JP2010229203A - Phenolic resin composition, process for producing the resin composition and epoxy resin composition including the resin composition - Google Patents

Phenolic resin composition, process for producing the resin composition and epoxy resin composition including the resin composition Download PDF

Info

Publication number
JP2010229203A
JP2010229203A JP2009075717A JP2009075717A JP2010229203A JP 2010229203 A JP2010229203 A JP 2010229203A JP 2009075717 A JP2009075717 A JP 2009075717A JP 2009075717 A JP2009075717 A JP 2009075717A JP 2010229203 A JP2010229203 A JP 2010229203A
Authority
JP
Japan
Prior art keywords
resin composition
phenol resin
phenol
general formula
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009075717A
Other languages
Japanese (ja)
Inventor
Tadatoshi Fujinaga
匡敏 藤永
Shintaro Yokonuma
伸太郎 横沼
Kyoichi Shinoda
教一 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2009075717A priority Critical patent/JP2010229203A/en
Publication of JP2010229203A publication Critical patent/JP2010229203A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To industrially and safely obtain a phenolic resin composition which makes use of excellent properties of a triphenolmethane-type phenolic resin including, for example, a high glass transition temperature, low heat shrinkability, and low warpage and has a low melt viscosity and excellent curability as well. <P>SOLUTION: The phenolic composition includes 5-95 pts.wt. triphenolmethane-type phenolic resin and 95-5 pts.wt. methylene-crosslinked phenolic novolak resin. A process for producing the phenolic resin composition includes melt kneading 5-95 pts.wt. triphenolmethane-type phenolic resin with 95-5 pts.wt. methylene-crosslinked phenolic novolak resin. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、各種バインダー、コーティング材、積層材、成形材料等に有用な低溶融粘度フェノールノボラック樹脂、その製造方法およびそれを用いたエポキシ硬化物に関する。特に半導体封止用、プリント基板絶縁用、電子回路銅張積層板あるいは航空機用構造材料に好ましく適用できる繊維強化複合材料などのエポキシ硬化剤に好適な、低溶融粘度、高ガラス転移温度、及び取り扱い性に優れた低溶融粘度フェノールノボラック樹脂及びその製造方法に関する。   The present invention relates to a low melt viscosity phenol novolak resin useful for various binders, coating materials, laminated materials, molding materials, and the like, a production method thereof, and an epoxy cured product using the same. Low melt viscosity, high glass transition temperature, and handling, especially suitable for epoxy curing agents such as semiconductor sealing, printed circuit board insulation, electronic circuit copper clad laminates or fiber reinforced composite materials that can be preferably applied to aircraft structural materials The present invention relates to a low melt viscosity phenol novolac resin having excellent properties and a method for producing the same.

電子材料、特に半導体封止用、プリント基板絶縁用などのエポキシ樹脂硬化剤として、各種のフェノール系重合体、例えばフェノールノボラック型樹脂、フェノールアラルキル樹脂等が使用されている。しかし近年、半導体パッケージの小型・薄型化、多ピン化、高密度実装化に伴い、より高性能な樹脂が求められている。   Various phenolic polymers, such as phenol novolac resins and phenol aralkyl resins, are used as an epoxy resin curing agent for electronic materials, particularly for semiconductor encapsulation and printed circuit board insulation. However, in recent years, with the miniaturization and thinning of semiconductor packages, the increase in the number of pins, and the high density mounting, higher performance resins are required.

一方、比強度、比弾性率に優れる炭素繊維を強化繊維に、該炭素繊維と濡れ性、接着性が良好なエポキシ樹脂をマトリックス樹脂に使用する炭素繊維強化複合材料においても、低粘度で、耐熱性を有する樹脂が求められている。   On the other hand, carbon fiber reinforced composite materials that use carbon fibers with excellent specific strength and specific elastic modulus as reinforcing fibers and epoxy resins with good wettability and adhesion with the carbon fibers as matrix resins also have low viscosity and heat resistance. Resins having properties are demanded.

フェノール系重合体を半導体封止材用に使用するための重要な物性は、ガラス転移温度が高いことである。ガラス転移温度を上げるための手段としては水酸基濃度を高くすることが有効であり、そのため、いわゆる多官能タイプが多く用いられている。その代表的な例としてトリフェノールメタン型のフェノール樹脂が挙げられる。(例えば特許文献1および2)   An important physical property for using a phenol-based polymer for a semiconductor encapsulant is a high glass transition temperature. As a means for raising the glass transition temperature, it is effective to increase the hydroxyl group concentration, and so-called polyfunctional type is often used. A typical example is a phenol resin of triphenolmethane type. (For example, Patent Documents 1 and 2)

特公平7−121979号公報、Japanese Patent Publication No. 7-121979, 特開平2−173023号公報JP-A-2-173030

これらのトリフェノールメタン型のフェノール系重合体は、ガラス転移温度が高く、そのため各種の信頼性に優れるという特長を有する。また、BGA(Ball GridArray)などの片面封止パッケージに用いた場合、パッケージの反りが小さいという優れた性能を有する。しかし最近の半導体パッケージでは、例えばBGAの場合、さらなるファインピッチ化や一括封止タイプになり、反りが小さいことの他に流動性が高いこと、基板表面との密着性が良いことなどが求められている。また、SOPやQFP、DIPなどのパッケージでも、ワイヤー長の延長、ワイヤー径の減少、小型化などの点で低粘度化が強く望まれている。また低溶融粘度であれば流動性や密着性が向上し、フィラーも多く配合できるので半田耐熱性や耐水性の面でも有利になる。即ちこれら封止材への要求特性を満たすために、高ガラス転移温度と低溶融粘度及び優れた取り扱い性を兼ね備えたフェノール系重合体(硬化剤)の出現が強く望まれている。   These triphenolmethane type phenolic polymers have a high glass transition temperature, and thus have various features of excellent reliability. Further, when used in a single-side sealed package such as BGA (Ball GridArray), it has an excellent performance that the warpage of the package is small. However, in recent semiconductor packages, for example, in the case of BGA, it becomes a finer pitch or a batch sealing type, and it is required that the fluidity is high in addition to the small warpage and the adhesiveness with the substrate surface is good. ing. Further, even in packages such as SOP, QFP, and DIP, a reduction in viscosity is strongly desired in terms of extending the wire length, reducing the wire diameter, and reducing the size. Further, if the melt viscosity is low, the fluidity and adhesion are improved, and a large amount of filler can be added, which is advantageous in terms of solder heat resistance and water resistance. That is, in order to satisfy the required properties for these sealing materials, the appearance of a phenolic polymer (curing agent) having both a high glass transition temperature, a low melt viscosity, and excellent handling properties is strongly desired.

またビルドアップ基板の層間絶縁材にも、耐水性に優れ、高ガラス転移温度で接着性のよいエポキシ樹脂組成物が望まれており、これを達成するために、元々耐水性や保存安定性に優れたフェノール系硬化剤で、高ガラス転移温度と低溶融粘度及び優れた取り扱い性を兼ね備えたものが望まれている。   In addition, epoxy resin compositions with excellent water resistance and high adhesiveness at high glass transition temperatures are also desired for interlayer insulation materials for build-up substrates. To achieve this, water resistance and storage stability are inherently improved. An excellent phenolic curing agent that has a high glass transition temperature, a low melt viscosity, and excellent handling properties is desired.

しかし、ガラス転移温度を上げるためにヒドロキシル基濃度を上げると、ヒドロキシル基同士の水素結合のため溶融粘度が上昇する。その結果、溶融粘度の上昇により流動性が悪く、そのためワイヤー変形など成形上のトラブルを引き起こす。溶融粘度を下げるために分子量を小さくしたりヒドロキシル基濃度を下げると、ガラス転移温度が下がるとともに成形時の硬化性が低下し、フェノール樹脂自体の取り扱い性も悪化する。すなわち、高ガラス転移温度と低溶融粘度、樹脂自体の取り扱い性の両立は原理的に難しいとされている。   However, when the hydroxyl group concentration is increased in order to increase the glass transition temperature, the melt viscosity increases due to hydrogen bonding between the hydroxyl groups. As a result, the fluidity is poor due to an increase in melt viscosity, which causes troubles in molding such as wire deformation. If the molecular weight is decreased or the hydroxyl group concentration is decreased in order to decrease the melt viscosity, the glass transition temperature is decreased, the curability at the time of molding is decreased, and the handleability of the phenol resin itself is also deteriorated. That is, it is considered that it is difficult in principle to satisfy both the high glass transition temperature, the low melt viscosity, and the handleability of the resin itself.

また、トリフェノールメタン型のフェノール樹脂にアリル基を付与したタイプの樹脂も提案されている(例えば特許文献3)。これらの樹脂は、ガラス転移温度が高いため熱収縮が小さく、また樹脂骨格的に自由体積が大きいため、硬化収縮率も小さく、これが低反りに寄与しているとされている。しかしこのタイプの樹脂は、実際にはアリル基導入量の増加とともにガラス転移温度が低下し、また硬化性も低下するため、要求されるレベルには未だ不充分であった。   A type of resin in which an allyl group is added to a triphenolmethane type phenolic resin has also been proposed (for example, Patent Document 3). Since these resins have a high glass transition temperature, the thermal shrinkage is small, and since the free volume of the resin skeleton is large, the cure shrinkage rate is also small, which is said to contribute to low warpage. However, this type of resin is still inadequate for the required level because the glass transition temperature actually decreases with increasing allyl group introduction amount and the curability also decreases.

特開平4−23824号公報JP-A-4-23824

その他、流動性を向上させる手段としてフェノール類とサリチルアルデヒド類及びホルムアルデヒドを反応させる樹脂も提案されている(例えば特許文献4)。これらの樹脂は150℃における溶融粘度が低いため流動性の向上は見込まれる。
しかしこのタイプの樹脂は、3成分の原料からなる反応であるため、反応が共重合でおこる。そのため反応条件が複雑で工業化において安定的に製造するには、問題があった。
In addition, as a means for improving fluidity, a resin that reacts phenols, salicylaldehydes, and formaldehyde has been proposed (for example, Patent Document 4). Since these resins have a low melt viscosity at 150 ° C., improvement in fluidity is expected.
However, since this type of resin is a reaction composed of three component raw materials, the reaction occurs by copolymerization. For this reason, the reaction conditions are complicated, and there has been a problem in stably producing in industrialization.

特開2002−275228号公報JP 2002-275228 A

本発明者らは、上記トリフェノールメタン型のフェノール樹脂の高ガラス転移温度、低熱収縮性、低反り等の優れた物性を生かし、かつ溶融粘度が低く硬化性にも優れたフェノール樹脂組成物を工業的に安定的に得ることを目的とする。   The present inventors made use of the above-mentioned phenolic resin composition having the excellent glass transition temperature, low heat shrinkage, low warpage and other physical properties of the above-described triphenolmethane type phenolic resin and having a low melt viscosity and excellent curability. It aims at obtaining stably industrially.

本発明者らは、上記目的のフェノール樹脂組成物を得るために鋭意検討した結果、分子内にトリフェノールメタン型フェノール樹脂と、フェノールノボラック樹脂、両者を特定範囲に混合することにより、高いガラス転移温度を維持し、且つ低溶融粘度で取り扱い性に優れたフェノール樹脂組成物を工業的に安定に提供できることを見出し、本発明を完成した。   As a result of intensive investigations to obtain the above-described objective phenol resin composition, the inventors have obtained a high glass transition by mixing triphenolmethane type phenol resin and phenol novolac resin in a specific range in the molecule. The inventors have found that a phenol resin composition that maintains temperature and has low melt viscosity and excellent handleability can be provided industrially and stably, thereby completing the present invention.

即ち、下記一般式(1):   That is, the following general formula (1):

Figure 2010229203

(式中、nは繰り返し数を表し、0〜5の正数を示す。)
で表されるフェノール樹脂5〜95重量部、および、
一般式(2)
Figure 2010229203

(In the formula, n represents the number of repetitions and represents a positive number of 0 to 5.)
5 to 95 parts by weight of a phenol resin represented by:
General formula (2)

Figure 2010229203

(式中mは繰り返し数を表し、0から5の正数を示す)
で表されるフェノール樹脂95〜5重量部、
を含有するフェノール樹脂組成物により解決される。
Figure 2010229203

(Where m represents the number of repetitions and represents a positive number from 0 to 5)
95 to 5 parts by weight of a phenol resin represented by
This is solved by a phenol resin composition containing

また、本発明は、上記(1)、(2)のフェノール樹脂を混合して得られるフェノール樹脂の製造方法である。   Moreover, this invention is a manufacturing method of the phenol resin obtained by mixing the phenol resin of said (1) and (2).

さらに、本発明は上記(1)、(2)のフェノール樹脂を混合して得られるフェノール樹脂からなるエポキシ樹脂用硬化剤である。   Furthermore, this invention is a hardening | curing agent for epoxy resins which consists of a phenol resin obtained by mixing the phenol resin of said (1) and (2).

本発明のフェノール樹脂組成物は、高ガラス転移温度で、且つ低溶融粘度であり、該フェノール樹脂組成物を含有するエポキシ樹脂組成物の硬化物は耐熱性に優れているため、成形材料、注型材料、積層材料、塗料、接着剤、レジストなどの広範囲の用途にきわめて有用である。また、工業的にも安定的に製造できる。   The phenol resin composition of the present invention has a high glass transition temperature and a low melt viscosity, and the cured product of the epoxy resin composition containing the phenol resin composition is excellent in heat resistance. It is extremely useful for a wide range of applications such as mold materials, laminate materials, paints, adhesives, and resists. Moreover, it can be manufactured stably industrially.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のフェノール樹脂組成物のひとつを構成する樹脂は、上記一般式(1)で示されるnが0〜5の正数を示し、好ましくは1〜3を示し、さらに好ましくは1.3〜2.5の正数を示すトリフェノールメタン型のフェノール樹脂である。
重量平均分子量としては、特に制限はないが、好ましくは500〜1000、さらに好ましくは550から900、より好ましくは600〜800、最も好ましくは600〜700の樹脂である。市販のものを使用しても何ら問題はない。市販品として具体例を挙げるとすれば、MEH−7500、MEH−7500H(明和化成株式会社製)などが挙げられる。
In the resin constituting one of the phenol resin compositions of the present invention, n represented by the general formula (1) represents a positive number of 0 to 5, preferably 1 to 3, and more preferably 1.3 to It is a triphenolmethane type phenolic resin showing a positive number of 2.5.
Although there is no restriction | limiting in particular as a weight average molecular weight, Preferably it is 500-1000, More preferably, it is 550 to 900, More preferably, it is 600-800, Most preferably, it is 600-700 resin. There is no problem even if a commercially available product is used. If a specific example is given as a commercial item, MEH-7500, MEH-7500H (made by Meiwa Kasei Co., Ltd.) etc. will be mentioned.

本発明のフェノール樹脂組成物の他のひとつを構成するフェノール樹脂は、上記一般式(2)で示されるmが0〜5、好ましくは1〜4、さらに好ましくは、1.5〜2.5の正数で示されるフェノールノボラック樹脂である。
重量平均分子量としては、特に制限はないが、好ましくは300〜1000、さらに好ましくは、350から900、より好ましくは400〜800であり、最もこのましくは450〜750である。
軟化点は、室温以上であり、好ましくは40℃以上さらに好ましくは45℃以上の樹脂である。軟化点の上限は特に制限はないが、通常150℃以下である。
As for the phenol resin which comprises the other one of the phenol resin composition of this invention, m shown by the said General formula (2) is 0-5, Preferably it is 1-4, More preferably, it is 1.5-2.5. It is a phenol novolak resin represented by a positive number.
Although there is no restriction | limiting in particular as a weight average molecular weight, Preferably it is 300-1000, More preferably, it is 350-900, More preferably, it is 400-800, Most preferably, it is 450-750.
The softening point is a room temperature or higher, preferably 40 ° C. or higher, more preferably 45 ° C. or higher. The upper limit of the softening point is not particularly limited, but is usually 150 ° C. or lower.

上記(2)式で表させるフェノール樹脂は、合成品および市販品いずれを用いても何ら問題はない。具体的な市販品としては、PN−152(M)、H−5(明和化成株式会社製)などが挙げられる。H−5は、融点が低く常温で半固形のフェノール樹脂であり、取り扱いを容易とするために有機溶剤で希釈した溶液のPN−152(M)として入手可能であり、そのまま使用することもできる。   The phenol resin represented by the formula (2) has no problem even if a synthetic product or a commercial product is used. Specific examples of commercially available products include PN-152 (M) and H-5 (manufactured by Meiwa Kasei Co., Ltd.). H-5 has a low melting point and is a semi-solid phenol resin at room temperature, and is available as PN-152 (M) in a solution diluted with an organic solvent for easy handling, and can be used as it is. .

以下に、一般式(1)のフェノール樹脂の合成方法を簡単に述べる。
一般式(1)で示されるフェノールノボラック樹脂は、酸触媒存在下、サリチルアルデヒドとフェノールの縮合反応により得ることができる。
通常、サリチルアルデヒド1モルに対し、フェノールを7〜20倍モル、好ましくは10〜13倍モルの範囲で使用すると共に、反応温度を低温(一例として110℃前後)にてフェノールとサリチルアルデヒドの反応を行ない、フェノール樹脂が得られる。
用いる酸触媒としては、特に限定はなく、塩酸、蓚酸、硫酸、リン酸、パラトルエンスルホン酸など公知のものを単独であるいは2種以上併用して使用することができるが、硫酸、蓚酸又はパラトルエンスルホン酸が特に好ましい。
Below, the synthesis | combining method of the phenol resin of General formula (1) is described easily.
The phenol novolak resin represented by the general formula (1) can be obtained by a condensation reaction of salicylaldehyde and phenol in the presence of an acid catalyst.
Usually, phenol is used in a range of 7 to 20 moles, preferably 10 to 13 moles per mole of salicylaldehyde, and the reaction of phenol and salicylaldehyde at a low reaction temperature (for example, around 110 ° C). To obtain a phenolic resin.
The acid catalyst to be used is not particularly limited, and known ones such as hydrochloric acid, oxalic acid, sulfuric acid, phosphoric acid, paratoluenesulfonic acid can be used alone or in combination of two or more. Toluenesulfonic acid is particularly preferred.

次に、一般式(2)のフェノール樹脂の合成方法を簡単に述べる。
一般式(2)で示されるフェノールノボラック樹脂は、酸触媒存在下、ホルムアルデヒドとフェノールの縮合反応により得ることができる。
通常、ホルムアルデヒド1モルに対し、フェノールを1〜10倍モル、好ましくは2〜5倍モルの範囲で使用すると共に、反応温度を低温(一例として100℃前後)にてフェノールとホルムアルデヒドの反応を行ない、フェノール樹脂が得られる。
用いる酸触媒としては、特に限定はなく、塩酸、蓚酸、硫酸、リン酸、パラトルエンスルホン酸など公知のものを単独であるいは2種以上併用して使用することができるが、硫酸、蓚酸又はパラトルエンスルホン酸が特に好ましい。
ホルムアルデヒドは、市販品のホルマリン水溶液や、パラホルムアルデヒドなど、縮合反応系でホルムアルデヒドを生成する化合物であれば、何ら問題はない。
Next, a method for synthesizing the phenol resin of the general formula (2) will be briefly described.
The phenol novolac resin represented by the general formula (2) can be obtained by a condensation reaction of formaldehyde and phenol in the presence of an acid catalyst.
Usually, phenol is used in the range of 1 to 10 times mol, preferably 2 to 5 times mol for 1 mol of formaldehyde, and the reaction of phenol and formaldehyde is carried out at a low reaction temperature (for example, around 100 ° C.). A phenolic resin is obtained.
The acid catalyst to be used is not particularly limited, and known ones such as hydrochloric acid, oxalic acid, sulfuric acid, phosphoric acid, and paratoluenesulfonic acid can be used alone or in combination of two or more. Toluenesulfonic acid is particularly preferred.
Formaldehyde is not a problem as long as it is a compound that forms formaldehyde in a condensation reaction system, such as a commercially available formalin aqueous solution or paraformaldehyde.

本発明のフェノール樹脂組成物は、通常、所定量の式(1)のフェノール樹脂と所定量の式(2)のフェノール樹脂を溶融混合して得ることができる。しかしながら、式(2)のフェノール樹脂自体の融点が低く、半固形であり、取り扱いにくい場合には以下の方法で溶融混合することもできる。   The phenol resin composition of the present invention can usually be obtained by melt-mixing a predetermined amount of the phenol resin of the formula (1) and a predetermined amount of the phenol resin of the formula (2). However, when the melting point of the phenol resin itself of the formula (2) is low and semisolid and difficult to handle, it can be melt-mixed by the following method.

例えば、あらかじめ合成釜で、式(2)で示される半固形のフェノール樹脂を合成して、その中に式(1)で表されるフェノール樹脂を溶融混合することも可能である。
場合によっては、式(1)で示されるフェノール樹脂を合成し、式(2)で示されるフェノール樹脂を混合することで本発明のフェノール樹脂組成物を得ることもできる。
For example, it is also possible to synthesize a semi-solid phenol resin represented by the formula (2) in a synthesis kettle in advance and melt-mix the phenol resin represented by the formula (1) therein.
In some cases, the phenol resin composition of the present invention can be obtained by synthesizing the phenol resin represented by the formula (1) and mixing the phenol resin represented by the formula (2).

本発明のフェノール樹脂組成物は、式(1)で表されるフェノール樹脂と式(2)で表されるフェノール樹脂との溶融混合により得られるが、その比率は、重量比で5〜95:95〜5、好ましくは20〜80:80〜20、さらに好ましくは30〜70:70〜30であり、最も好ましくは40〜60:60〜40である。
式(1)のフェノール樹脂が占める割合が、5重量%未満であると低粘度化の効果が小さくなり、一方、95重量%を越えると得られるフェノール樹脂組成物(式(1)のフェノール樹脂と式(2)のフェノール樹脂の混合物)の融点が低くなりすぎ、取り扱い上好ましくない。
The phenol resin composition of the present invention is obtained by melt mixing of the phenol resin represented by the formula (1) and the phenol resin represented by the formula (2), and the ratio is 5 to 95 by weight ratio: 95-5, preferably 20-80: 80-20, more preferably 30-70: 70-30, most preferably 40-60: 60-40.
When the proportion of the phenolic resin of the formula (1) is less than 5% by weight, the effect of reducing the viscosity is reduced, whereas when it exceeds 95% by weight, the resulting phenolic resin composition (the phenolic resin of the formula (1)) And a mixture of phenolic resins of formula (2)) are too low in handling.

[エポキシ樹脂硬化物]
本発明のフェノール樹脂組成物は、エポキシ樹脂用硬化剤として用いることができる。
そのため、エポキシ樹脂に含有させてエポキシ樹脂組成物として使用することも可能である。エポキシ樹脂用硬化物としての使用方法は、本発明のフェノール樹脂組成物とエポキシ樹脂及び硬化促進剤を混合し、100〜250℃の温度範囲で硬化させる。
得られる硬化物は半導体の封止剤等として利用される。
一方、該フェノール樹脂組成物を含むエポキシ樹脂組成物も上記方法で硬化物を得ることができる。
[Hardened epoxy resin]
The phenol resin composition of the present invention can be used as a curing agent for epoxy resins.
Therefore, it can be used as an epoxy resin composition by being contained in an epoxy resin. The usage method as a hardened | cured material for epoxy resins mixes the phenol resin composition of this invention, an epoxy resin, and a hardening accelerator, and it makes it harden | cure in a 100-250 degreeC temperature range.
The obtained cured product is used as a semiconductor sealant or the like.
On the other hand, an epoxy resin composition containing the phenol resin composition can also be cured by the above method.

本発明のフェノール樹脂組成物を含有するエポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂などのグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ハロゲン化エポキシ樹脂など、分子中にエポキシ基を二個以上有するエポキシ樹脂が挙げられる。これらエポキシ樹脂は単独で使用しても、2種類以上を併用してもよい。   Examples of the epoxy resin containing the phenol resin composition of the present invention include bisphenol A type epoxy resin, bisphenol F type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, triphenolmethane type epoxy resin, and biphenyl type epoxy. Examples thereof include epoxy resins having two or more epoxy groups in the molecule, such as glycidyl ether type epoxy resins such as resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, and halogenated epoxy resins. These epoxy resins may be used alone or in combination of two or more.

(硬化促進剤)
本発明のフェノール樹脂組成物およびエポキシ樹脂から硬化物を得る場合の硬化促進剤は、公知の硬化促進剤を用いることが出来る。このような硬化促進剤としては例えば有機ホスフィン化合物およびそのボロン塩、3級アミン、4級アンモニウム塩、イミダゾール類及びそのテトラフェニルボロン塩などを挙げることができるが、この中でも、硬化性や耐湿性の点から、トリフェニルホスフィン及び1,8−ジアザビシクロ(5,4,0)ウンデセン−7(DBU)が好ましい。また、より高流動性にするためには、加熱により活性が発現する熱潜在性の硬化促進剤がより好ましく、テトラフェニルホスフォニウム・テトラフェニルボレートなどのテトラフェニルホスフォニウム誘導体が好ましい。
(Curing accelerator)
A well-known hardening accelerator can be used for the hardening accelerator in the case of obtaining hardened | cured material from the phenol resin composition and epoxy resin of this invention. Examples of such curing accelerators include organic phosphine compounds and their boron salts, tertiary amines, quaternary ammonium salts, imidazoles and their tetraphenylboron salts, and among them, curability and moisture resistance. From this point, triphenylphosphine and 1,8-diazabicyclo (5,4,0) undecene-7 (DBU) are preferable. In order to achieve higher fluidity, a heat-latent curing accelerator that exhibits activity by heating is more preferable, and tetraphenylphosphonium derivatives such as tetraphenylphosphonium and tetraphenylborate are preferable.

(その他添加剤)
本発明のフェノール樹脂組成物を含有したエポキシ樹脂組成物には、必要に応じて、無機充填剤、離型剤、着色剤、難燃剤、低応力剤等を、添加または予め反応して用いることができる。とくに半導体封止用に使用する場合は、無機充填剤の添加は必須である.このような無機充填剤の例として、非晶性シリカ、結晶性シリカ、アルミナ、ガラス、珪酸カルシウム、石膏、炭酸カルシウム、マグネサイト、クレー、タルク、マイカ、マグネシア、硫酸バリウムなどを挙げることができるが、とくに非晶性シリカ、結晶性シリカなどが好ましい.これら添加剤の使用量は、従来の半導体封止用エポキシ樹脂組成物における使用量と同様でよい。
(Other additives)
In the epoxy resin composition containing the phenol resin composition of the present invention, an inorganic filler, a release agent, a colorant, a flame retardant, a low stress agent, or the like may be added or reacted in advance as necessary. Can do. Especially when used for semiconductor encapsulation, the addition of inorganic fillers is essential. Examples of such inorganic fillers include amorphous silica, crystalline silica, alumina, glass, calcium silicate, gypsum, calcium carbonate, magnesite, clay, talc, mica, magnesia, barium sulfate and the like. However, amorphous silica, crystalline silica and the like are particularly preferable. The usage-amount of these additives may be the same as the usage-amount in the conventional epoxy resin composition for semiconductor sealing.

比較例1
撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール2086.8g(22.2mol)、サリチルアルデヒド244g(2.0mol)、パラトルエンスルホン酸2.9gを仕込み、110℃で7時間反応させ、この縮合液を中和・水洗を行い、その後、減圧下熱処理することで未反応フェノール、水を系外に除去することにより460gのフェノール樹脂Aを得た。
Comparative Example 1
A glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas introduction tube was charged with 2086.8 g (22.2 mol) of phenol, 244 g (2.0 mol) of salicylaldehyde, and 2.9 g of paratoluenesulfonic acid at 110 ° C. The condensed liquid was neutralized and washed with water, and then heat-treated under reduced pressure to remove unreacted phenol and water out of the system, thereby obtaining 460 g of phenol resin A.

比較例2
撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール1184.4g(12.6mol)、サリチルアルデヒド244g(2.0mol)、パラトルエンスルホン酸1.65gを仕込み、110℃で7時間反応させ、この縮合液を中和・水洗を行い、その後、減圧下熱処理することで未反応フェノール、水を系外に除去することにより416gのフェノール樹脂Bを得た。
Comparative Example 2
A glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas inlet tube was charged with 1184.4 g (12.6 mol) of phenol, 244 g (2.0 mol) of salicylaldehyde, and 1.65 g of paratoluenesulfonic acid at 110 ° C. The reaction mixture was reacted for 7 hours, neutralized and washed with water, and then heat-treated under reduced pressure to remove unreacted phenol and water out of the system to obtain 416 g of phenol resin B.

比較例3
撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール1,880g(20.0mol)、92%パラホルムアルデヒド174.78g(5.36mol)、シュウ酸1.25gを仕込み、100℃で5時間反応させて、水洗を行い、その後、減圧下熱処理することで未反応フェノール、水を系外に除去することにより870gのフェノール樹脂Cを得た。
Comparative Example 3
A glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas introduction tube was charged with 1,880 g (20.0 mol) of phenol, 174.78 g (5.36 mol) of 92% paraformaldehyde, and 1.25 g of oxalic acid, Reaction was carried out at 100 ° C. for 5 hours, followed by washing with water, and then heat treatment under reduced pressure to remove unreacted phenol and water out of the system, thereby obtaining 870 g of phenol resin C.

比較例4
撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール940g(10.0mol)、92%パラホルムアルデヒド163.1g(5.0mol)、シュウ酸0.7gを仕込み、100℃で5時間反応させて、水洗を行い、その後、減圧下熱処理することで未反応フェノール、水を系外に除去することにより675gのフェノール樹脂Dを得た。
Comparative Example 4
A glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas introduction tube was charged with 940 g (10.0 mol) of phenol, 163.1 g (5.0 mol) of 92% paraformaldehyde, and 0.7 g of oxalic acid at 100 ° C. The mixture was reacted for 5 hours, washed with water, and then heat-treated under reduced pressure to remove unreacted phenol and water out of the system to obtain 675 g of phenol resin D.

撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール2086.8g(22.2mol)、サリチルアルデヒド244g(2.0mol)、パラトルエンスルホン酸2.9gを仕込み、110℃で7時間反応させ、この縮合液を中和し(ここまでは比較例1と同様の製造条件下である。)、フェノール樹脂Cを115g投入する。その後、水洗を行い、減圧下熱処理することで未反応フェノール、水を系外に除去することにより575gのフェノール樹脂組成物Eを得た。(一般式(1)のフェノール樹脂と一般式(2)のフェノール樹脂の含有する割合は80重量部対20重量部に相当する。) A glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas introduction tube was charged with 2086.8 g (22.2 mol) of phenol, 244 g (2.0 mol) of salicylaldehyde, and 2.9 g of paratoluenesulfonic acid at 110 ° C. For 7 hours to neutralize the condensate (up to this point under the same production conditions as in Comparative Example 1), and 115 g of phenol resin C is added. Thereafter, washing with water and heat treatment under reduced pressure were performed to remove unreacted phenol and water out of the system to obtain 575 g of a phenol resin composition E. (The ratio of the phenol resin of the general formula (1) and the phenol resin of the general formula (2) is equivalent to 80 parts by weight to 20 parts by weight.)

実施例1と同様に合成を行い、フェノール樹脂Cの投入量を307gに変更した以外は同様の合成を行い、767gのフェノール樹脂組成物Fを得た。(一般式(1)のフェノール樹脂と一般式(2)のフェノール樹脂の含有する割合は60重量部対40重量部に相当する。)   Synthesis was performed in the same manner as in Example 1, except that the amount of phenol resin C was changed to 307 g, and 767 g of phenol resin composition F was obtained. (The proportion of the phenol resin of the general formula (1) and the phenol resin of the general formula (2) is equivalent to 60 parts by weight to 40 parts by weight.)

実施例1と同様に合成を行い、フェノール樹脂Cの投入量を690gに変更した以外は同様の合成を行い、1150gのフェノール樹脂組成物Gを得た。(一般式(1)のフェノール樹脂と一般式(2)のフェノール樹脂の含有する割合は40重量部対60重量部相当する。)   Synthesis was performed in the same manner as in Example 1, except that the amount of phenol resin C charged was changed to 690 g, and 1150 g of phenol resin composition G was obtained. (The proportion of the phenol resin of the general formula (1) and the phenol resin of the general formula (2) is equivalent to 40 parts by weight to 60 parts by weight.)

実施例1と同様に合成を行い、フェノール樹脂Cの投入量を1,073gに変更した以外は同様の合成を行い、1,533gのフェノール樹脂組成物Hを得た。(一般式(1)のフェノール樹脂と一般式(2)のフェノール樹脂の含有する割合は30重量部対70重量部に相当する。)   Synthesis was performed in the same manner as in Example 1, except that the amount of phenol resin C charged was changed to 1,073 g, and 1,533 g of phenol resin composition H was obtained. (The ratio of the phenol resin of the general formula (1) and the phenol resin of the general formula (2) is equivalent to 30 parts by weight to 70 parts by weight.)

実施例1と同様に合成を行い、フェノール樹脂Dの投入量を115gに変更した以外は同様の合成を行い、575gのフェノール樹脂組成物Iを得た。(一般式(1)のフェノール樹脂と一般式(2)のフェノール樹脂の含有する割合は80重量部対20重量部に相当する。)   Synthesis was performed in the same manner as in Example 1, and the same synthesis was performed except that the input amount of the phenol resin D was changed to 115 g, to obtain 575 g of a phenol resin composition I. (The ratio of the phenol resin of the general formula (1) and the phenol resin of the general formula (2) is equivalent to 80 parts by weight to 20 parts by weight.)

実施例1と同様に合成を行い、フェノール樹脂Dの投入量を307gに変更した以外は同様の合成を行い、767gのフェノール樹脂組成物Jを得た。(一般式(1)のフェノール樹脂と一般式(2)のフェノール樹脂の含有する割合は60重量部対40重量部に相当する。)   Synthesis was performed in the same manner as in Example 1, except that the amount of phenol resin D charged was changed to 307 g. Thus, 767 g of phenol resin composition J was obtained. (The proportion of the phenol resin of the general formula (1) and the phenol resin of the general formula (2) is equivalent to 60 parts by weight to 40 parts by weight.)

実施例1と同様に合成を行い、フェノール樹脂Dの投入量を690gに変更した以外は同様の合成を行い、1150gのフェノール樹脂組成物Kを得た。(一般式(1)のフェノール樹脂と一般式(2)のフェノール樹脂の含有する割合は40重量部対60重量部に相当する。)   Synthesis was performed in the same manner as in Example 1, except that the amount of phenol resin D charged was changed to 690 g, and 1150 g of phenol resin composition K was obtained. (The proportion of the phenol resin of the general formula (1) and the phenol resin of the general formula (2) is equivalent to 40 parts by weight to 60 parts by weight.)

実施例1と同様に合成を行い、フェノール樹脂Dの投入量を1,073gに変更した以外は同様の合成を行い、1,533gのフェノール樹脂組成物Lを得た。(一般式(1)のフェノール樹脂と一般式(2)のフェノール樹脂の含有する割合は30重量部対70重量部に相当する。)   Synthesis was performed in the same manner as in Example 1, except that the amount of phenol resin D charged was changed to 1,073 g, and 1,533 g of phenol resin composition L was obtained. (The ratio of the phenol resin of the general formula (1) and the phenol resin of the general formula (2) is equivalent to 30 parts by weight to 70 parts by weight.)

撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール940g(10.0mol)、92%パラホルムアルデヒド87.24g(2.68mol)、シュウ酸0.63gを仕込み、100℃で5時間反応させて、水洗を行い(比較例3の1/2スケールでの反応)、フェノール樹脂Bを2175g投入する。その後、減圧下熱処理することで未反応フェノール、水を系外に除去することにより2610gのフェノール樹脂組成物Mを得た。(一般式(1)のフェノール樹脂と一般式(2)のフェノール樹脂の含有する割合は80重量部対20重量部に相当する。) A glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas introduction tube was charged with 940 g (10.0 mol) of phenol, 87.24 g (2.68 mol) of 92% paraformaldehyde, and 0.63 g of oxalic acid at 100 ° C. The mixture is reacted for 5 hours, washed with water (reaction on 1/2 scale of Comparative Example 3), and 2175 g of phenol resin B is added. Then, 2610 g of phenol resin composition M was obtained by removing unreacted phenol and water out of the system by heat treatment under reduced pressure. (The ratio of the phenol resin of the general formula (1) and the phenol resin of the general formula (2) is equivalent to 80 parts by weight to 20 parts by weight.)

実施例9と同様に合成を行い、フェノール樹脂Bの投入量を653gに変更した以外は同様の合成を行い、1088gのフェノール樹脂組成物Nを得た。(一般式(1)のフェノール樹脂と一般式(2)のフェノール樹脂の含有する割合は60重量部対40重量部に相当する。)   Synthesis was performed in the same manner as in Example 9, and the same synthesis was performed except that the input amount of phenol resin B was changed to 653 g, and 1088 g of phenol resin composition N was obtained. (The proportion of the phenol resin of the general formula (1) and the phenol resin of the general formula (2) is equivalent to 60 parts by weight to 40 parts by weight.)

実施例9と同様に合成を行い、フェノール樹脂Bの投入量を290gに変更した以外は同様の合成を行い、725gのフェノール樹脂組成物Oを得た。(一般式(1)のフェノール樹脂と一般式(2)のフェノール樹脂の含有する割合は40重量部対60重量部に相当する。)   Synthesis was performed in the same manner as in Example 9, and the same synthesis was performed except that the input amount of phenol resin B was changed to 290 g, and 725 g of phenol resin composition O was obtained. (The proportion of the phenol resin of the general formula (1) and the phenol resin of the general formula (2) is equivalent to 40 parts by weight to 60 parts by weight.)

実施例9と同様に合成を行い、フェノール樹脂Dの投入量を109gに変更した以外は同様の合成を行い、543gのフェノール樹脂組成物Pを得た。(一般式(1)のフェノール樹脂と一般式(2)のフェノール樹脂の含有する割合は20重量部対80重量部に相当する。)   Synthesis was performed in the same manner as in Example 9, and the same synthesis was performed except that the input amount of the phenol resin D was changed to 109 g, and 543 g of the phenol resin composition P was obtained. (The proportion of the phenol resin of the general formula (1) and the phenol resin of the general formula (2) is equivalent to 20 parts by weight to 80 parts by weight.)

比較例5
撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール94g(1モル)、37%ホルマリン水溶液19.5g(ホルムアルデヒド換算で0.24モル)、蓚酸2水和物0.34gを仕込み、95℃で4時間反応させた。その後、さらにフェノール106.2g(1.13モル)、サリチルアルデヒド29.3g(0.24モル)、35%塩酸水溶液7.1gを追加仕込み、90℃で4時間反応させた。反応後の縮合液中に、未反応ホルムアルデヒド及びサリチルアルデヒドはいずれも検出されなかった(反応率100%)。この縮合液を、さらに減圧下熱処理することで、未反応のフェノール、水、蓚酸及びHClを系外に除去することにより、98.0gのフェノール樹脂Qを得た。
Comparative Example 5
In a glass reaction kettle equipped with a stirrer, a condenser and a nitrogen gas inlet tube, 94 g (1 mol) of phenol, 19.5 g of a 37% formalin aqueous solution (0.24 mol in terms of formaldehyde), oxalic acid dihydrate 34 g was charged and reacted at 95 ° C. for 4 hours. Thereafter, 106.2 g (1.13 mol) of phenol, 29.3 g (0.24 mol) of salicylaldehyde, and 7.1 g of 35% hydrochloric acid aqueous solution were further added and reacted at 90 ° C. for 4 hours. Neither unreacted formaldehyde nor salicylaldehyde was detected in the condensate after the reaction (reaction rate 100%). This condensate was further heat-treated under reduced pressure to remove unreacted phenol, water, oxalic acid and HCl out of the system, thereby obtaining 98.0 g of phenol resin Q.

実施例1〜12および比較例1〜5のフェノール樹脂の製造条件および得られたフェノール樹脂の物性値を表1に示した。さらに以下に示した方法によるエポキシ樹脂組成物作成時の配合と該組成物より得られる硬化物特性を表2にまとめて示した。 The production conditions of the phenol resins of Examples 1 to 12 and Comparative Examples 1 to 5 and the physical property values of the obtained phenol resins are shown in Table 1. Further, Table 2 summarizes the composition of the epoxy resin composition prepared by the following method and the properties of the cured product obtained from the composition.

エポキシ樹脂組成物[EMC(Epoxy Moldering Compoundの合成]の製造方法
[実施例1〜12、比較例1〜5]
表2に示す配合比で、エポキシ樹脂組成物を製造した。即ち、本発明のフェノール樹脂を硬化剤とし、ビフェニルエポキシ樹脂(JER社製;YX−4000、エポキシ当量188g/eq)をエポキシ樹脂とし、水酸基当量とエポキシ当量比が1:1となるように配合し、TPP(トリフェニルフォスフィン)触媒を、該配合のエポキシ樹脂重量に対して3.2wt%仕込んだ。これに83wt%になるように充填剤を加え、これらを、100℃〜110℃の条件で2軸ニーダで混練後粉砕しEMC粉体を調整した。
尚、充填剤として(株)龍森製シリカ(MSR−2212)を使用した。
得られたEMC粉体を用いてタブレットを作成し、スパイラルフロー測定を行った。
また、トランスファー成形機にて試験片を作成し、180℃ 8hrのポストキュアをTMA、テストピースを得た。
各種物性の試験方法は次の通り。
Production method [Examples 1 to 12, Comparative Examples 1 to 5] of an epoxy resin composition [EMC (Synthesis of Epoxy Molding Compound)]
The epoxy resin composition was manufactured with the compounding ratio shown in Table 2. That is, the phenol resin of the present invention is used as a curing agent, biphenyl epoxy resin (manufactured by JER; YX-4000, epoxy equivalent 188 g / eq) is used as an epoxy resin, and the hydroxyl group equivalent and the epoxy equivalent ratio are 1: 1. Then, TPP (triphenylphosphine) catalyst was charged in an amount of 3.2 wt% based on the weight of the epoxy resin of the blend. The filler was added to 83 wt%, and these were kneaded with a biaxial kneader under conditions of 100 ° C to 110 ° C and pulverized to prepare EMC powder.
In addition, Tatsumori silica (MSR-2212) was used as a filler.
A tablet was prepared using the obtained EMC powder, and spiral flow measurement was performed.
Moreover, the test piece was created with the transfer molding machine, TMA and the test piece were obtained for 180 degreeC 8 hours postcure.
The test methods for various physical properties are as follows.

水酸基当量
JIS K0070に準じた水酸基当量測定
Hydroxyl equivalent measurement of hydroxyl equivalent according to JIS K0070

軟化点
JIS K2207に基づく環球法軟化点
Softening point
Ring and ball softening point based on JIS K2207

ICI粘度
ICIコーンプレート粘度計 MODEL CV−1S TOA工業(株)
ICI粘度計のプレート温度を150℃に設定し、試料を所定量、秤量する。
プレート部に秤量した樹脂を置き、上部よりコーンで押えつけ、90sec放置する。
コーンを回転させて、そのトルク値をICI粘度として読み取る。
ICI viscosity ICI cone plate viscometer MODEL CV-1S TOA Industrial Co., Ltd.
The plate temperature of the ICI viscometer is set to 150 ° C., and a predetermined amount of the sample is weighed.
Place the weighed resin on the plate, press it with the cone from the top, and leave it for 90 seconds.
The cone is rotated and its torque value is read as ICI viscosity.

ガラス転移点温度:TMA法(Thermal Mechanical Analysis、熱機械分析法)(昇温速度3℃/分)を用いて測定した。   Glass transition temperature: Measured using TMA method (Thermal Mechanical Analysis, thermomechanical analysis method) (temperature rising rate 3 ° C./min).

スパイラルフロー
EMMI−I−66に準じたスパイラルフロー測定用の金型を用い、金型温度175℃、注入圧力6.8MPa、硬化時間2分で測定した。このスパイラルフローは、流動性のパラメータであり、数値が大きい程、流動性が良好であることを示す。
Spiral flow Using a mold for spiral flow measurement according to EMMI-I-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 6.8 MPa, and a curing time of 2 minutes. This spiral flow is a parameter of fluidity, and the larger the value, the better the fluidity.

取り扱い性ブロッキング性:口径7.5cm、高さ8.0cmのポリプロピレン製カップに下記実施例にて合成した顆粒状のフェノール樹脂およびフェノール樹脂組成物(A)〜(Q)を100g入れ、27℃2時間放置する。その後、該(A)〜(Q)を取り出し、もとの顆粒状(フレーク状)に戻れば◎、カップの形状を残すが手で容易にほぐれる場合は○、カップの形状を残すが手で容易にほぐれにくい場合は△、カップの形状のままほぐれない場合は×とした。   Handling property Blocking property: In a polypropylene cup having a diameter of 7.5 cm and a height of 8.0 cm, 100 g of the granular phenol resin and phenol resin compositions (A) to (Q) synthesized in the following examples are placed, and 27 ° C. Leave for 2 hours. After that, if the (A) to (Q) are taken out and returned to the original granular shape (flakes), ◎, leaving the shape of the cup, but if it can be easily loosened by hand, ○, leaving the shape of the cup by hand. When it was difficult to unravel easily, Δ, and when it was not unraveled in the shape of the cup, x.

フェノール樹脂の物性値 Physical properties of phenolic resin

Figure 2010229203
Figure 2010229203

エポキシ樹脂硬化物の物性値 Physical properties of cured epoxy resin

Figure 2010229203
Figure 2010229203

このように本発明のフェノール樹脂およびエポキシ樹脂組成物は、高ガラス転移温度を維持しつつ低溶融粘度及び優れた取り扱い性を兼ね備え工業的に安定に提供できるフェノール樹脂である。   Thus, the phenolic resin and epoxy resin composition of the present invention are phenolic resins that have a low melt viscosity and excellent handling properties while maintaining a high glass transition temperature and can be stably provided industrially.

Claims (7)

下記一般式(1):
Figure 2010229203

(式中、nは繰り返し数を表し、0〜5の正数を示す。)
で表されるフェノール樹脂5〜95重量部、および、
一般式(2)
Figure 2010229203

(式中mは繰り返し数を表し、0から5の正数を示す)
で表されるフェノール樹脂95〜5重量部、
を含有するフェノール樹脂組成物。
The following general formula (1):
Figure 2010229203

(In the formula, n represents the number of repetitions and represents a positive number of 0 to 5.)
5 to 95 parts by weight of a phenol resin represented by:
General formula (2)
Figure 2010229203

(Where m represents the number of repetitions and represents a positive number from 0 to 5)
95 to 5 parts by weight of a phenol resin represented by
A phenolic resin composition containing
150℃での溶融粘度が10〜100mPa・sである請求項1に記載のフェノール樹脂組成物。   The phenol resin composition according to claim 1, wherein the melt viscosity at 150 ° C. is 10 to 100 mPa · s. 一般式(1)のフェノール樹脂の重量平均分子量が、500から1000であり、一般式(2)のフェノール樹脂の重量平均分子量が、300〜1000である請求項1または2に記載のフェノール樹脂組成物。   The phenol resin composition according to claim 1 or 2, wherein the phenol resin of the general formula (1) has a weight average molecular weight of 500 to 1,000, and the phenol resin of the general formula (2) has a weight average molecular weight of 300 to 1,000. object. 下記一般式(1):
Figure 2010229203

(式中、nは繰り返し数を表し、0〜5の正数を示す。)
で表されるフェノール樹脂5〜95重量部に対して、
一般式(2)
Figure 2010229203

(式中mは繰り返し数を表し、0から5の正数を示す)
で表されるフェノール樹脂を95〜5重量部、
を溶融混合することを特徴とするフェノール樹脂組成物の製造方法。
The following general formula (1):
Figure 2010229203

(In the formula, n represents the number of repetitions and represents a positive number of 0 to 5.)
With respect to 5 to 95 parts by weight of the phenol resin represented by
General formula (2)
Figure 2010229203

(Where m represents the number of repetitions and represents a positive number from 0 to 5)
95 to 5 parts by weight of a phenol resin represented by
A method for producing a phenol resin composition, comprising melting and mixing the components.
請求項1〜3のいずれか1項に記載のフェノール樹脂組成物および請求項4に記載の製造方法で得られたフェノール樹脂組成物からなる群より選ばれる少なくとも1つのフェノール樹脂組成物とエポキシ樹脂とを含有してなるエポキシ樹脂組成物。   At least one phenol resin composition and epoxy resin selected from the group consisting of the phenol resin composition according to any one of claims 1 to 3 and the phenol resin composition obtained by the production method according to claim 4. An epoxy resin composition comprising: 硬化促進剤および/または無機充填材を含有する請求項5に記載のエポキシ樹脂組成物。   The epoxy resin composition of Claim 5 containing a hardening accelerator and / or an inorganic filler. 請求項5または6に記載のエポキシ樹脂組成物を硬化してなる硬化物。   Hardened | cured material formed by hardening | curing the epoxy resin composition of Claim 5 or 6.
JP2009075717A 2009-03-26 2009-03-26 Phenolic resin composition, process for producing the resin composition and epoxy resin composition including the resin composition Pending JP2010229203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009075717A JP2010229203A (en) 2009-03-26 2009-03-26 Phenolic resin composition, process for producing the resin composition and epoxy resin composition including the resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009075717A JP2010229203A (en) 2009-03-26 2009-03-26 Phenolic resin composition, process for producing the resin composition and epoxy resin composition including the resin composition

Publications (1)

Publication Number Publication Date
JP2010229203A true JP2010229203A (en) 2010-10-14

Family

ID=43045319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009075717A Pending JP2010229203A (en) 2009-03-26 2009-03-26 Phenolic resin composition, process for producing the resin composition and epoxy resin composition including the resin composition

Country Status (1)

Country Link
JP (1) JP2010229203A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149889A (en) * 2016-02-26 2017-08-31 デンカ株式会社 Epoxy resin composition, metal base plate circuit board therewith

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149889A (en) * 2016-02-26 2017-08-31 デンカ株式会社 Epoxy resin composition, metal base plate circuit board therewith

Similar Documents

Publication Publication Date Title
JP5228328B2 (en) Low melt viscosity phenol novolac resin, process for producing the same, and cured epoxy resin using the same
JP5413488B2 (en) Phenol novolac resin, method for producing the same, epoxy resin composition and cured product using the same
JP2007106928A (en) Phenolic polymer, its production method and its use
TWI438216B (en) Modified liquid epoxy resin, epoxy resin composition by using modified liquid epoxy resin and cured product thereof
TWI507470B (en) Method for manufacturing cured product of thermosetting resin composition and cured product obtained thereby
WO2011013571A1 (en) Phenol compound and method for producing same
JP6476527B2 (en) Liquid polyvalent hydroxy resin, production method thereof, curing agent for epoxy resin, epoxy resin composition, cured product thereof and epoxy resin
JP5616234B2 (en) Epoxy resin composition, method for producing the epoxy resin composition, and cured product thereof
JP3833940B2 (en) Phenol polymer, process for producing the same, and epoxy resin curing agent using the same
JP2005171188A (en) Epoxy resin composition
JP2010229203A (en) Phenolic resin composition, process for producing the resin composition and epoxy resin composition including the resin composition
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP2002327035A (en) Phenolic polymer, its production method, curing agent for epoxy resin, epoxy resin composition for semiconductor sealing and semiconductor device using the same
JP4696372B2 (en) Epoxy resin composition and semiconductor device
JP5515583B2 (en) Phenolic resin, epoxy resin and cured epoxy resin
JPH05287052A (en) Epoxy resin composition, preparation of epoxy resin, and semiconductor sealing material
JP2004010700A (en) New phenol resin and epoxy resin composition comprising the resin as curing agent
JP3704081B2 (en) Epoxy resin, its production method and its use
JP2019052258A (en) Polyhydric hydroxy resin, method for producing the same, curing agent for epoxy resin, epoxy resin, epoxy resin composition, cured product of the same, semiconductor sealing material and laminated plate
JP2010260802A (en) Dihydroxynaphthalene polymer, method of producing the same, and use therefor
JP2017082052A (en) Epoxy resin composition and semiconductor device using the same
TW202244099A (en) Epoxy resin, method for manufacturing the same, epoxy resin composition and cured product using the same
WO2022202333A1 (en) Phenolic resin mixture, and curable resin composition and cured product thereof
WO2022202335A1 (en) Phenolic resin mixture, curable resin composition, and cured product thereof
JP5390491B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product