JP2010229359A - Heating medium oil for waste heat transport system - Google Patents

Heating medium oil for waste heat transport system Download PDF

Info

Publication number
JP2010229359A
JP2010229359A JP2009080482A JP2009080482A JP2010229359A JP 2010229359 A JP2010229359 A JP 2010229359A JP 2009080482 A JP2009080482 A JP 2009080482A JP 2009080482 A JP2009080482 A JP 2009080482A JP 2010229359 A JP2010229359 A JP 2010229359A
Authority
JP
Japan
Prior art keywords
heat
oil
transport system
medium oil
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009080482A
Other languages
Japanese (ja)
Other versions
JP5357597B2 (en
Inventor
Masaji Nakamura
正司 中村
Takashi Ono
高志 大野
Yoshihiro Iwai
良博 岩井
Tetsuharu Sadatsuka
徹治 定塚
Takeshi Senda
武志 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Idemitsu Kosan Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd, Idemitsu Kosan Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2009080482A priority Critical patent/JP5357597B2/en
Publication of JP2010229359A publication Critical patent/JP2010229359A/en
Application granted granted Critical
Publication of JP5357597B2 publication Critical patent/JP5357597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Lubricants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating medium oil with an excellent separation property to a phase change material so as to be used preferably in a system for taking in or out high temperature heat, a heat medium oil composition and a waste heat transporting method using the same. <P>SOLUTION: The heating medium oil for a waste heat transport system includes a mineral oil satisfying the following conditions (1) to (3): (1) 40°C kinematic viscosity of 40-200 mm<SP>2</SP>/s; (2) flash point of 250-300°C; and (3) %C<SB>A</SB>of 0.5% or less in the ring analysis. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱媒体油及び熱媒体油組成物ならびにこれらを用いる排熱輸送方法に関し、さらに詳しくは、潜熱蓄熱材との分離性に優れる排熱輸送システム用熱媒体油及び熱媒体油組成物ならびにこれらを用いる排熱輸送方法に関する。   TECHNICAL FIELD The present invention relates to a heat medium oil, a heat medium oil composition, and an exhaust heat transport method using the same, and more specifically, a heat medium oil and a heat medium oil composition for an exhaust heat transport system excellent in separability from a latent heat storage material. The present invention also relates to an exhaust heat transport method using these.

焼却施設や発電所、化学プラントなどで発生し、これまで利用されずに捨てられていた低温排熱を活用する方法として、近年、潜熱蓄熱搬送システム「トランスヒートコンテナ」が注目されている(特許文献1参照)。当該システムは、潜熱蓄熱材(PCM: Phase Change Material)を収容する蓄熱タンクを輸送することで熱源施設から熱利用施設にエネルギーを移すものであり、具体的には、熱源施設(例えば、発電、窯業、石油化学、金属精錬、廃棄物焼却等の施設)において発生する200℃以下の低温排熱を蓄熱タンク中の潜熱蓄熱材に蓄え、この蓄熱タンクをトラックなどで熱利用施設(病院、オフィス、公共施設、集合住宅、工場など)へ運搬し、蓄えられた熱エネルギーを利用するという例が挙げられる。この潜熱蓄熱搬送システムによれば、エネルギーを効率的に利用することが可能になり、燃料費の削減やCO2排出量の削減が期待される。 In recent years, the latent heat storage and transfer system “Transheat Container” has been attracting attention as a method of utilizing low-temperature exhaust heat generated in incineration facilities, power plants, chemical plants, etc. Reference 1). The system transfers energy from a heat source facility to a heat utilization facility by transporting a heat storage tank that contains a latent heat storage material (PCM: Phase Change Material). Specifically, the heat source facility (for example, power generation, The low-temperature exhaust heat of 200 ° C or less generated in the ceramic industry, petrochemical, metal refining, waste incineration, etc.) is stored in the latent heat storage material in the heat storage tank, and this heat storage tank is used for heat utilization facilities (hospitals, offices) , Public facilities, apartment houses, factories, etc.) and use the stored thermal energy. According to this latent heat storage and transfer system, it is possible to efficiently use energy, and it is expected to reduce fuel costs and CO 2 emissions.

上記潜熱蓄熱材は、物質が固相と液相の間で相変化する時に吸収・放出する熱(潜熱)を利用して蓄熱と放熱を行う蓄熱材であり、固相から液相に相変化する時に周りから熱を吸収し、液相から固相に相変化する時に放熱する。また、通常、蓄熱タンク中には潜熱蓄熱材の他に熱交換媒体が収容され、この熱交換媒体が蓄熱タンクと熱源施設または熱利用施設とを循環することで、潜熱蓄熱材と外部との間で熱を移動させる。   The latent heat storage material is a heat storage material that stores and releases heat using heat (latent heat) that is absorbed and released when the substance changes between the solid phase and the liquid phase. Phase change from the solid phase to the liquid phase When it does, it absorbs heat from the surroundings and dissipates heat when it changes from the liquid phase to the solid phase. Further, in addition to the latent heat storage material, a heat exchange medium is usually stored in the heat storage tank, and the heat exchange medium circulates between the heat storage tank and the heat source facility or the heat utilization facility, so that the latent heat storage material and the outside are circulated. Move heat between them.

潜熱蓄熱搬送システムに関するこれまでの技術開発としては、例えば、特許文献2や3には、熱交換媒体の供給管に特徴があり、熱交換の効率向上等を目指した蓄熱装置が記載されている。また、熱交換媒体に関してはこれまでその比重が小さいことが求められてきた。すなわち、熱交換媒体は比重が小さいために蓄熱タンク中で上層を形成し、潜熱蓄熱材は下層を形成することができる。そして、上層から抜き取られた熱交換媒体は熱源施設または熱利用施設との間で熱の受け渡しを終えた後、蓄熱タンクの下部から再び導入され、潜熱蓄熱材と接触しながら熱交換し、最終的に上層を形成する。   For example, Patent Documents 2 and 3 describe a heat storage device that has a feature in a heat exchange medium supply pipe and aims to improve the efficiency of heat exchange. . In addition, the heat exchange medium has been required to have a low specific gravity. That is, since the specific gravity of the heat exchange medium is small, the upper layer can be formed in the heat storage tank, and the latent heat storage material can form the lower layer. The heat exchanging medium extracted from the upper layer is re-introduced from the lower part of the heat storage tank after the heat transfer between the heat source facility or the heat utilization facility, and exchanges heat while contacting the latent heat storage material. Thus, an upper layer is formed.

このような熱交換機構を利用する場合は、熱交換媒体は潜熱蓄熱材との分離性に優れることが求められる。すなわち、熱交換媒体と液体状態の潜熱蓄熱材との分離性が悪いときは、上層の熱交換媒体を抜き取る際に潜熱蓄熱材も蓄熱タンクから流出しやすく、その結果、潜熱蓄熱材が配管内で固体となり、配管の内面に付着して配管を閉塞する恐れがある。いったん配管が閉塞すると配管内に熱交換媒体を流すことができないので配管内の潜熱蓄熱材を取り除くことは容易でない。   When such a heat exchange mechanism is used, the heat exchange medium is required to be excellent in separability from the latent heat storage material. That is, when the separation between the heat exchange medium and the liquid latent heat storage material is poor, the latent heat storage material easily flows out of the heat storage tank when the upper layer heat exchange medium is extracted. May become solid and may adhere to the inner surface of the pipe and block the pipe. Once the pipe is closed, it is not easy to remove the latent heat storage material in the pipe because the heat exchange medium cannot flow through the pipe.

上記問題を解消する方法として、特許文献4は熱媒油(熱交換媒体)の循環機構と外部との熱交換機構を分けることで、蓄熱タンクからの蓄熱潜熱材の流出を解消した蓄熱装置を開示する。しかしながら、この装置においても上層の熱交換媒体は循環ポンプで抜き取られて配管内を循環するため、用いられる熱交換媒体は潜熱蓄熱材との分離性に優れることが望まれる。   As a method for solving the above problems, Patent Document 4 discloses a heat storage device that eliminates the outflow of the heat storage latent heat material from the heat storage tank by dividing the circulation mechanism of the heat transfer oil (heat exchange medium) and the heat exchange mechanism with the outside. Disclose. However, in this apparatus as well, since the upper layer heat exchange medium is extracted by a circulation pump and circulates in the piping, it is desirable that the heat exchange medium used is excellent in separability from the latent heat storage material.

ところで、熱源施設において発生する熱の温度は施設によってはかなり高温になる場合があり、近年この高温化が進む傾向にある。また、近年、潜熱蓄熱材について多くの技術開発が行われており、利用温度域が拡大している。高い融点を有する潜熱蓄熱材を使用し、熱利用施設において高温の熱を供給することができるようになれば、給湯や暖房のほかに冷房にも利用できると期待される。
高温の排熱を利用するときには、熱の出し入れを安全に行うことが重要であり、熱交換媒体については引火点が高いことが望まれる。また、消防法の観点からは引火点250℃以上の油は「指定可燃物」に該当し、引火点250℃未満の油は「第4石油類」に該当する。このため、引火点が250℃以上であることで、貯蔵や取り扱いの面で大幅に有利になる。
By the way, the temperature of the heat generated in the heat source facility may be considerably high depending on the facility, and in recent years, the temperature tends to increase. In recent years, many technical developments have been made on latent heat storage materials, and the use temperature range is expanding. If a latent heat storage material having a high melting point is used and high-temperature heat can be supplied in a heat utilization facility, it can be used for cooling as well as hot water supply and heating.
When using high-temperature exhaust heat, it is important to safely take in and out heat, and it is desirable that the heat exchange medium has a high flash point. From the viewpoint of the Fire Service Act, oil with a flash point of 250 ° C. or higher corresponds to “designated combustible material”, and oil with a flash point of less than 250 ° C. corresponds to “4th petroleum”. For this reason, when the flash point is 250 ° C. or higher, it is greatly advantageous in terms of storage and handling.

特開2008−106954号公報JP 2008-106954 A 特開2005−188916号公報JP 2005-188916 A 特開2008−190747号公報JP 2008-190747 A 特開2008−309344号公報JP 2008-309344 A

本発明は上記事情に鑑みなされたもので、潜熱蓄熱材との分離性に優れ、高温の熱を出し入れするシステムにおいて好適に用いられる排熱輸送システム用熱媒体油及び熱媒体油組成物ならびにこれらを用いる排熱輸送方法を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, is excellent in separability from the latent heat storage material, and is suitable for use in a system for taking in and out high-temperature heat. An object of the present invention is to provide a method for transporting exhaust heat using the above.

本発明者らは、鋭意研究を重ねた結果、鉱油の精製処理の程度によって潜熱蓄熱材との分離性を調整することができることを見出した。また、特定の性状を満たす熱媒体油は、高い温度の排熱を潜熱蓄熱搬送システムにおいて容易に利用できることを見出した。本発明はかかる知見に基づいて完成したものである。
すなわち本発明は、
1. 以下の(1)〜(3)を満たす鉱油からなる排熱輸送システム用熱媒体油、
(1)40℃動粘度が、40〜200mm2/s
(2)引火点が250〜300℃
(3)環分析において、%CAが0.5%以下
2. 上記1に記載の排熱輸送システム用熱媒体油に添加剤を配合してなる排熱輸送システム用熱媒体油組成物、
3. 添加剤が酸化防止剤である上記2に記載の排熱輸送システム用熱媒体油組成物、
4. 排熱輸送システム用熱媒体油または排熱輸送システム用熱媒体油組成物および潜熱蓄熱材を収容する蓄熱タンクを輸送することで、熱源施設から熱利用施設に熱を移動させる排熱輸送方法であって、上記1に記載の排熱輸送システム用熱媒体油または上記2若しくは3に記載の排熱輸送システム用熱媒体油組成物を使用することを特徴とする排熱輸送方法を提供するものである。
As a result of intensive studies, the present inventors have found that the separability from the latent heat storage material can be adjusted according to the degree of refining treatment of mineral oil. Moreover, it discovered that the heat-medium oil which satisfy | fills a specific property can utilize an exhaust heat of high temperature easily in a latent heat storage conveyance system. The present invention has been completed based on such findings.
That is, the present invention
1. A heat transfer oil for exhaust heat transport system comprising a mineral oil satisfying the following (1) to (3):
(1) Kinematic viscosity at 40 ° C. is 40 to 200 mm 2 / s
(2) Flash point is 250-300 ° C
(3) In the ring analysis,% C A is less than 0.5% 2. A heat transfer medium oil composition for exhaust heat transport system, comprising an additive added to the heat transfer medium oil for exhaust heat transfer system according to 1 above,
3. The heat medium oil composition for exhaust heat transport system according to 2 above, wherein the additive is an antioxidant,
4). A waste heat transport method that transfers heat from a heat source facility to a heat utilization facility by transporting a heat storage tank containing the heat medium oil for the exhaust heat transport system or the heat medium oil composition for the exhaust heat transport system and the latent heat storage material. An exhaust heat transport method comprising using the heat medium oil for an exhaust heat transport system according to 1 or the heat medium oil composition for an exhaust heat transport system according to 2 or 3 above. It is.

本発明によれば、従来の鉱油系熱媒体油より潜熱蓄熱材との分離性に優れ、高温の熱を出し入れするシステムにおいて好適に用いられる排熱輸送システム用熱媒体油及び熱媒体油組成物ならびにこれらを用いる排熱輸送方法が提供される。   According to the present invention, the heat medium oil and the heat medium oil composition for an exhaust heat transport system are excellent in separability from the latent heat storage material than conventional mineral oil-based heat medium oils, and are preferably used in a system for taking in and out high-temperature heat. Also provided are exhaust heat transport methods using them.

本発明の排熱輸送システム用熱媒体油は、以下の(1)〜(3)を満たす鉱油からなる。
(1)40℃における動粘度が、40〜200mm2/s
(2)引火点が250〜300℃
(3)環分析において%CAが0.5%以下
鉱油の40℃における動粘度が上記範囲であると、循環用ポンプ等に対する潤滑作用や省エネルギー性の面で好ましい。当該観点から、より好ましくは40℃における動粘度が40〜150mm2/sである。引火点に関する上記の数値範囲は、安全面および上記40℃における動粘度の規定との関係で定まるものである。当該観点から、好ましくは引火点が255〜270℃である。環分析において%CAが0.5%を超えると、潜熱蓄熱材との分離性が悪くなる。当該観点から好ましくは0.3%以下、より好ましくは0.1%以下である。なお、この%CAはn−d−M環分析法により測定した値である。
The heat medium oil for exhaust heat transport system of the present invention is made of mineral oil that satisfies the following (1) to (3).
(1) Kinematic viscosity at 40 ° C. is 40 to 200 mm 2 / s
(2) Flash point is 250-300 ° C
(3) If% in ring analysis C A is the kinematic viscosity at 40 ° C. 0.5% or less mineral oil is in the above range is preferred in terms of lubrication and energy saving with respect to the circulation pump. From this viewpoint, the kinematic viscosity at 40 ° C. is more preferably 40 to 150 mm 2 / s. The above numerical range concerning the flash point is determined by the relationship between the safety aspect and the kinematic viscosity at 40 ° C. From this viewpoint, the flash point is preferably 255 to 270 ° C. When% C A in ring analysis is more than 0.5%, the separation of the latent heat storage material is deteriorated. From this viewpoint, it is preferably 0.3% or less, more preferably 0.1% or less. Note that the% C A is the value measured by n-d-M ring analysis method.

本発明の排熱輸送システム用熱媒体油(以下、本発明の熱媒体油と省略することがある。)を使用する際は、通常は潜熱蓄熱材より密度が小さいものが選ばれる。したがって上記鉱油の密度は0.840〜0.875g/cm3の範囲内が好ましい。鉱油の流動点は、通常−10〜−30℃であり、好ましくは−15〜−20℃である。上記範囲内であることで国内寒冷地での使用が可能である。 When using the heat medium oil for exhaust heat transport system of the present invention (hereinafter sometimes abbreviated as the heat medium oil of the present invention), one having a density lower than that of the latent heat storage material is usually selected. Therefore, the density of the mineral oil is preferably in the range of 0.840 to 0.875 g / cm 3 . The pour point of mineral oil is usually −10 to −30 ° C., preferably −15 to −20 ° C. Within the above range, it can be used in domestic cold regions.

本発明の熱媒体油は、原料となる原油を精製することで製造することができ、この精製度の調整により前記性状を満たす鉱油を得る。当該原油としては、パラフィン基系原油,ナフテン基系原油,および混合基系原油いずれも使用できるが、パラフィン基系原油が好ましい。本発明の熱媒体油は、例えば上記の原油を蒸留して得られた留出油及び/又はワックスを含む留出油(常圧換算で250〜500℃)を水素化改質、水素化精製、溶剤精製、水素化脱蝋、溶剤脱蝋等の各公知の精製プロセスを適宜組み合わせて製造したものを適宜混合することにより得ることができる。また、所望によりさらに白土処理を行ってもよい。ここで、留出油とは原油を常圧蒸留するか、あるいは常圧蒸留の残渣油を減圧蒸留して得られたものを意味する。   The heat medium oil of the present invention can be produced by refining crude oil as a raw material, and a mineral oil satisfying the above properties is obtained by adjusting the refining degree. As the crude oil, any of paraffinic crude oil, naphthenic crude oil, and mixed crude oil can be used, but paraffinic crude oil is preferred. The heat medium oil of the present invention is obtained by, for example, hydrotreating and refining distillate obtained by distilling the above crude oil and / or distillate containing wax (250 to 500 ° C. in terms of atmospheric pressure). It can be obtained by appropriately mixing those produced by appropriately combining known purification processes such as solvent purification, hydrodewaxing, and solvent dewaxing. Moreover, you may perform a white clay process further if desired. Here, the distillate oil means one obtained by subjecting crude oil to atmospheric distillation or subjecting atmospheric residue oil to vacuum distillation.

本発明の熱媒体油を使用する際は、各種合成油と混合して使用してもよい。合成油としては、ポリブテン、ポリオレフィン〔α−オレフィン単独重合体や共重合体(例えばエチレン−α−オレフィン共重合体)など〕等が挙げられる。この場合、本発明の熱媒体油の割合は、合成油との合計量を基準として通常20質量%以上であり、好ましくは50質量%以上である。この範囲で使用すると経済性の点で好ましい。   When using the heat-medium oil of this invention, you may mix and use various synthetic oils. Examples of the synthetic oil include polybutene, polyolefin [α-olefin homopolymer or copolymer (for example, ethylene-α-olefin copolymer)] and the like. In this case, the ratio of the heat medium oil of the present invention is usually 20% by mass or more, preferably 50% by mass or more, based on the total amount with the synthetic oil. Use in this range is preferable in terms of economy.

本発明の熱媒体油は必要に応じて各種添加剤を配合して使用することができる。特に、精製度を上げた結果として酸化安定性が低下するおそれがあるため、酸化防止剤を配合することが好ましい。酸化防止剤を配合することで、油の劣化が抑えられ、スラッジが生成しにくくなり配管を円滑に流すことができる。またフィルターを使用する設備においてはフィルター詰りを避けることができる。   The heat medium oil of the present invention can be used by blending various additives as required. In particular, it is preferable to add an antioxidant because oxidation stability may decrease as a result of increasing the degree of purification. By blending the antioxidant, the deterioration of the oil is suppressed, sludge is hardly generated, and the piping can be smoothly flowed. Also, filter clogging can be avoided in equipment that uses filters.

酸化防止剤としては、フェノール系酸化防止剤やアミン系酸化防止剤が挙げられる。フェノール系酸化防止剤としては、例えば2,6−ジ−tert−ブチル−4−メチルフェノール;2,6−ジ−tert−ブチル−4−エチルフェノール;2,4,6−トリ−tert−ブチルフェノール;2,6−ジ−tert−ブチル−4−ヒドロキシメチルフェノール;2,6−ジ−tert−ブチルフェノール;2,4−ジメチル−6−tert−ブチルフェノール;2,6−ジ−tert−ブチル−4−(N,N−ジメチルアミノメチル)フェノール;2,6−ジ−tert−アミル−4−メチルフェノール;n−オクタデシル−3−(4’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)プロピオネートなどの単環フェノール類、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール);4,4’−イソプロピリデンビス(2,6−ジ−tert−ブチルフェノール);2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール);4,4’−ビス(2,6−ジ−tert−ブチルフェノール);4,4’−ビス(2−メチル−6−tert−ブチルフェノール);2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール);4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール);2,2’−チオビス(4−メチル−6−tert−ブチルフェノール);4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)などの多環フェノール類などが挙げられる。   Examples of the antioxidant include phenolic antioxidants and amine antioxidants. Examples of phenolic antioxidants include 2,6-di-tert-butyl-4-methylphenol; 2,6-di-tert-butyl-4-ethylphenol; 2,4,6-tri-tert-butylphenol. 2,6-di-tert-butyl-4-hydroxymethylphenol; 2,6-di-tert-butylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-butyl-4 -(N, N-dimethylaminomethyl) phenol; 2,6-di-tert-amyl-4-methylphenol; n-octadecyl-3- (4'-hydroxy-3 ', 5'-di-tert-butyl Monocyclic phenols such as phenyl) propionate, 4,4′-methylenebis (2,6-di-tert-butylphenol); Isopropylidenebis (2,6-di-tert-butylphenol); 2,2′-methylenebis (4-methyl-6-tert-butylphenol); 4,4′-bis (2,6-di-tert-butylphenol) 4,4′-bis (2-methyl-6-tert-butylphenol); 2,2′-methylenebis (4-ethyl-6-tert-butylphenol); 4,4′-butylidenebis (3-methyl-6- tert-butylphenol); 2,2′-thiobis (4-methyl-6-tert-butylphenol); polycyclic phenols such as 4,4′-thiobis (3-methyl-6-tert-butylphenol) and the like. .

アミン系酸化防止剤としては、例えばジフェニルアミン系のもの、具体的にはジフェニルアミンや、モノオクチルジフェニルアミン;モノノニルジフェニルアミン;4,4’−ジブチルジフェニルアミン;4,4’−ジヘキシルジフェニルアミン;4,4’−ジオクチルジフェニルアミン;4,4’−ジノニルジフェニルアミン;テトラブチルジフェニルアミン;テトラヘキシルジフェニルアミン;テトラオクチルジフェニルアミン;テトラノニルジフェニルアミンなどの炭素数3〜20のアルキル基を有するアルキル化ジフェニルアミンなど、及びナフチルアミン系のもの、具体的にはα−ナフチルアミン;フェニル−α−ナフチルアミン、さらにはブチルフェニル−α−ナフチルアミン;ヘキシルフェニル−α−ナフチルアミン;オクチルフェニル−α−ナフチルアミン;ノニルフェニル−α−ナフチルアミンなどの炭素数3〜20のアルキル置換フェニル−α−ナフチルアミンなどが挙げられる。   Examples of amine-based antioxidants include diphenylamine-based compounds, specifically diphenylamine, monooctyldiphenylamine; monononyldiphenylamine; 4,4′-dibutyldiphenylamine; 4,4′-dihexyldiphenylamine; 4,4′- 4,4′-dinonyldiphenylamine; tetrabutyldiphenylamine; tetrahexyldiphenylamine; tetraoctyldiphenylamine; alkylated diphenylamine having an alkyl group of 3 to 20 carbon atoms such as tetranonyldiphenylamine, and naphthylamine-based compounds, Specifically, α-naphthylamine; phenyl-α-naphthylamine, further butylphenyl-α-naphthylamine; hexylphenyl-α-naphthylamine; octyl Eniru -α- naphthylamine; and alkyl-substituted phenyl -α- naphthylamine having 3 to 20 carbon atoms such as nonylphenyl -α- naphthylamine.

上記酸化防止剤は、一種を単独で使用してもよく、二種以上を組み合わせてもよい。その配合量は、本発明の熱媒体油と前記合成油との合計量を基準として、通常、0.05〜3.0質量%であり、好ましくは0.1〜1.0質量%である。   The said antioxidant may be used individually by 1 type, and may combine 2 or more types. The blending amount is usually 0.05 to 3.0% by mass, preferably 0.1 to 1.0% by mass, based on the total amount of the heat medium oil of the present invention and the synthetic oil. .

また、循環用ポンプ等に対する潤滑作用の向上や各種装置の保全を目的として、従来公知の潤滑油用添加剤を配合してもよい。当該添加剤としては、例えば清浄分散剤、極圧剤、油性剤、流動点降下剤、粘度指数向上剤、防錆剤、銅不活性化剤、消泡剤などが挙げられる。   Moreover, you may mix | blend a conventionally well-known additive for lubricating oil for the purpose of the improvement of the lubrication effect | action with respect to the pump for circulation, etc. and the maintenance of various apparatuses. Examples of the additive include a cleaning dispersant, an extreme pressure agent, an oily agent, a pour point depressant, a viscosity index improver, a rust inhibitor, a copper deactivator, and an antifoaming agent.

本発明の熱媒体油は、排熱輸送システムにおいて用いられる熱媒体油である。この排熱輸送システムとは、発電所や廃棄物焼却場などの熱源施設で発生する廃熱を、熱利用施設(病院、オフィス、公共施設、集合住宅、工場など)に、トレーラー等の車両によりオフライン輸送するシステムのことであり、例えば、潜熱蓄熱搬送システムが挙げられる。潜熱蓄熱搬送システムにおいては、本発明の熱媒体油および潜熱蓄熱剤を収容する蓄熱タンクを輸送することで、熱源施設から熱利用施設に熱を移動させることができ、排熱を活用することができる。蓄熱タンク中においては、本発明の熱媒体油は上層を形成し、潜熱蓄熱材は下層を形成する。本発明の熱媒体油は潜熱蓄熱材との分離性に優れるために、上層の熱媒体油を抜き取る際に潜熱蓄熱材が蓄熱タンクから流出することが抑制され、配管閉塞の問題が解消される。   The heat medium oil of the present invention is a heat medium oil used in an exhaust heat transport system. This waste heat transport system is a system that uses waste heat generated in heat source facilities such as power plants and waste incineration plants to heat utilization facilities (hospitals, offices, public facilities, housing complexes, factories, etc.) by vehicles such as trailers. An off-line transport system, for example, a latent heat storage system. In the latent heat storage and conveyance system, by transporting the heat storage tank containing the heat medium oil and the latent heat storage agent of the present invention, heat can be transferred from the heat source facility to the heat utilization facility, and exhaust heat can be utilized. it can. In the heat storage tank, the heat medium oil of the present invention forms an upper layer, and the latent heat storage material forms a lower layer. Since the heat medium oil of the present invention is excellent in separability from the latent heat storage material, it is suppressed that the latent heat storage material flows out of the heat storage tank when the upper layer heat medium oil is extracted, and the problem of piping blockage is solved. .

上記潜熱蓄熱剤としては特に制限なく使用することができ、例えば、水和塩系潜熱蓄熱剤や糖アルコール系潜熱蓄熱材を使用することができる。水和塩系潜熱蓄熱剤としては、塩化マグネシウム6水和物、硫酸ナトリウム10水和物、チオ硫酸ナトリウム5水和物、酢酸ナトリウム3水和物、硝酸マンガン6水和物等が挙げられ、糖アルコール系潜熱蓄熱材としては、マンニトール、ペンタエリスリトール、エリスリトール、スレイトール、ズルシトール、イノシトール等が挙げられる。   The latent heat storage agent can be used without any particular limitation. For example, a hydrated salt-based latent heat storage agent or a sugar alcohol-based latent heat storage material can be used. Examples of the hydrate-based latent heat storage agent include magnesium chloride hexahydrate, sodium sulfate decahydrate, sodium thiosulfate pentahydrate, sodium acetate trihydrate, manganese nitrate hexahydrate, Examples of the sugar alcohol-based latent heat storage material include mannitol, pentaerythritol, erythritol, threitol, dulcitol, inositol, and the like.

本発明の排熱輸送システム用熱媒体油は40℃における動粘度や引火点に関して上記の特性を有するものであり、高温の排熱を受け入れるシステムや比較的高温の熱を供給するシステムにおいて好ましく用いられる。具体的には、受け入れる排熱の温度が70〜200℃程度のシステムや供給温度の上限が120℃程度のシステムであって、給湯、暖房、冷房を用途とするシステムにおいて特に好ましく用いられる。このような用途で使用する場合は、潜熱蓄熱剤としては、比較的高温の熱を供給する場合はエリスリトール、塩化マグネシウム6水和物等が好ましく、比較的低温の熱を供給する場合は酢酸ナトリウム3水和物、硫酸ナトリウム10水和物等が好ましい。   The heat transfer oil for exhaust heat transport system of the present invention has the above-mentioned characteristics with respect to kinematic viscosity and flash point at 40 ° C., and is preferably used in a system that accepts high temperature exhaust heat and a system that supplies relatively high temperature heat. It is done. Specifically, it is particularly preferably used in a system in which the temperature of exhaust heat to be received is about 70 to 200 ° C. or a system in which the upper limit of supply temperature is about 120 ° C. and uses hot water, heating, and cooling. When used in such applications, the latent heat storage agent is preferably erythritol, magnesium chloride hexahydrate, etc. when supplying relatively high temperature heat, and sodium acetate when supplying relatively low temperature heat. Trihydrate, sodium sulfate decahydrate and the like are preferable.

次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.

実施例1〜4および比較例1〜5
分離試験に用いた油の性状を第1表に示す。なお、油A〜Iは以下に示す市販品およびその混合油を使用した。
油A:出光興産(株)製ダイアナフレシアC−44
油B:出光興産(株)製ダフニーオイルKP−100
油C:油Bと油Hの混合油(質量比:B/H=85/15)
油D:油Bと油Iの混合油(質量比:B/I=50/50)
油E:油Bと油Hの混合油(質量比:B/H=75/25)
油F:油Bと油Hの混合油(質量比:B/H=50/50)
油G:油Bと油Iの混合油(質量比:B/I=40/60)
油H:出光興産(株)製ダイアナフレシアP−90
油I:出光興産(株)製ダイアナプロセスPW−380
Examples 1-4 and Comparative Examples 1-5
Table 1 shows the properties of the oil used in the separation test. In addition, the oil A to I used the following commercial item and its mixed oil.
Oil A: Diana Fresia C-44 manufactured by Idemitsu Kosan Co., Ltd.
Oil B: Daphne Oil KP-100 manufactured by Idemitsu Kosan Co., Ltd.
Oil C: Mixed oil of oil B and oil H (mass ratio: B / H = 85/15)
Oil D: Mixed oil of oil B and oil I (mass ratio: B / I = 50/50)
Oil E: Mixed oil of oil B and oil H (mass ratio: B / H = 75/25)
Oil F: Mixed oil of oil B and oil H (mass ratio: B / H = 50/50)
Oil G: Mixed oil of oil B and oil I (mass ratio: B / I = 40/60)
Oil H: Diana Fresia P-90 manufactured by Idemitsu Kosan Co., Ltd.
Oil I: Diana Process PW-380 manufactured by Idemitsu Kosan Co., Ltd.

Figure 2010229359
Figure 2010229359

〔分離試験1〕
200mlのガラス瓶中に、酢酸ナトリウム3水和物と上記油を1:1(質量比)で混合し、90℃の恒温槽にて8時間放置後、手振り攪拌した後、酢酸ナトリウム3水和物と油の分離状況を目視観察し以下の基準で評価した。この試験を3回繰り返した。
◎:1分以内に完全分離する。
○:3分以内に完全分離する。
×:3分経っても完全分離せず、乳化層が見られる。
〔分離試験2〕
酢酸ナトリウム3水和物に代えてエリスリトールを使用し、90℃の恒温槽に代えて130℃の恒温槽を使用した他は、上記分離試験1と同様にして試験を行った。
分離試験1および分離試験2の結果を第2表に示す。
[Separation test 1]
In a 200 ml glass bottle, sodium acetate trihydrate and the above oil were mixed at a ratio of 1: 1 (mass ratio), left in a thermostat at 90 ° C. for 8 hours, shaken by hand, and then sodium acetate trihydrate. The oil separation was visually observed and evaluated according to the following criteria. This test was repeated three times.
◎: Completely separate within 1 minute.
○: Completely separated within 3 minutes.
X: Even after 3 minutes, complete separation does not occur and an emulsified layer is observed.
[Separation test 2]
The test was conducted in the same manner as the separation test 1 except that erythritol was used in place of sodium acetate trihydrate and a 130 ° C. thermostat was used instead of the 90 ° C. thermostat.
The results of separation test 1 and separation test 2 are shown in Table 2.

Figure 2010229359
Figure 2010229359

実施例1〜4の油は、酢酸ナトリウム3水和物、エリスリトールとの分離性に優れる。一方、比較例1〜5の油は分離性に劣る結果になっている。比較例1、2、4の油が分離性に劣る理由は環分析(%CA)が高いことに起因すると考えられ、比較例3、5の油が分離性に劣る理由は動粘度が高いことに起因すると考えられる。 The oils of Examples 1 to 4 are excellent in separability from sodium acetate trihydrate and erythritol. On the other hand, the oils of Comparative Examples 1 to 5 are inferior in separability. The reason why the oils of Comparative Examples 1, 2, and 4 are inferior in separability is considered to be due to the high ring analysis (% C A ), and the reason that the oils in Comparative Examples 3 and 5 are inferior in separability is high in kinematic viscosity. It is thought to be caused by this.

本発明によれば、従来の鉱油系熱媒体油より潜熱蓄熱材との分離性に優れ、高温の熱を出し入れするシステムにおいて好適に用いられる排熱輸送システム用熱媒体油が提供される。本発明の排熱輸送システム用熱媒体油を使用することでエネルギーの効率的な利用が可能になる。   ADVANTAGE OF THE INVENTION According to this invention, the heat carrier oil for exhaust heat transport systems which is excellent in the separability with a latent heat storage material compared with the conventional mineral oil type heat carrier oil, and is used suitably in the system which puts in / out a high temperature heat is provided. By using the heat medium oil for the exhaust heat transport system of the present invention, energy can be efficiently used.

Claims (4)

以下の(1)〜(3)を満たす鉱油からなる排熱輸送システム用熱媒体油。
(1)40℃動粘度が、40〜200mm2/s
(2)引火点が250〜300℃
(3)環分析において、%CAが0.5%以下
A heat transfer oil for exhaust heat transport system comprising a mineral oil satisfying the following (1) to (3).
(1) Kinematic viscosity at 40 ° C. is 40 to 200 mm 2 / s
(2) Flash point is 250-300 ° C
(3) In ring analysis,% C A is 0.5% or less
請求項1に記載の排熱輸送システム用熱媒体油に添加剤を配合してなる排熱輸送システム用熱媒体油組成物。   A heat medium oil composition for an exhaust heat transport system comprising an additive added to the heat medium oil for an exhaust heat transport system according to claim 1. 添加剤が酸化防止剤である請求項2に記載の排熱輸送システム用熱媒体油組成物。   The heat carrier oil composition for an exhaust heat transport system according to claim 2, wherein the additive is an antioxidant. 排熱輸送システム用熱媒体油または排熱輸送システム用熱媒体油組成物および潜熱蓄熱材を収容する蓄熱タンクを輸送することで、熱源施設から熱利用施設に熱を移動させる排熱輸送方法であって、請求項1に記載の排熱輸送システム用熱媒体油または請求項2若しくは3に記載の排熱輸送システム用熱媒体油組成物を使用することを特徴とする排熱輸送方法。   A waste heat transport method that transfers heat from a heat source facility to a heat utilization facility by transporting a heat storage tank containing the heat medium oil for the exhaust heat transport system or the heat medium oil composition for the exhaust heat transport system and the latent heat storage material. An exhaust heat transport method comprising using the heat medium oil for an exhaust heat transport system according to claim 1 or the heat medium oil composition for an exhaust heat transport system according to claim 2 or 3.
JP2009080482A 2009-03-27 2009-03-27 Heat transfer oil for exhaust heat transport system Active JP5357597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009080482A JP5357597B2 (en) 2009-03-27 2009-03-27 Heat transfer oil for exhaust heat transport system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009080482A JP5357597B2 (en) 2009-03-27 2009-03-27 Heat transfer oil for exhaust heat transport system

Publications (2)

Publication Number Publication Date
JP2010229359A true JP2010229359A (en) 2010-10-14
JP5357597B2 JP5357597B2 (en) 2013-12-04

Family

ID=43045465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009080482A Active JP5357597B2 (en) 2009-03-27 2009-03-27 Heat transfer oil for exhaust heat transport system

Country Status (1)

Country Link
JP (1) JP5357597B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230348806A1 (en) * 2022-04-28 2023-11-02 Baker Hughes Oilfield Operations Llc Phase change materials to address reversion problems in heavy oils

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01193394A (en) * 1988-01-29 1989-08-03 Idemitsu Kosan Co Ltd Lubricating oil composition
JPH1123065A (en) * 1997-07-01 1999-01-26 Mitsubishi Chem Corp Heat storing heat dissipating device
JP2000319648A (en) * 1999-05-14 2000-11-21 Matsushita Electric Ind Co Ltd Heat storage material
JP2007040695A (en) * 2005-07-01 2007-02-15 Kobelco Eco-Solutions Co Ltd Method of storing heat into heat storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01193394A (en) * 1988-01-29 1989-08-03 Idemitsu Kosan Co Ltd Lubricating oil composition
JPH1123065A (en) * 1997-07-01 1999-01-26 Mitsubishi Chem Corp Heat storing heat dissipating device
JP2000319648A (en) * 1999-05-14 2000-11-21 Matsushita Electric Ind Co Ltd Heat storage material
JP2007040695A (en) * 2005-07-01 2007-02-15 Kobelco Eco-Solutions Co Ltd Method of storing heat into heat storage device

Also Published As

Publication number Publication date
JP5357597B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
CN101090960B (en) Lubricant base oil, lubricant composition for internal combustion engine and lubricant composition for driving force transmitting device
JP5952846B2 (en) Lubricating oil composition
CA2609652C (en) High temperature biobased lubricant compositions comprising boron nitride
CN101379171B (en) Lube base oil, lubricating oil composition for internal combustion engine, and lubricating oil composition for drive transmission device
TWI465561B (en) Lubricant blend composition
JP5108200B2 (en) Lubricating oil base oil, method for producing the same, and lubricating oil composition containing the base oil
JP2013079406A (en) Lubricating oil composition for internal combustion engine
JP2007045850A (en) Lube oil composition
JP5377925B2 (en) Lubricating oil composition for internal combustion engines
JP2009149891A (en) Lubricating oil composition for internal combustion engine
JPWO2008038571A1 (en) Hydraulic fluid composition
JP2006219642A (en) Lubricant composition for automatic transmission
WO2006030489A1 (en) Refrigerator oil composition
JP2011195774A (en) Lubricating oil composition for internal combustion engine
JP2008024845A (en) Engine oil
CN107849481A (en) Marine diesel steam-cylinder lubrication fluid composition
JP6270226B2 (en) Lubricating oil composition for internal combustion engines
JP2008274128A (en) Lubricating oil composition for internal combustion engine
JP5357597B2 (en) Heat transfer oil for exhaust heat transport system
JP5357596B2 (en) Heat transfer oil for exhaust heat transport system
CN104059720A (en) Heavy lubricating oil for automobiles and preparing method thereof
WO2016159041A1 (en) Lubricant composition and method for producing lubricant composition
JP5486448B2 (en) Heat transfer oil composition for exhaust heat transport system
CN108148665B (en) Thin oil lubricating oil and preparation method thereof
CN114350429B (en) Lubricating oil, preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111117

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130830

R150 Certificate of patent or registration of utility model

Ref document number: 5357597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250