JP2010230106A - Pipeline for fault - Google Patents

Pipeline for fault Download PDF

Info

Publication number
JP2010230106A
JP2010230106A JP2009079365A JP2009079365A JP2010230106A JP 2010230106 A JP2010230106 A JP 2010230106A JP 2009079365 A JP2009079365 A JP 2009079365A JP 2009079365 A JP2009079365 A JP 2009079365A JP 2010230106 A JP2010230106 A JP 2010230106A
Authority
JP
Japan
Prior art keywords
pipe
fault
buckling
pipeline
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009079365A
Other languages
Japanese (ja)
Other versions
JP2010230106A5 (en
JP5067585B2 (en
Inventor
Nofuhiro Hasegawa
延広 長谷川
Toshio Imai
俊雄 今井
Yoshikazu Nakajima
良和 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2009079365A priority Critical patent/JP5067585B2/en
Publication of JP2010230106A publication Critical patent/JP2010230106A/en
Publication of JP2010230106A5 publication Critical patent/JP2010230106A5/ja
Application granted granted Critical
Publication of JP5067585B2 publication Critical patent/JP5067585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pipeline crossing a fault with a means for improving earthquake resistance performance of the same in a relatively short term of construction work and at a low cost. <P>SOLUTION: A pipe formed with a buckling mode shape in a case where compressive force in a pipe axis direction acts is used as a structure for absorbing fault displacement. The pipe with the buckling mode shape is used in the pipeline in combination with straight pipes. During ground deformation, in the pipeline, only the buckling mode part absorbs extension (compression) deformation and therefore almost no force acts on the straight pipe parts. The problem is solved by the pipeline for a fault made of a steel pipe in which the buckling mode part and the straight pipe parts are connected. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水道、ガス、電力等の各種用途に使用される管路に関し、特に、断層変位を吸収できる管路に関するものである。   The present invention relates to a pipeline used for various uses such as water supply, gas, and electric power, and more particularly to a pipeline capable of absorbing fault displacement.

日本には数千もの活断層が存在しており、数多くのパイプラインもこの活断層を横断している。これら活断層の断層変位は数mを超えるものもあり、主要な管路が地震発生時に数mの断層変位を受けた場合、管路は破断しその地域一帯は断水する可能性がある。このため断層を横断する主要な管路には断層変位に対して亀裂を起こさない高い耐震性能が要求される。   There are thousands of active faults in Japan, and many pipelines cross these active faults. Some of these active faults have displacements exceeding a few meters, and if the main pipeline is affected by a fault displacement of several meters at the time of the earthquake, the pipeline may break and the entire area may be drained. For this reason, the main pipelines that cross the fault are required to have high seismic performance that does not cause cracks against fault displacement.

一般的な埋設管の耐震設計は、標準管厚よりも増厚もしくは補強することで耐力を向上させ管路本体そのもので耐える構造とするのが一般的であるが、断層変位のような数mにおよぶ地盤変形では、これに耐えうるだけの剛性を管路に付加させることは不可能である。   The general seismic design for buried pipes is generally designed to increase the proof strength by increasing or reinforcing the standard pipe thickness and to withstand the pipe body itself. It is impossible to add sufficient rigidity to the pipe line to withstand the ground deformation.

そこで、水道等の管路における断層部の耐震設計では以下の施工例がある。
a 断層面にベローズ型伸縮可撓管を連続して配置し断層変位を吸収する方法
b 断層が変位する区間に断層変位以上のトンネルを掘り、空間で変位を吸収する方法
c 予想される断層変位区間の配管を地上配管とし断層の影響を無効化する方法
Therefore, there are the following construction examples in the seismic design of faults in pipelines such as water supply.
a Method to absorb fault displacement by arranging bellows-type telescopic flexible tubes continuously on the fault plane
b Method of digging a tunnel larger than the fault displacement in the section where the fault is displaced and absorbing the displacement in space
c Method of disabling the effect of faults by using piping in the expected fault displacement section as ground piping

ベローズ型伸縮可撓管を連続して配置し断層変位を吸収する方法では、大深度で管路が基板面よりも下に配管が布設され、断層面および断層変位がすでに分かっている場合に適用できる。このため、比較的浅い土被りで埋設されている管路では断層面が正確に想定できないことからこの方法を用いることは難しい。   The method of continuously arranging bellows-type telescopic flexible pipes to absorb fault displacement is applied when the pipe line is laid below the board surface at a large depth, and the fault plane and fault displacement are already known. it can. For this reason, it is difficult to use this method because a fault plane cannot be accurately assumed in a pipeline buried with a relatively shallow cover.

地上配管やトンネルを使って断層変位を吸収する方法では、断層変位時には管路は空間にあり、地盤の影響を受けないため管路は無被害となるが、断層面が想定される区間をすべてが対象となるため、非常にコストが高くなる。このため、特殊な工法を用いずに管路自体が地盤変形に追従して変形し、地盤変形を吸収する構造を開発するのが望ましい。   In the method of absorbing fault displacement using ground pipes and tunnels, the pipeline is in space at the time of fault displacement and is not affected by the ground, so the pipeline is not damaged, but all sections where the fault plane is assumed are all Is very expensive. For this reason, it is desirable to develop a structure that absorbs the ground deformation by deforming the pipeline itself following the ground deformation without using a special construction method.

本発明は、断層を横断する管路に、比較的短工期・低コストでその耐震性能を向上させることができる手段を提供することを目的としている。   It is an object of the present invention to provide a means for improving the seismic performance of a pipeline that crosses a fault with a relatively short construction period and low cost.

本発明は、上記課題を解決した管路を提供するものであり、断層部を横断するパイプラインが地震による断層変位を受ける際に、パイプライン自体で変位を吸収できる構造とすることで断層変位時のパイプラインからの亀裂を押さえ、災害時の断水等を防止できるようにしている。   The present invention provides a pipeline that solves the above-mentioned problems. When a pipeline that crosses a fault is subjected to a fault displacement caused by an earthquake, the fault displacement is achieved by adopting a structure that can absorb the displacement by the pipeline itself. The cracks from the pipeline at the time are suppressed, and water outage etc. at the time of disaster can be prevented.

本発明は、断層変位を吸収する構造として管軸方向の圧縮力が作用した場合の座屈波形形状を形成した管を用いている。この座屈波形形状の管は直管と組合わせて管路に用いることで、以下の作用を発揮する。
a 地盤変形時に管路は座屈波形部分だけが伸び(圧縮)変形を吸収するため直管部には、ほとんど力は作用しない。
b 管体の変形では直管と比べて座屈波形部分は同様な管厚以上であるため、座屈波形部分が伸び切っても変形は集中せず次の座屈波形部分に移動する。また、直管と同様な管厚以上であるため、伸び切っても土圧に対して十分な管厚を有している。
c 山数(座屈波形数)を2山、3山と増やすことで断層変位に応じた任意の許容曲げ角度を設置することができる。
d 本管線形の端部に人孔管を設けることで断層変位後に管内へ入り損傷の有無の確認を行うことができる。
The present invention uses a tube having a buckling waveform when a compressive force in the tube axis direction is applied as a structure that absorbs fault displacement. This buckled corrugated pipe is used in a pipe line in combination with a straight pipe, and exhibits the following effects.
a At the time of ground deformation, only the buckling waveform portion of the pipe stretches (compresses) and absorbs the deformation, so almost no force acts on the straight pipe.
b In the deformation of the tube, the buckling waveform part is more than the same pipe thickness as the straight pipe, so even if the buckling waveform part is fully extended, the deformation does not concentrate and moves to the next buckling waveform part. Moreover, since it is more than the same pipe thickness as a straight pipe, even if it extends fully, it has sufficient pipe thickness with respect to earth pressure.
c Arbitrary permissible bending angles can be set according to fault displacement by increasing the number of peaks (number of buckling waveforms) to 2 and 3 peaks.
d By installing a manhole tube at the end of the main pipe alignment, it is possible to enter the tube after a fault displacement and check for damage.

本発明の管路は、断層変位に耐える力が大きく、断層変位が生じても、破壊、漏水の危険性を従来の管路より大幅に少なくすることができる。しかも低コストですむ。   The pipe of the present invention has a large force to withstand a fault displacement, and even if a fault displacement occurs, the risk of breakage and water leakage can be greatly reduced compared to conventional pipes. Moreover, the cost is low.

本発明の座屈波形部を有する座屈波形鋼管を埋設した管路を示す断面図である。It is sectional drawing which shows the pipe line which embed | buried the buckling waveform steel pipe which has a buckling waveform part of this invention. 座屈波形を説明する図である。It is a figure explaining a buckling waveform. 断層変位による直管の座屈状態を示す側面図である。It is a side view which shows the buckling state of the straight pipe by fault displacement. 座屈波形部が1山の鋼管の断層変位による変形を示す側面図である。It is a side view which shows the deformation | transformation by the fault displacement of the steel pipe whose buckling waveform part is a mountain. 座屈波形部が2山の鋼管の断層変位による変形を示す側面図である。It is a side view which shows the deformation | transformation by the fault displacement of a steel pipe with two buckling waveform parts. 座屈波形部が3山の鋼管の断層変位による変形を示す側面図である。It is a side view which shows the deformation | transformation by the fault displacement of a steel pipe with three buckling waveform parts.

本発明の管路で使用される座屈波形鋼管は、直管に圧縮局部座屈を起こして生ずる波形に類似した初期変形を予め与えておくことで断層変位による圧縮変形を吸収しやすくしたもので、断層変位に従って座屈波形部が破断しないで変形しうる必要があり、この点で軟鋼(SS400)等が好ましい。ここに、軟鋼とは、炭素含有量が0.13〜0.20%、引張強度330〜430N/mm2のものである。 The buckled corrugated steel pipe used in the pipe line of the present invention makes it easy to absorb compressive deformation due to fault displacement by giving in advance an initial deformation similar to the corrugation generated by causing local buckling of a straight pipe. Therefore, it is necessary that the buckled waveform portion can be deformed without breaking according to the fault displacement, and mild steel (SS400) or the like is preferable in this respect. Here, the mild steel has a carbon content of 0.13 to 0.20% and a tensile strength of 330 to 430 N / mm 2 .

鋼管の管径と板厚は、用途等によって定まるが、管径は口径(呼び径)で600A〜3000A程度である。板厚は、常時荷重(土圧、自動車荷重)に対して耐えうる管厚とし、通常6.0〜20.0mm程度である。   The pipe diameter and plate thickness of the steel pipe are determined depending on the application and the like, but the pipe diameter is about 600A to 3000A in terms of the diameter (nominal diameter). The plate thickness is a tube thickness that can withstand constant loads (earth pressure, automobile load), and is usually about 6.0 to 20.0 mm.

また、断層変位による引張り変形には、本発明の座屈波形鋼管と連結して使用される直管の剛性で耐える。因みに、ベローズ型伸縮可撓管では引張り、圧縮ともにベローズ部で吸収する。   Moreover, it resists tensile deformation due to fault displacement with the rigidity of a straight pipe used in connection with the buckled corrugated steel pipe of the present invention. By the way, in the bellows type telescopic flexible tube, both the tension and the compression are absorbed by the bellows part.

座屈波形は、圧縮局部座屈波長(L=1.72√(r・t)、r:管半径、t:管厚)と山高さ(板厚のn倍)をパラメータとしてFEMを用いてパラメータスタディを行い決定される。   The buckling waveform is a parameter study using FEM with compression local buckling wavelength (L = 1.72√ (r · t), r: tube radius, t: tube thickness) and peak height (n times the plate thickness) as parameters. To be determined.

この座屈波形部1山で吸収できる変位量は最大で座屈波長であるので、座屈波形部の山数は、座屈波長と布設部位で想定される断層変位から決定する。例えば板厚9.0mm、口径600Aの鋼管で、座屈波長270mmの座屈波長部を設ける場合には、3mの断層変位が予測される部位には最低で約12山必要になる。多くの断層変位箇所の変位は1m〜5m程度と予測されるので、座屈波形部の山数は、1m〜5m/座屈波長程度設けることになる。   Since the maximum amount of displacement that can be absorbed by one buckling waveform portion is the buckling wavelength, the number of peaks of the buckling waveform portion is determined from the buckling wavelength and the fault displacement assumed at the installation site. For example, when a steel pipe having a plate thickness of 9.0 mm and a diameter of 600 A is provided with a buckling wavelength portion having a buckling wavelength of 270 mm, a minimum of about 12 mountains are required for a portion where a 3 m fault displacement is predicted. Since the displacement of many fault displacement locations is predicted to be about 1 m to 5 m, the number of peaks of the buckling waveform portion is set to about 1 m to 5 m / buckling wavelength.

座屈波形部の間隔は断層変位および断層角度を考慮し、解析を行って決定する必要があり、通常0.5〜2D(D:管外径)程度が適当である。座屈波形部と直管部との接合は、一体構造とするため溶接接合が望ましい。   The interval between the buckling waveform portions needs to be determined by analysis in consideration of the fault displacement and the fault angle, and usually about 0.5 to 2D (D: pipe outer diameter) is appropriate. Since the buckling corrugated portion and the straight pipe portion are integrally formed, welding is desirable.

本発明で使用する座屈波形鋼管は、例えば予め座屈波形の金型を製作しておき、その金型に合わせて鋼管に内側から水圧をかけることで座屈波形部を形成して製造できる。     The buckling corrugated steel pipe used in the present invention can be manufactured, for example, by forming a buckling corrugated mold in advance and forming a buckling corrugated portion by applying water pressure to the steel pipe from the inside according to the mold. .

本発明では、新設を行う場合、通常の埋設管同様に掘削を行い断層用パイプを布設する。既設の布設替えの場合は断層横断部影響区間の既設管を撤去し、断層用パイプを布設する。
また、埋設深度が深く断層の破砕箇所が特定できる場合は、布設範囲を非常にに短い区間とすることができる。
In the present invention, when a new construction is performed, excavation is performed in the same manner as a normal buried pipe and a fault pipe is laid. In the case of replacement of the existing installation, the existing pipe in the section affected by the fault crossing is removed and a fault pipe is installed.
In addition, when the embedding depth is deep and the fractured part of the fault can be specified, the laying range can be made a very short section.

本発明の管路の一実施例である座屈波形鋼管を埋設した状態を図1に示す。
この鋼管の座屈波形部は図2に示す座屈波長dと山高さeを有するものである。この座屈波形は、局部座屈波長および板厚をパラメータとしてFEMを用いてパラメータスタディを行い最適な座屈波長および管厚から求めたもので、材質がSS400で口径600A、板厚(t)9.0mmの鋼管に、山高さ(e)が4t(36mm)、座屈波長(d)が270mmの座屈波形部を形成した。この座屈波形部は管の円周方向に全周に山状に拡管されており、板厚は、直管部と同一であった。
FIG. 1 shows a state in which a buckled corrugated steel pipe which is an embodiment of the pipe line of the present invention is embedded.
The buckling waveform portion of this steel pipe has a buckling wavelength d and a peak height e shown in FIG. This buckling waveform was obtained from the optimal buckling wavelength and tube thickness by performing a parameter study using FEM with the local buckling wavelength and plate thickness as parameters. A buckling waveform portion having a peak height (e) of 4 t (36 mm) and a buckling wavelength (d) of 270 mm was formed on a 9.0 mm steel pipe. This buckling waveform portion was expanded in a mountain shape around the entire circumference in the circumferential direction of the tube, and the plate thickness was the same as that of the straight tube portion.

座屈波形部は、図1に示すように、1D(600mm)の直管を挟んで3つ設けた。
管路が直管のみでは、断層変位が生じると図3のように座屈してしまい、亀裂が入り漏水の危険性がある。
As shown in FIG. 1, three buckling corrugated portions were provided with a 1D (600 mm) straight pipe interposed therebetween.
If the pipe line is only a straight pipe, if a fault displacement occurs, it will buckle as shown in FIG.

ところが、座屈波形管に断層変位を与えると、図4のように変形(曲げ)が管に大きく集中し、座屈波形管が変形を吸収する。
座屈波形管を2山に増やすことで、図5に示すように、1山目の変形が進み管内面で接触すると2山目に変形が移行し、さらに変形する。
However, when a fault displacement is applied to the buckled corrugated tube, deformation (bending) is concentrated on the tube as shown in FIG. 4, and the buckled corrugated tube absorbs the deformation.
By increasing the number of buckling corrugated pipes to two, as shown in FIG. 5, when the deformation of the first mountain proceeds and contacts the inner surface of the tube, the deformation moves to the second mountain and further deforms.

さらに座屈波形管を3山に増やし、より大きな変位を与えると図6に示すように、変形はその座屈波形管の許容値を超え、次の山の座屈波形管に移行し変形に対応している。また、山の設置間隔によっても許容曲げ角度を変えることができることから、山数と山の設置間隔により、どのような断層変位にも対応できる断層用管路を布設することができる。   If the buckling corrugated pipe is further increased to three peaks and a larger displacement is applied, the deformation exceeds the allowable value of the buckling corrugated pipe as shown in FIG. It corresponds. Further, since the allowable bending angle can be changed depending on the installation interval of mountains, a fault conduit that can cope with any fault displacement can be laid according to the number of mountains and the installation interval of mountains.

本発明の管路は、断層変位に耐えて破壊しにくいので断層部に広く利用できる。   The pipe of the present invention can be widely used in a fault portion because it is resistant to fault displacement and is not easily destroyed.

a 直管
b 断層面
c 座屈波形管
d 座屈波長
e 山高さ
a Straight pipe
b Fault plane
c Buckling corrugated tube
d Buckling wavelength
e Mountain height

Claims (2)

座屈波形部と直管部とが連結されている鋼管よりなる断層用管路   Fault pipe made of steel pipe with buckling corrugated part and straight pipe part connected 前記直管部が、口径と管長が略等しい鋼管からなることを特徴とする請求項1に記載の断層用管路   2. The fault conduit according to claim 1, wherein the straight pipe portion is made of a steel pipe having a diameter and a pipe length substantially equal to each other.
JP2009079365A 2009-03-27 2009-03-27 Fault pipeline Active JP5067585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009079365A JP5067585B2 (en) 2009-03-27 2009-03-27 Fault pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009079365A JP5067585B2 (en) 2009-03-27 2009-03-27 Fault pipeline

Publications (3)

Publication Number Publication Date
JP2010230106A true JP2010230106A (en) 2010-10-14
JP2010230106A5 JP2010230106A5 (en) 2012-06-28
JP5067585B2 JP5067585B2 (en) 2012-11-07

Family

ID=43046129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009079365A Active JP5067585B2 (en) 2009-03-27 2009-03-27 Fault pipeline

Country Status (1)

Country Link
JP (1) JP5067585B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5874868B1 (en) * 2015-05-15 2016-03-02 Jfeエンジニアリング株式会社 Buckled corrugated steel pipe
JP2017026006A (en) * 2015-07-21 2017-02-02 日鉄住金パイプライン&エンジニアリング株式会社 Active fault countermeasure piping, design method for active fault countermeasure piping and process of manufacture of active fault countermeasure piping
JP2017026007A (en) * 2015-07-21 2017-02-02 日鉄住金パイプライン&エンジニアリング株式会社 Active fault countermeasure piping and design method for active fault countermeasure piping
CN107328898A (en) * 2017-07-18 2017-11-07 招商局重庆交通科研设计院有限公司 Pass through tomography tunnel excavation analogue experiment installation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105203387B (en) * 2015-09-30 2018-08-14 华北理工大学 Pipeline-soil model experimental rig under the influence of place sedimentation and tomography

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205474U (en) * 1978-06-13 1982-12-27
JPH0568722A (en) * 1991-09-13 1993-03-23 Takenaka Komuten Co Ltd Pipe, header, and piping structure
JPH1047540A (en) * 1996-08-03 1998-02-20 Showa Rasenkan Seisakusho:Kk Unit piping method and stainless steel pipe for piping
JPH10122440A (en) * 1996-10-16 1998-05-15 Nisshin Steel Co Ltd Corrugated stainless steel pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205474U (en) * 1978-06-13 1982-12-27
JPH0568722A (en) * 1991-09-13 1993-03-23 Takenaka Komuten Co Ltd Pipe, header, and piping structure
JPH1047540A (en) * 1996-08-03 1998-02-20 Showa Rasenkan Seisakusho:Kk Unit piping method and stainless steel pipe for piping
JPH10122440A (en) * 1996-10-16 1998-05-15 Nisshin Steel Co Ltd Corrugated stainless steel pipe

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5874868B1 (en) * 2015-05-15 2016-03-02 Jfeエンジニアリング株式会社 Buckled corrugated steel pipe
WO2016185523A1 (en) * 2015-05-15 2016-11-24 Jfeエンジニアリング株式会社 Buckling waveform steel pipe
US9869410B2 (en) 2015-05-15 2018-01-16 Jfe Engineering Corporation Buckling pattern steel pipe
JP2017026006A (en) * 2015-07-21 2017-02-02 日鉄住金パイプライン&エンジニアリング株式会社 Active fault countermeasure piping, design method for active fault countermeasure piping and process of manufacture of active fault countermeasure piping
JP2017026007A (en) * 2015-07-21 2017-02-02 日鉄住金パイプライン&エンジニアリング株式会社 Active fault countermeasure piping and design method for active fault countermeasure piping
CN107328898A (en) * 2017-07-18 2017-11-07 招商局重庆交通科研设计院有限公司 Pass through tomography tunnel excavation analogue experiment installation
CN107328898B (en) * 2017-07-18 2023-02-21 招商局重庆交通科研设计院有限公司 Crossing fault tunnel excavation simulation experiment device

Also Published As

Publication number Publication date
JP5067585B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5067585B2 (en) Fault pipeline
EP2672012A1 (en) Connecting structure for connecting steel pipe pile and steel outer pipe
JP5385855B2 (en) Joint structure of shaft shaft
KR101341838B1 (en) Earthquake-resistant pipe joint device
JP5035287B2 (en) Buckled corrugated steel pipe
JP5870158B2 (en) Pipe structure and program for pipe structure
CN108691555B (en) Fault broken zone section anti-seismic tunnel pipeline connecting piece
JP2005147243A (en) Flange joint body for valve pit
US9291287B2 (en) Conduit displacement mitigation apparatus including mesh layers, methods and systems for use with subsea conduits
JP2014227661A (en) Aseismic reinforcement structure of joint part of submerged tunnel
JP5819179B2 (en) Repair expansion / contraction flexible joint
CN201502783U (en) Protective part for semi-circular arch-shaped corrugated metal culvert
JP2009121036A (en) Headrace joint
JP2013079543A (en) Cutoff rubber
CN106015739A (en) Clip-in type buckle arrestor with on-bottom stability being strengthened
KR101984466B1 (en) Earthquake-proof stiffening member for seamed pipe
JP6061238B2 (en) Tubular buried object and manufacturing method thereof
JP2007146411A (en) Method of preventing buried pipeline from being uplifted due to liquefaction
JP6537865B2 (en) Repair method of telescopic flexible pipe joint and repair telescopic flexible pipe joint
CN210685981U (en) Round wing shape mine pipeline expansion device
JPH10220645A (en) Piping structure around construction
JP2017101455A (en) Pipe joint and its construction method
JP2024007947A (en) Expandable flexible joint to prevent uneven settlement
CN104879565A (en) Longitudinal stress straining releasing structure and method for pipeline in longitudinal directional drilling
CN204005029U (en) A kind of compensating joint of pipeline protective gear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120510

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120510

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120718

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5067585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350