JP2010227991A - Equipment for cooling hot steel plate - Google Patents

Equipment for cooling hot steel plate Download PDF

Info

Publication number
JP2010227991A
JP2010227991A JP2009080749A JP2009080749A JP2010227991A JP 2010227991 A JP2010227991 A JP 2010227991A JP 2009080749 A JP2009080749 A JP 2009080749A JP 2009080749 A JP2009080749 A JP 2009080749A JP 2010227991 A JP2010227991 A JP 2010227991A
Authority
JP
Japan
Prior art keywords
cooling water
cooling
steel plate
nozzle
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009080749A
Other languages
Japanese (ja)
Other versions
JP5387093B2 (en
Inventor
Naoki Nakada
直樹 中田
Hiroyuki Fukuda
啓之 福田
Kenji Hirata
健二 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009080749A priority Critical patent/JP5387093B2/en
Publication of JP2010227991A publication Critical patent/JP2010227991A/en
Application granted granted Critical
Publication of JP5387093B2 publication Critical patent/JP5387093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for uniformly cooling upper and lower surfaces at high cooling rate. <P>SOLUTION: In the equipment for cooling a hot steel plate which is installed on the hot-rolling line of a steel plate, an upper header for supplying cooling water and upper cooling water jetting nozzles for jetting bar-like cooling water, which are hung from the upper header, are provided on the side of the upper surface of the steel plate, a lower header for supplying the cooling water and lower cooling water jetting nozzles for jetting bar-like cooling water upward in the vertical direction from the lower header are provided on the side of the lower surface of the hot steel plate and it is good to make a pitch W2 of collision points 14 of the cooling water for the lower surface of the steel plate with the lower cooling water jetting nozzles 4 in the width direction of the steel plate into a half of a pitch W1 of the collision points 13 of the cooling water onto the upper surface of the steel plate with the upper cooling water jetting nozzles 3 in the width direction. The installation density of the lower cooling water jetting nozzles is taken as 1.5-4 times the installation density of the upper cooling water jetting nozzles. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、熱鋼板の冷却設備に関するものである。   The present invention relates to a thermal steel sheet cooling facility.

熱間圧延によって厚板や薄板などの鋼板を製造するプロセスでは、例えば図9に示すような設備において、熱間粗圧延、仕上圧延を行った後、水冷または空冷を行って組織を制御している。水冷によって比較的低い温度、例えば450〜650℃程度に冷却すると、微細なフェライトやベイナイト組織が得られ、鋼板の強度を確保できるので、スプレー冷却水やラミナー冷却水などによって鋼板を冷却する技術が一般的である。また近年では、高い冷却速度を得て組織をより微細化し、鋼板の強度を上げる技術の開発が盛んである。   In the process of manufacturing steel plates such as thick plates and thin plates by hot rolling, for example, in equipment as shown in FIG. 9, after hot rough rolling and finish rolling, the structure is controlled by water cooling or air cooling. Yes. When cooling to a relatively low temperature, for example, about 450 to 650 ° C. by water cooling, fine ferrite and bainite structure can be obtained and the strength of the steel sheet can be secured. Therefore, there is a technology for cooling the steel sheet with spray cooling water, laminar cooling water, etc. It is common. In recent years, the development of techniques for increasing the strength of steel sheets by obtaining a high cooling rate and making the structure finer is increasing.

例えば、大量の棒状のラミナー冷却水を供給して熱鋼板を冷却する技術として特許文献1や特許文献2の技術がある。これは、鋼板の上下面に多数設置したノズルから冷却水を高速で噴射するものであり、非常に高い冷却速度を得ることができ、材料特性に優れた製品を製造出来るとされている。   For example, there are technologies in Patent Document 1 and Patent Document 2 as a technology for cooling a hot steel sheet by supplying a large amount of rod-shaped laminar cooling water. This is one in which cooling water is jetted at high speed from nozzles installed on the upper and lower surfaces of a steel plate, and a very high cooling rate can be obtained and a product excellent in material characteristics can be manufactured.

特開2001−246412号公報JP 2001-246612 A 特開2004−66308号公報JP 2004-66308 A

しかしながら、従来の技術は、冷却能力や冷却均一性の確保に問題があった。   However, the conventional technique has a problem in securing the cooling capacity and the cooling uniformity.

特許文献1の技術は、仕上圧延後の熱延鋼帯の冷却装置であり、上下面冷却ボックスのノズル孔から、柱状のラミナー水を鋼帯に対して上下対称に噴射するものであり、上下面の冷却条件を全く同じにでき、均一な熱延鋼帯を製造できるとされている。また、鋼帯の上下面にかかる流体圧をほぼ等しくすることにより、無張力状態でも安定通板が可能であるとされている。   The technology of Patent Document 1 is a cooling device for a hot-rolled steel strip after finish rolling, in which columnar laminar water is jetted symmetrically with respect to the steel strip from the nozzle holes of the upper and lower surface cooling boxes. It is said that the cooling conditions on the lower surface can be made exactly the same, and a uniform hot-rolled steel strip can be produced. Further, by making the fluid pressure applied to the upper and lower surfaces of the steel strip substantially equal, it is said that stable passage can be achieved even in a non-tensioned state.

しかし、特許文献1の技術は、冷却ボックスにノズル孔を空けるだけの構造であるから、下面冷却ボックスから鋼帯下面に噴射した冷却水が自然落下すると、下面冷却ボックスの上端面上で滞留水となり、後続で噴射する冷却水の障害となる。また、上面冷却では鋼帯表面に衝突した後の滞留水がある程度の冷却能力を持つのに対し、下面冷却では鋼帯表面に衝突した後の水は自然落下して冷却に関与しなくなるので、下面冷却の方が冷却能力は劣る。したがって、上下対称に冷却水を噴射したのでは、上下面均一に冷却することは難しい。   However, since the technology of Patent Document 1 has a structure in which only a nozzle hole is formed in the cooling box, when the cooling water sprayed from the lower surface cooling box to the lower surface of the steel strip naturally falls, the accumulated water on the upper end surface of the lower surface cooling box. Thus, it becomes an obstacle to the cooling water jetted later. In addition, in the upper surface cooling, the retained water after colliding with the steel strip surface has a certain cooling capacity, whereas in the lower surface cooling, the water after colliding with the steel strip surface falls naturally and does not participate in cooling. Cooling capacity is inferior for the bottom surface cooling. Therefore, it is difficult to cool the upper and lower surfaces uniformly if the cooling water is jetted symmetrically.

また、特許文献2の技術は、上下面の冷却水ヘッダに冷却水噴射ノズルを突出して設け、冷却水ヘッダと熱延鋼帯との間に設けられる保護板の1つの孔またはスリットを、複数の冷却ノズルから噴射した冷却水が通過するとともに、鋼帯に供給された冷却水が同じ孔またはスリットから排出されるものである。すなわち、保護板の孔やスリットには噴射口と排水口の機能が共存するから、図10に示すように冷却排水の流れはノズル先端から噴射される棒状冷却水にとって逆流であり、流動抵抗となっていた。また、鋼板に到達した後の排出水はお互いにぶつかり合って上昇し、ノズル口と兼用である排水口に到達するまでに流路が曲げられるので、この部分が淀みとなって、排出水の円滑な流れが妨げられていた。   Moreover, the technique of patent document 2 is provided with a cooling water jet nozzle protruding from the upper and lower cooling water headers, and a plurality of holes or slits in a protective plate provided between the cooling water header and the hot-rolled steel strip. The cooling water sprayed from the cooling nozzle passes through and the cooling water supplied to the steel strip is discharged from the same hole or slit. That is, since the functions of the injection port and the drain port coexist in the holes and slits of the protective plate, the flow of the cooling drainage is reverse to the rod-shaped cooling water sprayed from the nozzle tip as shown in FIG. It was. Also, the discharged water after reaching the steel plate rises by colliding with each other, and the flow path is bent until it reaches the drain outlet that is also used as the nozzle port, so this part becomes a stagnation and the discharged water Smooth flow was hindered.

このように、特許文献2の技術では、鋼帯表面へ供給された冷却水の円滑な排出にやや難があることがわかった。従って、鋼帯を上下または幅方向に均一に冷却することが難しく、また、冷却水が確実に鋼板に届くようにするためには、ヘッダに高い噴射圧力をかけて冷却水を高速噴射しなければならないため、設備費がかかるという問題がある。   Thus, it has been found that the technique of Patent Document 2 has some difficulty in smooth discharge of the cooling water supplied to the steel strip surface. Therefore, it is difficult to cool the steel strip uniformly in the vertical and width directions, and in order to ensure that the cooling water reaches the steel plate, the cooling water must be sprayed at a high speed by applying a high jet pressure to the header. Therefore, there is a problem that equipment costs are required.

本発明は、上記に鑑み、熱鋼板の上下面に冷却水を供給する場合において、高冷却速度で上下面を均一に冷却する技術を提供することを目的とする。   In view of the above, an object of the present invention is to provide a technique for uniformly cooling upper and lower surfaces at a high cooling rate when supplying cooling water to the upper and lower surfaces of a hot steel sheet.

上記の課題を解決するために、本発明は以下の特徴を有する。
第一の発明は、鋼板の熱間圧延ラインに設置される熱鋼板の冷却設備であって、熱鋼板の上面側には、冷却水を供給する上部ヘッダと、上部ヘッダから懸垂した棒状冷却水を噴射する上部冷却水噴射ノズルとを備え、前記熱鋼板の下面側には、冷却水を供給する下部ヘッダと、下部ヘッダから鉛直方向上向きに棒状冷却水を噴射する下部冷却水噴射ノズルとを備え、前記下部冷却水噴射ノズルの設置密度を前記上部冷却水噴射ノズルの設置密度の1.5〜4倍とすることを特徴とする熱鋼板の冷却設備である。
In order to solve the above problems, the present invention has the following features.
1st invention is the cooling equipment of the hot-steel plate installed in the hot rolling line of a steel plate, Comprising: On the upper surface side of a hot-steel plate, the upper header which supplies cooling water, and the rod-shaped cooling water suspended from the upper header An upper cooling water injection nozzle that injects cooling water, and a lower header that supplies cooling water and a lower cooling water injection nozzle that injects rod-shaped cooling water vertically upward from the lower header on the lower surface side of the thermal steel plate. And a thermal steel sheet cooling facility characterized in that the installation density of the lower cooling water injection nozzle is 1.5 to 4 times the installation density of the upper cooling water injection nozzle.

第二の発明は、熱鋼板の上面側冷却水の水量密度を1.5〜4.0m/m・min、下面側冷却水の水量密度を2.0〜8.0m/m・minとし、前記下面側冷却水の水量密度を前記上面側冷却水の水量密度の1.3〜2.0倍とすることを特徴とする第一の発明に記載の熱鋼板の冷却設備である。 In the second aspect of the invention, the upper surface side cooling water amount density of the hot steel sheet is 1.5 to 4.0 m 3 / m 2 · min, and the lower surface side cooling water amount density is 2.0 to 8.0 m 3 / m 2. -It is set to min, and the water volume density of the lower surface side cooling water is 1.3 to 2.0 times the water volume density of the upper surface side cooling water. is there.

第三の発明は、熱鋼板の上面側に設置された上部冷却水噴射ノズルの内径を3〜8mm、前記上部冷却水噴射ノズルの下端部から熱鋼板上面までの距離を30〜120mm、前記上部冷却水噴射ノズルから噴射される冷却水の流速を8m/s以上とし、前記熱鋼板の下面側に設置された下部冷却水噴射ノズルの内径を3〜10mm、前記下部冷却水噴射ノズルから噴射される冷却水の流速を2m/s以上かつ前記上部冷却水噴射ノズルから噴射される冷却水の流速の90%以下とすることを特徴とする第一または第二の発明に記載の熱鋼板の冷却設備である。   3rd invention sets the inner diameter of the upper cooling water injection nozzle installed in the upper surface side of a hot-steel plate to 3-8 mm, the distance from the lower end part of the said upper cooling-water injection nozzle to a hot-steel plate upper surface, 30-120 mm, said upper part The flow rate of the cooling water injected from the cooling water injection nozzle is 8 m / s or more, the inner diameter of the lower cooling water injection nozzle installed on the lower surface side of the thermal steel plate is 3 to 10 mm, and the lower cooling water injection nozzle is injected from the lower cooling water injection nozzle. The cooling water flow rate of 2 m / s or more and 90% or less of the flow rate of the cooling water jetted from the upper cooling water jet nozzle. Equipment.

第四の発明は、さらに、熱鋼板の上面側に、前記熱鋼板と上部ヘッダとの間に隔壁を備え、該隔壁には、上部冷却水噴射ノズルの下端部を内挿する給水口と、前記熱鋼板の上面に供給された冷却水を隔壁上へ排水する排水口とが多数設けられていることを特徴とする第一乃至第三の発明の何れかに記載の熱鋼板の冷却設備である。   The fourth invention further comprises a partition wall between the thermal steel plate and the upper header on the upper surface side of the thermal steel plate, and the partition wall includes a water supply port for interpolating a lower end portion of the upper cooling water spray nozzle, The cooling facility for a hot steel sheet according to any one of the first to third inventions, wherein a plurality of drain outlets for draining the cooling water supplied to the upper surface of the hot steel sheet are provided on the partition wall. is there.

本発明の熱鋼板の冷却設備を用いることにより、鋼板上下面ともに高い冷却速度が得られ、鋼板を目標温度まで早く均一に冷却できるので、生産性向上に寄与するとともに、高強度など材質特性の優れた鋼板を製造することができる。また、さらに鋼板上面の冷却を、鋼板幅方向に温度むらがなく、均一に行うことができるので、品質の高い鋼板を製造することができる。   By using the hot steel sheet cooling equipment of the present invention, a high cooling rate can be obtained for both the upper and lower surfaces of the steel sheet, and the steel sheet can be cooled quickly and uniformly to the target temperature, contributing to productivity improvement and material properties such as high strength. An excellent steel sheet can be manufactured. Moreover, since the upper surface of the steel sheet can be cooled uniformly in the width direction of the steel sheet without any temperature unevenness, a high-quality steel sheet can be manufactured.

本発明の一実施形態に係る冷却設備を説明する図である。It is a figure explaining the cooling equipment which concerns on one Embodiment of this invention. 本発明の鋼板上下面での冷却水衝突点を説明する図である。It is a figure explaining the cooling water collision point in the steel plate upper and lower surfaces of this invention. 本発明の他の実施形態に係る冷却設備を説明する図である。It is a figure explaining the cooling installation which concerns on other embodiment of this invention. 隔壁におけるノズル配置例を説明する図である。It is a figure explaining the example of nozzle arrangement | positioning in a partition. 隔壁上の冷却排水の流れを説明する図である。It is a figure explaining the flow of the cooling waste water on a partition. 上下面のノズル設置密度比と上下面の冷却能力比との関係の一例を示す図である。It is a figure which shows an example of the relationship between the nozzle installation density ratio of the upper and lower surfaces, and the cooling capacity ratio of an upper and lower surface. 従来例による鋼板幅方向温度分布を説明する図である。It is a figure explaining the steel plate width direction temperature distribution by a prior art example. 本発明による鋼板幅方向温度分布を説明する図である。It is a figure explaining the steel plate width direction temperature distribution by this invention. 厚板圧延ラインの概略を説明する図である。It is a figure explaining the outline of a thick plate rolling line. 従来例による冷却水の流れを説明する図である。It is a figure explaining the flow of the cooling water by a prior art example. 本発明の冷却水の流れを説明する図である。It is a figure explaining the flow of the cooling water of this invention. 本発明の隔壁上の冷却排水との非干渉を説明する図である。It is a figure explaining non-interference with the cooling drainage on the partition of the present invention.

以下、本発明の実施の形態の一例を図面を参照して説明する。なお、ここでは、本発明を厚板圧延プロセスでの鋼板の冷却に用いた場合を例にして述べる。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. Here, the case where the present invention is used for cooling a steel plate in a thick plate rolling process will be described as an example.

図9は、本発明の実施に供する厚板圧延ラインの一例を示す概略図である。加熱炉から抽出されたスラブは圧延機によって粗圧延と仕上圧延が施され、所定の仕上温度、仕上板厚とされた後、オンラインにて加速冷却設備に搬送される。冷却前にプリレベラを通して鋼板の形状を整えてから加速冷却を行うのが冷却後の鋼板形状には好適である。加速冷却設備では、上面冷却設備と下面冷却設備とから噴射される冷却水によって鋼板は所定温度まで冷却される。   FIG. 9 is a schematic view showing an example of a thick plate rolling line used for carrying out the present invention. The slab extracted from the heating furnace is subjected to rough rolling and finish rolling by a rolling mill to a predetermined finishing temperature and finishing plate thickness, and then conveyed to an accelerated cooling facility online. It is suitable for the steel plate shape after cooling to perform accelerated cooling after adjusting the shape of the steel plate through a pre-leveler before cooling. In the accelerated cooling facility, the steel sheet is cooled to a predetermined temperature by the cooling water sprayed from the upper surface cooling facility and the lower surface cooling facility.

(第1の実施形態)
図1は本発明の一実施の形態に係る上下面冷却設備を示した図で、冷却設備の配置を示した側面図である。
(First embodiment)
FIG. 1 is a view showing an upper and lower surface cooling facility according to an embodiment of the present invention, and is a side view showing an arrangement of the cooling facility.

上面冷却設備は熱鋼板12の上面に冷却水を供給する上ヘッダ1と、該上ヘッダ1から懸垂した上冷却水噴射ノズル3とを備えており、上冷却水噴射ノズル3は棒状の冷却水を噴射する円管ノズル3からなる。下面冷却設備も熱鋼板12の下面に冷却水を供給する下ヘッダ2と、該下ヘッダ2から鉛直方向に冷却水を噴射する下冷却水噴射ノズル4とを備えており、上面冷却設備と同様に下冷却水噴射ノズル4も棒状の冷却水を噴射する円管ノズル4からなる。なお、鋼板下面側の冷却では、噴射された冷却水は鋼板に衝突した後に自然落下するので、上面側冷却のような冷却排水を鋼板幅方向に排出する隔壁5はなくても、均一性の高い冷却を行うことができる。   The upper surface cooling facility includes an upper header 1 for supplying cooling water to the upper surface of the hot steel plate 12, and an upper cooling water injection nozzle 3 suspended from the upper header 1. The upper cooling water injection nozzle 3 is a rod-shaped cooling water. It consists of the circular tube nozzle 3 which injects. The lower surface cooling facility also includes a lower header 2 for supplying cooling water to the lower surface of the hot steel plate 12, and a lower cooling water injection nozzle 4 for injecting cooling water from the lower header 2 in the vertical direction, similar to the upper surface cooling facility. The lower cooling water injection nozzle 4 also includes a circular pipe nozzle 4 for injecting rod-shaped cooling water. In the cooling on the lower surface side of the steel sheet, the injected cooling water naturally falls after colliding with the steel sheet, so that even if there is no partition wall 5 for discharging cooling drainage such as cooling on the upper surface side in the width direction of the steel sheet, it is uniform. High cooling can be performed.

ここで、本発明における棒状冷却水とは、円形状(楕円や多角の形状も含む)のノズル噴出口からある程度加圧された状態で噴射される冷却水であって、ノズル噴出口からの冷却水の噴射速度が2m/s以上であり、ノズル噴出口から噴射された水流の断面がほぼ円形に保たれた連続性と直進性のある水流の冷却水のことをいう。すなわち、円管ラミナーノズルからの自由落下流や、スプレーのような液滴状態で噴射されるものとは異なる。   Here, the rod-shaped cooling water in the present invention is cooling water injected in a state of being pressurized to some extent from a circular (including elliptical or polygonal) nozzle outlet, and is cooled from the nozzle outlet. The water jet velocity is 2 m / s or more, and it refers to cooling water of continuous and straight water flow in which the cross section of the water flow injected from the nozzle outlet is maintained in a substantially circular shape. That is, it is different from a free fall flow from a circular tube laminar nozzle or a liquid ejected in a droplet state such as a spray.

ところで、一般に、下面冷却の方が上面冷却よりも冷却能力が劣るため、上下面で均等な冷却を行うためには、上面冷却よりも下面冷却の方に幾分冷却水を多く供給しなければならない。前述したように、上面冷却では、鋼板表面に衝突した後の滞留水がある程度冷却能力をもつのに対し、下面冷却では、鋼板表面に衝突した後の水は自然落下して冷却に関与しなくなるからである。   By the way, in general, lower surface cooling is inferior in cooling capacity to upper surface cooling, and in order to perform uniform cooling on the upper and lower surfaces, a little more cooling water must be supplied to lower surface cooling than upper surface cooling. Don't be. As described above, in the upper surface cooling, the retained water after colliding with the steel sheet surface has some cooling capacity, whereas in the lower surface cooling, the water after colliding with the steel sheet surface falls naturally and does not participate in the cooling. Because.

一方、従来技術では、特許文献1について前述したように、上下面の冷却ノズルの数を同数にして、流速を上下面で等しくするか、または下面側の冷却能力不足を解消するために上面側よりも下面側を高くするのが一般的であるが、この場合下面冷却用のポンプの圧力を高くしなければならない。例えば、ノズルおよびノズル設置数が上下面で同じで、下面冷却の水量密度を上面冷却の1.5倍にして上下均等冷却しようとすると、下面冷却には上面冷却の1.5倍の流速が必要となるので、設備コストやランニングコストが高くなる。そこで、本発明では、下面冷却用のノズル数を多くして、直接噴射部の面積をより大きくすることで、冷却能力を高めている。   On the other hand, in the prior art, as described above with respect to Patent Document 1, the number of cooling nozzles on the upper and lower surfaces is the same, and the flow velocity is made equal on the upper and lower surfaces, or the upper surface side is used to solve the lack of cooling capacity on the lower surface side. However, in this case, the pressure of the lower surface cooling pump must be increased. For example, if the number of nozzles and the number of nozzles installed are the same on the top and bottom surfaces, and the water density of the bottom surface cooling is 1.5 times that of the top surface cooling and the top and bottom uniform cooling is attempted, the bottom surface cooling will have a flow rate 1.5 times that of the top surface cooling Since this is necessary, the equipment cost and running cost increase. Therefore, in the present invention, the cooling capacity is increased by increasing the number of nozzles for lower surface cooling and increasing the area of the direct injection portion.

さらに、上面冷却水は、熱鋼板上の滞留水膜を破らなければならないので、ある程度の高い流速が必要である。これに対し、下面冷却水は、滞留水膜が存在しないので熱鋼板まで届きさえすればよく、高い流速は必要ないため、同じ流量密度とする場合に、ノズル数を多く、流速を遅くすることができる。   Further, the upper surface cooling water needs to break a staying water film on the hot steel plate, and therefore requires a certain high flow rate. On the other hand, the bottom surface cooling water does not have a stagnant water film, so it only needs to reach the hot steel plate, and a high flow rate is not required, so when using the same flow rate density, increase the number of nozzles and slow down the flow rate. Can do.

したがって、本発明では、冷却能力に劣る下面冷却用のノズル数を上面冷却用ノズルよりも多くすることとした。これにより、ノズル自体のコストは多くかかるが、下面冷却用のポンプ等の設備コストやランニングコストを低く抑えることができる。   Therefore, in the present invention, the number of nozzles for lower surface cooling that is inferior in cooling capacity is made larger than that for nozzles for upper surface cooling. Thereby, although the cost of the nozzle itself is high, the cost of equipment such as a pump for cooling the bottom surface and the running cost can be kept low.

以上の原理について、詳細に説明する。図6は、上下面のノズル設置密度比と上下面の冷却能力比との関係の一例を示す図である。図中のA点に示すように、上下面のノズル設置密度が同じである従来の場合、上下面の冷却能力を等しくする(冷却能力比を1とする)ためには、下面冷却の流量密度は上面冷却の1.5倍必要であった。しかし、同じ流量密度でも、下面側のノズル設置密度を増やして、冷却水が直接当たる部分の総面積を大きくすれば、冷却能力が向上する(例えば、下面のノズル設置密度を1.5倍とした図中のB点参照)。   The above principle will be described in detail. FIG. 6 is a diagram illustrating an example of the relationship between the nozzle installation density ratio of the upper and lower surfaces and the cooling capacity ratio of the upper and lower surfaces. As shown by point A in the figure, in the conventional case where the nozzle installation density on the upper and lower surfaces is the same, in order to make the cooling capacity on the upper and lower surfaces equal (the cooling capacity ratio is 1), the flow rate density of the lower surface cooling Required 1.5 times the top cooling. However, even with the same flow density, if the nozzle installation density on the lower surface side is increased and the total area of the portion directly exposed to the cooling water is increased, the cooling capacity is improved (for example, the nozzle installation density on the lower surface is 1.5 times higher). (See point B in the figure).

そこで、下面側のノズル設置密度を1.5倍にすれば、図中のC点に示すように、下面冷却水の流速を上面冷却の0.9倍程度とし、下面冷却の流量密度を上面冷却の1.3倍まで下げても、冷却能力比は1となり、上下均等な冷却が実現できる。したがって、下面冷却の流量密度と噴射圧力を従来よりも下げることができる。このように、下面冷却能力が極大となるような最適なノズル設置密度を選べば、下面冷却に必要な流量密度は最低限となり、設備コストを抑えることができる。   Therefore, if the nozzle installation density on the lower surface side is increased by 1.5 times, the flow rate of the lower surface cooling water is about 0.9 times that of the upper surface cooling and the flow rate density of the lower surface cooling is increased to the upper surface as shown by point C in the figure. Even if the cooling capacity is reduced to 1.3 times that of cooling, the cooling capacity ratio becomes 1, and uniform cooling can be realized. Therefore, the flow rate density and the injection pressure of the lower surface cooling can be lowered as compared with the conventional case. Thus, if the optimal nozzle installation density that maximizes the bottom surface cooling capacity is selected, the flow density necessary for bottom surface cooling is minimized, and the equipment cost can be reduced.

以上の知見に基づき、本発明では、上面冷却および下面冷却の条件を、以下のように規定する。   Based on the above knowledge, in the present invention, the conditions of the upper surface cooling and the lower surface cooling are defined as follows.

本発明では、下面冷却ノズルの設置密度を、上面冷却ノズルの設置密度の1.5〜4倍と大きくする。例えば、図2は鋼板上下面への冷却水の衝突点を説明する図であるが、図2に示すように、下冷却水噴射ノズル4による鋼板下面冷却水衝突点14の鋼板幅方向ピッチW2を、上冷却水噴射ノズル3による鋼板上面冷却水衝突点13の幅方向ピッチW1の半分とすればよい。なお、下冷却水噴射ノズル4の設置密度の上限は、上冷却水噴射ノズル3の設置密度の4倍である。ノズルピッチが短くなりすぎると、ノズルを1本ずつ差し込むスペースがなくなってしまううえ、ノズル数が多くなって設備コストも高くなりすぎるからである。   In the present invention, the installation density of the lower surface cooling nozzle is increased to 1.5 to 4 times the installation density of the upper surface cooling nozzle. For example, FIG. 2 is a diagram for explaining the collision point of the cooling water with the upper and lower surfaces of the steel sheet. As shown in FIG. 2, the steel sheet width direction pitch W2 of the steel sheet lower surface cooling water collision point 14 by the lower cooling water injection nozzle 4 is shown. Is half the width direction pitch W1 of the steel plate upper surface cooling water collision point 13 by the upper cooling water injection nozzle 3. The upper limit of the installation density of the lower cooling water injection nozzle 4 is four times the installation density of the upper cooling water injection nozzle 3. This is because if the nozzle pitch is too short, there will be no space for inserting the nozzles one by one, and the number of nozzles will increase and the equipment cost will become too high.

なお、最適なノズル設置密度は、使用するノズルの内径や、要求される冷却能力によって異なる。例えば小さいノズル径であれば、各々のノズルから噴射できる水量が少ないために元々上面冷却ノズルの設置数が多く、下面冷却ノズルの設置数をさらに増やして冷却能力を上げようとしてもその余地は少なく、最適な設置密度は上面冷却ノズルの1.5倍程度である。これに対し、大きいノズル径であれば、各々のノズルから噴射できる水量が多く、上面冷却のノズル間隔がかなり空いているため、下面冷却ノズルの設置密度を4.0倍程度まで上げても、冷却能力は増え続ける。   The optimum nozzle installation density varies depending on the inner diameter of the nozzle to be used and the required cooling capacity. For example, if the nozzle diameter is small, the amount of water that can be sprayed from each nozzle is small, so the number of upper surface cooling nozzles is originally large, and there is little room to increase the cooling capacity by further increasing the number of lower surface cooling nozzles. The optimum installation density is about 1.5 times that of the upper surface cooling nozzle. On the other hand, if the nozzle diameter is large, the amount of water that can be sprayed from each nozzle is large, and the nozzle spacing for the top surface cooling is quite large, so even if the installation density of the bottom surface cooling nozzles is increased to about 4.0 times, Cooling capacity continues to increase.

本発明で最も効果を発揮する上面冷却の水量密度の範囲は、1.5m/m・min以上である。水量密度がこれよりも低い場合には滞留水膜がそれほど厚くならず、棒状冷却水を自由落下させて鋼板を冷却する公知の技術を適用しても、幅方向の温度むらはそれほど大きくならない場合もある。一方、水量密度が4.0m/m・minよりも高い場合でも、本発明の技術を用いることは有効であるが、設備コストが高くなるなど実用化の上での問題があるので、1.5〜4.0m/m・minが最も実用的な水量密度である。 The range of the water density of the top surface cooling that is most effective in the present invention is 1.5 m 3 / m 2 · min or more. When the water density is lower than this, the staying water film does not become so thick, and even if the known technology of cooling the steel plate by free-falling the rod-shaped cooling water is applied, the temperature unevenness in the width direction does not become so large There is also. On the other hand, even when the water density is higher than 4.0 m 3 / m 2 · min, it is effective to use the technique of the present invention, but there are problems in practical use such as an increase in equipment cost. The most practical water density is 1.5 to 4.0 m 3 / m 2 · min.

また、前述したように、上下面で均等冷却を行うためには、下面冷却の水量密度は、上面冷却の1.3〜2.0倍として、上下面で同じ冷却能力が得られるようにし、熱歪による反りの発生や、鋼板上下面での材質の差が出ないようにすることが好ましい。すなわち、下面冷却の水量密度の範囲は、2.0m/m ・min以上である。水量密度がこれよりも低い場合には、上面と同じ冷却能力が確保できないからである。 In addition, as described above, in order to perform uniform cooling on the upper and lower surfaces, the water volume density of the lower surface cooling is 1.3 to 2.0 times that of the upper surface cooling so that the same cooling capacity can be obtained on the upper and lower surfaces. It is preferable to prevent the occurrence of warpage due to thermal strain and the difference in material between the upper and lower surfaces of the steel sheet. That is, the range of the water density of the bottom surface cooling is 2.0 m 3 / m 2 · min or more. This is because if the water density is lower than this, the same cooling capacity as that of the upper surface cannot be secured.

一方、水量密度が8.0m/m ・minよりも高い場合でも、本発明の技術を用いることは有効であるが、送水ポンプの容量は、排水設備の増強など、設備コストが高くなるなど実用化の上での問題があるので、2.0〜8.0m/m・minが最も実用的な水量密度である。 On the other hand, even when the water density is higher than 8.0 m 3 / m 2 · min, it is effective to use the technology of the present invention, but the capacity of the water pump increases the equipment cost such as the enhancement of drainage equipment. Since there is a problem in practical use, 2.0 to 8.0 m 3 / m 2 · min is the most practical water density.

さらに、冷却水が滞留水膜を貫通して鋼板に到達できるようにするためには、円管ノズルの内径、冷却水の噴射速度やノズル距離も最適にする必要がある。   Furthermore, in order to allow the cooling water to penetrate the staying water film and reach the steel plate, it is necessary to optimize the inner diameter of the circular tube nozzle, the cooling water injection speed and the nozzle distance.

即ち、上部冷却水噴射ノズル3の内径は3〜8mmが好適である。3mmより小さいとノズルから噴射する水の束が細くなり勢いが弱くなる。一方上部冷却水噴射ノズル径が8mmを超えると流速が遅くなり、滞留水膜を貫通する力が弱くなるからである。上部冷却水噴射ノズルからの冷却水の噴射速度は、8m/s以上が必要である。8m/s未満では、滞留水膜を冷却水が貫通する力が極端に弱くなるからである。   That is, the inner diameter of the upper cooling water spray nozzle 3 is preferably 3 to 8 mm. If it is smaller than 3 mm, the bundle of water sprayed from the nozzle becomes thin and the momentum becomes weak. On the other hand, when the diameter of the upper cooling water injection nozzle exceeds 8 mm, the flow velocity becomes slow and the force penetrating the staying water film becomes weak. The jetting speed of the cooling water from the upper cooling water jet nozzle needs to be 8 m / s or more. This is because if it is less than 8 m / s, the force that the cooling water penetrates through the staying water film becomes extremely weak.

また、上面冷却の上部冷却水噴射ノズル3の下端から鋼板12の表面までの距離は、30〜120mmとするのが良い。30mm未満では、鋼板12が上部冷却水噴射ノズルに衝突する頻度が極端に多くなり設備保全が難しくなる。120mm超えでは、冷却水が滞留水膜を貫通する力が極端に弱くなるからである。   The distance from the lower end of the upper cooling water spray nozzle 3 for upper surface cooling to the surface of the steel plate 12 is preferably 30 to 120 mm. If it is less than 30 mm, the frequency with which the steel plate 12 collides with the upper cooling water spray nozzle becomes extremely high, and the equipment maintenance becomes difficult. This is because if the thickness exceeds 120 mm, the force through which the cooling water penetrates the staying water film becomes extremely weak.

一方、下面冷却のノズル内径は3〜10mmが好適である。3mmより小さいとノズルが詰まりやすくなる。一方ノズル内径が10mmを超えると水束の断面積が大きくなる分ノズルピッチを長くして設置しなければならない。冷却水が鋼板下面に直接あたる点の数を減らすと冷却能力が低下するので、ノズル内径を大きくして10mm超えとするよりも、ノズルピッチを短くする方が、高い冷却能力が得られる。   On the other hand, the inner diameter of the nozzle for cooling the lower surface is preferably 3 to 10 mm. If it is smaller than 3 mm, the nozzle is likely to be clogged. On the other hand, if the inner diameter of the nozzle exceeds 10 mm, the nozzle pitch must be set longer as the cross-sectional area of the water bundle increases. If the number of points where the cooling water directly hits the lower surface of the steel sheet is decreased, the cooling capacity is lowered. Therefore, it is possible to obtain a higher cooling capacity by shortening the nozzle pitch than by increasing the nozzle inner diameter to exceed 10 mm.

また、下面冷却水の噴射速度は、2m/s以上が必要である。2m/s未満では、噴水の高さが200mm以下となってしまい、冷却水は鋼板下面にぎりぎり当たる程度となり、冷え方にばらつきが生じ、幅方向の温度むらが発生しやすくなるからである。   Moreover, the injection speed of the lower surface cooling water needs to be 2 m / s or more. If the speed is less than 2 m / s, the height of the fountain becomes 200 mm or less, and the cooling water just hits the lower surface of the steel sheet.

さらに、下面冷却の冷却水噴射ノズル4の上端から鋼板12の下面までの距離は、30〜180mmが好適である。30mm未満では、鋼板12が円管ノズル4に衝突する頻度が極端に高くなり設備保全が難しくなる。180mm超えでは、鋼板12に衝突した後に落下してくる冷却水が新たに噴射する冷却水の水束を壊す確率が高くなるからである。   Furthermore, the distance from the upper end of the cooling water spray nozzle 4 for lower surface cooling to the lower surface of the steel plate 12 is preferably 30 to 180 mm. If it is less than 30 mm, the frequency with which the steel plate 12 collides with the circular tube nozzle 4 becomes extremely high, and equipment maintenance becomes difficult. This is because if it exceeds 180 mm, there is a high probability that the cooling water falling after colliding with the steel plate 12 will break the water bundle of cooling water newly injected.

下面冷却水の流速は、上面冷却の90%以下でよい。下面冷却のノズル設置密度を上面冷却の1.5倍とすると、下面冷却の水量密度は上面冷却の1.3倍程度で上下均等な冷却が実現できるため、下面冷却の流速は90%であっても十分にその水量密度が達成できるからである。   The flow rate of the lower surface cooling water may be 90% or less of the upper surface cooling. If the nozzle installation density of the bottom surface cooling is 1.5 times that of the top surface cooling, the water density of the bottom surface cooling is about 1.3 times that of the top surface cooling, so that uniform cooling can be achieved up and down, so the bottom surface cooling flow rate is 90%. This is because the water density can be achieved sufficiently.

なお、本発明の冷却技術を適用するのは、鋼板上面の冷却では、冷却水が広範囲に飛散しないように、冷却ヘッダ1の前後に水切りロール10を設置するのが特に効果的であるが、水切りロールがない場合にも適用することは可能である。例えば、ヘッダが長手方向に比較的長く(2〜4m程度ある場合)、そのヘッダの前後でパージ用の水スプレーを噴射して、非水冷ゾーンへの水漏れを防止する冷却設備に適用することも可能である。   In addition, it is particularly effective to install the draining roll 10 before and after the cooling header 1 so that the cooling water is not scattered widely in the cooling of the upper surface of the steel sheet when the cooling technique of the present invention is applied. It is possible to apply even when there is no draining roll. For example, the header is relatively long in the longitudinal direction (when it is about 2 to 4 m), and is applied to a cooling facility that sprays a water spray for purging before and after the header to prevent water leakage to the non-water cooling zone. Is also possible.

(第2の実施形態)
図3は本発明の他の一実施の形態に係る上下面冷却設備を示した図で、冷却設備の配置を示した側面図である。
(Second Embodiment)
FIG. 3 is a view showing an upper and lower surface cooling facility according to another embodiment of the present invention, and is a side view showing an arrangement of the cooling facility.

上面冷却設備は、熱鋼板12の上面に冷却水を供給するヘッダ1と、該ヘッダ1から懸垂した冷却水噴射ノズル3と、ヘッダ1と熱鋼板12との間に鋼板幅方向に渡り水平に設置され多数の貫通孔(給水口6と排水口7)を有する隔壁5とを備えている。そして、冷却水噴射ノズル3は棒状の冷却水を噴射する円管ノズル3からなり、その先端が前記隔壁5に設けられた貫通孔(給水口6)に内挿されて隔壁5の下端部より上方になるように設置されている。   The top surface cooling facility is horizontally disposed across the steel plate width direction between the header 1 for supplying cooling water to the top surface of the hot steel plate 12, the cooling water injection nozzle 3 suspended from the header 1, and the header 1 and the hot steel plate 12. A partition wall 5 having a large number of through holes (water supply port 6 and drain port 7) is provided. The cooling water injection nozzle 3 is composed of a circular pipe nozzle 3 for injecting rod-shaped cooling water, and the tip thereof is inserted into a through hole (water supply port 6) provided in the partition wall 5 so that the lower end portion of the partition wall 5 It is installed to be on the top.

円管ノズル3の先端が貫通孔に内挿されて隔壁5の下端部より上方になるように設置されているのは、仮に先端が上方に反った鋼板が進入してきた場合でも隔壁5によって円管ノズル3が損傷するのを防止するためである。それによって、円管ノズル3が良好な状態で長期間に亘って冷却を行うことができるので、設備補修等を行うことなく、鋼板の温度むらの発生を防止することができる。   The circular tube nozzle 3 is installed so that the tip of the circular tube nozzle 3 is inserted into the through-hole and above the lower end of the partition wall 5 even if a steel plate whose tip is warped upward enters. This is to prevent the tube nozzle 3 from being damaged. Thereby, since the circular tube nozzle 3 can be cooled over a long period of time in a good state, it is possible to prevent the occurrence of temperature unevenness in the steel sheet without performing equipment repair or the like.

また、円管ノズル3の先端が貫通孔に内挿されているので、図12に示すように、隔壁5の上面を流れる点線矢印の排出水の幅方向流れと干渉することがない。したがって、円管ノズル3から噴射された冷却水は、幅方向位置によらず等しく鋼板上面へ達することができ、幅方向に均一な冷却を行うことができる。   Further, since the tip of the circular tube nozzle 3 is inserted into the through-hole, as shown in FIG. 12, there is no interference with the flow in the width direction of the drained water indicated by the dotted arrow flowing through the upper surface of the partition wall 5. Therefore, the cooling water sprayed from the circular tube nozzle 3 can reach the upper surface of the steel plate equally regardless of the position in the width direction, and uniform cooling in the width direction can be performed.

一例を示すと、図4に示すように隔壁5には直径10mmの貫通孔が碁盤の目に多数開けられている。そして、給水口6には外径8mm、内径3mm、長さ140mmの円管ノズル3が装入されている。円管ノズル3は千鳥格子状に配列され、円管ノズル3が通っていない貫通孔は冷却水の排水口7となっている。このように、本発明の冷却設備の隔壁5に設けられた多数の貫通孔は、ほぼ同数の給水口6と排水口7とから成り立っており、それぞれに役割、機能を分担している。   As an example, as shown in FIG. 4, a large number of through holes having a diameter of 10 mm are formed in the partition wall 5 in the grid. A circular tube nozzle 3 having an outer diameter of 8 mm, an inner diameter of 3 mm, and a length of 140 mm is inserted into the water supply port 6. The circular tube nozzles 3 are arranged in a staggered pattern, and the through holes through which the circular tube nozzles 3 do not pass serve as cooling water drains 7. As described above, the large number of through holes provided in the partition wall 5 of the cooling facility of the present invention are composed of substantially the same number of water supply ports 6 and drain ports 7, and share their roles and functions.

このとき、排水口7の総断面積は、円管ノズル3の内径の総断面積の11倍程度が確保されており、図3に示すように鋼板上面に供給した冷却水を、排水口7を通して、隔壁5の上方に流す。図5は隔壁上の鋼板幅方向端部付近の冷却排水の流れを説明する正面図であるが、排水口7の排水方向が冷却水噴射方向と逆の上向きになっており、隔壁5の上方へ抜けた冷却排水は、鋼板幅方向外側へ向きを変え、ヘッダ1と隔壁5との間の排水流路を流れて排水される。   At this time, the total cross-sectional area of the drain port 7 is ensured to be about 11 times the total cross-sectional area of the inner diameter of the circular tube nozzle 3, and the cooling water supplied to the upper surface of the steel plate as shown in FIG. Through the partition wall 5. FIG. 5 is a front view for explaining the flow of cooling drainage near the end in the width direction of the steel plate on the partition wall. The drainage direction of the drain port 7 is upward opposite to the cooling water injection direction, and the upper side of the partition wall 5 The cooling drainage that has passed through is turned to the outside in the width direction of the steel sheet and flows through the drainage flow path between the header 1 and the partition wall 5 and is drained.

ここで、図10に示すように排水口と給水口が同一の貫通孔に設置されていると、冷却水は、鋼板に衝突した後、隔壁5の上方に抜けにくくなって、鋼板12と隔壁5の間を鋼板幅方向端部へ向かって流れるようになる。そうすると鋼板12と隔壁5の間の冷却排水の流量は、板幅方向の端部に近づく程多くなるので、噴射冷却水が滞留水膜を貫通して鋼板に到達する力が板幅方向端部ほど阻害されることとなる。   Here, as shown in FIG. 10, when the drainage port and the water supply port are installed in the same through hole, the cooling water is difficult to come out above the partition wall 5 after colliding with the steel plate, and the steel plate 12 and the partition wall. 5 flows toward the end in the steel sheet width direction. Then, since the flow rate of the cooling drainage between the steel plate 12 and the partition wall 5 increases as it approaches the end in the plate width direction, the force that the injected cooling water reaches the steel plate through the staying water film is the end in the plate width direction. It will be hindered.

薄板の場合には板幅が高々2m程度であるのでその影響は限定的であるが、特に板幅が3m以上の厚板の場合には、その影響は無視できない。従って、鋼板幅方向端部の冷却が弱くなり、この場合の鋼板幅方向の温度分布は、図7に示すように凹型をした不均一な温度分布となる。   In the case of a thin plate, since the plate width is about 2 m at most, the influence is limited. However, in the case of a thick plate having a plate width of 3 m or more, the influence cannot be ignored. Accordingly, the cooling at the end in the width direction of the steel sheet becomes weak, and the temperature distribution in the width direction of the steel sheet in this case becomes a non-uniform temperature distribution having a concave shape as shown in FIG.

これに対して、本実施形態の冷却設備は、図11に示すように給水口6と排水口7は別個に設けられており、給水と排水を役割分担しているので、冷却排水は隔壁5の排水口7を通過して隔壁5の上方に円滑に流れて行くようになる。従って、冷却後の排水が速やかに鋼板上面から排除されるので、後続で供給される冷却水は、容易に滞留水膜を貫通することができ、十分な冷却能力を得ることができる。この場合の鋼板幅方向の温度分布は、図8に示すように幅方向に均一な温度分布を得ることができる。   On the other hand, in the cooling facility of this embodiment, as shown in FIG. 11, the water supply port 6 and the water discharge port 7 are provided separately and share the roles of water supply and water discharge. And smoothly flows above the partition wall 5. Accordingly, since the drainage after cooling is quickly removed from the upper surface of the steel sheet, the cooling water supplied subsequently can easily penetrate the staying water film, and a sufficient cooling capacity can be obtained. In this case, the temperature distribution in the width direction of the steel sheet can obtain a uniform temperature distribution in the width direction as shown in FIG.

本実施形態における上面冷却設備および下面冷却設備は、上面冷却設備に隔壁5を設けることを除き、第1の実施形態と同様である。すなわち、上面冷却および下面冷却のノズル設置密度、ノズル内径、ノズルから熱鋼板までの距離、水量密度、冷却水の流速については、第1の実施形態で述べた条件とすればよい。   The upper surface cooling facility and the lower surface cooling facility in the present embodiment are the same as those in the first embodiment except that the partition wall 5 is provided in the upper surface cooling facility. That is, the nozzle installation density of the upper surface cooling and the lower surface cooling, the nozzle inner diameter, the distance from the nozzle to the hot steel plate, the water amount density, and the cooling water flow rate may be the conditions described in the first embodiment.

本実施形態によれば、第1の実施形態と同様に鋼板上下面ともに高い冷却速度が均一に得られるとともに、特に鋼板幅方向に均一な冷却を行うことができるので、より品質の高い鋼板を製造することができる。   According to the present embodiment, as in the first embodiment, a high cooling rate can be obtained uniformly on both the upper and lower surfaces of the steel plate, and uniform cooling can be performed particularly in the steel plate width direction. Can be manufactured.

以下、本発明の一実施例として、厚板圧延のプロセスにおいて、引張強度590MPaクラスの鋼板の冷却を行う場合について、図面に基づいて説明する。   Hereinafter, as an embodiment of the present invention, a case of cooling a steel plate having a tensile strength of 590 MPa class in a thick plate rolling process will be described with reference to the drawings.

図9に概略を示す厚板圧延設備において、加熱炉から抽出されたスラブを圧延機によって、成形、幅出し圧延を行った後、粗圧延を行い、さらに仕上圧延を行って板厚を25mm、板幅を4.5mとした。仕上圧延直後に測定した鋼板表面温度、すなわち仕上温度は820℃であった。この後に、ホットレベラを通して、加速冷却設備において加速冷却を行った。冷却開始温度780℃から冷却終了温度(加速冷却設備出側で復熱後の温度を測定した値)560℃まで冷却を行った。   In the thick plate rolling facility schematically shown in FIG. 9, the slab extracted from the heating furnace is formed by a rolling mill, subjected to tenter rolling, then rough rolled, and further subjected to finish rolling to obtain a plate thickness of 25 mm, The plate width was 4.5 m. The steel sheet surface temperature measured immediately after finish rolling, that is, the finish temperature was 820 ° C. Thereafter, accelerated cooling was performed in an accelerated cooling facility through a hot leveler. Cooling was performed from a cooling start temperature of 780 ° C. to a cooling end temperature of 560 ° C. (a value obtained by measuring the temperature after reheating on the accelerated cooling equipment exit side).

本発明例1の冷却設備は図1に示す本発明の第一の実施の形態に係る上下面冷却設備を用いた。上下面ともに、冷却水噴射ノズルには内径5mm、外径9mmのものを用い、テーブルローラー間距離0.9mのゾーン内でノズルを搬送方向に100mmピッチで9列並べた。また、上面冷却は、幅方向ノズルピッチを90mm、冷却水噴射速度を11.45m/sとして、水量密度1.50m/m・minで冷却を行った。 As the cooling equipment of Example 1 of the present invention, the upper and lower surface cooling equipment according to the first embodiment of the present invention shown in FIG. 1 was used. For both the upper and lower surfaces, cooling water spray nozzles having an inner diameter of 5 mm and an outer diameter of 9 mm were used, and the nozzles were arranged in nine rows at a 100 mm pitch in the transport direction in a zone with a distance between table rollers of 0.9 m. Further, the top surface cooling was performed at a water density of 1.50 m 3 / m 2 · min with a width direction nozzle pitch of 90 mm and a cooling water injection speed of 11.45 m / s.

一方、下面冷却は、幅方向ノズルピッチを60mmとして上面冷却のノズル設置密度の1.5倍とし、冷却水噴射速度を10.19m/sとした。このときの下面側の水量密度は2.00m/m・minである。 On the other hand, in the lower surface cooling, the nozzle pitch density in the width direction was set to 60 mm, 1.5 times the nozzle installation density of the upper surface cooling, and the cooling water injection speed was set to 10.19 m / s. The water density on the lower surface side at this time is 2.00 m 3 / m 2 · min.

これに対し、比較例として、本発明例1において下面冷却の幅方向ノズルピッチを90mmとした冷却装置、すなわち上下面でノズルの設置密度が等しい冷却装置を用いた。そして、比較例1では、下面側の水量密度を上面側と同じ2.00m/m・minとする冷却水の噴射を行った。一方、比較例2では、上下面で冷却能力が等しくなるように、下面側の水量密度を上面側の1.5倍の2.25m/m・minとした。 On the other hand, as a comparative example, a cooling device in which the nozzle pitch in the width direction of the bottom surface cooling was 90 mm in Example 1 of the present invention, that is, a cooling device having the same nozzle installation density on the top and bottom surfaces was used. And in the comparative example 1, the injection of the cooling water which made the water amount density of the lower surface side the same 2.00 m < 3 > / m < 2 > * min as the upper surface side was performed. On the other hand, in Comparative Example 2, the water amount density on the lower surface side was set to 2.25 m 3 / m 2 · min, 1.5 times that on the upper surface side, so that the cooling capacity was equal on the upper and lower surfaces.

表1に本実施例におけるノズル緒元および冷却条件を、冷却後の鋼板の反りの発生状況とともに示す。   Table 1 shows the nozzle specifications and cooling conditions in this example, along with the occurrence of warpage of the steel sheet after cooling.

Figure 2010227991
Figure 2010227991

比較例1では、上下面の水量密度が等しく、上面冷却が下面冷却より強くなったため、鋼板に反りが発生した。比較例2では、下面側も上下側と同じ冷却能力が得られたため、鋼板の反りは発生しなかったが、下面冷却水の噴射速度として17.18m/sもの高い噴射速度が必要であった。   In Comparative Example 1, since the water density of the upper and lower surfaces was equal and the upper surface cooling was stronger than the lower surface cooling, the steel plate was warped. In Comparative Example 2, since the same cooling capacity as that of the upper and lower sides was obtained on the lower surface side, the warpage of the steel plate did not occur, but an injection speed as high as 17.18 m / s was required as the lower surface cooling water injection speed. .

これに対し、本発明例1では、上下面で等しい冷却能力が得られ、鋼板の反りは発生しなかっただけでなく、下面側の冷却水噴射速度、水量密度ともに比較例2よりも小さい。これによって、ポンプや配管などの設備コストが抑えられ、冷却水の使用量を低減してランニングコストも抑えることができることがわかる。   On the other hand, in Example 1 of the present invention, equal cooling ability was obtained on the upper and lower surfaces, and not only the warpage of the steel sheet did not occur, but also the cooling water injection speed and the water amount density on the lower surface side were smaller than those in Comparative Example 2. As a result, it can be seen that the cost of equipment such as pumps and piping can be reduced, the amount of cooling water used can be reduced, and the running cost can be reduced.

本発明例2として、前記実施例1の本発明例1で用いた上下面冷却設備に換えて、本発明の他の実施の形態に係る上部冷却設備に隔壁を有する図3記載の上下面冷却設備を用いて、実施例1と同じ厚板圧延を行った。   As Example 2 of the present invention, instead of the upper and lower surface cooling facilities used in Inventive Example 1 of Example 1, the upper and lower surface cooling described in FIG. 3 has a partition wall in the upper cooling facility according to another embodiment of the present invention. The same thick plate rolling as in Example 1 was performed using the equipment.

本冷却設備は、図3に示すように鋼板上面に供給した冷却水を隔壁の上方に流して、さらに図5に示すように鋼板幅方向側方から排水できるような流路を設けた設備である。隔壁には、直径12mmの孔を碁盤の目のようにあけ、図4に示すように、千鳥格子状に配列したノズル口に円管ノズルを通し、残りの孔を排水口として用いた。上面冷却のノズル下端は、板厚25mmの隔壁の上下表面の中間位置となるように設置し、鋼板表面までの距離は80mmとした。また、ヘッダ下面と隔壁上面の距離は100mmとした。   This cooling equipment is an equipment provided with a flow path that allows the cooling water supplied to the upper surface of the steel plate to flow above the partition as shown in FIG. 3 and further drains from the side of the steel plate width direction as shown in FIG. is there. In the partition wall, holes with a diameter of 12 mm were formed like a grid, and as shown in FIG. 4, circular nozzles were passed through nozzle ports arranged in a staggered pattern, and the remaining holes were used as drain ports. The lower end of the nozzle for cooling the upper surface was installed so as to be at an intermediate position between the upper and lower surfaces of the partition wall having a thickness of 25 mm, and the distance to the steel plate surface was 80 mm. The distance between the header lower surface and the partition upper surface was 100 mm.

冷却水噴射ノズルには、上面側は内径8mm、外径12mm、下面側は内径10mm、外径14mmのものを用い、テーブルローラー間距離0.9mのゾーン内でノズルを搬送方向に100mmピッチで9列並べた。また、上面冷却は、幅方向ノズルピッチを90mm、冷却水噴射速度を11.94m/sとして、水量密度4.00m/m・minで冷却を行った。 For the cooling water injection nozzle, the upper surface side has an inner diameter of 8 mm and an outer diameter of 12 mm, and the lower surface side has an inner diameter of 10 mm and an outer diameter of 14 mm. Nine rows were arranged. The top surface cooling was performed at a water density of 4.00 m 3 / m 2 · min with a width direction nozzle pitch of 90 mm and a cooling water injection speed of 11.94 m / s.

一方、下面冷却は、幅方向ノズルピッチを45mmとして上面冷却のノズル設置密度の2.0倍とし、冷却水噴射速度を7.64m/sとした。このときの下面側の水量密度は8.00m/m・minである。 On the other hand, in the lower surface cooling, the nozzle pitch density in the width direction was set to 45 mm, 2.0 times the nozzle installation density of the upper surface cooling, and the cooling water injection speed was set to 7.64 m / s. The water density on the lower surface side at this time is 8.00 m 3 / m 2 · min.

これに対し、比較例3として、ノズル緒元および冷却水噴射条件は本発明例2と同じだが、吸水口と排水口とが別個に設けられた本発明の隔壁に換えて、特許文献2に記載のスリット状の孔が設けられた隔壁を用いた。   On the other hand, as Comparative Example 3, the nozzle specifications and cooling water injection conditions are the same as in Example 2 of the present invention, but instead of the partition wall of the present invention in which the water inlet and the drain port are separately provided, Patent Document 2 A partition wall provided with the slit-like holes described was used.

表1に本実施例におけるノズル緒元および冷却条件を、冷却後の鋼板幅方向の温度むらの発生状況とともに示す。   Table 1 shows the nozzle specifications and cooling conditions in this example, together with the occurrence of temperature unevenness in the steel plate width direction after cooling.

Figure 2010227991
Figure 2010227991

本発明例2の冷却設備において、鋼板上面に当たった噴射冷却水は上方に流れ、速やかに排出された。さらに、板端への排水性も非常に良好であった。冷却後の排水が速やかに排除されるので、後続で供給される冷却水が容易に滞留水膜を貫通することができ、従来よりも高い上面冷却能力を得ることができた。   In the cooling facility of Example 2 of the present invention, the jet cooling water hitting the upper surface of the steel plate flowed upward and was quickly discharged. Furthermore, the drainage to the edge of the board was very good. Since the drainage after cooling is quickly eliminated, the cooling water supplied subsequently can easily penetrate the staying water film, and a higher upper surface cooling capacity than before can be obtained.

下面冷却では、ノズルの設置密度を上面冷却の2倍にしたので、冷却水が直接鋼板下面に当たる点の数が倍増した。そして、流量密度を上面冷却の2倍にしたので、冷却能力を効率よく高めることができた。これによって、滞留水の冷却への寄与がない下面冷却でも、上下面で等しい冷却能力を確保できたので、熱歪による反りの発生を防止でき、鋼板上下面での材質の差が出ないようにすることができた。   In the lower surface cooling, since the nozzle installation density was doubled that of the upper surface cooling, the number of points where the cooling water directly hits the lower surface of the steel sheet doubled. And since the flow rate density was doubled that of the top surface cooling, the cooling capacity could be increased efficiently. As a result, even with bottom cooling that does not contribute to cooling of stagnant water, the same cooling capacity can be secured on the top and bottom surfaces, so that warpage due to thermal strain can be prevented and the difference in material between the top and bottom surfaces of the steel plate does not occur. I was able to.

板幅中央での冷却停止温度を560℃とするための冷却時間は2.5秒となった。冷却速度が高くなったため、高強度を得るために必要な鋼の合金成分(例えばMnなど)の削減が可能となり、製造コストを削減することができる。   The cooling time for setting the cooling stop temperature at the center of the plate width to 560 ° C. was 2.5 seconds. Since the cooling rate is increased, it is possible to reduce the steel alloy components (for example, Mn) necessary for obtaining high strength, and to reduce the manufacturing cost.

鋼板幅方向の温度分布は、550〜560℃で図8に示すようなほぼ均一な分布になり、鋼板幅方向の温度むらは小さく、10℃になった。このため、材料試験の合格率は99.5%と高く、歩留りも十分に高かった。   The temperature distribution in the width direction of the steel sheet was 550 to 560 ° C., and the distribution was almost uniform as shown in FIG. For this reason, the pass rate of the material test was as high as 99.5%, and the yield was also sufficiently high.

ノズルの下端を隔壁の上下端の中間位置としたので、プリレベラで上反りを修正しきれなかった場合でも、隔壁が保護板の役目を果たし、ノズルが壊れることはなかった。   Since the lower end of the nozzle is set at the middle position between the upper and lower ends of the partition wall, the partition wall served as a protective plate even when the upper warp could not be corrected by the pre-leveler, and the nozzle was not broken.

これに対し、比較例3の冷却設備は、図10に示すように、鋼板に衝突した後の冷却水は上方に抜けにくいので、板幅中央での冷却停止温度を560℃とするために、3秒の水冷時間が必要であった。   On the other hand, in the cooling facility of Comparative Example 3, as shown in FIG. 10, the cooling water after colliding with the steel plate is difficult to escape upward, so that the cooling stop temperature at the center of the plate width is 560 ° C. A water cooling time of 3 seconds was required.

冷却停止温度の板幅方向分布は、図7に示すような凹型になった。板端部付近での最も高い温度は600℃であり、幅方向の温度むら(最高温度-最低温度)は40℃になった。製品の一部を取り出して材料試験を行った結果、合格率は70%と低く、歩留りも悪かった。   The distribution of the cooling stop temperature in the plate width direction was concave as shown in FIG. The highest temperature near the edge of the plate was 600 ° C., and the temperature unevenness in the width direction (maximum temperature-minimum temperature) was 40 ° C. As a result of taking out a part of the product and conducting a material test, the acceptance rate was as low as 70% and the yield was also poor.

また、隔壁には孔がスリット状に空いているが、この部分の剛性は弱く、上反りした鋼板がぶつかった時に、隔壁とノズルが変形して破損した。   Moreover, although the hole was vacant in the slit shape in the partition, the rigidity of this part was weak, and when the warped steel plate collided, the partition and the nozzle were deformed and damaged.

1 上ヘッダ
2 下ヘッダ
3 上冷却水噴射ノズル(円管ノズル)
4 下冷却水噴射ノズル(円管ノズル)
5 隔壁
6 給水口
7 排水口
8 噴射冷却水
9 排出水
10 水切ロール
11 テーブルロール
12 鋼板
13 鋼板上面冷却水衝突点
14 鋼板下面冷却水衝突点
W1 上冷却水噴射ノズルの鋼板幅方向ピッチ
L1 上冷却水噴射ノズルの鋼板搬送方向ピッチ
W2 下冷却水噴射ノズルの鋼板幅方向ピッチ
L2 下冷却水噴射ノズルの鋼板搬送方向ピッチ
1 Upper header 2 Lower header 3 Upper cooling water injection nozzle (circular tube nozzle)
4 Lower cooling water injection nozzle (circular tube nozzle)
5 Bulkhead 6 Water supply port 7 Drain port 8 Spray cooling water 9 Drained water 10 Draining roll 11 Table roll 12 Steel plate 13 Steel plate upper surface cooling water collision point 14 Steel plate lower surface cooling water collision point W1 Steel plate width direction pitch L1 of upper cooling water injection nozzle Steel sheet conveying direction pitch of cooling water injection nozzle W2 Steel sheet width direction pitch of lower cooling water injection nozzle L2 Steel sheet conveying direction pitch of lower cooling water injection nozzle

Claims (4)

鋼板の熱間圧延ラインに設置される熱鋼板の冷却設備であって、熱鋼板の上面側には、冷却水を供給する上部ヘッダと、上部ヘッダから懸垂した棒状冷却水を噴射する上部冷却水噴射ノズルとを備え、前記熱鋼板の下面側には、冷却水を供給する下部ヘッダと、下部ヘッダから鉛直方向上向きに棒状冷却水を噴射する下部冷却水噴射ノズルとを備え、前記下部冷却水噴射ノズルの設置密度を前記上部冷却水噴射ノズルの設置密度の1.5〜4倍とすることを特徴とする熱鋼板の冷却設備。   An apparatus for cooling a hot steel plate installed in a hot rolling line for a steel plate, and an upper header for supplying cooling water to the upper surface side of the hot steel plate, and an upper cooling water for injecting rod-like cooling water suspended from the upper header A lower header for supplying cooling water, and a lower cooling water injection nozzle for injecting rod-shaped cooling water vertically upward from the lower header, and the lower cooling water. A thermal steel sheet cooling facility, characterized in that an installation density of injection nozzles is 1.5 to 4 times an installation density of the upper cooling water injection nozzle. 熱鋼板の上面側冷却水の水量密度を1.5〜4.0m/m・min、下面側冷却水の水量密度を2.0〜8.0m/m・minとし、前記下面側冷却水の水量密度を前記上面側冷却水の水量密度の1.3〜2.0倍とすることを特徴とする請求項1に記載の熱鋼板の冷却設備。 The upper surface side cooling water amount density of the hot steel sheet is 1.5 to 4.0 m 3 / m 2 · min, the lower surface side cooling water amount density is 2.0 to 8.0 m 3 / m 2 · min, and the lower surface The water density of the side cooling water is 1.3 to 2.0 times the quantity of water density of the upper surface side cooling water. 熱鋼板の上面側に設置された上部冷却水噴射ノズルの内径を3〜8mm、前記上部冷却水噴射ノズルの下端部から熱鋼板上面までの距離を30〜120mm、前記上部冷却水噴射ノズルから噴射される冷却水の流速を8m/s以上とし、前記熱鋼板の下面側に設置された下部冷却水噴射ノズルの内径を3〜10mm、前記下部冷却水噴射ノズルから噴射される冷却水の流速を2m/s以上かつ前記上部冷却水噴射ノズルから噴射される冷却水の流速の90%以下とすることを特徴とする請求項1または2に記載の熱鋼板の冷却設備。   The inner diameter of the upper cooling water injection nozzle installed on the upper surface side of the hot steel plate is 3 to 8 mm, the distance from the lower end of the upper cooling water injection nozzle to the upper surface of the hot steel plate is 30 to 120 mm, and the upper cooling water injection nozzle is injected from the upper cooling water injection nozzle The cooling water flow rate is 8 m / s or more, the inner diameter of the lower cooling water injection nozzle installed on the lower surface side of the hot steel plate is 3 to 10 mm, and the cooling water flow rate injected from the lower cooling water injection nozzle is 3. The thermal steel sheet cooling equipment according to claim 1, wherein the temperature is set to 2 m / s or more and 90% or less of a flow rate of the cooling water injected from the upper cooling water injection nozzle. さらに、熱鋼板の上面側に、前記熱鋼板と上部ヘッダとの間に隔壁を備え、該隔壁には、上部冷却水噴射ノズルの下端部を内挿する給水口と、前記熱鋼板の上面に供給された冷却水を隔壁上へ排水する排水口とが多数設けられていることを特徴とする請求項1乃至3の何れかに記載の熱鋼板の冷却設備。   Further, a partition wall is provided between the hot steel plate and the upper header on the upper surface side of the hot steel plate, and a water supply port for inserting a lower end portion of the upper cooling water spray nozzle is provided on the upper surface of the hot steel plate. 4. The hot steel sheet cooling facility according to claim 1, wherein a plurality of drain outlets for draining the supplied cooling water onto the partition walls are provided.
JP2009080749A 2009-03-30 2009-03-30 Thermal steel sheet cooling equipment Active JP5387093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009080749A JP5387093B2 (en) 2009-03-30 2009-03-30 Thermal steel sheet cooling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009080749A JP5387093B2 (en) 2009-03-30 2009-03-30 Thermal steel sheet cooling equipment

Publications (2)

Publication Number Publication Date
JP2010227991A true JP2010227991A (en) 2010-10-14
JP5387093B2 JP5387093B2 (en) 2014-01-15

Family

ID=43044359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009080749A Active JP5387093B2 (en) 2009-03-30 2009-03-30 Thermal steel sheet cooling equipment

Country Status (1)

Country Link
JP (1) JP5387093B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016516590A (en) * 2013-05-03 2016-06-09 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for manufacturing a metal strip
JP2016163898A (en) * 2015-03-06 2016-09-08 株式会社神戸製鋼所 Method and device for cooling thick steel plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066308A (en) * 2002-08-08 2004-03-04 Jfe Steel Kk System for cooling hot-rolled steel strip, method and line for manufacturing hot-rolled steel strip
JP2006035311A (en) * 2004-06-23 2006-02-09 Nippon Steel Corp Thick steel plate cooling apparatus
JP2008212958A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk Facilities for cooling steel plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066308A (en) * 2002-08-08 2004-03-04 Jfe Steel Kk System for cooling hot-rolled steel strip, method and line for manufacturing hot-rolled steel strip
JP2006035311A (en) * 2004-06-23 2006-02-09 Nippon Steel Corp Thick steel plate cooling apparatus
JP2008212958A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk Facilities for cooling steel plate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016516590A (en) * 2013-05-03 2016-06-09 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for manufacturing a metal strip
EP2991783B1 (en) 2013-05-03 2017-03-01 SMS group GmbH Method for producing a metal strip
KR101759915B1 (en) * 2013-05-03 2017-07-20 에스엠에스 그룹 게엠베하 Method for producing a metal strip
US9833823B2 (en) 2013-05-03 2017-12-05 Sms Group Gmbh Method for producing a metal strip
JP2016163898A (en) * 2015-03-06 2016-09-08 株式会社神戸製鋼所 Method and device for cooling thick steel plate

Also Published As

Publication number Publication date
JP5387093B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
US8881568B2 (en) Cooling equipment and cooling method for hot rolled steel plate
KR100976758B1 (en) Device and method for cooling hot-rolled steel strip
WO2007026906A1 (en) Cooling facility and cooling method of steel plate
JP4779749B2 (en) Steel plate cooling method and cooling equipment
JP2010247228A (en) Equipment and method for manufacturing thick steel plate
KR101691020B1 (en) Method and facility for manufacturing steel plate
JP5515483B2 (en) Thick steel plate cooling equipment and cooling method
JP5962849B2 (en) Manufacturing equipment and manufacturing method for thick steel plate
JP4876781B2 (en) Steel sheet cooling equipment and cooling method
JP5685861B2 (en) Draining device, draining method and cooling equipment for hot steel plate
JP5387093B2 (en) Thermal steel sheet cooling equipment
JP6264464B2 (en) Manufacturing equipment and manufacturing method for thick steel plate
JP5597916B2 (en) Steel cooling equipment
JP5246075B2 (en) Thermal steel sheet cooling equipment and cooling method
JP5347781B2 (en) Thermal steel sheet cooling equipment and cooling method
JP6108041B2 (en) Thick steel plate manufacturing method
JP5228720B2 (en) Thick steel plate cooling equipment
JP2010284680A (en) Cooling facility for thick steel plate and cooling method thereof
JP4962349B2 (en) Lower surface cooling method and lower surface cooling device for hot-rolled steel strip
JPH10272509A (en) Method for cooling wide flange shape and cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130923

R150 Certificate of patent or registration of utility model

Ref document number: 5387093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250