェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(1,4−シクロヘキシレン)ビス(3,1−ベンゾオキサジン−4オン)。   Examples of the cyclic imino ester-based ultraviolet absorber include the following. 2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazinon-4-one), 2-methyl-3,1-benzoxazin-4-one, 2-butyl-3, 1-benzoxazin-4-one, 2-phenyl-3,1-benzoxazin-4-one, 2- (1- or 2-naphthyl) -3,1-benzoxazin-4-one, 2- (4 -Biphenyl) -3,1-benzoxazin-4-one, 2-p-nitrophenyl-3,1-benzoxazin-4-one, 2-m-nitrophenyl-3,1-benzoxazin-4-one 2-p-benzoylphenyl-3,1-benzoxazin-4-one, 2-p-methoxyphenyl-3,1-benzoxazin-4-one, 2-o-methoxyphenyl-3,1-benzoxazine -4-one, 2 Cyclohexyl-3,1-benzoxazin-4-one, 2-p- (or m-) phthalimidophenyl-3,1-benzoxazin-4-one, 2,2 ′-(1,4-phenylene) bis ( 4H-3,1-benzoxazinon-4-one), 2,2′-bis (3,1-benzoxazin-4-one), 2,2′-ethylenebis (3,1-benzoxazine-4) -One), 2,2'-tetramethylenebis (3,1-benzoxazin-4-one), 2,2'-decamethylenebis (3,1-benzoxazin-4-one), 2,2 ' -P-phenylenebis (3,1-benzoxazin-4-one), 2,2'-m-phenylenebis (3,1-benzoxazin-4-one), 2,2 '-(4,4' -Diphenylene) bis (3,1-benzoxazi -4-one), 2,2 '-(2,6- or 1,5-naphthalene) bis (3,1-benzoxazin-4-one), 2,2'-(2-methyl-p-phenylene) ) Bis (3,1-benzoxazin-4-one), 2,2 ′-(2-nitro-p-phenylene) bis (3,1-benzoxazin-4-one), 2,2 ′-(2 -Chloro-p-phenylene) bis (3,1-benzoxazin-4-one), 2,2 '-(1,4-cyclohexylene) bis (3,1-benzoxazine-4-one).

1,3,5−トリ(3,1−ベンゾオキサジン−4−オン−2−イル)ベンゼン、1,3,5−トリ(3,1−ベンゾオキサジン−4−オン−2−イル)ナフタレン、および2,4,6−トリ(3,1−ベンゾオキサジン−4−オン−2−イル)ナフタレン。   1,3,5-tri (3,1-benzoxazin-4-on-2-yl) benzene, 1,3,5-tri (3,1-benzoxazin-4-on-2-yl) naphthalene, And 2,4,6-tri (3,1-benzoxazin-4-one-2-yl) naphthalene.

2,8−ジメチル−4H,6H−ベンゾ(1,2−d;5,4−d’)ビス−(1,3)−オキサジン−4,6−ジオン、2,7−ジメチル−4H,9H−ベンゾ(1,2−d;5,4−d’)ビス−(1,3)−オキサジン−4,9−ジオン、2,8−ジフェニル−4H,8H−ベンゾ(1,2−d;5,4−d’)ビス−(1,3)−オキサジン−4,6−ジオン、2,7−ジフェニル−4H,9H−ベンゾ(1,2−d;5,4−d’)ビス−(1,3)−オキサジン−4,6−ジオン、6,6’−ビス(2−メチル−4H,3,1−ベンゾオキサジン−4−オン)、6,6’−ビス(2−エチル−4H,3,1−ベンゾオキサジン−4−オン)、6,6’−ビス(2−フェニル−4H,3,1−ベンゾオキサジン−4−オン)、6,6’−メチレンビス(2−メチル−4H,3,1−ベンゾオキサジン−4−オン)、6,6’−メチレンビス(2−フェニル−4H,3,1−ベンゾオキサジン−4−オン)、6,6 ’−エチレンビス(2−メチル−4H,3,1−ベンゾオキサジン−4−オン)、6,6’−エチレンビス(2−フェニル−4H,3,1−ベンゾオキサジン−4−オン)、6,6’−ブチレンビス(2−メチル−4H,3,1−ベンゾオキサジン−4−オン)、6,6’−ブチレンビス(2−フェニル−4H,3,1−ベンゾオキサジン−4−オン)、6,6’−オキシビス(2−メチル−4H,3,1−ベンゾオキサジン−4−オン)、6,6’−オキシビス(2−フェニル−4H,3,1−ベンゾオキサジン−4−オン)、6,6’−スルホニルビス(2−メチル−4H,3,1−ベンゾオキサジン−4−オン)、6,6’−スルホニルビス(2−フェニル−4H,3,1−ベンゾオキサジン−4−オン)、6,6’−カルボニルビス(2−メチル−4H,3,1−ベンゾオキサジン−4−オン)、6,6’−カルボニルビス(2−フェニル−4H,3,1−ベンゾオキサジン−4−オン)、7,7’ −メチレンビス(2−メチル−4H,3,1−ベンゾオキサジン−4−オン)、7,7’−メチレンビス(2−フェニル−4H,3,1−ベンゾオキサジン−4−オン)、7,7’−ビス(2−メチル−4H,3,1−ベンゾオキサジン−4−オン)、7,7’−エチレンビス(2−メチル−4H,3,1−ベンゾオキサジン−4−オン)、7,7 ’−オキシビス(2−メチル−4H,3,1−ベンゾオキサジン−4−オン)、7,7’−スルホニルビス(2−メチル−4H,3,1−ベンゾオキサジン−4−オン)、7,7’−カルボニルビス(2−メチル−4H,3,1−ベンゾオキサジン−4−オン)、6,7’−ビス(2−メチル−4H,3,1−ベンゾオキサジン−4−オン)。   2,8-dimethyl-4H, 6H-benzo (1,2-d; 5,4-d ′) bis- (1,3) -oxazine-4,6-dione, 2,7-dimethyl-4H, 9H -Benzo (1,2-d; 5,4-d ') bis- (1,3) -oxazine-4,9-dione, 2,8-diphenyl-4H, 8H-benzo (1,2-d; 5,4-d ') bis- (1,3) -oxazine-4,6-dione, 2,7-diphenyl-4H, 9H-benzo (1,2-d; 5,4-d') bis- (1,3) -Oxazine-4,6-dione, 6,6′-bis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6′-bis (2-ethyl- 4H, 3,1-benzoxazin-4-one), 6,6′-bis (2-phenyl-4H, 3,1-benzoxazin-4-one), 6, '-Methylenebis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6'-methylenebis (2-phenyl-4H, 3,1-benzoxazin-4-one), 6,6 '-Ethylenebis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6'-ethylenebis (2-phenyl-4H, 3,1-benzoxazin-4-one), 6 , 6′-Butylenebis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6′-butylenebis (2-phenyl-4H, 3,1-benzoxazin-4-one), 6 , 6′-oxybis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6′-oxybis (2-phenyl-4H, 3,1-benzoxazin-4-one), 6 , 6′-sulfonylbis ( -Methyl-4H, 3,1-benzoxazin-4-one), 6,6'-sulfonylbis (2-phenyl-4H, 3,1-benzoxazin-4-one), 6,6'-carbonylbis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6′-carbonylbis (2-phenyl-4H, 3,1-benzoxazin-4-one), 7,7′- Methylenebis (2-methyl-4H, 3,1-benzoxazin-4-one), 7,7′-methylenebis (2-phenyl-4H, 3,1-benzoxazin-4-one), 7,7′- Bis (2-methyl-4H, 3,1-benzoxazin-4-one), 7,7′-ethylenebis (2-methyl-4H, 3,1-benzoxazin-4-one), 7,7 ′ -Oxybis (2-methyl-4H, 3,1 -Benzoxazin-4-one), 7,7'-sulfonylbis (2-methyl-4H, 3,1-benzoxazin-4-one), 7,7'-carbonylbis (2-methyl-4H, 3 , 1-benzoxazin-4-one), 6,7′-bis (2-methyl-4H, 3,1-benzoxazin-4-one).

ベンゾフェノン系紫外線吸収剤としては、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−n−オクチルオキシベンゾフェノン、2−ヒドロキシ−4−n−ドデシルオキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’ −ジメトキシベンゾフェノン、2,−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン等を挙げることができる。   Examples of the benzophenone ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octyloxybenzophenone, 2-hydroxy-4-n-dodecyloxybenzophenone, 2, Examples include 2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2, -hydroxy-4-methoxy-5-sulfobenzophenone.

サリチル酸系紫外線吸収剤としては、フェニルサリチレート、p−t−ブチルフェニルサリチレート、p−n−オクチルフェニルサリチレート等を挙げることができる。   Examples of the salicylic acid ultraviolet absorber include phenyl salicylate, pt-butylphenyl salicylate, pn-octylphenyl salicylate, and the like.

シアノアクリレート系紫外線吸収剤としては、例えば2−エチルへキシルー2−シアノ−3,3−ジフェニルアクリレート等を挙げることが可能である。   Examples of cyanoacrylate-based ultraviolet absorbers include 2-ethylhexyl 2-cyano-3,3-diphenyl acrylate.

紫外線を吸収する光吸収剤としては、不可視インクと呼ばれ、可視光では視認できないが紫外線照射により視認可能となるインクが使用できる。不可視インクとしては、(株)ユニオンコーポレーション製「インビジブルインク#214、#6330」(紫外線照射により青く視認できる。)等が挙げられる。   As a light absorber that absorbs ultraviolet rays, an ink that is called invisible ink and cannot be visually recognized by visible light but becomes visible by ultraviolet irradiation can be used. Examples of the invisible ink include “Invisible Inks # 214 and # 6330” manufactured by Union Corporation (which can be visually recognized in blue by ultraviolet irradiation).

本発明の基板の組成は特に制限されない。本発明は、下部電極と光吸収により電流を発生する光電変換半導体層と上部電極との積層構造を有する光電変換素子等に好ましく適用できる。   The composition of the substrate of the present invention is not particularly limited. The present invention is preferably applicable to a photoelectric conversion element having a laminated structure of a lower electrode, a photoelectric conversion semiconductor layer that generates current by light absorption, and an upper electrode.

光電変換素子用の基板としては、ソーダライムガラス基板等のガラス基板、表面に絶縁膜が成膜されたAl、Cu、Ti、及びステンレス等の金属基板、Alを主成分とする金属基材の少なくとも一方の面側に陽極酸化膜を有する陽極酸化基板、及びポリイミド等の樹脂基板等が挙げられる。   As a substrate for a photoelectric conversion element, a glass substrate such as a soda lime glass substrate, a metal substrate such as Al, Cu, Ti and stainless steel with an insulating film formed on the surface, a metal base material mainly composed of Al. Examples thereof include an anodized substrate having an anodized film on at least one surface side, and a resin substrate such as polyimide.

連続搬送系(Roll to Roll工程)により高速で製造が可能であること、薄型軽量化が可能なことから、陽極酸化基板、表面に絶縁膜が成膜された金属基板、及び樹脂基板等の可撓性基板を用いることが好ましい。   The continuous conveyance system (Roll to Roll process) enables high-speed manufacturing and enables reduction in thickness and weight. Therefore, anodized substrates, metal substrates with an insulating film formed on the surface, and resin substrates are possible. It is preferable to use a flexible substrate.

ポリイミド等の樹脂基板を用いる場合には、樹脂の耐熱温度以下で光電変換層の成膜を行う必要があり、400℃程度のプロセスが限界である。この温度では高特性の光電変換層を成膜することは難しいため、エネルギーアシスト層を設けるなどの工夫を要する。   When a resin substrate such as polyimide is used, the photoelectric conversion layer needs to be formed at a temperature lower than the heat resistant temperature of the resin, and the process at about 400 ° C. is the limit. Since it is difficult to form a high-performance photoelectric conversion layer at this temperature, a device such as an energy assist layer is required.

熱応力による基板の反り等を抑制するためには基板とその上に形成される各層との間の熱膨張係数差が小さいことが好ましい。光電変換層及び下部電極(裏面電極)との熱膨張係数差、コスト、及び太陽電池に要求される特性等の観点から、また、大面積基板を用いる場合も、その表面全体にピンホールなく簡易に絶縁膜を形成することができことから、Alを主成分とする金属基材の少なくとも一方の面側に陽極酸化膜を有する陽極酸化基板が特に好ましい。   In order to suppress warpage of the substrate due to thermal stress, it is preferable that the difference in thermal expansion coefficient between the substrate and each layer formed thereon is small. From the viewpoint of thermal expansion coefficient difference between the photoelectric conversion layer and the lower electrode (back electrode), cost, characteristics required for solar cells, etc., and even when using a large area substrate, the entire surface is simple without pinholes. An anodized substrate having an anodized film on at least one surface side of a metal base material mainly composed of Al is particularly preferable because an insulating film can be formed on the surface.

本明細書において、「金属基材の主成分」は、含量98質量%以上の成分であると定義する。金属基材は、微量元素を含んでいてもよい純Al基材でもよいし、Alと他の金属元素との合金基材でもよい。
本明細書において、基板上に形成される電極、光電変換半導体層、及び必要に応じて設けられる他の任意の層の「主成分」は、含量90質量%以上の成分であると定義する。
In the present specification, the “main component of the metal substrate” is defined as a component having a content of 98% by mass or more. The metal substrate may be a pure Al substrate that may contain trace elements, or an alloy substrate of Al and another metal element.
In this specification, the “main component” of the electrode formed on the substrate, the photoelectric conversion semiconductor layer, and other optional layers provided as necessary is defined as a component having a content of 90% by mass or more.

本発明の基板では、位置決め用のマーカに対して位置決め用のマーカが選択的に吸収/又は反射する特定波長域内の検出光を照射し、位置決め用のマーカからの反射光を検出することで、基板の位置決めを行うことができる。   In the substrate of the present invention, by irradiating the positioning marker with the detection light in the specific wavelength range that is selectively absorbed / reflected by the positioning marker, and detecting the reflected light from the positioning marker, The substrate can be positioned.

すなわち、本発明の基板の位置決め方法は、
特定波長域の光を選択的に吸収する光吸収剤、又は特定波長域の光を選択的に反射する光反射剤を用いて形成された位置決め用のマーカを有する基板を用い、
前記位置決め用のマーカに対して前記特定波長域内の検出光を照射し、前記位置決め用のマーカからの反射光を検出することで、前記基板の位置決めを行うことを特徴とするものである。
That is, the substrate positioning method of the present invention includes:
Using a substrate having a positioning marker formed using a light absorber that selectively absorbs light in a specific wavelength range, or a light reflector that selectively reflects light in a specific wavelength range,
The substrate is positioned by irradiating the positioning marker with detection light in the specific wavelength range and detecting reflected light from the positioning marker.

本発明では光吸収剤又は光反射剤を用いてマーカを形成し、マーカを形成するために孔を空けない。したがって、基板に位置決め用のマーカを簡易に形成することができ、基板に孔を設けることで生じる削りカスの洗浄工程が不要である。   In the present invention, a marker is formed using a light absorbing agent or a light reflecting agent, and no hole is formed to form the marker. Accordingly, a positioning marker can be easily formed on the substrate, and a cleaning step for scraping generated by providing holes in the substrate is unnecessary.

本発明では特定波長域の光を用いて光検出によりマーカを検出することができるので、基板の位置決めを高精度に実施することができる。特に、近赤外線、赤外線、近紫外線、又は紫外線を選択的に吸収又は反射するマーカを用いることで、外光の影響をなくして、基板の位置検出を高感度に実施することができる。   In the present invention, since the marker can be detected by light detection using light in a specific wavelength region, the substrate can be positioned with high accuracy. In particular, by using a near-infrared ray, infrared ray, near-ultraviolet ray, or a marker that selectively absorbs or reflects ultraviolet rays, the position of the substrate can be detected with high sensitivity without the influence of external light.

本発明では孔を設けないので、基板の裏面にマーカを形成することができる。したがって、マーカを形成するために基板に対して最終的に使用されない耳端部を設ける必要がない。したがって、本発明によれば、基板の全面を有効に活用することが可能となり、耳端部の裁断除去工程も不要となる。   In the present invention, since no hole is provided, a marker can be formed on the back surface of the substrate. Thus, there is no need to provide an ear end that is not ultimately used for the substrate to form the marker. Therefore, according to the present invention, it is possible to effectively utilize the entire surface of the substrate, and the cutting and removing process of the ear end portion is not necessary.

「光電変換素子」
図面を参照して、本発明に係る一実施形態の光電変換素子の構造について説明する。図1Aは光電変換素子の短手方向の模式断面図、図1Bは光電変換素子の長手方向の模式断面図、図2は陽極酸化基板の構成を示す模式断面図、図3は陽極酸化基板の製造方法を示す斜視図、図4は基板の裏面を示す平面図である。視認しやすくするため、図中、各構成要素の縮尺等は実際のものとは適宜異ならせてある。
"Photoelectric conversion element"
With reference to drawings, the structure of the photoelectric conversion element of one Embodiment which concerns on this invention is demonstrated. 1A is a schematic cross-sectional view in the short direction of the photoelectric conversion element, FIG. 1B is a schematic cross-sectional view in the longitudinal direction of the photoelectric conversion element, FIG. 2 is a schematic cross-sectional view showing the configuration of the anodized substrate, and FIG. FIG. 4 is a perspective view showing the manufacturing method, and FIG. 4 is a plan view showing the back surface of the substrate. In order to facilitate visual recognition, the scale of each component in the figure is appropriately different from the actual one.

光電変換素子1は、陽極酸化基板10上に、下部電極(裏面電極)20と光電変換半導体層30とバッファ層40と上部電極50とが順次積層された素子である。以降、光電変換半導体層は「光電変換層」と略記する。   The photoelectric conversion element 1 is an element in which a lower electrode (back electrode) 20, a photoelectric conversion semiconductor layer 30, a buffer layer 40, and an upper electrode 50 are sequentially stacked on an anodized substrate 10. Hereinafter, the photoelectric conversion semiconductor layer is abbreviated as “photoelectric conversion layer”.

光電変換素子1には、短手方向断面視において、下部電極20のみを貫通する第1の開溝部61、光電変換層30とバッファ層40とを貫通する第2の開溝部62、及び上部電極50のみを貫通する第3の開溝部63が形成されており、長手方向断面視において、光電変換層30とバッファ層40と上部電極50とを貫通する第4の開溝部64が形成されている。   The photoelectric conversion element 1 includes a first groove 61 that penetrates only the lower electrode 20, a second groove 62 that penetrates the photoelectric conversion layer 30 and the buffer layer 40, and A third groove portion 63 penetrating only the upper electrode 50 is formed, and a fourth groove portion 64 penetrating the photoelectric conversion layer 30, the buffer layer 40, and the upper electrode 50 in the longitudinal sectional view is formed. Is formed.

上記構成では、第1〜第4の開溝部61〜64によって素子が多数のセルCに分離された構造が得られる。また、第2の開溝部62内に上部電極50が充填されることで、あるセルCの上部電極50が隣接するセルCの下部電極20に直列接続した構造が得られる。   With the above configuration, a structure in which the element is separated into a large number of cells C by the first to fourth groove portions 61 to 64 is obtained. Further, by filling the second groove 62 with the upper electrode 50, a structure in which the upper electrode 50 of a certain cell C is connected in series to the lower electrode 20 of the adjacent cell C is obtained.

(陽極酸化基板)
本実施形態において、陽極酸化基板10はAlを主成分とする金属基材11の少なくとも一方の面側を陽極酸化して得られた基板である。陽極酸化基板10は、図2の左図に示すように、金属基材11の両面側に陽極酸化膜12が形成されたものでもよいし、図2の右図に示すように、金属基材11の片面側に陽極酸化膜12が形成されたものでもよい。陽極酸化膜12はAlを主成分とする膜である。
(Anodized substrate)
In the present embodiment, the anodized substrate 10 is a substrate obtained by anodizing at least one surface side of a metal base 11 mainly composed of Al. The anodized substrate 10 may be one in which an anodized film 12 is formed on both sides of a metal substrate 11 as shown in the left diagram of FIG. 2, or a metal substrate as shown in the right diagram of FIG. 11 may have an anodic oxide film 12 formed on one side thereof. The anodic oxide film 12 is a film containing Al 2 O 3 as a main component.

デバイスの製造過程において、AlとAlとの熱膨張係数差に起因した基板の反り、及びこれによる膜剥がれ等を抑制するには、図2の左図に示すように金属基材11の両面側に陽極酸化膜12が形成されたものが好ましい。両面の陽極酸化方法としては、片面に絶縁材料を塗布して片面ずつ両面を陽極酸化する方法、及び両面を同時に陽極酸化する方法が挙げられる。 In order to suppress the warpage of the substrate due to the difference in thermal expansion coefficient between Al and Al 2 O 3 and the film peeling due to this in the device manufacturing process, as shown in the left diagram of FIG. It is preferable that the anodic oxide film 12 is formed on both sides of the film. Examples of the anodic oxidation method on both sides include a method of applying an insulating material on one side and anodizing both sides of each side, and a method of anodizing both sides simultaneously.

陽極酸化基板10の両面側に陽極酸化膜12を形成する場合、基板両面の熱応力のバランスを考慮して、2つの陽極酸化膜12の膜厚がほぼ等しくする、若しくは光電変換層等が形成されない面側の陽極酸化膜12を他方の陽極酸化膜12よりもやや厚めとすることが好ましい。   When the anodized film 12 is formed on both sides of the anodized substrate 10, the thickness of the two anodized films 12 is made almost equal or a photoelectric conversion layer is formed in consideration of the balance of thermal stress on both sides of the substrate. It is preferable that the anodic oxide film 12 on the non-surface side is slightly thicker than the other anodic oxide film 12.

金属基材11としては、日本工業規格(JIS)の1000系純Alでもよいし、Al−Mn系合金、Al−Mg系合金、Al−Mn−Mg系合金、Al−Zr系合金、Al−Si系合金、及びAl−Mg−Si系合金等のAlと他の金属元素との合金でもよい(「アルミニウムハンドブック第4版」(1990年、軽金属協会発行)を参照)。金属基材11には、Fe、Si、Mn、Cu、Mg、Cr、Zn、Bi、Ni、及びTi等の各種微量金属元素が含まれていてもよい。   The metal substrate 11 may be Japanese Industrial Standard (JIS) 1000 series pure Al, Al—Mn alloy, Al—Mg alloy, Al—Mn—Mg alloy, Al—Zr alloy, Al— An alloy of Al and other metal elements such as an Si-based alloy and an Al—Mg—Si-based alloy may be used (see “Aluminum Handbook 4th Edition” (1990, published by Light Metal Association)). The metal substrate 11 may contain various trace metal elements such as Fe, Si, Mn, Cu, Mg, Cr, Zn, Bi, Ni, and Ti.

陽極酸化は、必要に応じて洗浄処理・研磨平滑化処理等が施された金属基材11を陽極とし陰極と共に電解質に浸漬させ、陽極陰極間に電圧を印加することで実施できる。陰極としてはカーボンやアルミニウム等が使用される。電解質としては制限されず、硫酸、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、及びアミドスルホン酸等の酸を、1種又は2種以上含む酸性電解液が好ましく用いられる。   Anodization can be performed by immersing the metal base material 11 that has been subjected to cleaning treatment, polishing smoothing treatment, and the like as needed as an anode together with a cathode and applying a voltage between the anode and the cathode. Carbon, aluminum, or the like is used as the cathode. The electrolyte is not limited, and an acidic electrolytic solution containing one or more acids such as sulfuric acid, phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, and amidosulfonic acid is preferably used.

陽極酸化条件は使用する電解質の種類にもより特に制限されない。条件としては例えば、電解質濃度1〜80質量%、液温5〜70℃、電流密度0.005〜0.60A/cm、電圧1〜200V、電解時間3〜500分の範囲にあれば適当である。 The anodizing conditions are not particularly limited by the type of electrolyte used. As conditions, for example, an electrolyte concentration of 1 to 80% by mass, a liquid temperature of 5 to 70 ° C., a current density of 0.005 to 0.60 A / cm 2 , a voltage of 1 to 200 V, and an electrolysis time of 3 to 500 minutes are appropriate. It is.

電解質としては、硫酸、リン酸、シュウ酸、若しくはこれらの混合液が好ましい。かかる電解質を用いる場合、電解質濃度4〜30質量%、液温10〜30℃、電流密度0.05〜0.30A/cm、及び電圧30〜150Vが好ましい。 As the electrolyte, sulfuric acid, phosphoric acid, oxalic acid, or a mixture thereof is preferable. When such an electrolyte is used, an electrolyte concentration of 4 to 30% by mass, a liquid temperature of 10 to 30 ° C., a current density of 0.05 to 0.30 A / cm 2 , and a voltage of 30 to 150 V are preferable.

図3に示すように、Alを主成分とする金属基材11を陽極酸化すると、表面11sから該面に対して略垂直方向に酸化反応が進行し、Alを主成分とする陽極酸化膜12が生成される。陽極酸化により生成される陽極酸化膜12は、多数の平面視略正六角形状の微細柱状体12aが隙間なく配列した構造を有するものとなる。各微細柱状体12aの略中心部には、表面11sから深さ方向に略ストレートに延びる微細孔12bが開孔され、各微細柱状体12aの底面は丸みを帯びた形状となる。通常、微細柱状体12aの底部には微細孔12bのないバリア層(通常、厚み0.01〜0.4μm)が形成される。陽極酸化条件を工夫すれば、微細孔12bのない陽極酸化膜12を形成することもできる。 As shown in FIG. 3, when the metal base material 11 mainly composed of Al is anodized, an oxidation reaction proceeds in a direction substantially perpendicular to the surface from the surface 11s, and the anode mainly composed of Al 2 O 3. An oxide film 12 is generated. The anodic oxide film 12 produced by anodic oxidation has a structure in which a number of fine columnar bodies 12a having a substantially regular hexagonal shape in plan view are arranged without gaps. A minute hole 12b extending substantially straight from the surface 11s in the depth direction is opened at a substantially central portion of each fine columnar body 12a, and the bottom surface of each fine columnar body 12a has a rounded shape. Usually, a barrier layer (usually 0.01 to 0.4 μm in thickness) having no fine holes 12b is formed at the bottom of the fine columnar body 12a. If the anodic oxidation conditions are devised, the anodic oxide film 12 without the fine holes 12b can be formed.

陽極酸化膜12の微細孔12bの径は特に制限されない。表面平滑性及び絶縁特性の観点から、微細孔12bの径は好ましくは200nm以下であり、より好ましくは100nm以下である。微細孔12bの径は10nm程度まで小さくすることが可能である。   The diameter of the fine hole 12b of the anodic oxide film 12 is not particularly limited. From the viewpoint of surface smoothness and insulating properties, the diameter of the fine holes 12b is preferably 200 nm or less, and more preferably 100 nm or less. The diameter of the fine hole 12b can be reduced to about 10 nm.

陽極酸化膜12の微細孔12bの開孔密度は特に制限されない。絶縁特性の観点から、微細孔12bの開孔密度は好ましくは100〜10000個/μmであり、より好ましくは100〜5000個/μmであり、特に好ましくは100〜1000個/μmである。 The hole density of the fine holes 12b of the anodic oxide film 12 is not particularly limited. From the viewpoint of insulating properties, hole density of the micropores 12b is preferably 100 to 10000 pieces / [mu] m 2, more preferably 100 to 5,000 pieces / [mu] m 2, particularly preferably at 100 to 1000 / [mu] m 2 is there.

陽極酸化膜12の表面粗さRaは特に制限されない。上層の光電変換層30を均一に形成する観点から、陽極酸化膜12の表面平滑性は高い方が好ましい。表面粗さRaは好ましくは0.3μm以下、より好ましくは0.1μm以下である。   The surface roughness Ra of the anodic oxide film 12 is not particularly limited. From the viewpoint of uniformly forming the upper photoelectric conversion layer 30, it is preferable that the surface smoothness of the anodic oxide film 12 is higher. The surface roughness Ra is preferably 0.3 μm or less, more preferably 0.1 μm or less.

金属基材11及び陽極酸化膜12の厚みは特に制限されない。陽極酸化基板10の機械的強度及び薄型軽量化等を考慮すれば、陽極酸化前の金属基材11の厚みは例えば0.05〜0.6mmが好ましく、0.1〜0.3mmがより好ましい。基板の絶縁性、機械的強度、及び薄型軽量化を考慮すれば、陽極酸化膜12の厚みは例えば0.1〜100μmが好ましい。   The thickness of the metal substrate 11 and the anodic oxide film 12 is not particularly limited. Considering the mechanical strength, thinning, and weight reduction of the anodized substrate 10, the thickness of the metal base 11 before anodization is preferably 0.05 to 0.6 mm, and more preferably 0.1 to 0.3 mm. . Considering the insulating properties, mechanical strength, and reduction in thickness and weight of the substrate, the thickness of the anodic oxide film 12 is preferably 0.1 to 100 μm, for example.

陽極酸化膜12の微細孔12bには、必要に応じて公知の封孔処理を施してもよい。封孔処理により、耐電圧及び絶縁特性を向上させることが可能である。また、アルカリ金属イオンを含む材料を用いて封孔を行うと、CIGS等からなる光電変換層30のアニール時にアルカリ金属、好ましくはNaが光電変換層30に拡散し、そのことにより光電変換層30の結晶性が向上し、光電変換効率が向上する場合がある。   The fine holes 12b of the anodic oxide film 12 may be subjected to a known sealing treatment as necessary. The withstand voltage and the insulation characteristics can be improved by the sealing treatment. Further, when sealing is performed using a material containing alkali metal ions, an alkali metal, preferably Na diffuses into the photoelectric conversion layer 30 during annealing of the photoelectric conversion layer 30 made of CIGS or the like, whereby the photoelectric conversion layer 30. In some cases, the crystallinity of the liquid crystal is improved and the photoelectric conversion efficiency is improved.

本実施形態において、陽極酸化基板10は、特定波長域の光を選択的に吸収する光吸収剤、又は特定波長域の光を選択的に反射する光反射剤を用いて形成された位置決め用のマーカ13を有する本発明の基板である。   In the present embodiment, the anodized substrate 10 is a positioning material formed using a light absorber that selectively absorbs light in a specific wavelength range or a light reflector that selectively reflects light in a specific wavelength range. 1 is a substrate of the present invention having a marker 13.

具体的には、図4に示すように、陽極酸化基板10の裏面10Bには、特定波長域の光を選択的に吸収する光吸収剤、又は特定波長域の光を選択的に反射する光反射剤を用いて形成された位置決め用のマーカ13が形成されている。本実施形態において、位置決め用のマーカ13は光電変換素子1に必要な層(電極及び光電変換層等)が形成されない基板10の裏面10Bに形成されているので、その形成位置は制限されず、任意である。   Specifically, as shown in FIG. 4, the back surface 10B of the anodized substrate 10 is a light absorber that selectively absorbs light in a specific wavelength range, or light that selectively reflects light in a specific wavelength range. A positioning marker 13 formed using a reflective agent is formed. In the present embodiment, the positioning marker 13 is formed on the back surface 10B of the substrate 10 where the layers (electrodes, photoelectric conversion layers, etc.) necessary for the photoelectric conversion element 1 are not formed, so the formation position is not limited, Is optional.

位置決め用のマーカ13の形状及び大きさは光検出ができれば特に制限なく、「×」の場合について図示してある。マーカ13の形状は、ライン状、ドット状、及び点線状等でもよい。   The shape and size of the positioning marker 13 are not particularly limited as long as light can be detected, and the case of “x” is illustrated. The shape of the marker 13 may be a line shape, a dot shape, a dotted line shape, or the like.

本実施形態では、位置決め用のマーカ13に対して位置決め用のマーカ13が選択的に吸収/又は反射する特定波長域内の検出光を照射し、位置決め用のマーカ13からの反射光を検出することで、基板10の位置決めを行うことができる。   In this embodiment, the positioning marker 13 is irradiated with detection light in a specific wavelength range that is selectively absorbed / or reflected by the positioning marker 13, and the reflected light from the positioning marker 13 is detected. Thus, the substrate 10 can be positioned.

(光電変換層)
光電変換層30は光吸収により電流を発生する層である。その主成分は特に制限されず、少なくとも1種のカルコパイライト構造の化合物半導体であることが好ましい。光電変換層30の主成分は、Ib族元素とIIIb族元素とVIb族元素とからなる少なくとも1種の化合物半導体であることが好ましい。
(Photoelectric conversion layer)
The photoelectric conversion layer 30 is a layer that generates current by light absorption. The main component is not particularly limited, and is preferably at least one compound semiconductor having a chalcopyrite structure. The main component of the photoelectric conversion layer 30 is preferably at least one compound semiconductor composed of a group Ib element, a group IIIb element, and a group VIb element.

光吸収率が高く、高い光電変換効率が得られることから、
光電変換層30の主成分は、
Cu及びAgからなる群より選択された少なくとも1種のIb族元素と、
Al,Ga及びInからなる群より選択された少なくとも1種のIIIb族元素と、
S,Se,及びTeからなる群から選択された少なくとも1種のVIb族元素とからなる少なくとも1種の化合物半導体であることが好ましい。
Because the light absorption rate is high and high photoelectric conversion efficiency is obtained,
The main component of the photoelectric conversion layer 30 is:
At least one group Ib element selected from the group consisting of Cu and Ag;
At least one group IIIb element selected from the group consisting of Al, Ga and In;
It is preferably at least one compound semiconductor comprising at least one VIb group element selected from the group consisting of S, Se, and Te.

上記化合物半導体としては、
CuAlS,CuGaS,CuInS
CuAlSe,CuGaSe,CuInSe(CIS),
AgAlS,AgGaS,AgInS
AgAlSe,AgGaSe,AgInSe
AgAlTe,AgGaTe,AgInTe
Cu(In1−xGa)Se(CIGS),Cu(In1−xAl)Se,Cu(In1−xGa)(S,Se)
Ag(In1−xGa)Se,及びAg(In1−xGa)(S,Se)等が挙げられる。
As the compound semiconductor,
CuAlS 2 , CuGaS 2 , CuInS 2 ,
CuAlSe 2 , CuGaSe 2 , CuInSe 2 (CIS),
AgAlS 2 , AgGaS 2 , AgInS 2 ,
AgAlSe 2 , AgGaSe 2 , AgInSe 2 ,
AgAlTe 2 , AgGaTe 2 , AgInTe 2 ,
Cu (In 1-x Ga x ) Se 2 (CIGS), Cu (In 1-x Al x) Se 2, Cu (In 1-x Ga x) (S, Se) 2,
Ag (In 1-x Ga x ) Se 2, and Ag (In 1-x Ga x ) (S, Se) 2 , and the like.

光電変換層30は、CuInSe(CIS)、及び/又はこれにGaを固溶したCu(In,Ga)Se(CIGS)を含むことが特に好ましい。CIS及びCIGSはカルコパイライト結晶構造を有する半導体であり、光吸収率が高く、高エネルギー変換効率が報告されている。また、光照射等による効率の劣化が少なく、耐久性に優れている。 The photoelectric conversion layer 30 particularly preferably includes CuInSe 2 (CIS) and / or Cu (In, Ga) Se 2 (CIGS) in which Ga is dissolved. CIS and CIGS are semiconductors having a chalcopyrite crystal structure, have high light absorption, and high energy conversion efficiency has been reported. Moreover, there is little degradation of efficiency by light irradiation etc. and it is excellent in durability.

光電変換層30には、所望の半導体導電型を得るための不純物が含まれる。不純物は隣接する層からの拡散、及び/又は積極的なドープによって、光電変換層30中に含有させることができる。   The photoelectric conversion layer 30 contains impurities for obtaining a desired semiconductor conductivity type. Impurities can be contained in the photoelectric conversion layer 30 by diffusion from adjacent layers and / or active doping.

光電変換層30中において、I−III−VI族半導体の構成元素及び/又は不純物には濃度分布があってもよく、n型,p型,及びi型等の半導体性の異なる複数の層領域が含まれていても構わない。例えば、CIGS系においては、光電変換層30中のGa量に厚み方向の分布を持たせると、バンドギャップの幅/キャリアの移動度等を制御でき、光電変換効率を高く設計することができる。   In the photoelectric conversion layer 30, the constituent elements and / or impurities of the I-III-VI group semiconductor may have a concentration distribution, and a plurality of layer regions having different semiconductor properties such as n-type, p-type, and i-type May be included. For example, in the CIGS system, when the Ga amount in the photoelectric conversion layer 30 has a distribution in the thickness direction, the band gap width / carrier mobility and the like can be controlled, and the photoelectric conversion efficiency can be designed high.

光電変換層30は、I−III−VI族半導体以外の1種又は2種以上の半導体を含んでいてもよい。I−III−VI族半導体以外の半導体としては、Si等のIVb族元素からなる半導体(IV族半導体)、GaAs等のIIIb族元素及びVb族元素からなる半導体(III−V族半導体)、及びCdTe等のIIb族元素及びVIb族元素からなる半導体(II−VI族半導体)等が挙げられる。   The photoelectric conversion layer 30 may include one or more semiconductors other than the I-III-VI group semiconductor. As a semiconductor other than the I-III-VI group semiconductor, a semiconductor composed of a group IVb element such as Si (group IV semiconductor), a semiconductor composed of a group IIIb element such as GaAs and a group Vb element (group III-V semiconductor), and Examples thereof include semiconductors (II-VI group semiconductors) composed of IIb group elements such as CdTe and VIb group elements.

光電変換層30には、特性に支障のない限りにおいて、半導体、所望の導電型とするための不純物以外の任意成分が含まれていても構わない。   The photoelectric conversion layer 30 may contain an optional component other than a semiconductor and impurities for obtaining a desired conductivity type as long as the characteristics are not hindered.

CIGS層の成膜方法としては、1)多源同時蒸着法、2)セレン化法、3)スパッタ法、4)ハイブリッドスパッタ法、及び5)メカノケミカルプロセス法等が知られている。   As CIGS layer deposition methods, 1) multi-source co-evaporation, 2) selenization, 3) sputtering, 4) hybrid sputtering, and 5) mechanochemical process are known.

1)多源同時蒸着法としては、
3段階法(J.R.Tuttle et.al,Mat.Res.Soc.Symp.Proc.,Vol.426(1996)p.143.等)と、
ECグループの同時蒸着法(L.Stolt et al.:Proc.13th ECPVSEC(1995,Nice)1451.等)とが知られている。
前者の3段階法は、高真空中で最初にIn、Ga、及びSeを基板温度300℃で同時蒸着し、次に500〜560℃に昇温してCu及びSeを同時蒸着後、In、Ga、及びSeをさらに同時蒸着する方法である。後者のECグループの同時蒸着法は、蒸着初期にCu過剰CIGS、後半でIn過剰CIGSを蒸着する方法である。
1) As a multi-source simultaneous vapor deposition method,
A three-step method (JRTuttle et.al, Mat. Res. Soc. Symp. Proc., Vol. 426 (1996) p. 143, etc.);
The EC group co-evaporation method (L. Stolt et al .: Proc. 13th ECPVSEC (1995, Nice) 1451. etc.) is known.
In the former three-stage method, In, Ga, and Se are first co-deposited at a substrate temperature of 300 ° C. in a high vacuum, and then heated to 500 to 560 ° C., and Cu and Se are co-evaporated. In this method, Ga and Se are further vapor-deposited. The latter EC group simultaneous vapor deposition method is a method in which Cu-excess CIGS is vapor-deposited in the early stage of vapor deposition and In-rich CIGS is vapor-deposited in the latter half.

CIGS膜の結晶性を向上させるため、上記方法に改良を加えた方法として、
a)イオン化したGaを使用する方法(H.Miyazaki, et.al, phys.stat.sol.(a),Vol.203(2006)p.2603.等)、
b)クラッキングしたSeを使用する方法(第68回応用物理学会学術講演会 講演予稿集(2007秋 北海道工業大学)7P−L−6等)、
c)ラジカル化したSeを用いる方法(第54回応用物理学会学術講演会 講演予稿集(2007春 青山学院大学)29P−ZW−10等)、
d)光励起プロセスを利用した方法(第54回応用物理学会学術講演会 講演予稿集(2007春 青山学院大学)29P−ZW−14等)等が知られている。
In order to improve the crystallinity of the CIGS film, as a method of improving the above method,
a) a method using ionized Ga (H. Miyazaki, et.al, phys.stat.sol. (a), Vol.203 (2006) p.2603, etc.),
b) Method of using cracked Se (68th Japan Society of Applied Physics Academic Lecture Proceedings (Autumn 2007, Hokkaido Institute of Technology) 7P-L-6 etc.),
c) Method using radicalized Se (Proceedings of the 54th Japan Society of Applied Physics (Aoyama Gakuin University) 29P-ZW-10 etc.)
d) A method using a photoexcitation process (the 54th Japan Society of Applied Physics Academic Lecture Proceedings (Spring 2007 Aoyama Gakuin University) 29P-ZW-14 etc.) is known.

2)セレン化法は2段階法とも呼ばれ、最初にCu層/In層あるいは(Cu−Ga)層/In層等の積層膜の金属プレカーサをスパッタ法、蒸着法、あるいは電着法などで成膜し、これをセレン蒸気またはセレン化水素中で450〜550℃程度に加熱することにより、熱拡散反応によってCu(In1−xGa)Se等のセレン化合物を生成する方法である。この方法を気相セレン化法と呼ぶ。このほか、金属プリカーサ膜の上に固相セレンを堆積し、この固相セレンをセレン源とした固相拡散反応によりセレン化させる固相セレン化法がある。 2) The selenization method is also called a two-step method. First, a metal precursor of a laminated film such as a Cu layer / In layer or a (Cu—Ga) layer / In layer is formed by sputtering, vapor deposition, or electrodeposition. This is a method of forming a selenium compound such as Cu (In 1-x Ga x ) Se 2 by a thermal diffusion reaction by forming a film and heating it in selenium vapor or hydrogen selenide to about 450 to 550 ° C. . This method is called a vapor phase selenization method. In addition, there is a solid-phase selenization method in which solid-phase selenium is deposited on a metal precursor film and selenized by a solid-phase diffusion reaction using the solid-phase selenium as a selenium source.

セレン化法においては、セレン化の際に生ずる急激な体積膨張を回避するために、金属プリカーサ膜に予めセレンをある割合で混合しておく方法(T.Nakada et.al,, Solar Energy Materials and Solar Cells 35(1994)204-214.等)、及び金属薄層間にセレンを挟み(例えばCu層/In層/Se層…Cu層/In層/Se層と積層する)多層化プリカーサ膜を形成する方法(T.Nakada et.al,, Proc. of 10th European Photovoltaic Solar Energy Conference(1991)887-890. 等)が知られている。   In the selenization method, in order to avoid the rapid volume expansion that occurs during selenization, a method of previously mixing selenium in a metal precursor film at a certain ratio (T. Nakada et.al, Solar Energy Materials and Solar Cells 35 (1994) 204-214, etc.), and a multilayered precursor film with selenium sandwiched between thin metal layers (for example, a Cu layer / In layer / Se layer ... stacked with a Cu layer / In layer / Se layer) The forming method (T. Nakada et.al, Proc. Of 10th European Photovoltaic Solar Energy Conference (1991) 887-890. Etc.) is known.

また、グレーデッドバンドギャップCIGS膜の成膜方法として、最初にCu−Ga合金膜を堆積し、その上にIn膜を堆積し、これをセレン化する際に、自然熱拡散を利用してGa濃度を膜厚方向で傾斜させる方法がある(K.Kushiya et.al, Tech.Digest 9th Photovoltaic Science and Engineering Conf. Miyazaki, 1996(Intn.PVSEC-9,Tokyo,1996)p.149.等)。   In addition, as a method for forming a graded band gap CIGS film, a Cu—Ga alloy film is first deposited, an In film is deposited thereon, and when this is selenized, natural thermal diffusion is used to form Ga. There is a method in which the concentration is inclined in the film thickness direction (K. Kushiya et.al, Tech.Digest 9th Photovoltaic Science and Engineering Conf. Miyazaki, 1996 (Intn. PVSEC-9, Tokyo, 1996) p.149.).

3)スパッタ法としては、
CuInSe多結晶をターゲットとした方法、
CuSeとInSeをターゲットとし、スパッタガスにHSe/Ar混合ガスを用いる2源スパッタ法(J.H.Ermer,et.al, Proc.18th IEEE Photovoltaic Specialists Conf.(1985)1655-1658.等)、
Cuターゲットと、Inターゲットと、SeまたはCuSeターゲットとをArガス中でスパッタする3源スパッタ法(T.Nakada,et.al, Jpn.J.Appl.Phys.32(1993)L1169-L1172.等)が知られている。
3) As a sputtering method,
A method targeting CuInSe 2 polycrystal,
Two-source sputtering method using Cu 2 Se and In 2 Se 3 as targets and using H 2 Se / Ar mixed gas as sputtering gas (JHErmer, et.al, Proc. 18th IEEE Photovoltaic Specialists Conf. (1985) 1655-1658. etc),
Three-source sputtering method (T. Nakada, et.al, Jpn. J. Appl. Phys. 32 (1993) L1169-L1172. Etc.) in which a Cu target, an In target, and a Se or CuSe target are sputtered in Ar gas. )It has been known.

4)ハイブリッドスパッタ法としては、前述のスパッタ法において、CuとIn金属は直流スパッタで、Seのみは蒸着とするハイブリッドスパッタ法(T.Nakada,et.al., Jpn.Appl.Phys.34(1995)4715-4721.等)が知られている。   4) As the hybrid sputtering method, in the sputtering method described above, Cu and In metal are DC sputtering, and only Se is vapor deposition (T. Nakada, et.al., Jpn.Appl.Phys.34 ( 1995) 4715-4721.

5)メカノケミカルプロセス法は、CIGSの組成に応じた原料を遊星ボールミルの容器に入れ、機械的なエネルギーによって原料を混合してCIGS粉末を得、その後、スクリーン印刷によって基板上に塗布し、アニールを施して、CIGSの膜を得る方法である(T.Wada et.al, Phys.stat.sol.(a), Vol.203(2006)p2593等)。   5) In the mechanochemical process method, raw materials corresponding to the CIGS composition are put into a planetary ball mill container, and the raw materials are mixed by mechanical energy to obtain CIGS powder, which is then applied onto the substrate by screen printing and annealed. To obtain a CIGS film (T. Wada et.al, Phys.stat.sol. (A), Vol.203 (2006) p2593, etc.).

6)その他のCIGS成膜法としては、スクリーン印刷法、近接昇華法、MOCVD法、及びスプレー法などが挙げられる。例えば、スクリーン印刷法あるいはスプレー法等で、Ib族元素、IIIb族元素、及びVIb族元素を含む微粒子膜を基板上に形成し、熱分解処理(この際、VIb族元素雰囲気での熱分解処理でもよい)を実施するなどにより、所望の組成の結晶を得ることができる(特開平9−74065号公報、特開平9−74213号公報等)。   6) Other CIGS film forming methods include screen printing, proximity sublimation, MOCVD, and spraying. For example, a fine particle film containing an Ib group element, an IIIb group element, and a VIb group element is formed on a substrate by a screen printing method or a spray method, and a thermal decomposition process (in this case, a thermal decomposition process in an VIb group element atmosphere). For example, Japanese Patent Application Laid-Open No. 9-74065 and Japanese Patent Application Laid-Open No. 9-74213).

図5は、主なI−III−VI化合物半導体における格子定数とバンドギャップとの関係を示す図である。組成比を変えることにより様々な禁制帯幅(バンドギャップ)を得ることができる。バンドギャップよりエネルギーの大きな光子が半導体に入射した場合、バンドギャップを超える分のエネルギーは熱損失となる。太陽光のスペクトルとバンドギャップの組合せで変換効率が最大になるのがおよそ1.4〜1.5eVであることが理論計算で分かっている。   FIG. 5 is a diagram showing the relationship between the lattice constant and the band gap in main I-III-VI compound semiconductors. Various forbidden band widths (band gaps) can be obtained by changing the composition ratio. When a photon having energy larger than the band gap is incident on the semiconductor, the energy exceeding the band gap becomes a heat loss. It is known from theoretical calculation that the conversion efficiency is about 1.4 to 1.5 eV at the combination of the spectrum of sunlight and the band gap.

光電変換効率を上げるために、例えばCu(In,Ga)Se(CIGS)のGa濃度を上げたり、Cu(In,Al)SeのAl濃度を上げたり、Cu(In,Ga)(S,Se)のS濃度を上げたりしてバンドギャップを大きくすることで、変換効率の高いバンドギャップを得ることができる。CIGSの場合、1.04〜1.68eVの範囲で調整できる。 In order to increase the photoelectric conversion efficiency, for example, the Ga concentration of Cu (In, Ga) Se 2 (CIGS) is increased, the Al concentration of Cu (In, Al) Se 2 is increased, or Cu (In, Ga) (S , Se) By increasing the S concentration of 2 or increasing the band gap, a band gap with high conversion efficiency can be obtained. In the case of CIGS, it can be adjusted in the range of 1.04 to 1.68 eV.

組成比を膜厚方向に変えることでバンド構造に傾斜を付けることができる。傾斜バンド構造としては、光の入射窓側から反対側の電極方向にバンドギャップを大きくするシングルグレーデットバンドギャップ、あるいは、光の入射窓からPN接合部に向かってバンドギャップが小さくなりPN接合部を過ぎるとバンドギャップが大きくなるダブルグレーデッドバンドギャップの2種類がある(T.Dullweber et.al, Solar Energy Materials & Solar Cells, Vol.67, p.145-150(2001)等)。いずれもバンド構造の傾斜によって内部に発生する電界のため、光に誘起されたキャリアが加速され電極に到達しやすくなり、再結合中心との結合確率を下げるため、発電効率が向上する(WO2004/090995号パンフレット等)。   The band structure can be inclined by changing the composition ratio in the film thickness direction. The tilted band structure is a single graded band gap that increases the band gap from the light incident window side to the opposite electrode direction, or the band gap decreases from the light incident window toward the PN junction, and the PN junction is There are two types of double graded band gaps that become larger after passing (T. Dullweber et.al, Solar Energy Materials & Solar Cells, Vol. 67, p.145-150 (2001), etc.). In both cases, the electric field generated inside due to the inclination of the band structure accelerates the carriers induced in the light to easily reach the electrode, and lowers the probability of coupling with the recombination center, thereby improving the power generation efficiency (WO2004 / 090995 pamphlet).

スペクトルの範囲別にバンドギャップの異なる半導体を複数使うと、光子エネルギーとバンドギャップの乖離による熱損失を小さくし、発電効率を向上することができる。このような複数の光電変換層を重ねて用いるものをタンデム型という。2層タンデムの場合、例えば1.1eVと1.7eVの組合せを用いることにより発電効率を向上することができる。   When a plurality of semiconductors having different band gaps are used for each spectrum range, heat loss due to the difference between photon energy and band gap can be reduced, and power generation efficiency can be improved. Such a layer using a plurality of photoelectric conversion layers is called a tandem type. In the case of a two-layer tandem, for example, the power generation efficiency can be improved by using a combination of 1.1 eV and 1.7 eV.

(電極、バッファ層)
下部電極20及び上部電極50はいずれも導電性材料からなる。光入射側の上部電極50は透光性を有する必要がある。
下部電極20の主成分としては特に制限されず、Mo,Cr,W,及びこれらの組合わせが好ましく、Moが特に好ましい。下部電極20の厚みは特に制限されず、0.3〜1μmが好ましい。
上部電極50の主成分としては特に制限されず、ZnO,ITO(インジウム錫酸化物),SnO,及びこれらの組合わせが好ましい。上部電極50の厚みは特に制限されず、0.6〜1.0μmが好ましい。
下部電極20及び/又は上部電極50は、単層構造でもよいし、2層構造等の積層構造もよい。
下部電極20及び上部電極50の成膜方法は特に制限されず、電子ビーム蒸着法やスパッタリング法等の気相成膜法が挙げられる。
(Electrode, buffer layer)
Both the lower electrode 20 and the upper electrode 50 are made of a conductive material. The upper electrode 50 on the light incident side needs to have translucency.
The main component of the lower electrode 20 is not particularly limited, and Mo, Cr, W, and combinations thereof are preferable, and Mo is particularly preferable. The thickness of the lower electrode 20 is not particularly limited, and is preferably 0.3 to 1 μm.
The main component of the upper electrode 50 is not particularly limited, and ZnO, ITO (indium tin oxide), SnO 2 , and combinations thereof are preferable. The thickness of the upper electrode 50 is not particularly limited, and is preferably 0.6 to 1.0 μm.
The lower electrode 20 and / or the upper electrode 50 may have a single layer structure or a laminated structure such as a two-layer structure.
The film formation method of the lower electrode 20 and the upper electrode 50 is not particularly limited, and examples thereof include vapor phase film formation methods such as an electron beam evaporation method and a sputtering method.

バッファ層40の主成分としては特に制限されず、CdS,ZnS,ZnO,ZnMgO,ZnS(O,OH) ,及びこれらの組合わせが好ましい。バッファ層40の厚みは特に制限されず、0.03〜0.1μmが好ましい。
好ましい組成の組合わせとしては例えば、Mo下部電極/CdSバッファ層/CIGS光電変換層/ZnO上部電極が挙げられる。
The main component of the buffer layer 40 is not particularly limited, and CdS, ZnS, ZnO, ZnMgO, ZnS (O, OH), and combinations thereof are preferable. The thickness of the buffer layer 40 is not particularly limited, and is preferably 0.03 to 0.1 μm.
As a combination of preferable compositions, for example, Mo lower electrode / CdS buffer layer / CIGS photoelectric conversion layer / ZnO upper electrode may be mentioned.

光電変換層30〜上部電極50の導電型は特に制限されない。通常、光電変換層30はp層、バッファ層40はn層(n−CdS等)、上部電極50はn層(n−ZnO層等 )あるいはi層とn層との積層構造(i−ZnO層とn−ZnO層との積層等)とされる。かかる導電型では、光電変換層30と上部電極50との間に、pn接合、あるいはpin接合が形成されると考えられる。また、光電変換層30の上にCdSからなるバッファ層40を設けると、Cdが拡散して、光電変換層30の表層にn層が形成され、光電変換層30内にpn接合が形成されると考えられる。光電変換層30内のn層の下層にi層を設けて光電変換層30内にpin接合を形成してもよいと考えられる。   The conductivity type of the photoelectric conversion layer 30 to the upper electrode 50 is not particularly limited. Usually, the photoelectric conversion layer 30 is a p-layer, the buffer layer 40 is an n-layer (n-CdS, etc.), and the upper electrode 50 is an n-layer (n-ZnO layer, etc.) or a laminated structure of i-layer and n-layer (i-ZnO). Layer and n-ZnO layer). With this conductivity type, it is considered that a pn junction or a pin junction is formed between the photoelectric conversion layer 30 and the upper electrode 50. Further, when the buffer layer 40 made of CdS is provided on the photoelectric conversion layer 30, Cd diffuses to form an n layer on the surface layer of the photoelectric conversion layer 30, and a pn junction is formed in the photoelectric conversion layer 30. it is conceivable that. It is considered that an i layer may be provided below the n layer in the photoelectric conversion layer 30 to form a pin junction in the photoelectric conversion layer 30.

(その他の構成)
光電変換素子1は必要に応じて、上記で説明した以外の任意の構成を備えることができる。
(Other configurations)
The photoelectric conversion element 1 can be provided with an arbitrary configuration other than those described above as necessary.

ソーダライムガラス基板を用いた光電変換素子においては、基板中のアルカリ金属元素(Na元素)がCIGS膜に拡散し、エネルギー変換効率が高くなることが報告されている。本実施形態においても、アルカリ金属をCIGS膜に拡散させることは好ましい。アルカリ金属元素の拡散方法としては、Mo下部電極上に蒸着法またはスパッタリング法によってアルカリ金属元素を含有する層を形成する方法(特開平8−222750号公報等)、Mo下部電極上に浸漬法によりNaS等からなるアルカリ層を形成する方法(WO03/069684号パンフレット等)、Mo下部電極上に、In、Cu及びGa金属元素を含有成分としたプリカーサを形成した後このプリカーサに対して例えばモリブデン酸ナトリウムを含有した水溶液を付着させる方法等が挙げられる。 In a photoelectric conversion element using a soda lime glass substrate, it has been reported that the alkali metal element (Na element) in the substrate diffuses into the CIGS film, resulting in high energy conversion efficiency. Also in this embodiment, it is preferable to diffuse the alkali metal into the CIGS film. As a method for diffusing the alkali metal element, a method of forming a layer containing an alkali metal element on the Mo lower electrode by vapor deposition or sputtering (JP-A-8-222750, etc.), or an immersion method on the Mo lower electrode. A method of forming an alkali layer made of Na 2 S or the like (WO03 / 0669684 pamphlet, etc.), a precursor containing In, Cu, and Ga metal elements as components on the Mo lower electrode is formed on the precursor. Examples include a method of attaching an aqueous solution containing sodium molybdate.

また、下部電極20を積層構造とし、下部電極20の積層構造の間に、NaS,NaSe,NaCl,NaF,及びモリブデン酸ナトリウム塩等の1種又は2種以上のアルカリ金属化合物を含む層を設ける構成も好ましい。この層は、酸化アルミニウム等のアルカリ金属を含まない材料を含んでいてもよい。 Further, the lower electrode 20 has a laminated structure, and one or more alkali metal compounds such as Na 2 S, Na 2 Se, NaCl, NaF, and sodium molybdate are placed between the laminated structures of the lower electrode 20. A structure in which a layer including the same is provided is also preferable. This layer may contain a material not containing an alkali metal such as aluminum oxide.

陽極酸化基板10と下部電極20との間、及び/又は下部電極20と光電変換層30との間に、必要に応じて、層同士の密着性を高めるための密着層(緩衝層)を設けることができる。また、必要に応じて、陽極酸化基板10と下部電極20との間に、アルカリイオンの拡散を抑制するアルカリバリア層を設けることができる。アルカリバリア層については、特開平8−222750号公報を参照されたい。   If necessary, an adhesion layer (buffer layer) is provided between the anodized substrate 10 and the lower electrode 20 and / or between the lower electrode 20 and the photoelectric conversion layer 30 to enhance the adhesion between the layers. be able to. Moreover, an alkali barrier layer that suppresses diffusion of alkali ions can be provided between the anodized substrate 10 and the lower electrode 20 as necessary. For the alkali barrier layer, see JP-A-8-222750.

本実施形態の光電変換素子1は、以上のように構成されている。
本実施形態の光電変換素子1は陽極酸化基板10を用いた素子であるので、軽量かつフレキシブルであり、連続工程(Roll to Roll工程)による製造が可能であり、低コストで製造可能な素子である。
The photoelectric conversion element 1 of this embodiment is configured as described above.
Since the photoelectric conversion element 1 of this embodiment is an element using the anodized substrate 10, it is lightweight and flexible, can be manufactured by a continuous process (Roll to Roll process), and can be manufactured at a low cost. is there.

本実施形態では、基板10に光吸収剤又は光反射剤を用いてマーカ13を形成し、マーカ13を形成するために孔を空けない。したがって、基板10に位置決め用のマーカ13を簡易に形成することができ、基板10に孔を設けることで生じる削りカスの洗浄工程が不要である。   In the present embodiment, the marker 13 is formed on the substrate 10 using a light absorber or a light reflector, and no hole is formed to form the marker 13. Therefore, the positioning marker 13 can be easily formed on the substrate 10, and there is no need for a cleaning process for scraps generated by providing holes in the substrate 10.

本実施形態では特定波長域の光を用いて光検出によりマーカを検出することができるので、基板10の位置決めを高精度に実施することができる。特に、近赤外線、赤外線、近紫外線、又は紫外線を選択的に吸収又は反射するマーカ13を用いることで、外光の影響をなくして、基板10の位置検出を高感度に実施することができる。   In the present embodiment, since the marker can be detected by light detection using light in a specific wavelength region, the substrate 10 can be positioned with high accuracy. In particular, by using the marker 13 that selectively absorbs or reflects near infrared rays, infrared rays, near ultraviolet rays, or ultraviolet rays, the position of the substrate 10 can be detected with high sensitivity without the influence of external light.

本実施形態では孔を設けないので、基板10の裏面10Bにマーカを形成することができる。したがって、マーカ13を形成するために基板10に対して最終的に使用されない耳端部を設ける必要がなく、基板10の全面を有効に活用することができ、耳端部の裁断除去工程も不要である。   In this embodiment, since no hole is provided, a marker can be formed on the back surface 10 </ b> B of the substrate 10. Therefore, it is not necessary to provide an ear end portion that is not finally used for the substrate 10 in order to form the marker 13, the entire surface of the substrate 10 can be used effectively, and a cutting and removing process of the ear end portion is unnecessary. It is.

本実施形態では、開溝部61〜64の形成時に基板10の位置決めを高精度に実施することができ、高精度に開溝部61〜64を形成することができ、歩留まり良く、光電変換素子1を製造することができる。   In the present embodiment, the positioning of the substrate 10 can be performed with high accuracy when the groove portions 61 to 64 are formed, the groove portions 61 to 64 can be formed with high accuracy, and the yield is improved. 1 can be manufactured.

例えば、下部電極20を形成した後、位置決め用のマーカ13に対して特定波長域内の検出光を照射し、位置決め用のマーカ13からの反射光を検出することで、基板10の位置決めを行い、その後に、得られた基板10の位置データに基づいて複数の開溝部61を形成することで、複数の開溝部61を高精度に形成することができる。開溝部62〜64についても同様である。   For example, after the lower electrode 20 is formed, the substrate 10 is positioned by irradiating the positioning marker 13 with detection light in a specific wavelength range and detecting the reflected light from the positioning marker 13. After that, by forming the plurality of groove portions 61 based on the obtained position data of the substrate 10, the plurality of groove portions 61 can be formed with high accuracy. The same applies to the open groove portions 62 to 64.

光電変換素子1においては、それぞれの膜の材質及び特性により適したスクライブ加工が実施される。例えば、CIGS系の素子では通常、第1の開溝部61は好ましくはレーザスクライブ加工により形成され、第2〜第4の開溝部62〜64は好ましくはスクライブ刃を用いた機械的なスクライブ加工により形成される。   In the photoelectric conversion element 1, scribing suitable for the material and characteristics of each film is performed. For example, in a CIGS-based element, the first groove 61 is preferably formed by laser scribing, and the second to fourth grooves 62 to 64 are preferably mechanical scribes using a scribe blade. It is formed by processing.

マーカ13は基板10の裏面10Bに設け、基板10に対して最終的には切り落とされる耳端部を設けないことが好ましいが、基板10に対して最終的には切り落とされる耳端部を設け、耳端部の表面又は裏面にマーカ13を設ける構成としても構わない。この場合には、基板10の有効利用の効果は得られないが、基板10に位置決め用のマーカ13を簡易に形成することができ、基板10の位置決めを高精度に実施するという効果は得られる。   It is preferable that the marker 13 is provided on the back surface 10B of the substrate 10 and does not provide an ear end portion that is finally cut off from the substrate 10, but an ear end portion that is finally cut off from the substrate 10 is provided, The marker 13 may be provided on the front or back surface of the ear end. In this case, the effect of effective use of the substrate 10 cannot be obtained, but the positioning marker 13 can be easily formed on the substrate 10 and the effect of performing the positioning of the substrate 10 with high accuracy can be obtained. .

光電変換素子1は、太陽電池等に好ましく使用することができる。光電変換素子1に対して必要に応じて、カバーガラス、保護フィルム等を取り付けて、太陽電池とすることができる。   The photoelectric conversion element 1 can be preferably used for a solar cell or the like. If necessary, a cover glass, a protective film, or the like can be attached to the photoelectric conversion element 1 to form a solar cell.

「製造装置(スクライブ加工装置)」
図面を参照して、本発明に係る一実施形態の製造装置(スクライブ加工装置)の構造について説明する。図6は装置の概略斜視図である。
"Manufacturing equipment (scribing equipment)"
With reference to the drawings, the structure of a manufacturing apparatus (scribing apparatus) according to an embodiment of the present invention will be described. FIG. 6 is a schematic perspective view of the apparatus.

本実施形態は、上記実施形態の光電変換素子1の製造装置であり、光電変換層30とバッファ層40との積層膜を形成した後、該積層膜に開溝部62を形成するスクライブ加工装置である。開溝部63,64についても、同じ装置を用いて形成することができる。   This embodiment is a manufacturing apparatus of the photoelectric conversion element 1 according to the above embodiment, and a scribing apparatus for forming a groove 62 in the laminated film after the laminated film of the photoelectric conversion layer 30 and the buffer layer 40 is formed. It is. The open groove portions 63 and 64 can also be formed using the same apparatus.

本実施形態の製造装置(スクライブ加工装置)100は、表面に被スクライブ加工膜M(光電変換層30とバッファ層40との積層膜)が形成された連続した帯状の可橈性基板B(陽極酸化基板10)を、張力を付与しながらウェブ搬送する搬送手段110と、被スクライブ加工膜Mが形成されていない側から可橈性基板Bを押圧する押圧手段120と、可橈性基板Bの押圧手段120により押圧された部分の表面に形成された被スクライブ加工膜Mに対してスクライブ加工を行うスクライブ加工手段130と、基板の位置検出手段150とを備えている。   A manufacturing apparatus (scribing apparatus) 100 according to the present embodiment includes a continuous strip-shaped flexible substrate B (anode) on which a film to be scribed M (a laminated film of a photoelectric conversion layer 30 and a buffer layer 40) is formed. A transport means 110 for transporting the oxidized substrate 10) while applying tension; a pressing means 120 for pressing the flexible substrate B from the side where the film to be scribed M is not formed; A scribing means 130 for performing a scribing process on the to-be-scribed film M formed on the surface of the portion pressed by the pressing means 120 and a substrate position detecting means 150 are provided.

本実施形態において、搬送手段110は、表面に被スクライブ加工膜Mが形成された連続した帯状の可橈性基板Bを送り出す回動可能な第1のローラ(送出しローラ)111と、スクライブ加工後の可橈性基板Bを巻き取る回動可能な第2のローラ(巻取りローラ)112とから概略構成されている。第1のローラ111は、先の工程からスクライブ加工工程に基板を搬送する搬送ローラであってもよい。同様に、第2のローラ112は、スクライブ加工工程から次の工程に基板を搬送する搬送ローラであってもよい。   In the present embodiment, the transport means 110 includes a rotatable first roller (sending roller) 111 that feeds a continuous strip-shaped flexible substrate B having a surface to be scribed with a film M to be scribed, and a scribing process. This is generally composed of a rotatable second roller (winding roller) 112 that winds the subsequent flexible substrate B. The first roller 111 may be a transport roller that transports the substrate from the previous process to the scribing process. Similarly, the second roller 112 may be a transport roller that transports the substrate from the scribing process to the next process.

押圧手段120は、可橈性基板Bを押圧する回動可能な押圧ローラ121とその上下方向の位置を調整する位置調整機構(図示略)とから概略構成されている。   The pressing means 120 is generally configured by a rotatable pressing roller 121 that presses the flexible substrate B and a position adjusting mechanism (not shown) that adjusts the vertical position thereof.

スクライブ加工手段130は、可橈性基板Bを挟んで押圧ローラ121に対向配置され、機械的にスクライブ加工を行う複数のスクライブ刃131から概略構成されている。複数のスクライブ刃131は可橈性基板Bの幅方向に配列されている。各スクライブ刃131の基板の幅方向の位置及び上下方向の位置が調整可能とされている。図中、符号Hは、スクライブ加工により形成された開溝部を示している。   The scribing means 130 is generally configured by a plurality of scribing blades 131 that are disposed to face the pressing roller 121 with the flexible substrate B interposed therebetween and perform mechanical scribing. The plurality of scribe blades 131 are arranged in the width direction of the flexible substrate B. The position of the substrate in the width direction and the position in the vertical direction of each scribe blade 131 can be adjusted. In the figure, symbol H indicates an open groove formed by scribing.

本実施形態の装置100には、蛇行検出センサ141と複数の蛇行修正ローラ142とからなる蛇行修正手段140も備えられている。   The apparatus 100 according to the present embodiment is also provided with a meandering correction unit 140 including a meandering detection sensor 141 and a plurality of meandering correction rollers 142.

位置検出手段150は、図4に示した位置決め用のマーカ13に対して位置決め用のマーカ13が選択的に吸収/又は反射する特定波長域内の検出光L1を照射する光照射手段151と、位置決め用のマーカ13からの反射光L2を検出する検出手段152とを備えている。   The position detecting unit 150 includes a light irradiating unit 151 that irradiates detection light L1 within a specific wavelength range that the positioning marker 13 selectively absorbs / reflects with respect to the positioning marker 13 illustrated in FIG. And detecting means 152 for detecting reflected light L2 from the marker 13 for use.

光照射手段151は、レーザあるいは発光ダイオード(LED)等の光源、及び必要に応じて設けられるレンズや光ファイバ等の調光・伝送光学系により構成される。検出手段152としては、反射光L2の光量あるいは波長スペクトル等の光学特性を検出する受光素子等が挙げられる。検出手段152としては、光学濃度計、分光光度計、(近)赤外光あるいは(近)紫外光の透過フィルタをつけた各種半導体光センサあるいは光電管等が挙げられる。   The light irradiation means 151 includes a light source such as a laser or a light emitting diode (LED), and a dimming / transmission optical system such as a lens or an optical fiber provided as necessary. Examples of the detecting means 152 include a light receiving element that detects optical characteristics such as the amount of reflected light L2 or a wavelength spectrum. Examples of the detecting means 152 include an optical densitometer, a spectrophotometer, various semiconductor photosensors or photoelectric tubes with (near) infrared light or (near) ultraviolet light transmission filters.

位置決め用のマーカ13の形状及び大きさは光検出ができれば特に制限なく、「×」の場合について図示してある。帯状の可橈性基板Bに対して幅方向に沿って一方の端部又は両端部にライン状に位置決め用のマーカ13を引くなどしてもよい。   The shape and size of the positioning marker 13 are not particularly limited as long as light can be detected, and the case of “x” is illustrated. For example, the positioning marker 13 may be drawn in a line at one end or both ends of the band-shaped flexible substrate B along the width direction.

本実施形態の製造装置(スクライブ加工装置)100は、以上のように構成されている。本実施形態によれば、基板Bの位置決めを高精度に実施でき、開溝部62〜64を高精度に形成することができる。位置検出手段150はレーザスクライブ加工により開溝部61を形成する場合にも適用可能である。この場合には、スクライブ加工手段として、レーザ光を照射するレーザ光学系を備える構成とすればよい。   The manufacturing apparatus (scribing apparatus) 100 of this embodiment is configured as described above. According to the present embodiment, the positioning of the substrate B can be performed with high accuracy, and the groove portions 62 to 64 can be formed with high accuracy. The position detection means 150 can also be applied when the groove 61 is formed by laser scribing. In this case, what is necessary is just to set it as the structure provided with the laser optical system which irradiates a laser beam as a scribe processing means.

本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内において、適宜設計変更可能である。   The present invention is not limited to the above-described embodiment, and the design can be changed as appropriate without departing from the spirit of the present invention.

本発明の基板とその位置検出方法は、光電変換素子等の用途に好ましく適用できる。本発明の光電変換素子は、太陽電池、及び赤外センサ等の用途に好ましく適用できる。   The board | substrate and its position detection method of this invention are preferably applicable to uses, such as a photoelectric conversion element. The photoelectric conversion element of the present invention is preferably applicable to uses such as solar cells and infrared sensors.

1 光電変換素子(太陽電池)
10 陽極酸化基板
11 金属基材
12 陽極酸化膜
13 位置決め用のマーカ
20 下部電極
30 光電変換半導体層
40 バッファ層
50 上部電極
61〜64 開溝部
100 製造装置(スクライブ加工装置)
130 スクライブ加工手段
150 位置検出手段
151 光照射手段
152 検出手段
L1 検出光
L2 反射光
B 可撓性基板
H 開溝部
1 Photoelectric conversion element (solar cell)
DESCRIPTION OF SYMBOLS 10 Anodized substrate 11 Metal base material 12 Anodized film 13 Positioning marker 20 Lower electrode 30 Photoelectric conversion semiconductor layer 40 Buffer layer 50 Upper electrodes 61-64 Groove 100 Manufacturing apparatus (scribe processing apparatus)
130 Scribing means 150 Position detection means 151 Light irradiation means 152 Detection means L1 Detection light L2 Reflected light B Flexible substrate H Groove part

Claims (13)

特定波長域の光を選択的に吸収する光吸収剤、又は特定波長域の光を選択的に反射する光反射剤を用いて形成された位置決め用のマーカを有することを特徴とする基板。   A substrate having a positioning marker formed by using a light absorbing agent that selectively absorbs light in a specific wavelength region or a light reflecting agent that selectively reflects light in a specific wavelength region. 前記特定波長域の光が、近赤外線、赤外線、近紫外線、又は紫外線であることを特徴とする請求項1に記載の基板。   The substrate according to claim 1, wherein the light in the specific wavelength region is near infrared, infrared, near ultraviolet, or ultraviolet. Alを主成分とする金属基材の少なくとも一方の面側に陽極酸化膜を有する陽極酸化基板であることを特徴とする請求項1又は2に記載の基板。   3. The substrate according to claim 1, wherein the substrate is an anodized substrate having an anodized film on at least one surface side of a metal base material mainly composed of Al. 下部電極と光吸収により電流を発生する光電変換半導体層と上部電極との積層構造を有する光電変換素子用の基板であることを特徴とする請求項1〜3のいずれかに記載の基板。   The substrate according to any one of claims 1 to 3, wherein the substrate is a substrate for a photoelectric conversion element having a laminated structure of a lower electrode, a photoelectric conversion semiconductor layer that generates current by light absorption, and an upper electrode. 基板上に下部電極と光吸収により電流を発生する光電変換半導体層と上部電極との積層構造を有し、かつ該積層構造が複数の開溝部によって複数のセルに分割された光電変換素子において、
前記基板は、特定波長域の光を選択的に吸収する光吸収剤、又は特定波長域の光を選択的に反射する光反射剤を用いて形成された位置決め用のマーカを有することを特徴とする光電変換素子。
In a photoelectric conversion element having a laminated structure of a lower electrode, a photoelectric conversion semiconductor layer that generates current by light absorption, and an upper electrode on a substrate, and the laminated structure is divided into a plurality of cells by a plurality of groove portions. ,
The substrate has a positioning marker formed by using a light absorber that selectively absorbs light in a specific wavelength range, or a light reflector that selectively reflects light in a specific wavelength range. A photoelectric conversion element.
前記特定波長域の光が、近赤外線、赤外線、近紫外線、又は紫外線であることを特徴とする請求項5に記載の光電変換素子。   The photoelectric conversion element according to claim 5, wherein the light in the specific wavelength range is near infrared, infrared, near ultraviolet, or ultraviolet. 前記位置決め用のマーカが前記基板の裏面に形成されていることを特徴とする請求項5又は6に記載の光電変換素子。   The photoelectric conversion element according to claim 5, wherein the positioning marker is formed on a back surface of the substrate. 請求項5〜7のいずれかに記載の光電変換素子を備えたことを特徴とする太陽電池。   A solar cell comprising the photoelectric conversion element according to claim 5. 特定波長域の光を選択的に吸収する光吸収剤、又は特定波長域の光を選択的に反射する光反射剤を用いて形成された位置決め用のマーカを有する基板を用い、
前記位置決め用のマーカに対して前記特定波長域内の検出光を照射し、前記位置決め用のマーカからの反射光を検出することで、前記基板の位置決めを行うことを特徴とする基板の位置決め方法。
Using a substrate having a positioning marker formed using a light absorber that selectively absorbs light in a specific wavelength range, or a light reflector that selectively reflects light in a specific wavelength range,
A method of positioning a substrate, wherein the substrate is positioned by irradiating the positioning marker with detection light in the specific wavelength range and detecting reflected light from the positioning marker.
基板上に下部電極と光吸収により電流を発生する光電変換半導体層と上部電極との積層構造を有し、かつ該積層構造が複数の開溝部によって複数のセルに分割された光電変換素子の製造方法において、
前記基板として、特定波長域の光を選択的に吸収する光吸収剤、又は特定波長域の光を選択的に反射する光反射剤を用いて形成された位置決め用のマーカを有する基板を用い、
前記位置決め用のマーカに対して前記特定波長域内の検出光を照射し、前記位置決め用のマーカからの反射光を検出することで、前記基板の位置決めを行う工程を有することを特徴とする光電変換素子の製造方法。
A photoelectric conversion element having a stacked structure of a lower electrode, a photoelectric conversion semiconductor layer that generates current by light absorption, and an upper electrode on a substrate, and the stacked structure is divided into a plurality of cells by a plurality of groove portions. In the manufacturing method,
As the substrate, a light absorber that selectively absorbs light in a specific wavelength range, or a substrate having a positioning marker formed by using a light reflector that selectively reflects light in a specific wavelength range,
A photoelectric conversion comprising a step of positioning the substrate by irradiating the positioning marker with detection light in the specific wavelength region and detecting reflected light from the positioning marker. Device manufacturing method.
前記基板の位置決めを行う工程を実施した後に、得られた前記基板の位置データに基づいて、前記複数の開溝部を形成する工程を有することを特徴とする請求項10に記載の光電変換素子の製造方法。   The photoelectric conversion element according to claim 10, further comprising a step of forming the plurality of groove portions based on the obtained position data of the substrate after performing the step of positioning the substrate. Manufacturing method. 請求項5〜7のいずれかに記載の光電変換素子を製造する製造装置であって、
前記位置決め用のマーカに対して前記特定波長域内の検出光を照射する光照射手段と、
前記位置決め用のマーカからの反射光を検出する検出手段とを備えたことを特徴とする光電変換素子の製造装置。
It is a manufacturing apparatus which manufactures the photoelectric conversion element in any one of Claims 5-7,
A light irradiation means for irradiating the positioning marker with detection light in the specific wavelength range;
An apparatus for manufacturing a photoelectric conversion element, comprising: detection means for detecting reflected light from the positioning marker.
さらに、前記複数の開溝部を形成するスクライブ加工手段を備えたことを特徴とする請求項12に記載の光電変換素子の製造装置。   The apparatus for manufacturing a photoelectric conversion element according to claim 12, further comprising a scribing unit that forms the plurality of groove portions.
JP2009078913A 2009-03-27 2009-03-27 Substrate and positioning method thereof, photoelectric conversion device and manufacturing method and apparatus therefor, and solar cell Abandoned JP2010232454A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009078913A JP2010232454A (en) 2009-03-27 2009-03-27 Substrate and positioning method thereof, photoelectric conversion device and manufacturing method and apparatus therefor, and solar cell
US12/749,332 US20100243030A1 (en) 2009-03-27 2010-03-29 Substrate and positioning method thereof, photoelectric conversion device and manufacturing method and apparatus therefor, and solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009078913A JP2010232454A (en) 2009-03-27 2009-03-27 Substrate and positioning method thereof, photoelectric conversion device and manufacturing method and apparatus therefor, and solar cell

Publications (2)

Publication Number Publication Date
JP2010232454A true JP2010232454A (en) 2010-10-14
JP2010232454A5 JP2010232454A5 (en) 2011-09-15

Family

ID=42782637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009078913A Abandoned JP2010232454A (en) 2009-03-27 2009-03-27 Substrate and positioning method thereof, photoelectric conversion device and manufacturing method and apparatus therefor, and solar cell

Country Status (2)

Country Link
US (1) US20100243030A1 (en)
JP (1) JP2010232454A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8755925B2 (en) 2011-11-18 2014-06-17 Nike, Inc. Automated identification and assembly of shoe parts
US9451810B2 (en) 2011-11-18 2016-09-27 Nike, Inc. Automated identification of shoe parts
US8849620B2 (en) 2011-11-18 2014-09-30 Nike, Inc. Automated 3-D modeling of shoe parts
US8958901B2 (en) 2011-11-18 2015-02-17 Nike, Inc. Automated manufacturing of shoe parts
US10552551B2 (en) 2011-11-18 2020-02-04 Nike, Inc. Generation of tool paths for shore assembly
US8809109B2 (en) * 2012-05-21 2014-08-19 Stion Corporation Method and structure for eliminating edge peeling in thin-film photovoltaic absorber materials
US8966775B2 (en) * 2012-10-09 2015-03-03 Nike, Inc. Digital bite line creation for shoe assembly
CN103681897B (en) * 2013-11-18 2016-04-27 北京大学 A kind of infrared photoelectric detector and preparation method thereof
US9237780B2 (en) 2013-11-19 2016-01-19 Nike, Inc. Conditionally visible bite lines for footwear
TWI619443B (en) * 2013-11-19 2018-04-01 耐克創新有限合夥公司 System for processing partially assembled part of article of footwear and system and method for generating tool path for processing partially assembled article of footwear
EP3306679B1 (en) * 2015-05-28 2019-11-20 Nippon Telegraph And Telephone Corporation Light-receiving element and optical integrated circuit
CN109147584B (en) * 2018-08-10 2024-02-09 佛山市国星光电股份有限公司 LED display unit group and display panel
US11751349B2 (en) 2019-05-28 2023-09-05 Apple Inc. Anodized part having a matte black appearance
CN112556839B (en) * 2019-09-26 2024-06-07 苹果公司 Anodized part having low reflectivity to visible and near infrared light
US11614778B2 (en) * 2019-09-26 2023-03-28 Apple Inc. Anodized part having low reflectance of visible and near-infrared light

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353816A (en) * 1999-06-14 2000-12-19 Kanegafuchi Chem Ind Co Ltd Manufacture of thin film solar battery module
WO2003007386A1 (en) * 2001-07-13 2003-01-23 Midwest Research Institute Thin-film solar cell fabricated on a flexible metallic substrate
JP2003131022A (en) * 2001-10-19 2003-05-08 Seiko Epson Corp Manufacturing method of color filter, color filter, liquid crystal device and electronic equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3837924A (en) * 1971-06-01 1974-09-24 Trw Inc Solar array
US4410558A (en) * 1980-05-19 1983-10-18 Energy Conversion Devices, Inc. Continuous amorphous solar cell production system
US5156938A (en) * 1989-03-30 1992-10-20 Graphics Technology International, Inc. Ablation-transfer imaging/recording
JPH1146006A (en) * 1997-07-25 1999-02-16 Canon Inc Photovoltaic element and manufacture thereof
AU766727B2 (en) * 1999-06-14 2003-10-23 Kaneka Corporation Method of fabricating thin-film photovoltaic module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353816A (en) * 1999-06-14 2000-12-19 Kanegafuchi Chem Ind Co Ltd Manufacture of thin film solar battery module
WO2003007386A1 (en) * 2001-07-13 2003-01-23 Midwest Research Institute Thin-film solar cell fabricated on a flexible metallic substrate
JP2003131022A (en) * 2001-10-19 2003-05-08 Seiko Epson Corp Manufacturing method of color filter, color filter, liquid crystal device and electronic equipment

Also Published As

Publication number Publication date
US20100243030A1 (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP2010232454A (en) Substrate and positioning method thereof, photoelectric conversion device and manufacturing method and apparatus therefor, and solar cell
US10249776B2 (en) Heterojunction solar cell and manufacturing method thereof
JP5229901B2 (en) Photoelectric conversion element and solar cell
US20170062648A1 (en) Hybrid multi-junction photovoltaic cells and associated methods
EP2339641A2 (en) Compound semiconductor thin film solar cell, method of manufacturing a compound semiconductor thin film solar cell and module
EP2416377B1 (en) Solar cell and manufacturing method thereof
Yang et al. Preparation and characterization of pulsed laser deposited a novel CdS/CdSe composite window layer for CdTe thin film solar cell
Gečys et al. ps-laser scribing of CIGS films at different wavelengths
US10566478B2 (en) Thin-film solar cell module structure and method of manufacturing the same
JP2010212336A (en) Photoelectric converting element and method of manufacturing the same, and solar cell
JP2011155146A (en) Solar cell and method of manufacturing the same
CN102934240B (en) For the manufacture of the modification method of photovoltaic cell comprising tco layer
Sánchez et al. A Laser‐Processed Silicon Solar Cell with Photovoltaic Efficiency in the Infrared
Badgujar et al. Pulsed laser annealing of spray casted Cu (In, Ga) Se2 nanocrystal thin films for solar cell application
US11233165B2 (en) Multi-junction solar cell and manufacturing method of the same
WO2011108033A1 (en) Compound thin film solar cell and method for manufacturing same
JP2013098195A (en) Photoelectric conversion element
Kessler et al. CIGS thin film photovoltaic—approaches and challenges
JP2010242116A (en) Film deposition method and film deposition apparatus, mask, pattern film, photoelectric conversion element, and solar cell
JP2015099884A (en) Method of manufacturing cigs solar cell
Račiukaitis et al. Picosecond-laser structuring of thin films for CIGS solar cells
US20150087107A1 (en) Method for manufacturing photoelectric conversion device
KR20120086204A (en) Solar cell apparatus and method of fabricating the same
TWI751520B (en) Pn junction and preparation method and use thereof
CN210200747U (en) PN junction and semiconductor thin film assembly comprising same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20120813