JP2010230265A - Steam compression refrigerator system - Google Patents

Steam compression refrigerator system Download PDF

Info

Publication number
JP2010230265A
JP2010230265A JP2009079715A JP2009079715A JP2010230265A JP 2010230265 A JP2010230265 A JP 2010230265A JP 2009079715 A JP2009079715 A JP 2009079715A JP 2009079715 A JP2009079715 A JP 2009079715A JP 2010230265 A JP2010230265 A JP 2010230265A
Authority
JP
Japan
Prior art keywords
cooling water
pipe
water
valve
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009079715A
Other languages
Japanese (ja)
Other versions
JP5345438B2 (en
Inventor
Shigeru Mizushima
茂 水島
Taneya Yamashita
植也 山下
Seiki Yoshioka
誠記 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2009079715A priority Critical patent/JP5345438B2/en
Publication of JP2010230265A publication Critical patent/JP2010230265A/en
Application granted granted Critical
Publication of JP5345438B2 publication Critical patent/JP5345438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating medium carrying redundant automatic switching circuit capable of using a steam compression refrigerator as a refrigerating system suitable for a server cooling system of a data center. <P>SOLUTION: The steam compression refrigerator system includes: a switch control part 70 of cold water piping 42 for turning off an operated cold water pump 37 and cold water branch on/off-valve 36 and turning on the other stopped cold water pump 37 and the cold water branch on/off-valve 36; a switch control part 71 of a compressor 25 for turning off an operated compressor 25, a compressor on/off-valve 26 and a thermometer 27 and turning on the other stopped compressor 25, the compressor on/off-valve 26 and the thermometer 27; and a switch control part 72 of cooling water piping 57 for turning off an operated cooling water pump 52, a cooling water branch on/off-valve 51 and an impeller type flowmeter 53 and turning on the other stopped cooling water pump 52, the cooling water branch on/off-valve 51 and the impeller type cooling water flowmeter 53. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱媒体搬送冗長化自動切替回路を設けた水蒸気圧縮冷凍機システムに関する。   The present invention relates to a steam compression refrigeration system provided with a heat medium transport redundancy automatic switching circuit.

従来、通年で非常に密度の高い発熱を発し、かつその発熱を速やかに除去することが要求されるデータセンタに設置されるサーバに対し、通常の7℃〜12℃程度の冷水ではサーバ設置室内空気の含有湿分が冷熱熱交換する部位で結露する虞があり、その結露水がサーバ回路などで短絡を引き起こすことを防止するため、低温側温度を室内空気の露点以上(例えば、13℃以上)とする高温の冷水により冷却することがある。
この通年で高温の冷却を要求するデータセンタのサーバには、例えば、特許文献1に開示されるように、冷却水の冷凍設備が備えられている。
データセンターのサーバラックに高密度に設置されたブレード型のサーバには、例えば、サーバラックに並列に冷却用に熱交換器が備わったり、サーバラックの周囲に気流の通過流路を設けその流路を流れる空気と熱交換する冷却用熱交換器が備わったりして、サーバのCPUなどからの24時間発生する高負荷の発熱を熱交換器の熱媒によって外部に取り出して冷却する場合がある。サーバに内蔵されたCPUや周辺ICは自身が熱を発するにもかかわらず、100℃未満の比較的低温で動作不良や回路故障を生じてしまう。そのため、CPUやその他ICの上記不具合を発生する虞のある温度から更に低い温度でサーバ運転自体を停止する安全回路を有していることが多い。
Conventionally, a server installed in a data center that generates extremely high-density heat generation throughout the year and is required to quickly remove the heat generation is usually used in a room where the server is installed at a temperature of about 7 ° C to 12 ° C. There is a possibility that moisture contained in the air may condense at the part where heat exchange is performed, and in order to prevent the condensed water from causing a short circuit in the server circuit or the like, the temperature on the low temperature side is higher than the dew point of room air (for example, 13 ° C. or higher) ) May be cooled by high-temperature cold water.
A server of a data center that requires high-temperature cooling throughout the year is provided with a cooling water refrigeration facility as disclosed in Patent Document 1, for example.
For example, blade type servers installed in a server rack in a data center with a high density include a heat exchanger for cooling in parallel with the server rack, or an air flow passage around the server rack. There is a case where a cooling heat exchanger for exchanging heat with the air flowing through the path is provided, and the high load heat generated by the CPU of the server for 24 hours is taken out by the heat exchanger and cooled. . Although the CPU and peripheral IC built in the server generate heat, they cause malfunction and circuit failure at a relatively low temperature of less than 100 ° C. For this reason, there is often a safety circuit that stops the server operation itself at a temperature lower than the temperature at which the above-described malfunction of the CPU or other IC may occur.

ところで、インターネットを介して、例えば、ネットバンキングなど各種サービスを行うため、高額なサーバ管理費を支払ってデータセンタ運営会社に顧客はサーバ管理を依頼している。
サーバに対する冷却用熱交換器が所定の性能を発揮できないと、サーバの破壊を防止する安全回路が働くこととなるが、サーバが停止してしまうと、上記ネットバンキングなどの各種サービスが停止し、顧客が商機を逸したり、顧客自身の客の信用を失ったりすることにより、サーバ運営会社に損害賠償を請求することも多い。
By the way, in order to perform various services such as net banking via the Internet, the customer requests the server management from the data center operating company by paying an expensive server management fee.
If the cooling heat exchanger for the server does not exhibit the specified performance, a safety circuit that prevents the server from breaking will work, but if the server stops, various services such as the above net banking stop, In many cases, a server operator is charged for damages when a customer misses a business opportunity or loses the trust of the customer.

サーバ管理にはサーバの発する熱負荷を冷却し、サーバ稼働を保証することも含まれている。
そこで、例えば、特許文献2に開示されるように、冷却用熱交換器に冷却水の供給制御を行う冷却制御装置にエラーが発生した場合、直ちに電源を落とさず、冷却制御装置に冷却制御を再度試行させてエラーの回復を行うシステムダウン回数を低減させることを目的として冷却水制御方式が備えられている。
Server management includes cooling the thermal load generated by the server and guaranteeing server operation.
Thus, for example, as disclosed in Patent Document 2, when an error occurs in the cooling control device that controls the supply of cooling water to the cooling heat exchanger, the cooling control device is not immediately turned off, but the cooling control device is controlled. A cooling water control system is provided for the purpose of reducing the number of system downs to be tried again and recover from an error.

ところで、従来、冷凍設備に用いられる冷凍機は、フロン又は代替フロンを冷媒として永い間常用されてきた。しかし、これらの冷媒はオゾン層を破壊する問題や温暖化等の地球環境の悪化をもたらす原因物質として、その使用に制限が加えられてきた。
そこで、例えば、水を冷凍サイクルを形成する冷媒として使用する水蒸気圧縮冷凍機が提案されている。
そして、例えば、特許文献3には、蒸発器と凝縮器の差圧を位置水頭により確保し、もって膨張弁を排除した水蒸気圧縮冷凍機システムが提案されている。
By the way, conventionally, refrigerators used in refrigeration equipment have been used regularly for a long time using chlorofluorocarbon or alternative chlorofluorocarbon as a refrigerant. However, the use of these refrigerants has been restricted as a causative substance that causes the ozone layer depletion and global environment deterioration such as global warming.
Therefore, for example, a steam compression refrigerator that uses water as a refrigerant for forming a refrigeration cycle has been proposed.
For example, Patent Document 3 proposes a water vapor compression refrigeration system in which the differential pressure between the evaporator and the condenser is ensured by the position head and thus the expansion valve is eliminated.

特開2002−156136号公報JP 2002-156136 A 特開平2−79110号公報JP-A-2-79110 特開2006−97989号公報Japanese Patent Application Laid-Open No. 2006-97989

しかしながら、従来の冷凍設備に代えて、水蒸気圧縮冷凍機システムをそのままデータセンターのサーバ冷却水の冷凍に適用すると、サーバ側の無停止に対応できず、冷凍システムの機器の故障によって膨大な損失を被ることになる。
また、特許文献2のように、冷却ポンプの切替制御のみでは、水蒸気圧縮冷凍機に特化した安価な無停止対応はできない。
However, if the steam compression refrigeration system is applied to refrigeration of server cooling water in the data center as it is instead of the conventional refrigeration equipment, it cannot cope with non-stop of the server side, resulting in a huge loss due to equipment failure of the refrigeration system. You will suffer.
In addition, as in Patent Document 2, an inexpensive non-stop response specialized for a steam compression refrigerator cannot be performed only by switching control of the cooling pump.

本発明は斯かる従来の問題点を解決するために為されたもので、その目的は、データセンターのサーバ冷却設備に適した冷凍システムとして水蒸気圧縮冷凍機を使用できるように熱媒体搬送冗長化自動切替回路を設けた水蒸気圧縮冷凍機システムを提供することにある。   The present invention has been made to solve such conventional problems, and its purpose is to make the heat medium transport redundant so that a steam compression refrigerator can be used as a refrigeration system suitable for server cooling equipment in a data center. The object is to provide a steam compression refrigerator system provided with an automatic switching circuit.

請求項1の水蒸気圧縮冷凍機システムは、注水管、温度計及び水位計を内部に設ける密閉式の蒸発器と、散水管及び水位計を内部に設ける密閉式の凝縮器と、入口側又は出口側に圧縮機ON−OFF弁、出口側に温度計を有する圧縮機分岐管を並列に配置してなる蒸発器と凝縮器との冷媒液位のレベル差を確保する複数の圧縮機と、各々が配管で接続される凝縮器、蒸発器、圧縮機及びその間を接続する配管内を30kPa以下の真空状態に保持する、凝縮器に接続される配管に設けられた真空ポンプと、を有する、水が冷凍サイクルを形成する冷媒として使用される水蒸気圧縮冷凍機を備えた水蒸気圧縮冷凍機システムであって、蒸発器と凝縮器とを連結する連通路と、冷水ポンプ及び冷水分岐ON−OFF弁を設けた複数の冷水分岐管を並列に配置し、蒸発器に連結される冷水往き管と、温度計を設け、蒸発器の散水管に連結される冷水還り管と、冷水往き管又は冷水還り管に設けられる羽根車式冷水流量計とを有する冷水配管と、冷水往き管及び冷水還り管に連結される熱交換器である負荷と、圧縮機を蒸発器と凝縮器との間に位置させて連結する連結配管と、冷却水ポンプを配置し、凝縮器に連結される冷却水往き管と、温度計を設け、凝縮器の散水管に連結される冷却水還り管とを有する冷却水配管と、冷却水配管に熱交換器部分が連結される密閉式冷却塔と、冷水配管の冷水ポンプ及び冷水分岐ON−OFF弁をON−OFF動作させる冷水配管の操作器と、圧縮機、圧縮機ON−OFF弁をON−OFF動作させる圧縮機の操作器と、冷水配管の還り温度が所定の温度を超える場合、又は、羽根車式冷水流量計からの流量信号が、所定の閾値を下回る(つまり、所定の流量が出ていない)場合、又は、羽根車式冷水流量計からの流量信号が、閾値を超え、かつ、冷水配管の還り温度が所定の温度を超える場合に、冷水配管の操作器に切替信号を発信させ、運転中の冷水ポンプ及び冷水分岐ON−OFF弁をOFFにし、停止していた別の冷水ポンプ及び冷水分岐ON−OFF弁をONにそれぞれ動作させる冷水配管の切替制御部と、圧縮機の運転信号を受けて、正常な運転をしているのにもかかわらず、蒸発器内の温度が所定の設定温度を超える場合、又は、圧縮機の吐出温度が所定の温度を超える場合、又は、蒸発器及び凝縮器の冷媒液位のレベル差△Lが所定の閾値を下回る(つまり、差圧がとれていない状態の)場合に、運転中の圧縮機、圧縮機ON−OFF弁をOFFにし、停止していた別の圧縮機、圧縮機ON−OFF弁をONにそれぞれ動作させる圧縮機の切替制御部とを備えることを特徴とする。   The steam compression refrigerator system according to claim 1 includes a sealed evaporator in which a water injection pipe, a thermometer and a water level gauge are provided, a closed condenser in which a water pipe and a water level gauge are provided, and an inlet side or an outlet. A compressor ON-OFF valve on the side, a compressor branch pipe having a thermometer on the outlet side in parallel, a plurality of compressors ensuring a level difference in the refrigerant liquid level between the evaporator and the condenser; A condenser, an evaporator, a compressor connected to each other by a pipe, and a vacuum pump provided in the pipe connected to the condenser for maintaining the inside of the pipe connecting between them in a vacuum state of 30 kPa or less. Is a steam compression refrigeration system including a steam compression refrigeration system used as a refrigerant forming a refrigeration cycle, comprising a communication passage connecting an evaporator and a condenser, a chilled water pump and a chilled water branch ON-OFF valve Multiple cold water branch pipes Chilled water discharge pipes connected to the evaporator and thermometer, arranged in a row, connected to the water spray pipe of the evaporator, and the impeller type cold water flow rate provided in the cold water return pipe or the cold water return pipe A chilled water pipe having a gauge, a load that is a heat exchanger connected to the chilled water return pipe and the chilled water return pipe, a connecting pipe for connecting the compressor between the evaporator and the condenser, and cooling water A cooling water pipe having a pump, a cooling water outlet pipe connected to the condenser, a thermometer, and a cooling water return pipe connected to the water spray pipe of the condenser, and a heat exchanger in the cooling water pipe On-off operation of compressor, compressor ON-OFF valve, hermetic cooling tower to which parts are connected, chilled water piping chilled water pump and chilled water branching ON / OFF valve on / off valve The compressor operating device and the return temperature of the cold water piping are Or the flow signal from the impeller-type chilled water flow meter is below a predetermined threshold value (that is, the predetermined flow rate is not output), or the flow signal from the impeller-type chilled water flow meter is When the threshold value is exceeded and the return temperature of the chilled water pipe exceeds the specified temperature, a switching signal is sent to the chilled water pipe operating device, the chilled water pump and the chilled water branch ON-OFF valve in operation are turned OFF and stopped. The chilled water pipe switching control unit that turns on the other chilled water pump and the chilled water branch ON-OFF valve and the compressor operation signal in response to the normal operation When the temperature inside the chamber exceeds a predetermined set temperature, or when the discharge temperature of the compressor exceeds a predetermined temperature, or the refrigerant level difference ΔL between the evaporator and the condenser falls below a predetermined threshold (In other words, the pressure difference is not taken. Compressor switching controller that turns off the operating compressor and compressor ON-OFF valve, and turns on another compressor that has been stopped and the compressor ON-OFF valve. It is characterized by providing.

請求項2の水蒸気圧縮冷凍機システムは、請求項1に記載の水蒸気圧縮冷凍機システムにおいて、冷却水分岐ON−OFF弁、冷却水ポンプ及び羽根車式冷却水流量計を設ける複数の冷却水分岐管を並列に配置し、凝縮器に連結される冷却水往き管と、温度計を設け、凝縮器の散水管に連結される冷却水還り管とを有する冷却水配管と、冷却水配管の冷却水ポンプ及び冷却水分岐ON−OFF弁をON−OFF動作させる冷却水配管の操作器と、冷却水の還り温度が所定の温度を超える場合、又は、羽根車式冷却水流量計からの流量信号が所定の閾値を下回る(つまり、所定の流量が出ていない)場合、又は、冷却水の還り温度が所定の温度を超え、羽根車式冷却水流量計からの流量信号が所定の閾値を超える場合に、運転中の冷却水ポンプ及び冷却水分岐ON−OFF弁をOFFにし、停止していた別の冷水ポンプ及び冷却水分岐ON−OFF弁をONにそれぞれ動作させる冷却水配管の切替制御部とを備えることを特徴とする。   The steam compression refrigerator system according to claim 2 is the steam compression refrigerator system according to claim 1, wherein a plurality of cooling water branches are provided with a cooling water branch ON-OFF valve, a cooling water pump, and an impeller type cooling water flow meter. A cooling water pipe having a pipe arranged in parallel and connected to the condenser, a thermometer, and a cooling water return pipe connected to the water spray pipe of the condenser, and cooling of the cooling water pipe Flow rate signal from the operation unit of the cooling water piping that turns the water pump and the cooling water branch ON-OFF valve on and off, and when the return temperature of the cooling water exceeds a predetermined temperature, or from the impeller type cooling water flow meter Is below a predetermined threshold (that is, the predetermined flow rate is not output), or the return temperature of the cooling water exceeds the predetermined temperature, and the flow signal from the impeller-type cooling water flow meter exceeds the predetermined threshold If the cooling water pump in operation Fine coolant branched ON-OFF valve is OFF, the characterized in that it comprises a switching control unit of the cooling water pipe to operate respectively in ON another chilled water pump and cooling water branched ON-OFF valve that has been stopped.

請求項3の水蒸気圧縮冷凍機システムは、請求項1に記載の水蒸気圧縮冷凍機システムにおいて、冷却水分岐ON−OFF弁、冷却水ポンプ及び羽根車式冷却水流量計を設ける複数の冷却水分岐管を並列に配置し、凝縮器に連結される冷却水往き管と、温度計を設け、凝縮器の散水管に連結される冷却水還り管とを有する複数の冷却水配管と、複数の冷却水配管に熱交換器部分が連結される複数の密閉式冷却塔と、冷却水配管の冷却水ポンプ及び冷却水分岐ON−OFF弁をON−OFF動作させる冷却水配管の操作器と、冷却水の還り温度が所定の温度を超える場合、又は、羽根車式冷却水流量計からの流量信号が所定の閾値を下回る(つまり、所定の流量が出ていない)場合、又は、冷却水の還り温度が所定の温度を超え、羽根車式冷却水流量計からの流量信号が所定の閾値を超える場合に、運転中の冷却水ポンプ、密閉式冷却塔のファン及び冷却塔冷却水ポンプ及び冷却水分岐ON−OFF弁をOFFにし、停止していた別の冷水ポンプ及び密閉式冷却塔のファン及び冷却塔冷却水ポンプ及び冷却水分岐ON−OFF弁をONにそれぞれ動作させる冷却水配管の切替制御部とを備えることを特徴とする。
請求項4の水蒸気圧縮冷凍機システムは、請求項1乃至請求項3の何れかに記載の水蒸気圧縮冷凍機システムにおいて、負荷は、データセンタのサーバであることを特徴とする。
請求項5の水蒸気圧縮冷凍機システムは、請求項1記載の水蒸気圧縮冷凍機システムにおいて、冷水配管の切替制御部は、羽根車式冷水流量計に連絡するセレクタと、冷水配管の温度計及び蒸発器の温度計に連絡するTIC(温度調節計機構)とを有することを特徴とする。
A steam compression refrigerator system according to claim 3 is the steam compression refrigerator system according to claim 1, wherein a plurality of cooling water branches are provided with a cooling water branch ON-OFF valve, a cooling water pump, and an impeller cooling water flow meter. A plurality of cooling water pipes having a pipe arranged in parallel and connected to the condenser and a cooling water return pipe connected to the water spray pipe of the condenser, and a plurality of cooling water pipes provided with a thermometer A plurality of hermetic cooling towers in which a heat exchanger part is connected to a water pipe, a cooling water pipe operating device for turning on and off a cooling water pump and a cooling water branch ON-OFF valve of the cooling water pipe, and cooling water When the return temperature of the cooling water exceeds a predetermined temperature, or when the flow signal from the impeller-type cooling water flow meter falls below a predetermined threshold (that is, the predetermined flow rate does not come out), or the return temperature of the cooling water Exceeds the specified temperature, impeller cooling When the flow rate signal from the flow meter exceeds a predetermined threshold, the cooling water pump in operation, the fan of the hermetic cooling tower, the cooling tower cooling water pump, and the cooling water branch ON-OFF valve were turned off and stopped. And a cooling water pipe switching control unit for operating each of the cooling water pump, the fan of the hermetic cooling tower, the cooling tower cooling water pump, and the cooling water branch ON-OFF valve, respectively.
According to a fourth aspect of the present invention, there is provided the steam compression refrigeration system according to any one of the first to third aspects, wherein the load is a data center server.
The steam compression refrigerator system according to claim 5 is the steam compression refrigerator system according to claim 1, wherein the cold water pipe switching control unit includes a selector connected to the impeller type cold water flow meter, a thermometer and evaporation of the cold water pipe. And a TIC (temperature controller mechanism) communicating with the thermometer of the vessel.

請求項6の水蒸気圧縮冷凍機システムは、請求項1記載の水蒸気圧縮冷凍機システムにおいて、圧縮機の切替制御部は、蒸発器の温度計に連絡するTIC(温度調節系機構)と、圧縮機の温度計に連絡するセレクタと、蒸発器の水位計及び凝縮器の水位計に連絡する△LIC(レベル差コントローラ)とを有することを特徴とする。
請求項7の水蒸気圧縮冷凍機システムは、請求項1記載の水蒸気圧縮冷凍機システムにおいて、冷却水配管の切替制御部は、羽根車式冷却水流量計に連絡するセレクタと、冷却水配管の温度計に連絡するTIC(温度調節計機構)とを有することを特徴とする。
The steam compression refrigerator system according to claim 6 is the steam compression refrigerator system according to claim 1, wherein the switching control unit of the compressor includes a TIC (temperature control system mechanism) communicating with the thermometer of the evaporator, and the compressor And a ΔLIC (level difference controller) communicating with the water level meter of the evaporator and the water level meter of the condenser.
The steam compression refrigeration system according to claim 7 is the steam compression refrigeration system according to claim 1, wherein the cooling water pipe switching control unit includes a selector connected to the impeller type cooling water flow meter, and the temperature of the cooling water pipe. And a TIC (temperature controller mechanism) that communicates with the meter.

本発明によれば、負荷側、冷凍機内系及び冷却水系において各々で安い計測器の出力により機器の多重冗長化を自動で行えるようにしたので、水蒸発圧縮冷凍機システムをサーバ冷却に適用しても、サーバ冷却に停止や温度上昇を起こさせることがない。   According to the present invention, since the redundant redundancy of the equipment can be automatically performed by the output of a cheap measuring instrument on each of the load side, the refrigerator internal system and the cooling water system, the water evaporation compression refrigerator system is applied to server cooling. However, the server cooling does not stop or increase in temperature.

本発明の実施形態1に係る水蒸気圧縮冷凍機システムを示す構成説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration explanatory view showing a steam compression refrigerator system according to Embodiment 1 of the present invention. 本発明の実施形態2に係る水蒸気圧縮冷凍機システムを示す構成説明図である。It is composition explanatory drawing which shows the water vapor compression refrigerator system which concerns on Embodiment 2 of this invention.

以下、本発明を図面に示す実施形態に基づいて説明する。
(実施形態1)
本実施形態に係る水蒸気圧縮冷凍機システムは、水を冷凍サイクルを形成する冷媒として使用する密閉式の水冷媒冷凍機である水蒸気圧縮冷凍機10を有する。水蒸気圧縮冷凍機10は、密閉式の蒸発器15と、この蒸発器15の近傍位置に膨張弁を介設することなく直接に連通路30で相互連結することによって配置された密閉式の凝縮器20と、蒸発器15と凝縮器20との相互間を接続する蒸気ダクトである連結配管29に配設したインバータで制御される2つのルーツ圧縮機25と、凝縮器20に配管23aを介して接続された真空ポンプ23とで構成されている。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
(Embodiment 1)
The steam compression refrigerator system according to the present embodiment includes a steam compression refrigerator 10 that is a sealed water refrigerant refrigerator that uses water as a refrigerant for forming a refrigeration cycle. The steam compression refrigerator 10 includes a hermetic evaporator 15 and a hermetic condenser disposed by being interconnected by a communication passage 30 directly without an expansion valve in the vicinity of the evaporator 15. 20 and two roots compressors 25 controlled by an inverter disposed in a connecting pipe 29 which is a steam duct connecting the evaporator 15 and the condenser 20 to each other, and the condenser 20 via a pipe 23a. It is composed of a connected vacuum pump 23.

真空ポンプ23は、凝縮器20内の空気、つまり凝縮器20に空間として繋がっている連通路30、連結配管29及び蒸発器15と、さらに凝縮器20と蒸発器15とにそれぞれ接続されたその他の配管内の空気を排出し、それらの空間内の空気圧力を少なくとも30kPa以下の真空状態とし、例えば、水の37℃飽和蒸気圧である6.3kPa程度の圧力値として凝縮器20内を真空状態とする。そして、ルーツ圧縮機25は、レベル的に併設された蒸発器15と凝縮器20との冷媒液位のレベル差△Lを確保するだけの圧力差を、真空状態において保持できるだけの能力を有している。   The vacuum pump 23 is connected to the air in the condenser 20, that is, the communication path 30 connected to the condenser 20 as a space, the connecting pipe 29 and the evaporator 15, and the other connected to the condenser 20 and the evaporator 15, respectively. The air in these pipes is discharged and the air pressure in these spaces is set to a vacuum state of at least 30 kPa or less, for example, the inside of the condenser 20 is evacuated to a pressure value of about 6.3 kPa which is a 37 ° C. saturated vapor pressure of water. State. The Roots compressor 25 has an ability to maintain a pressure difference enough to secure a level difference ΔL of the refrigerant liquid level between the evaporator 15 and the condenser 20 provided in a level in a vacuum state. ing.

蒸発器15は、密閉型に構成され、その内部に入れた蒸発性液体、例えば、水を大気圧より低い減圧の状態で沸騰蒸発するものである。この蒸発器15には、冷水往き管35と冷水還り管40とを有する冷水配管42を介してサーバ等の負荷(冷却した水の冷熱を間接的に利用する箇所)45が連結されている。また、冷水還り管40の蒸発器接続側は、蒸発器15内部で散水管19の形を採っても良いし、散水せずただ注入するような注入管の形を採用しても良い。また、蒸発器15は、冷水溜まり17内の水温度を計測する温度計16と、内部の水位を計測する、例えば、フロート式の水位計18とを有する。   The evaporator 15 is configured in a hermetically sealed type, and evaporates an evaporating liquid, for example, water contained in the evaporator 15 at a reduced pressure lower than the atmospheric pressure. The evaporator 15 is connected to a load (a location where the cold heat of the cooled water is indirectly used) 45 such as a server through a cold water pipe 42 having a cold water forward pipe 35 and a cold water return pipe 40. Moreover, the evaporator connection side of the cold water return pipe 40 may take the form of the water spray pipe 19 inside the evaporator 15 or may adopt the form of an injection pipe that is injected without spraying water. The evaporator 15 also includes a thermometer 16 that measures the water temperature in the cold water reservoir 17 and a float-type water level gauge 18 that measures the internal water level, for example.

負荷側の冷水配管42の冷水往き管35は、冷水分岐ON−OFF弁36と、冷水ポンプ37とを設けた2つの冷水分岐管38を並列に配置し、負荷側45側に羽根車式冷水流量計39を設けている。
なお、羽根車式冷水流量計39は、冷水還り管40に設けても良い。また、羽根車式冷水流量計39は、本管と同じサイズのものでも良いが、コストを考えて、本管から分岐して又合流する小径のバイパス管を設けて、その小径サイズのバイパス管に羽根車式冷水流量計39を設置するのが望ましい。さらに、負荷側の冷水配管42の冷水還り管40は、温度計41を設けている。
The chilled water outlet pipe 35 of the chilled water pipe 42 on the load side has two chilled water branch pipes 38 provided with a chilled water branch ON-OFF valve 36 and a chilled water pump 37 arranged in parallel, and the impeller-type chilled water on the load side 45 side. A flow meter 39 is provided.
The impeller type cold water flow meter 39 may be provided in the cold water return pipe 40. The impeller type cold water flow meter 39 may be the same size as the main pipe. However, in consideration of cost, a small diameter bypass pipe that branches off from and joins the main pipe is provided, and the small diameter bypass pipe is provided. It is desirable to install an impeller type cold water flow meter 39 on the side. Further, the cold water return pipe 40 of the load side cold water pipe 42 is provided with a thermometer 41.

この蒸発器15内での沸騰蒸発にて温度が低くなった水は、冷水ポンプ37にて汲み出して冷水配管42の冷水往き管35を介してサーバ等の負荷(冷却した水の冷熱を間接的に利用する箇所)45に送られた後、冷水配管42の冷水還り管40を介して再び蒸発器15内に散水管19から噴出して戻るという循環を行うように構成されている。
凝縮器20は、密閉型に構成され、蒸発器15内での沸騰蒸発にて発生した蒸気を連結配管29を介して導入し、後述する密閉系冷却塔60で冷却された冷却水を散水管22から噴霧液滴とすることで、その蒸発潜熱により導入蒸気を冷却凝縮するものである。この凝縮器20には、冷却水往き管50と冷却水還り管55とを有する冷却水配管57を介して密閉式冷却塔60が連結されている。又、凝縮器20は、内部の水位を計測する、例えば、フロート式の水位計21を有する。
The water whose temperature has been lowered by boiling evaporation in the evaporator 15 is pumped out by the cold water pump 37 and indirectly loaded with the load of the server or the like (the cold heat of the cooled water is passed through the cold water outlet pipe 35 of the cold water pipe 42). After being sent to 45), the water is circulated through the chilled water return pipe 40 of the chilled water pipe 42 and then sprayed back into the evaporator 15 from the water spray pipe 19.
The condenser 20 is configured in a closed type, introduces steam generated by boiling evaporation in the evaporator 15 through a connection pipe 29, and supplies cooling water cooled by a closed system cooling tower 60 described later to a sprinkling pipe. By using the droplets 22 as spray droplets, the introduced steam is cooled and condensed by the latent heat of vaporization. A closed cooling tower 60 is connected to the condenser 20 via a cooling water pipe 57 having a cooling water forward pipe 50 and a cooling water return pipe 55. Further, the condenser 20 includes a float type water level gauge 21 that measures the internal water level, for example.

冷却水配管57の冷却水往き管50には、冷却水分岐ON−OFF弁51、冷却水ポンプ52及び羽根車式冷却水流量計53を設けた2つの冷却水分岐管54を並列に配置している。また、冷却水配管57の冷却水還り管55は、温度計56を設けている。
2つのルーツ圧縮機25は、入口側に圧縮機ON−OFF弁26を設けると共に、出口側に温度計27を設けた2つの圧縮機分岐管28を並列に配置させることによって構成されている。圧縮機分岐管28は、蒸発器15と凝縮器20とを相互に連結する連結配管29に連結している。
Two cooling water branch pipes 54 provided with a cooling water branch ON-OFF valve 51, a cooling water pump 52 and an impeller type cooling water flow meter 53 are arranged in parallel in the cooling water forward pipe 50 of the cooling water pipe 57. ing. The cooling water return pipe 55 of the cooling water pipe 57 is provided with a thermometer 56.
The two Roots compressors 25 are configured by arranging two compressor branch pipes 28 provided in parallel with a compressor ON-OFF valve 26 on the inlet side and a thermometer 27 on the outlet side. The compressor branch pipe 28 is connected to a connecting pipe 29 that connects the evaporator 15 and the condenser 20 to each other.

ルーツ圧縮機25は、例えば、ルーツポンプであり、このルーツポンプはいわゆる真空用のブースタポンプであって、例えば、楕円形のシリンダ内に同形のまゆ型断面形状を有する2つのロータを互いに90°位相をずらせて隣接配置し、各ロータは互いに当速度で回転する。この2つのロータとシリンダとの間に閉じこめられた水蒸気を吸気口から排気口側つまり凝縮器20側に送流する。そして、2つのロータの回転制御はルーツポンプの軸端に接続されたタイミングギヤによって行ない、駆動軸の他端は軸封部を介して大気中に出しモータによって駆動される。そして、このルーツポンプの特徴点は、シリンダ内に摺動部がなく動力損が少なく高速回転が可能となると共に良好な排気特性が得られることにある。   The Roots compressor 25 is, for example, a Roots pump, and this Roots pump is a so-called vacuum booster pump. For example, two rotors having the same shape of an eyebrows-shaped cross section in an elliptical cylinder are moved to each other by 90 °. The rotors are arranged adjacent to each other with a phase shift, and the rotors rotate at the same speed. Water vapor confined between the two rotors and the cylinder is sent from the intake port to the exhaust port side, that is, the condenser 20 side. The rotation of the two rotors is controlled by a timing gear connected to the shaft end of the Roots pump, and the other end of the drive shaft is put into the atmosphere via a shaft seal and driven by a motor. The feature point of this Roots pump is that there is no sliding part in the cylinder, there is little power loss, high speed rotation is possible, and good exhaust characteristics are obtained.

密閉式冷却塔60は、冷却水配管57の往き管50と冷却水系の還り管55との間に設けた空気−水熱交換器コイル58を内蔵し、外気を密閉式冷却塔60の上部ファン60aにより熱交換器コイル58の空気側に導入し、散水管62から循環水を熱交換器コイル58の空気側に散布して潜熱冷却するために、下部水槽61と散水管62とを連結する外部水配管63が、冷却水ポンプ64及び冷却水分岐ON−OFF弁65を設けた2つの冷却水分岐管66を並列配置して形成されている。   The hermetic cooling tower 60 includes an air-water heat exchanger coil 58 provided between the forward pipe 50 of the cooling water pipe 57 and the return pipe 55 of the cooling water system. The lower water tank 61 and the water spray pipe 62 are connected in order to introduce into the air side of the heat exchanger coil 58 by 60a and to circulate the circulating water from the water spray pipe 62 to the air side of the heat exchanger coil 58 to cool the latent heat. The external water pipe 63 is formed by arranging two cooling water branch pipes 66 provided with a cooling water pump 64 and a cooling water branch ON-OFF valve 65 in parallel.

密閉式冷却塔60では、凝縮器20で熱交換され昇温した冷却水を、往き管50から熱交換器コイル58に導いて熱交換器コイル58にて外気と潜熱交換して冷却し、冷却水系の還り管55を介して凝縮器20内に導き、その上部に散水管22により噴出することにより、連結配管29を介して導入される蒸気を、噴霧された冷たい冷却水液滴上に冷却凝縮させて凝縮器20内で水とする。この蒸気の凝縮により凝縮器20内の底部に貯留された水の温度が上昇するが、その水を冷却水ポンプ52にて汲み出した後、密閉式冷却塔60の熱交換器コイル58の水側に圧送して、熱交換機コイル58の空気側潜熱冷却により、冷却水を冷却し、冷却水系の還り管55を介して凝縮器20内の上部の散水管22に噴出する循環路が構成されている。   In the closed cooling tower 60, the cooling water heated and heated by the condenser 20 is led from the forward pipe 50 to the heat exchanger coil 58, and is cooled by exchanging latent heat with the outside air in the heat exchanger coil 58. The steam introduced through the connection pipe 29 is cooled onto the sprayed cold cooling water droplets by being guided into the condenser 20 through the water return pipe 55 and ejected by the sprinkling pipe 22 to the upper part thereof. Condensate into water in the condenser 20. Although the temperature of the water stored at the bottom of the condenser 20 rises due to the condensation of the steam, after the water is pumped out by the cooling water pump 52, the water side of the heat exchanger coil 58 of the hermetic cooling tower 60 is discharged. The cooling water is cooled by air-side latent heat cooling of the heat exchanger coil 58, and a circulation path is formed that is jetted to the upper sprinkling pipe 22 in the condenser 20 via the return pipe 55 of the cooling water system. Yes.

冷水配管42の切替制御部70は、冷水配管42の羽根車式冷水流量計39及び温度計41と蒸発器15に設けた温度計16に連絡している。冷水配管42の切替制御部70には、羽根車式冷水流量計39に連絡するSEL(セレクタ)と、温度計16及び温度計41に連絡するTIC(温度コントローラ)とを備えている。TIC(温度コントローラ)とSEL(セレクタ)とは連絡している。   The switching control unit 70 of the cold water pipe 42 communicates with the impeller-type cold water flow meter 39 and the thermometer 41 of the cold water pipe 42 and the thermometer 16 provided in the evaporator 15. The switching control unit 70 of the chilled water pipe 42 includes a SEL (selector) that communicates with the impeller-type chilled water flow meter 39, and a TIC (temperature controller) that communicates with the thermometer 16 and the thermometer 41. The TIC (temperature controller) and the SEL (selector) are in communication.

冷水配管42の切替制御部70は、羽根車式冷水流量計39からの流量信号が、所定の閾値を下回る(つまり、所定の流量が出ていない)場合に、SEL(セレクタ)に冷水配管42の操作器に対して切替信号を発信させ、さらに、冷水配管系の温度計41に還り温度を計測させ、その計測信号をTIC(温度コントローラ)に入力し、その還り温度計測値が所定の温度を超えた場合に、TIC(温度コントローラ)からSEL(セレクタ)に切替信号を発信させ、流量信号が閾値を超える場合に、SEL(セレクタ)に留まる切替信号に基づき、SEL(セレクタ)に冷水配管42の操作器に対して切替信号を発信させ、運転中の冷水ポンプ37及び冷水分岐ON−OFF弁36のセット(つまりそれぞれの電磁接触器が操作器)をOFFにし、停止していた予備の冷水ポンプ37及び冷水分岐ON−OFF弁36のセットをONにそれぞれ動作させる。   When the flow rate signal from the impeller-type chilled water flow meter 39 falls below a predetermined threshold value (that is, the predetermined flow rate is not output), the switching control unit 70 of the chilled water piping 42 supplies the SEL (selector) with the chilled water piping 42. A switching signal is transmitted to the operation device of the chiller, and the return temperature is measured by the thermometer 41 of the chilled water piping system, the measurement signal is input to the TIC (temperature controller), and the return temperature measurement value is a predetermined temperature. When TIC (temperature controller) is exceeded, a switching signal is transmitted from the TIC (temperature controller) to the SEL (selector) based on the switching signal that remains at the SEL (selector) when the flow rate signal exceeds the threshold value. A switching signal is transmitted to the operation device 42 to turn off the set of the cold water pump 37 and the cold water branch ON-OFF valve 36 (that is, each electromagnetic contactor is an operation device) during operation. And, operating each ON a set of pre-chilled water pump 37 and cold water branch ON-OFF valve 36 that has been stopped.

ルーツ圧縮機25の切替制御部71は、蒸発器15の温度計16及び水位計18と、凝縮器20の水位計21と、各ルーツ圧縮機25の制御部と、各ルーツ圧縮機25の出口温度を計測する温度計27とに連絡している。ルーツ圧縮機25の切替制御部71には、温度計16に連絡するTIC(温度コントローラ)と、水位計18及び水位計21に連絡する△LIC(レベル差コントローラ)と、温度計27に連絡するSEL(セレクタ)とを備えている。SEL(セレクタ)とTIC(温度コントローラ)とは連絡している。   The switching control unit 71 of the roots compressor 25 includes a thermometer 16 and a water level meter 18 of the evaporator 15, a water level meter 21 of the condenser 20, a control unit of each root compressor 25, and an outlet of each root compressor 25. It communicates with a thermometer 27 that measures the temperature. The switching control unit 71 of the Roots compressor 25 is connected to the TIC (temperature controller) that communicates with the thermometer 16, the ΔLIC (level difference controller) that communicates with the water level gauge 18 and the water level gauge 21, and the thermometer 27. SEL (selector). The SEL (selector) and the TIC (temperature controller) are in communication.

ルーツ圧縮機25の切替制御部71は、ルーツ圧縮機25が正常な運転をしているのにもかかわらず、蒸発器15内の温度計16の計測値が所定の設定温度を超過した場合に、TIC(温度コントローラ)からルーツ圧縮機25の操作器へ切替信号を発信させ、ルーツ圧縮機25の吐出温度を温度計27で計測し、所定の吐出温度を超えた場合にSEL(セレクタ)を動作させるようにして、TIC(温度コントローラ)からの吐出温度に応じた温度信号を切替信号としてルーツ圧縮機25の操作器への切替信号としてSEL(セレクタ)から発信させ、蒸発器15の水位計18及び凝縮器20の水位計21の計測値を△LIC(レベル差コントローラ)に入力演算した結果、そのレベル差△Lが所定の閾値を下回る(つまり、差圧がとれていない)場合に、△LIC(レベル差コントローラ)にルーツ圧縮機25の操作器へ切替信号を発信させ、運転中のルーツ圧縮機25、圧縮機ON−OFF弁26のセット(つまりそれぞれの電磁接触器が操作器)をOFFにし、停止していた予備のルーツ圧縮機25及び圧縮機ON−OFF弁26のセットをONにそれぞれ動作させる。   The switching controller 71 of the roots compressor 25 is used when the measured value of the thermometer 16 in the evaporator 15 exceeds a predetermined set temperature even though the roots compressor 25 is operating normally. , A switching signal is transmitted from the TIC (temperature controller) to the operating device of the roots compressor 25, the discharge temperature of the roots compressor 25 is measured by the thermometer 27, and when the predetermined discharge temperature is exceeded, the SEL (selector) is set. In operation, a temperature signal corresponding to the discharge temperature from the TIC (temperature controller) is transmitted as a switching signal from the SEL (selector) as a switching signal to the operating unit of the root compressor 25, and the water level gauge of the evaporator 15 is transmitted. 18 and the measured value of the water level meter 21 of the condenser 20 are input and calculated to ΔLIC (level difference controller). As a result, the level difference ΔL falls below a predetermined threshold (that is, the differential pressure is taken). If there is not, the △ LIC (level difference controller) sends a switching signal to the operating device of the root compressor 25, and the set of the root compressor 25 and the compressor ON-OFF valve 26 in operation (that is, the respective electromagnetic contacts) The operation unit is turned off, and the set of the spare root compressor 25 and the compressor ON-OFF valve 26 that have been stopped are turned on.

冷却水配管57の切替制御部72は、冷却水配管57の冷却水分岐ON−OFF弁51、冷却水ポンプ52、羽根車式冷却水流量計53及び温度計56に連絡している。冷却水配管57の切替制御部72には、羽根車式冷却水流量計53に連絡するSEL(セレクタ)と温度計27に連絡するTIC(温度コントローラ)とを備えている。SEL(セレクタ)とTIC(温度コントローラ)とは連絡している。   The switching control unit 72 of the cooling water pipe 57 communicates with the cooling water branch ON / OFF valve 51, the cooling water pump 52, the impeller type cooling water flow meter 53 and the thermometer 56 of the cooling water pipe 57. The switching control unit 72 of the cooling water pipe 57 includes a SEL (selector) that communicates with the impeller-type cooling water flow meter 53 and a TIC (temperature controller) that communicates with the thermometer 27. The SEL (selector) and the TIC (temperature controller) are in communication.

冷却水配管57の切替制御部72は、羽根車式冷水流量計53からの流量信号が、所定の閾値を下回る(つまり、所定の流量が出ていない)場合に、SEL(セレクタ)に冷却水配管57の操作器に対して切替信号を発信させ、さらに、冷却水配管系の温度計56に還り温度を計測させ、その計測信号をTIC(温度コントローラ)に入力し、その還り温度計測値が所定の温度を超えた場合に、TIC(温度コントローラ)からSEL(セレクタ)に切替信号を発信させ、流量信号が閾値を超える場合に、SEL(セレクタ)に留まる切替信号に基づき、SEL(セレクタ)に冷却水配管57の操作器に対して切替信号を発信させ、運転中の冷却水ポンプ52及び冷却水分岐ON−OFF弁51のセット(つまりそれぞれの電磁接触器が操作器)をOFFにし、停止していた予備の冷却水ポンプ52及び冷却水分岐ON−OFF弁51のセットをONにそれぞれ動作させる。   When the flow rate signal from the impeller-type chilled water flow meter 53 falls below a predetermined threshold (that is, the predetermined flow rate is not output), the switching control unit 72 of the cooling water pipe 57 supplies the cooling water to the SEL (selector). A switching signal is transmitted to the operating device of the pipe 57, and the return temperature is measured by the thermometer 56 of the cooling water pipe system. The measurement signal is input to the TIC (temperature controller), and the return temperature measurement value is When a predetermined temperature is exceeded, a switching signal is transmitted from the TIC (temperature controller) to the SEL (selector), and when the flow rate signal exceeds the threshold, the SEL (selector) is based on the switching signal that remains in the SEL (selector). A switching signal is transmitted to the operation device of the cooling water pipe 57, and the set of the cooling water pump 52 and the cooling water branch ON-OFF valve 51 in operation (that is, each electromagnetic contactor operates). ) Were to OFF, operating respectively in ON a set of spare cooling water pump 52 and cooling water branched ON-OFF valve 51 that has been stopped.

ここで、本実施形態における操作器について説明する。
建設設備などの自動制御において、「計測器」からの計測信号を受けて操作量を演算する「調節器」からの信号を操作端の動作に変える機構を、「操作器」或いは「操作機構」という。「操作端」とは、自動制御で操作量を直接変化させるもので、弁本体、ダンパ本体などがこれに該当する。また、「操作部」は、自動制御装置の構成要素の1つで、「操作機構」、「操作端」より構成され、調節部からの信号を弁開度、ダンパ開度やインバータ出力回転数の操作量に変え、蒸気、水、空気などの制御対象に働きかける部分をいう。
「操作器」は、上記「操作部」と同義である。この「操作器」には、ポンプや圧縮機などのON−OFFできる各々の電力供給線にある電磁開閉器(電磁接触器)も含めている。
Here, the operation device in the present embodiment will be described.
In automatic control of construction equipment, etc., the mechanism that changes the signal from the "regulator" that receives the measurement signal from the "measuring instrument" and calculates the operation amount into the operation of the operation end is called the "operator" or "operation mechanism"That's it. The “operation end” directly changes the operation amount by automatic control, and corresponds to a valve main body, a damper main body, and the like. The “operation unit” is one of the components of the automatic control device, and is composed of “operation mechanism” and “operation end”. The signal from the adjustment unit is used as the valve opening, damper opening and inverter output speed. This is the part that works on the controlled object such as steam, water, air, etc.
The “operator” is synonymous with the “operation unit”. The “operator” includes an electromagnetic switch (electromagnetic contactor) in each power supply line that can be turned on and off, such as a pump and a compressor.

次に、本実施形態に係る水蒸気圧縮冷凍機システムの作用を説明する。
本実施形態に係る水蒸気圧縮冷凍機システムは、膨張弁を排除しており、蒸発器15、ルーツ圧縮機25、凝縮器20、密閉式冷却塔60及び負荷側の冷水配管42を密閉式として接続し、この内部を真空状態にし、ルーツ圧縮機25を運転することで蒸発器15内の水蒸気が蒸発し、蒸発器15内の温度を低下させる。
Next, the operation of the water vapor compression refrigerator system according to this embodiment will be described.
The steam compression refrigerator system according to the present embodiment excludes the expansion valve, and connects the evaporator 15, the roots compressor 25, the condenser 20, the sealed cooling tower 60, and the load-side chilled water pipe 42 as a sealed type. Then, the inside is evacuated and the roots compressor 25 is operated, whereby the water vapor in the evaporator 15 evaporates and the temperature in the evaporator 15 is lowered.

次に、ルーツ圧縮機25によってその水蒸気を圧縮した後、水蒸気は高温となって凝縮器20に導かれる。凝縮器20では、密閉式冷却塔60からの冷却水によって凝縮され、再び水に戻る。高温水蒸気の凝縮によって昇温された冷却水は、密閉式冷却塔60に送られ、その熱を密閉式冷却塔60により外部へ放熱する。凝縮器20内の凝縮水は、凝縮器20と蒸発器15とを連結した連通路30により蒸発器15へ戻り、両容器の圧力差に相当する水位差ΔLを維持する。   Next, after the water vapor is compressed by the Roots compressor 25, the water vapor becomes high temperature and is led to the condenser 20. In the condenser 20, it is condensed by the cooling water from the sealed cooling tower 60, and returns to water again. The cooling water heated by the condensation of the high-temperature steam is sent to the sealed cooling tower 60, and the heat is radiated to the outside by the sealed cooling tower 60. The condensed water in the condenser 20 returns to the evaporator 15 through the communication path 30 connecting the condenser 20 and the evaporator 15, and maintains a water level difference ΔL corresponding to the pressure difference between the two containers.

本実施形態において、水蒸気は、蒸発器15から連結配管29内を流送し、ルーツ圧縮機25に流れ、さらに、凝縮器20に流れ込む。そして、蒸発時に蒸発器15の水を冷却し、冷水を製造する。蒸発器15の出口側は冷水温度が、例えば、20℃であり、冷水は冷水ポンプ37によりサーバ等の負荷45の入力側に流送される。そこで、負荷45の出口側から、例えば、23℃の冷水を放出し、蒸発器15内に配置された散水管19から、例えば、23℃の冷水を散布する。   In the present embodiment, the water vapor flows from the evaporator 15 through the connection pipe 29, flows into the roots compressor 25, and further flows into the condenser 20. And the water of the evaporator 15 is cooled at the time of evaporation, and cold water is manufactured. The outlet side of the evaporator 15 has a cold water temperature of, for example, 20 ° C., and the cold water is sent to the input side of a load 45 such as a server by a cold water pump 37. Therefore, for example, cold water at 23 ° C. is discharged from the outlet side of the load 45, and cold water at 23 ° C., for example, is sprayed from the sprinkler pipe 19 disposed in the evaporator 15.

冷却塔24は、冷却水配管57に介設されており、この冷却水配管57を経て冷却水を流送する。そして、凝縮器20の入口側から冷却水が散水器22で凝縮器20内に散布する。この冷却水の温度は、例えば、32℃である。このとき、凝縮器20は滞留する水冷媒液の温度が、例えば、37℃であって、約6.3kPaの飽和蒸気圧を有し、その出口側から37℃の冷却水が冷却水ポンプ52により密閉式冷却塔60に流送される。   The cooling tower 24 is interposed in the cooling water pipe 57, and sends the cooling water through the cooling water pipe 57. Then, the cooling water is sprayed from the inlet side of the condenser 20 into the condenser 20 by the sprinkler 22. The temperature of this cooling water is 32 ° C., for example. At this time, the temperature of the water refrigerant liquid staying in the condenser 20 is, for example, 37 ° C. and has a saturated vapor pressure of about 6.3 kPa, and the cooling water at 37 ° C. is supplied from the outlet side to the cooling water pump 52. Is sent to the closed cooling tower 60.

本実施形態に係る水蒸気圧縮冷凍機システムは、凝縮器20に滞留している水冷媒液を、連通路30を介して蒸発器15へ流送する。本実施形態に係る水蒸気圧縮冷凍機システムでは膨張弁を排除しており、凝縮器15及び蒸発器20の圧力差を、凝縮器20内及び蒸発器15内の水位差による水頭圧で保持している。
そして、本実施形態に係る水蒸気圧縮冷凍機システムでは、負荷側の冷水配管42の切替制御部70、2つのルーツ圧縮機25で構成される冷凍機内系の切替制御分71、及び冷却水配管57の切替制御部72が常時下記のように監視する。
In the water vapor compression refrigeration system according to the present embodiment, the water refrigerant liquid retained in the condenser 20 is sent to the evaporator 15 via the communication path 30. In the steam compression refrigeration system according to the present embodiment, the expansion valve is excluded, and the pressure difference between the condenser 15 and the evaporator 20 is held at the water head pressure due to the water level difference in the condenser 20 and the evaporator 15. Yes.
In the water vapor compression refrigeration system according to the present embodiment, the switching control unit 70 of the load side chilled water pipe 42, the switching control portion 71 of the chiller internal system constituted by the two roots compressors 25, and the cooling water pipe 57. The switching control unit 72 constantly monitors as follows.

負荷側の冷水配管42の切替制御部70は、常時還り温度を温度計41によって計測し所定の温度を超えた場合に、TIC(温度コントローラ)からSEL(セレクタ)に信号を発する。SEL(セレクタ)には、羽根車式冷水流量計39からの流量信号を、所定の閥値を超えるかどうか判断する回路があり、閾値を下回る(つまり、所定の流量が出ていない場合)はダイレクトに冷水配管42の操作器へ切替信号を送り、閾値を超えている場合は、還り温度が所定の温度を超えた場合に、冷水配管42の操作器へ切替信号を送る。同時に警告を監視システムへ発報する。冷水配管42の切替信号により、冷水ポンプ37及び冷水分岐ON−OFF弁36のセットを、運転中のものはOFFに、停止していた予備の冷水ポンプ37及び冷水分岐ON−OFF弁36のセットをONにそれぞれ動作させる。   The switching control unit 70 of the load-side chilled water pipe 42 constantly measures the return temperature with the thermometer 41 and outputs a signal from the TIC (temperature controller) to the SEL (selector) when the temperature exceeds a predetermined temperature. The SEL (selector) has a circuit that determines whether the flow rate signal from the impeller-type chilled water flow meter 39 exceeds a predetermined threshold value, and is below a threshold value (that is, when a predetermined flow rate is not output). A switching signal is sent directly to the operating device of the chilled water pipe 42. When the threshold value is exceeded, a switching signal is sent to the operating device of the chilled water pipe 42 when the return temperature exceeds a predetermined temperature. At the same time, a warning is issued to the monitoring system. The set of the chilled water pump 37 and the chilled water branch ON-OFF valve 36 is turned off by the switching signal of the chilled water pipe 42, and the set of the spare chilled water pump 37 and the chilled water branch ON / OFF valve 36 that has been stopped is turned off. Are each turned ON.

また、2つのルーツ圧縮機25で構成される冷凍機内系の切替制御分71は、以下の3系統を備えている。
1つめは、ルーツ圧縮機25の運転信号を受けて、正常な運転をしているのにも拘わらず、蒸発器15内の温度計16の計測値が所定の設定温度を超過した場合に、TIC(温度コントローラ)からルーツ圧縮機25の操作器へ切替信号を送る。
Moreover, the switching control part 71 of the refrigerator internal system comprised of the two roots compressors 25 includes the following three systems.
First, when the measured value of the thermometer 16 in the evaporator 15 exceeds a predetermined set temperature in spite of normal operation in response to the operation signal of the roots compressor 25, A switching signal is sent from the TIC (temperature controller) to the operating device of the roots compressor 25.

2つめは、常時ルーツ圧縮機25の吐出温度を温度計27で計測し、運転中の計測値をSEL(セレクタ)で選別した後、所定の温度を超えた場合に、TIC(温度コントローラ)からルーツ圧縮機25の操作器へ切替信号を送る。
3つめは、蒸発器15及び凝縮器20の水位計18、21の計測値を△LIC(レベル差コントローラ)に入力し内部で演算した結果、そのレベル差ΔLが所定の閾値を超えるかどうかを判断する判定回路による判定結果に基づいて、閾値を下回る(つまり、差圧がとれていない場合)はルーツ圧縮機25の操作器へ切替信号を送る。
Secondly, when the discharge temperature of the roots compressor 25 is constantly measured by the thermometer 27 and the measured value during operation is selected by the SEL (selector), when a predetermined temperature is exceeded, from the TIC (temperature controller) A switching signal is sent to the operating device of the roots compressor 25.
Third, the measured values of the water level gauges 18 and 21 of the evaporator 15 and the condenser 20 are input to ΔLIC (level difference controller) and calculated internally, and as a result, whether or not the level difference ΔL exceeds a predetermined threshold value is determined. Based on the determination result by the determination circuit to determine, when the pressure is below the threshold (that is, when the differential pressure is not taken), a switching signal is sent to the operating device of the roots compressor 25.

各々切替信号と同時に警告を監視システムへ発報する。切替信号により、ルーツ圧縮機25、圧縮機ON−OFF弁26及び温度計27のセットを、運転中のものはOFFに、停止していた予備のルーツ圧縮機25、圧縮機ON−OFF弁26及び温度計27のセットをONにそれぞれ動作させる。   A warning is issued to the monitoring system simultaneously with each switching signal. According to the switching signal, the set of the root compressor 25, the compressor ON-OFF valve 26 and the thermometer 27 is turned OFF for the operating one, and the spare root compressor 25 and the compressor ON-OFF valve 26 which have been stopped are stopped. And set the thermometer 27 to ON.

また、冷却水配管57の切替制御部72は、常時冷却水の還り温度を温度計56で計測し、所定の温度を超えた場合に、TIC(温度コントローラ)からSEL(セレクタ)に信号を発する。SEL(セレクタ)には、羽根車式冷却水流量計53からの流量信号を、所定の閾値を超えるかどうかを判断する判定回路による判定結果に基づいて、闘値を下回る(つまり、所定の流量が出ていない場合)は、ダイレクトに冷却水配管57の操作器へ切替信号を送り、閾値を超えている場合は、還り温度が所定の温度を超えた場合に、冷却水配管57の操作器へ切替信号を送る。同時に警告を監視システムへ発報する。切替信号により、運転中の冷却水ポンプ52、冷却水分岐ON−OFF弁51、羽根車式冷却水流量計53のセットをOFFに、停止していた予備の冷却水ポンプ52、冷却水分岐ON−OFF弁51、羽根車式冷却水流量計53のセットをONにそれぞれ動作させる。   The switching controller 72 of the cooling water pipe 57 constantly measures the return temperature of the cooling water with the thermometer 56, and issues a signal from the TIC (temperature controller) to the SEL (selector) when the temperature exceeds a predetermined temperature. . In the SEL (selector), the flow rate signal from the impeller-type cooling water flow meter 53 falls below the threshold value based on the determination result by the determination circuit that determines whether or not the predetermined threshold value is exceeded (that is, the predetermined flow rate). When the return temperature exceeds a predetermined temperature, the operating signal of the cooling water pipe 57 is sent to the operating device of the cooling water pipe 57 directly. Send a switching signal to. At the same time, a warning is issued to the monitoring system. The set of the cooling water pump 52, the cooling water branch ON-OFF valve 51, and the impeller-type cooling water flow meter 53 that is in operation is turned OFF by the switching signal, and the standby cooling water pump 52 that has been stopped, and the cooling water branch ON -The set of the OFF valve 51 and the impeller-type cooling water flow meter 53 is turned ON.

(実施形態2)
実施形態1では、1台の密閉式冷却塔60に対し、冷却水ポンプ52、冷却水分岐ON−OFF弁51、羽根車式冷却水流量計53のセットを並列に配置した冷却水配管57を設置した場合について説明したが、本実施形態では、1台の密閉式冷却塔60に対し、冷却水ポンプ52、冷却水分岐ON−OFF弁51、羽根車式冷却水流量計53を設けた冷却水往き管54と冷却水分岐ON−OFF弁59及び温度計56を設けた冷却水還り管55とのセットを並列に配置した冷却水配管57を設置した点で実施形態1に係る水蒸気圧縮冷凍機システムとは相違する。
(Embodiment 2)
In the first embodiment, a cooling water pipe 57 in which a set of a cooling water pump 52, a cooling water branch ON-OFF valve 51, and an impeller type cooling water flow meter 53 is arranged in parallel with respect to one sealed cooling tower 60 is provided. Although the case where it installed was demonstrated, in this embodiment, the cooling water pump 52, the cooling water branch ON-OFF valve 51, and the impeller type cooling water flow meter 53 are provided for one hermetic cooling tower 60. The steam compression refrigeration according to the first embodiment in that a cooling water pipe 57 in which a set of a water outlet pipe 54, a cooling water branch ON-OFF valve 59 and a cooling water return pipe 55 provided with a thermometer 56 is arranged in parallel is provided. It is different from the machine system.

本実施形態では、冷却水配管57の切替信号により、運転中の密閉式冷却塔60を含む冷却水ポンプ52、冷却水分岐ON−OFF弁51、羽根車式冷却水流量計53を設けた冷却水往き管54と冷却水分岐ON−OFF弁59及び冷却水還り管55と、冷却塔上部ファンとのセットをOFFに、停止していた予備の密閉式冷却塔60を含む冷却水ポンプ52、冷却水分岐ON−OFF弁51、羽根車式冷却水流量計53を設けた冷却水往き管54と冷却水分岐ON−OFF弁59及び冷却水還り管55と、冷却塔上部ファンとのセットをONにそれぞれ動作させるようにした点で、実施形態1に係る水蒸気圧縮冷凍機システムとは相違する。
本実施形態においても、実施形態1に係る水蒸気圧縮冷凍機システムと同様の作用効果を奏することが可能である。
In this embodiment, a cooling water pump 52 including a closed cooling tower 60 in operation, a cooling water branch ON-OFF valve 51, and an impeller type cooling water flow meter 53 are provided by a switching signal of the cooling water pipe 57. A cooling water pump 52 including a closed hermetic cooling tower 60 that has been stopped by turning off the set of the water outlet pipe 54, the cooling water branch ON-OFF valve 59, the cooling water return pipe 55, and the cooling tower upper fan; A set of a cooling water branch ON-OFF valve 51, a cooling water forward pipe 54 provided with an impeller type cooling water flow meter 53, a cooling water branch ON-OFF valve 59, a cooling water return pipe 55, and a cooling tower upper fan. The water vapor compression refrigerator system according to the first embodiment is different from the first embodiment in that each is turned on.
Also in the present embodiment, it is possible to achieve the same effects as the steam compression refrigerator system according to the first embodiment.

なお、上記各実施形態では、冷水配管42の切替制御部70による切替を、運転中の冷水ポンプ37及び冷水分岐ON−OFF弁36のセットを、停止していた予備の冷水ポンプ37及び冷水分岐ON−OFF弁36のセットへの切替としたが、停止していた予備の冷水ポンプ37及び冷水分岐ON−OFF弁36のセットは、複数台であっても良い。
また、ルーツ圧縮機25の切替制御部71による切替を、運転中のルーツ圧縮機25、圧縮機ON−OFF弁26及び温度計27のセットを、停止していた予備のルーツ圧縮機25、圧縮機ON−OFF弁26及び温度計27のセットへの切替としたが、予備のルーツ圧縮機25、圧縮機ON−OFF弁26及び温度計27のセットは、複数台であっても良い。
In each of the above embodiments, switching by the switching control unit 70 of the chilled water pipe 42 is performed by setting the set of the chilled water pump 37 and the chilled water branch ON-OFF valve 36 in operation, and the spare chilled water pump 37 and the chilled water branch that have been stopped. Although switching to the set of the ON-OFF valve 36 is performed, the set of the standby cold water pump 37 and the cold water branch ON-OFF valve 36 that have been stopped may be plural.
Further, the switching control unit 71 of the roots compressor 25 is switched, and the set of the operating roots compressor 25, the compressor ON-OFF valve 26 and the thermometer 27 is stopped. Although switching to the set of the machine ON-OFF valve 26 and the thermometer 27 is made, the set of the spare root compressor 25, the compressor ON-OFF valve 26 and the thermometer 27 may be plural.

また、冷却水配管57の切替制御部72による切替を、運転中の冷却水ポンプ52、冷却水分岐ON−OFF弁51及び羽根車式冷却水流量計53のセットを、停止していた予備の冷却水ポンプ52、冷却水分岐ON−OFF弁51及び羽根車式冷却水流量計53のセットへの切替としたが、冷却水ポンプ52、冷却水分岐ON−OFF弁51及び羽根車式冷却水流量計53のセットは、複数台であっても良い。
同じく、冷却水配管57の切替制御部72による切替を、運転中の密閉式冷却塔60を含む冷却水ポンプ52、冷却水分岐ON−OFF弁51、羽根車式冷却水流量計53のセットを、停止していた予備の密閉式冷却塔60を含む冷却水ポンプ52、冷却水分岐ON−OFF弁51、羽根車式冷却水流量計53を設けた冷却水往き管54とON−OFF弁59及び温度計56を設けた冷却水還り管55とのセットへの切替としたが、停止していた予備の密閉式冷却塔60を含む冷却水ポンプ52、冷却水分岐ON−OFF弁51、羽根車式冷却水流量計53を設けた冷却水往き管54と冷却水分岐ON−OFF弁59及び温度計56を設けた冷却水還り管55とのセットは、複数台であっても良い。
Further, the switching of the cooling water pipe 57 by the switching control unit 72 is performed so that the set of the cooling water pump 52, the cooling water branch ON-OFF valve 51, and the impeller type cooling water flow meter 53 in operation is stopped. The cooling water pump 52, the cooling water branch ON-OFF valve 51, and the impeller type cooling water flow meter 53 are switched to the set. However, the cooling water pump 52, the cooling water branch ON-OFF valve 51, and the impeller type cooling water are used. A plurality of sets of flow meters 53 may be provided.
Similarly, switching by the switching control unit 72 of the cooling water pipe 57 is performed by setting a cooling water pump 52 including a closed cooling tower 60 in operation, a cooling water branch ON-OFF valve 51, and an impeller type cooling water flow meter 53. The cooling water pump 52 including the closed sealed cooling tower 60 that has been stopped, the cooling water branch ON-OFF valve 51, the cooling water forward pipe 54 provided with the impeller cooling water flow meter 53, and the ON-OFF valve 59 The cooling water return pipe 55 provided with the thermometer 56 and the switching to the set with the cooling water return pipe 55 have been switched, but the cooling water pump 52 including the standby hermetic cooling tower 60 that has been stopped, the cooling water branch ON-OFF valve 51, the blades There may be a plurality of sets of the cooling water return pipe 54 provided with the vehicle-type cooling water flow meter 53 and the cooling water return pipe 55 provided with the cooling water branch ON-OFF valve 59 and the thermometer 56.

また、ルーツ圧縮機25をインバータ制御する方式で説明したが、インバータ方式に限らない。
また、負荷45として、データセンタのサーバ冷却について説明したが、各種の設備冷却水としても良い。
Moreover, although the root compressor 25 was demonstrated by the system which carries out inverter control, it is not restricted to an inverter system.
Moreover, although the server cooling of the data center was demonstrated as the load 45, it is good also as various equipment cooling water.

10 水蒸気圧縮冷凍機
15 蒸発器
16、27、41、56 温度計
17 冷水溜まり
18、21 水位計
19、22、62 散水管
20 凝縮器
23 真空ポンプ
25 ルーツ圧縮機
26 圧縮機ON−OFF弁
28、38、54、66 分岐管
29 連結配管
30 連通路
35 冷水往き管
36 冷水分岐ON−OFF弁
37、52 冷水ポンプ
39 羽根車式冷水流量計
40 冷水還り管
42 冷水配管
45 負荷
50 冷却水往き管
51、59、65 冷却水分岐ON−OFF弁
53 羽根車式冷却水流量計
55 冷却水還り管
57 冷却水配管
58 熱交換器コイル
60 密閉式冷却塔
61 下部水槽
63 外部水配管
64 冷却水ポンプ
70 冷水配管42の切替制御部
71 ルーツ圧縮機25の切替制御部
72 冷却水配管57の切替制御部
DESCRIPTION OF SYMBOLS 10 Steam compression refrigerator 15 Evaporator 16, 27, 41, 56 Thermometer 17 Cold water reservoir 18, 21 Water level gauge 19, 22, 62 Sprinkling pipe 20 Condenser 23 Vacuum pump 25 Roots compressor 26 Compressor ON-OFF valve 28 , 38, 54, 66 Branch pipe 29 Connection pipe 30 Communication path 35 Chilled water delivery pipe 36 Chilled water branch ON-OFF valve 37, 52 Chilled water pump 39 Impeller chilled water flow meter 40 Chilled water return pipe 42 Chilled water piping 45 Load 50 Chilled water delivery Pipes 51, 59, 65 Cooling water branch ON-OFF valve 53 Impeller type cooling water flow meter 55 Cooling water return pipe 57 Cooling water pipe 58 Heat exchanger coil 60 Sealed cooling tower 61 Lower water tank 63 External water pipe 64 Cooling water Pump 70 Switching control section 71 for cold water piping 42 Switching control section 72 for roots compressor 25 Switching control section for cooling water piping 57

Claims (7)

注水管、温度計及び水位計を内部に設ける密閉式の蒸発器と、散水管及び水位計を内部に設ける密閉式の凝縮器と、入口側又は出口側に圧縮機ON−OFF弁、出口側に温度計を有する圧縮機分岐管を並列に配置してなる前記蒸発器と前記凝縮器との冷媒液位のレベル差を確保する複数の圧縮機と、各々が配管で接続される前記凝縮器、前記蒸発器、前記圧縮機及びその間を接続する配管内を30kPa以下の真空状態に保持する、前記凝縮器に接続される配管に設けられた真空ポンプと、を有する、水が冷凍サイクルを形成する冷媒として使用される水蒸気圧縮冷凍機を備えた水蒸気圧縮冷凍機システムであって、
前記蒸発器と前記凝縮器とを連結する連通路と、
冷水ポンプ及び冷水分岐ON−OFF弁を設けた複数の冷水分岐管を並列に配置し、前記蒸発器に連結される冷水往き管と、温度計を設け、前記蒸発器の散水管に連結される冷水還り管と、前記冷水往き管又は前記冷水還り管に設けられる羽根車式冷水流量計とを有する冷水配管と、
前記冷水往き管及び前記冷水還り管に連結される熱交換器である負荷と、
前記圧縮機を前記蒸発器と前記凝縮器との間に位置させて連結する連結配管と、
冷却水ポンプを配置し、前記凝縮器に連結される冷却水往き管と、温度計を設け、前記凝縮器の散水管に連結される冷却水還り管とを有する冷却水配管と、
前記冷却水配管に熱交換器部分が連結される密閉式冷却塔と、
前記冷水配管の前記冷水ポンプ及び前記冷水分岐ON−OFF弁をON−OFF動作させる前記冷水配管の操作器と、
前記圧縮機、前記圧縮機ON−OFF弁をON−OFF動作させる前記圧縮機の操作器と、
前記冷水配管の還り温度が所定の温度を超える場合、又は、前記羽根車式冷水流量計からの流量信号が、所定の閾値を下回る(つまり、所定の流量が出ていない)場合、又は、前記羽根車式冷水流量計からの流量信号が、閾値を超え、かつ、前記冷水配管の還り温度が所定の温度を超える場合に、前記冷水配管の操作器に切替信号を発信させ、運転中の前記冷水ポンプ及び前記冷水分岐ON−OFF弁をOFFにし、停止していた別の前記冷水ポンプ及び前記冷水分岐ON−OFF弁をONにそれぞれ動作させる前記冷水配管の切替制御部と、
前記圧縮機の運転信号を受けて、正常な運転をしているのにもかかわらず、前記蒸発器内の温度が所定の設定温度を超える場合、又は、前記圧縮機の吐出温度が所定の温度を超える場合、又は、前記蒸発器及び前記凝縮器の冷媒液位のレベル差△Lが所定の閾値を下回る(つまり、差圧がとれていない状態の)場合に、運転中の前記圧縮機、前記圧縮機ON−OFF弁をOFFにし、停止していた別の前記圧縮機、前記圧縮機ON−OFF弁をONにそれぞれ動作させる前記圧縮機の切替制御部と
を備えることを特徴とする水蒸気圧縮冷凍機システム。
Sealed evaporator with water injection pipe, thermometer and water level gauge inside, closed condenser with water spray pipe and water level gauge inside, compressor ON-OFF valve on the inlet side or outlet side, outlet side A plurality of compressors for ensuring a difference in refrigerant liquid level between the evaporator and the condenser, wherein the compressor branch pipe having a thermometer is arranged in parallel, and the condenser connected to each other by piping A vacuum pump provided in a pipe connected to the condenser for maintaining the inside of the evaporator, the compressor, and a pipe connecting the evaporator in a vacuum state of 30 kPa or less, and water forms a refrigeration cycle A steam compression refrigerator system comprising a steam compression refrigerator used as a refrigerant,
A communication path connecting the evaporator and the condenser;
A plurality of cold water branch pipes provided with a cold water pump and a cold water branch ON-OFF valve are arranged in parallel, a cold water forward pipe connected to the evaporator, a thermometer, and a water pipe of the evaporator are connected. A cold water pipe having a cold water return pipe and an impeller type cold water flow meter provided in the cold water return pipe or the cold water return pipe;
A load that is a heat exchanger connected to the cold water return pipe and the cold water return pipe;
A connecting pipe for connecting the compressor between the evaporator and the condenser;
A cooling water pipe having a cooling water pump, a cooling water going pipe connected to the condenser, a thermometer, and a cooling water return pipe connected to the watering pipe of the condenser;
A hermetic cooling tower in which a heat exchanger portion is connected to the cooling water pipe;
An operating device for the cold water pipe for ON-OFF operation of the cold water pump of the cold water pipe and the cold water branch ON-OFF valve;
The compressor, an operating device of the compressor for ON-OFF operation of the compressor ON-OFF valve; and
When the return temperature of the chilled water pipe exceeds a predetermined temperature, or when the flow signal from the impeller chilled water flow meter falls below a predetermined threshold (that is, the predetermined flow rate does not come out), or When the flow signal from the impeller-type chilled water flow meter exceeds a threshold value and the return temperature of the chilled water pipe exceeds a predetermined temperature, a switching signal is transmitted to the operating device of the chilled water pipe, The cold water pump and the cold water branch ON-OFF valve are turned off, and the other cold water pump and the cold water branch ON-OFF valve that have been stopped are each turned on to operate the cold water pipe switching control unit,
In response to the operation signal of the compressor, the temperature in the evaporator exceeds a predetermined set temperature despite the normal operation, or the discharge temperature of the compressor is a predetermined temperature. Or when the refrigerant liquid level difference ΔL between the evaporator and the condenser is below a predetermined threshold value (that is, when the differential pressure is not taken), Water vapor, comprising: the compressor ON-OFF valve is turned off; and another compressor that has been stopped, and the compressor switching control unit that operates the compressor ON-OFF valve to be turned on, respectively. Compression refrigerator system.
請求項1に記載の水蒸気圧縮冷凍機システムにおいて、
冷却水分岐ON−OFF弁、冷却水ポンプ及び羽根車式冷却水流量計を設ける複数の冷却水分岐管を並列に配置し、前記凝縮器に連結される冷却水往き管と、温度計を設け、前記凝縮器の散水管に連結される冷却水還り管とを有する冷却水配管と、
前記冷却水配管の前記冷却水ポンプ及び前記冷却水分岐ON−OFF弁をON−OFF動作させる前記冷却水配管の操作器と、
前記冷却水の還り温度が所定の温度を超える場合、又は、前記羽根車式冷却水流量計からの流量信号が所定の閾値を下回る(つまり、所定の流量が出ていない)場合、又は、前記冷却水の還り温度が所定の温度を超え、前記羽根車式冷却水流量計からの流量信号が所定の閾値を超える場合に、運転中の前記冷却水ポンプ及び前記冷却水分岐ON−OFF弁をOFFにし、停止していた別の前記冷水ポンプ及び前記冷却水分岐ON−OFF弁をONにそれぞれ動作させる前記冷却水配管の切替制御部と
を備えることを特徴とする水蒸気圧縮冷凍機システム。
In the steam compression refrigerator system according to claim 1,
A plurality of cooling water branch pipes provided with a cooling water branch ON-OFF valve, a cooling water pump and an impeller cooling water flow meter are arranged in parallel, and a cooling water forward pipe connected to the condenser and a thermometer are provided. A cooling water pipe having a cooling water return pipe connected to the water spray pipe of the condenser;
An operation unit for the cooling water pipe for ON-OFF operation of the cooling water pump of the cooling water pipe and the cooling water branch ON-OFF valve;
When the return temperature of the cooling water exceeds a predetermined temperature, or when the flow rate signal from the impeller-type cooling water flow meter falls below a predetermined threshold (that is, the predetermined flow rate does not come out), or When the return temperature of the cooling water exceeds a predetermined temperature and the flow signal from the impeller type cooling water flow meter exceeds a predetermined threshold, the cooling water pump and the cooling water branch ON-OFF valve in operation are turned on. A water vapor compression refrigeration system comprising: the cooling water pipe switching control unit that turns on and operates the other cooling water pump that has been turned off and the cooling water branch ON-OFF valve.
請求項1に記載の水蒸気圧縮冷凍機システムにおいて、
冷却水分岐ON−OFF弁、冷却水ポンプ及び羽根車式冷却水流量計を設ける複数の冷却水分岐管を並列に配置し、前記凝縮器に連結される冷却水往き管と、温度計を設け、前記凝縮器の散水管に連結される冷却水還り管とを有する複数の冷却水配管と、
前記複数の冷却水配管に熱交換器部分が連結される複数の密閉式冷却塔と、
前記冷却水配管の前記冷却水ポンプ及び前記冷却水分岐ON−OFF弁をON−OFF動作させる前記冷却水配管の操作器と、
前記冷却水の還り温度が所定の温度を超える場合、又は、前記羽根車式冷却水流量計からの流量信号が所定の閾値を下回る(つまり、所定の流量が出ていない)場合、又は、前記冷却水の還り温度が所定の温度を超え、前記羽根車式冷却水流量計からの流量信号が所定の閾値を超える場合に、運転中の前記冷却水ポンプ、前記密閉式冷却塔のファン及び冷却塔冷却水ポンプ及び前記冷却水分岐ON−OFF弁をOFFにし、停止していた別の前記冷水ポンプ及び密閉式冷却塔のファン及び冷却塔冷却水ポンプ及び前記冷却水分岐ON−OFF弁をONにそれぞれ動作させる前記冷却水配管の切替制御部と
を備えることを特徴とする水蒸気圧縮冷凍機システム。
In the steam compression refrigerator system according to claim 1,
A plurality of cooling water branch pipes provided with a cooling water branch ON-OFF valve, a cooling water pump and an impeller cooling water flow meter are arranged in parallel, and a cooling water forward pipe connected to the condenser and a thermometer are provided. A plurality of cooling water pipes having a cooling water return pipe connected to the water spray pipe of the condenser;
A plurality of hermetic cooling towers in which a heat exchanger portion is connected to the plurality of cooling water pipes;
An operation unit for the cooling water pipe for ON-OFF operation of the cooling water pump of the cooling water pipe and the cooling water branch ON-OFF valve;
When the return temperature of the cooling water exceeds a predetermined temperature, or when the flow rate signal from the impeller-type cooling water flow meter falls below a predetermined threshold (that is, the predetermined flow rate does not come out), or When the return temperature of the cooling water exceeds a predetermined temperature and the flow signal from the impeller cooling water flow meter exceeds a predetermined threshold, the cooling water pump in operation, the fan of the hermetic cooling tower and the cooling Turn off the tower cooling water pump and the cooling water branch ON-OFF valve, and turn on the other cooling water pump and closed cooling tower fan, cooling tower cooling water pump, and cooling water branch ON-OFF valve that were stopped And a switching control unit for the cooling water pipes to be operated respectively.
請求項1乃至請求項3の何れかに記載の水蒸気圧縮冷凍機システムにおいて、
前記負荷は、データセンタのサーバである
ことを特徴とする水蒸気圧縮冷凍機システム。
In the steam compression refrigeration system according to any one of claims 1 to 3,
The load is a server of a data center.
請求項1記載の水蒸気圧縮冷凍機システムにおいて、
前記冷水配管の切替制御部は、
前記羽根車式冷水流量計に連絡するセレクタと、
前記冷水配管の温度計及び前記蒸発器の温度計に連絡するTIC(温度調節計機構)と
を有することを特徴とする水蒸気圧縮冷凍機システム。
In the steam compression refrigerator system according to claim 1,
The cold water pipe switching control unit is:
A selector that communicates with the impeller-type cold water flow meter;
A steam compression refrigerator system comprising: a thermometer of the cold water pipe and a TIC (temperature controller mechanism) communicating with the thermometer of the evaporator.
請求項1記載の水蒸気圧縮冷凍機システムにおいて、
前記圧縮機の切替制御部は、
前記蒸発器の温度計に連絡するTIC(温度調節系機構)と、
前記圧縮機の温度計に連絡するセレクタと、
前記蒸発器の水位計及び前記凝縮器の水位計に連絡する△LIC(レベル差コントローラ)と
を有することを特徴とする水蒸気圧縮冷凍機システム。
In the steam compression refrigerator system according to claim 1,
The switching control unit of the compressor is
TIC (Temperature Control System Mechanism) communicating with the evaporator thermometer;
A selector in contact with the compressor thermometer;
A steam compression refrigerator system comprising: a water level meter of the evaporator and a ΔLIC (level difference controller) communicating with the water level meter of the condenser.
請求項1記載の水蒸気圧縮冷凍機システムにおいて、
前記冷却水配管の切替制御部は、
前記羽根車式冷却水流量計に連絡するセレクタと、
前記冷却水配管の温度計に連絡するTIC(温度調節計機構)と
を有することを特徴とする水蒸気圧縮冷凍機システム。
In the steam compression refrigerator system according to claim 1,
The cooling water pipe switching control unit,
A selector that communicates with the impeller cooling water flow meter;
A steam compression refrigerator system comprising: a TIC (temperature controller mechanism) communicating with a thermometer of the cooling water pipe.
JP2009079715A 2009-03-27 2009-03-27 Control system for steam compression refrigeration system Active JP5345438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009079715A JP5345438B2 (en) 2009-03-27 2009-03-27 Control system for steam compression refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009079715A JP5345438B2 (en) 2009-03-27 2009-03-27 Control system for steam compression refrigeration system

Publications (2)

Publication Number Publication Date
JP2010230265A true JP2010230265A (en) 2010-10-14
JP5345438B2 JP5345438B2 (en) 2013-11-20

Family

ID=43046262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009079715A Active JP5345438B2 (en) 2009-03-27 2009-03-27 Control system for steam compression refrigeration system

Country Status (1)

Country Link
JP (1) JP5345438B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108636A1 (en) * 2012-01-18 2013-07-25 パナソニック株式会社 Refrigeration cycle apparatus
CN115031309A (en) * 2022-04-24 2022-09-09 中国电建集团北京勘测设计研究院有限公司 Cooling water system for water-cooled chiller of pumped storage power station

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176283U (en) * 1984-10-25 1986-05-22
JPH0163935U (en) * 1987-10-19 1989-04-25
JPH05248665A (en) * 1992-03-06 1993-09-24 Hitachi Ltd Computer cooling device
JP2008175520A (en) * 2006-12-19 2008-07-31 Sanki Eng Co Ltd Cooler
JP2008261604A (en) * 2007-04-13 2008-10-30 Sasakura Engineering Co Ltd Evaporative air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176283U (en) * 1984-10-25 1986-05-22
JPH0163935U (en) * 1987-10-19 1989-04-25
JPH05248665A (en) * 1992-03-06 1993-09-24 Hitachi Ltd Computer cooling device
JP2008175520A (en) * 2006-12-19 2008-07-31 Sanki Eng Co Ltd Cooler
JP2008261604A (en) * 2007-04-13 2008-10-30 Sasakura Engineering Co Ltd Evaporative air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108636A1 (en) * 2012-01-18 2013-07-25 パナソニック株式会社 Refrigeration cycle apparatus
CN103429970A (en) * 2012-01-18 2013-12-04 松下电器产业株式会社 Refrigeration cycle apparatus
JPWO2013108636A1 (en) * 2012-01-18 2015-05-11 パナソニックIpマネジメント株式会社 Refrigeration cycle equipment
CN103429970B (en) * 2012-01-18 2016-03-09 松下知识产权经营株式会社 Freezing cycle device
US9557080B2 (en) 2012-01-18 2017-01-31 Panasonic Intellectual Property Management Co., Ltd. Refrigeration cycle apparatus
CN115031309A (en) * 2022-04-24 2022-09-09 中国电建集团北京勘测设计研究院有限公司 Cooling water system for water-cooled chiller of pumped storage power station

Also Published As

Publication number Publication date
JP5345438B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
US8646284B2 (en) Heat-source system and method for controlling the same
US8651172B2 (en) System and method for separating components of a fluid coolant for cooling a structure
JP5495526B2 (en) Heat source system and control method thereof
JP6420686B2 (en) Refrigeration cycle equipment
CN102287972A (en) Refrigerant circulation apparatus
JP2009216295A (en) Cooling system of electronic device and its operating method
KR101837702B1 (en) Chiller for semiconductor process using thermoelement
CN104390311B (en) Air conditioner refrigeration method, system and device aiming at high-temperature server
JP5615963B2 (en) Electronic equipment cooling system
JP2007224868A (en) Heat pump system, lubricating water temperature adjusting method for heat pump system, and operating method for heat pump system
JP2007107814A (en) Air-cooled condenser
JP5491923B2 (en) Electronic equipment cooling system
JP5180130B2 (en) Steam compression refrigerator system
JP2011141055A (en) Cooling system for electronic device
JP5345438B2 (en) Control system for steam compression refrigeration system
JP4941676B2 (en) Air conditioning system
JP2010085009A (en) Air conditioning method, air conditioning system and method of controlling air conditioning system
JP5752428B2 (en) Water refrigerant refrigeration system
US7065976B2 (en) Control logic for maintaining proper solution concentration in an absorption chiller in co-generation applications
JP5199161B2 (en) Steam compression refrigerator system
JP2012177531A (en) Auxiliary cooling device for data center
JP2001263894A (en) Cryogenic liquid storage facility
JP2002276367A (en) Evaporation suppressing device for circulating heating medium
KR101974374B1 (en) An absorption chiller and heater and a control method using the same
JP2004116814A (en) Control method and device for supercooled water manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130814

R150 Certificate of patent or registration of utility model

Ref document number: 5345438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250