JP5347781B2 - Thermal steel sheet cooling equipment and cooling method - Google Patents

Thermal steel sheet cooling equipment and cooling method Download PDF

Info

Publication number
JP5347781B2
JP5347781B2 JP2009161704A JP2009161704A JP5347781B2 JP 5347781 B2 JP5347781 B2 JP 5347781B2 JP 2009161704 A JP2009161704 A JP 2009161704A JP 2009161704 A JP2009161704 A JP 2009161704A JP 5347781 B2 JP5347781 B2 JP 5347781B2
Authority
JP
Japan
Prior art keywords
cooling
cooling water
steel plate
steel sheet
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009161704A
Other languages
Japanese (ja)
Other versions
JP2010042444A (en
Inventor
直樹 中田
晃夫 藤林
啓之 福田
健二 平田
孝行 古米
幸生 藤井
元治 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009161704A priority Critical patent/JP5347781B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to EP15159053.6A priority patent/EP2910317B1/en
Priority to KR1020117000800A priority patent/KR101291832B1/en
Priority to CN200980127773.3A priority patent/CN102099130B/en
Priority to US13/003,970 priority patent/US8881568B2/en
Priority to PCT/JP2009/063142 priority patent/WO2010008090A1/en
Priority to EP09798014.8A priority patent/EP2329894B1/en
Publication of JP2010042444A publication Critical patent/JP2010042444A/en
Application granted granted Critical
Publication of JP5347781B2 publication Critical patent/JP5347781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide technology for uniformly cooling a hot steel sheet at a high cooling speed when supplying cooling water on the upper surface thereof. <P>SOLUTION: Cooling equipment of the hot steel sheet installed at a hot-rolling line of the steel sheet includes: a header for supplying the cooling water onto the upper surface of the hot steel sheet; a cooling water injection nozzle for injecting bar-like cooling water suspended from the header; and a partition wall installed between the hot steel sheet and the header. The partition wall is provided with a plurality of water supply ports inserting the lower end of the cooling water injection nozzle and a plurality of drainage ports for discharging the cooling water supplied to the upper surface of the hot steel sheet onto the partition wall. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、熱鋼板の冷却設備および冷却方法に関するものである。   The present invention relates to a thermal steel sheet cooling facility and a cooling method.

熱間圧延によって厚板や薄板などの鋼板を製造するプロセスでは、例えば図8に示すような設備において、熱間粗圧延、仕上圧延を行った後の鋼板(熱鋼板)に、水冷または空冷を行って組織を制御している。水冷によって比較的低い温度、例えば450〜650℃程度に冷却すると、微細なフェライトやベイナイト組織が得られ、鋼板の強度を確保できるので、スプレー冷却水やラミナー冷却水などによって鋼板を冷却する技術が一般的である。また近年では、高い冷却速度を得て組織をより微細化し、鋼板の強度を上げる技術の開発が盛んである。   In the process of manufacturing a steel plate such as a thick plate or a thin plate by hot rolling, water cooling or air cooling is performed on the steel plate (hot steel plate) after hot rough rolling and finish rolling in the equipment as shown in FIG. To go and control the organization. When cooling to a relatively low temperature, for example, about 450 to 650 ° C. by water cooling, fine ferrite and bainite structure can be obtained and the strength of the steel sheet can be secured. Therefore, there is a technology for cooling the steel sheet with spray cooling water, laminar cooling water, etc. It is common. In recent years, the development of techniques for increasing the strength of steel sheets by obtaining a high cooling rate and making the structure finer is increasing.

例えば、大量の棒状のラミナー冷却水を供給して熱鋼板を冷却する技術として特許文献1や特許文献2の技術がある。これは、鋼板の上下面に多数設置したノズルから冷却水を高速で噴射するものであり、非常に高い冷却速度を得ることができ、材料特性に優れた製品を製造出来るとされている。   For example, there are technologies in Patent Document 1 and Patent Document 2 as a technology for cooling a hot steel sheet by supplying a large amount of rod-shaped laminar cooling water. This is one in which cooling water is jetted at high speed from nozzles installed on the upper and lower surfaces of a steel plate, and a very high cooling rate can be obtained and a product excellent in material characteristics can be manufactured.

また、冷却水を供給して熱鋼板を冷却する別の技術として、特許文献3の技術がある。これは、ノズルから噴射した冷却水を鋼板とロールと側壁とで囲まれる領域に充満させてプールを形成するものであり、定常的な冷却状態となって幅方向の冷却むらを低減することができるとされている。   Moreover, there exists a technique of patent document 3 as another technique which cools a hot-steel plate by supplying cooling water. This is to form a pool by filling the area surrounded by the steel plate, roll and side wall with the cooling water sprayed from the nozzle, and it becomes a steady cooling state and reduces uneven cooling in the width direction. It is supposed to be possible.

特開2002−239623号公報JP 2002-239623 A 特開2004−66308号公報JP 2004-66308 A 特開2006−35233号公報JP 2006-35233 A

しかしながら、従来の技術は、冷却能力や冷却均一性の確保に問題があった。
特許文献1および2の技術は、冷却水ヘッダと熱延鋼帯との間に設けられる保護板の1つの孔またはスリットを、複数の冷却ノズルから噴射した冷却水が通過するとともに、鋼帯に供給された冷却水が同じ孔またはスリットから排出されるものである。すなわち、噴射口と排水口の機能が共存するから、図9に示すように冷却排水の流れはノズル先端から噴射される棒状冷却水にとって逆流であり、流動抵抗となっていた。また、鋼板に到達した後の排出水はお互いにぶつかり合って上昇し、ノズル口と兼用である排水口に到達するまでに流路が曲げられるので、この部分が淀みとなって、排出水の円滑な流れが妨げられていた。
However, the conventional technique has a problem in securing the cooling capacity and the cooling uniformity.
In the techniques of Patent Documents 1 and 2, cooling water sprayed from a plurality of cooling nozzles passes through one hole or slit of a protective plate provided between the cooling water header and the hot-rolled steel strip, and The supplied cooling water is discharged from the same hole or slit. That is, since the functions of the injection port and the drain port coexist, the flow of the cooling waste water is a reverse flow with respect to the rod-shaped cooling water sprayed from the nozzle tip as shown in FIG. Also, the discharged water after reaching the steel plate rises by colliding with each other, and the flow path is bent until it reaches the drain outlet that is also used as the nozzle port, so this part becomes a stagnation and the discharged water Smooth flow was hindered.

このように、特許文献1および2の技術では、鋼帯表面へ供給された冷却水の円滑な排出にやや難があることがわかった。従って、冷却水が確実に鋼板に届くようにするためには、ヘッダに高い噴射圧力をかけて、冷却水を高速噴射しなければならないため設備費がかかるという問題がある。   Thus, it has been found that the techniques of Patent Documents 1 and 2 have some difficulty in smooth discharge of the cooling water supplied to the steel strip surface. Therefore, in order to ensure that the cooling water reaches the steel plate, a high injection pressure is applied to the header and the cooling water has to be injected at a high speed, resulting in an increase in equipment costs.

また、スリット状の孔を開けると、保護板のスリット間の部分は細い板状となるため、この部分の剛性が低下し、反った鋼板が冷却設備に侵入して衝突した場合、設備を損傷する危険性もある。従って、冷却処理する鋼板の板厚が2〜3mmでは問題ないが、15mm以上になると設備損傷を防止するために板厚が厚い保護板を使用しなければならないのでスリットの加工が難しくなるという問題もある。   Also, if a slit-shaped hole is made, the part between the slits of the protective plate becomes a thin plate, so the rigidity of this part decreases, and if the warped steel sheet enters the cooling equipment and collides, the equipment is damaged. There is also a risk of doing. Therefore, there is no problem if the thickness of the steel sheet to be cooled is 2 to 3 mm, but if the thickness is 15 mm or more, it is difficult to process the slit because a thick protective plate must be used to prevent equipment damage. There is also.

さらに、大きさが異なるスリット状の孔を開けると、ノズルの位置によって流動抵抗が異なるため鋼板の幅方向に冷却温度むらが発生するという問題も生じる。   Furthermore, when slit-like holes having different sizes are formed, the flow resistance varies depending on the position of the nozzle, and thus there is a problem that uneven cooling temperature occurs in the width direction of the steel sheet.

特許文献3の技術は、鋼板上面に供給された冷却水が鋼板とロールと側壁とで囲まれた空間でプールを形成し、上方に抜けていく構造となっているので、該空間に冷却水が充満するには時間がかかるため、鋼板の先端数mの範囲では、冷却水の状態が非定常となり、鋼板長手方向の冷却温度むらや反りが発生し易いという問題がある。   The technique of Patent Document 3 has a structure in which the cooling water supplied to the upper surface of the steel plate forms a pool in a space surrounded by the steel plate, the roll, and the side wall, and flows upward. Therefore, there is a problem that the state of the cooling water becomes unsteady within the range of the number of tips of the steel sheet, and uneven cooling temperature and warpage in the longitudinal direction of the steel sheet are likely to occur.

また、特許文献3の技術では、側壁を設けない場合についても記載されているが、この場合には、図12に点線矢印で示すように、ガイド板上を排出水が幅方向端部へ向けて流れることとなる。ここで、特許文献3の技術では、冷却ノズルの先端はガイド板よりも上方にあるから、排出水の幅方向流れが冷却ノズルから噴射される冷却水と干渉してしまう。   Moreover, in the technique of patent document 3, although it describes also about the case where a side wall is not provided, in this case, as shown by the dotted line arrow in FIG. Will flow. Here, in the technique of Patent Document 3, since the tip of the cooling nozzle is above the guide plate, the flow in the width direction of the discharged water interferes with the cooling water ejected from the cooling nozzle.

この幅方向流れは鋼板幅方向端部ほど多くなるため、干渉は鋼板幅方向端部側ほど強くなり、冷却ノズルから噴射される冷却水の一部または全部が鋼板上面に到達することができなくなるので、幅方向に均一な冷却を行うことができない。   Since this width direction flow increases at the end in the width direction of the steel sheet, the interference becomes stronger toward the end in the width direction of the steel sheet, and a part or all of the cooling water sprayed from the cooling nozzle cannot reach the upper surface of the steel sheet. Therefore, uniform cooling cannot be performed in the width direction.

本発明は、上記に鑑み、熱鋼板の上面に冷却水を供給する場合において、高冷却速度で均一に冷却する技術を提供することを目的とする。   In view of the above, an object of the present invention is to provide a technique for uniformly cooling at a high cooling rate when supplying cooling water to the upper surface of a hot steel sheet.

上記の課題を解決するために、本発明は以下の特徴を有する。     In order to solve the above problems, the present invention has the following features.

(1)第一の発明は、鋼板の熱間圧延ラインに設置される熱鋼板の冷却設備であって、熱鋼板の上面に冷却水を供給するヘッダと、該ヘッダから懸垂した棒状冷却水を噴射する冷却水噴射ノズルと、前記熱鋼板と前記ヘッダとの間に設置される隔壁とを備えるとともに、前記隔壁には、前記冷却水噴射ノズルの下端部を内挿する給水口と、前記熱鋼板の上面に供給された冷却水を前記隔壁上へ排水する排水口とが、多数設けられていることを特徴とする熱鋼板の冷却設備である。   (1) The first invention is a hot steel sheet cooling facility installed in a hot rolling line for steel sheets, and includes a header for supplying cooling water to the upper surface of the hot steel sheet, and rod-shaped cooling water suspended from the header. A cooling water spray nozzle for spraying, a partition wall installed between the hot steel plate and the header, and a water supply port for interpolating a lower end portion of the cooling water spray nozzle in the partition wall, and the heat A hot steel sheet cooling facility characterized in that a large number of drain outlets for draining cooling water supplied to the upper surface of the steel sheet onto the partition walls are provided.

(2)第二の発明は、隔壁に設けられた排水口の総断面積およびヘッダ下面と隔壁上面とに囲まれた空間内での鋼板幅方向流路断面積が、いずれも冷却水噴射ノズル内径の総断面積の1.5倍以上であることを特徴とする第一の発明に記載の熱鋼板の冷却設備である。   (2) In the second invention, the total cross-sectional area of the drain outlet provided in the partition wall and the cross-sectional area in the width direction of the steel plate in the space surrounded by the header lower surface and the partition upper surface are both cooling water injection nozzles. The hot steel sheet cooling facility according to the first aspect of the invention, characterized in that the total cross-sectional area of the inner diameter is 1.5 times or more.

(3)第三の発明は、ヘッダの前後に水切用ロールを配したことを特徴とする第一の発明または第二の発明に記載の熱鋼板の冷却設備である。   (3) A third invention is the thermal steel sheet cooling facility according to the first invention or the second invention, wherein a draining roll is arranged before and after the header.

(4)第四の発明は、冷却水噴射ノズルの内径3〜8mm、長さ120〜240mm、前記冷却水噴射ノズル下端から熱鋼板表面までの距離を30〜120mm、前記冷却水噴射ノズルから噴射される冷却水の流速を6m/s以上、水量密度を1.5〜4.0m/m ・minとすることを特徴とする第一の発明から第三の発明のいずれかに記載の熱鋼板の冷却設備である。 (4) In the fourth invention, the cooling water injection nozzle has an inner diameter of 3 to 8 mm, a length of 120 to 240 mm, a distance from the lower end of the cooling water injection nozzle to the surface of the hot steel plate of 30 to 120 mm, and is injected from the cooling water injection nozzle. The flow rate of the cooling water is 6 m / s or more, and the water density is 1.5 to 4.0 m 3 / m 2 · min. It is a cooling facility for hot steel sheets.

(5)第五の発明は、隔壁に設けられた給水口に内挿した冷却水噴射ノズルの外周面と前記給水口の内面との隙間を3mm以下とすることを特徴とする第一の発明から第四の発明のいずれかに記載の熱鋼板の冷却設備である。   (5) A fifth invention is characterized in that a clearance between an outer peripheral surface of a cooling water injection nozzle inserted in a water supply port provided in a partition wall and an inner surface of the water supply port is 3 mm or less. To a cooling facility for a hot steel sheet according to any one of the fourth to fourth aspects of the invention.

(6)第六の発明は、鋼板幅方向に並んだ冷却水噴射ノズルのうち、鋼板搬送方向の最上流側列の冷却水噴射ノズルは、鋼板搬送方向の上流方向へ15〜60度傾けられ、鋼板搬送方向の最下流側列の冷却水噴射ノズルは、鋼板搬送方向の下流方向へ15〜60度傾けられてなることを特徴とする第一の発明から第五の発明のいずれかに記載の熱鋼板の冷却設備である。   (6) In the sixth invention, among the cooling water injection nozzles arranged in the steel plate width direction, the cooling water injection nozzle in the uppermost stream side row in the steel plate conveyance direction is inclined 15 to 60 degrees upstream in the steel plate conveyance direction. The cooling water jet nozzles in the most downstream row in the steel plate transport direction are inclined 15 to 60 degrees in the downstream direction in the steel plate transport direction, according to any one of the first to fifth inventions. This is a thermal steel sheet cooling facility.

(7)第七の発明は、熱間圧延後の熱鋼板を冷却するに際し、第一の発明から第六の発明のいずれかに記載の熱鋼板の冷却設備から噴射する棒状冷却水により、鋼板上面側を冷却することを特徴とする熱鋼板の冷却方法である。   (7) In the seventh invention, when cooling the hot-rolled steel sheet after hot rolling, the steel sheet is cooled by the rod-like cooling water sprayed from the hot-steel sheet cooling equipment according to any one of the first to sixth inventions. A method for cooling a hot steel sheet, wherein the upper surface side is cooled.

本発明の熱鋼板の冷却設備および冷却方法を用いることにより、高い冷却速度が得られ、鋼板を目標温度まで早く冷却できるので、生産性向上に寄与できる。また、鋼板上面の冷却を、鋼板幅方向に温度むらがなく、均一に行うことができるので、品質の高い鋼板を製造することができる。   By using the thermal steel sheet cooling equipment and cooling method of the present invention, a high cooling rate can be obtained, and the steel sheet can be quickly cooled to the target temperature, which can contribute to productivity improvement. In addition, since the upper surface of the steel plate can be cooled uniformly in the width direction of the steel plate and can be uniformly performed, a high quality steel plate can be manufactured.

本発明の一実施形態に係る冷却設備の側面図である。It is a side view of the cooling equipment concerning one embodiment of the present invention. 本発明の一実施形態に係る他の冷却設備の側面図である。It is a side view of other cooling equipment concerning one embodiment of the present invention. 本発明の一実施形態に係る隔壁のノズル配置例を説明する図である。It is a figure explaining the example of nozzle arrangement of the partition concerning one embodiment of the present invention. 隔壁上の冷却排水の流れを説明する図である。It is a figure explaining the flow of the cooling waste water on a partition. 隔壁上の冷却排水の他の流れを説明する図である。It is a figure explaining other flows of cooling drainage on a partition. 従来例による鋼板幅方向温度分布を説明する図である。It is a figure explaining the steel plate width direction temperature distribution by a prior art example. 本発明による鋼板幅方向温度分布を説明する図である。It is a figure explaining the steel plate width direction temperature distribution by this invention. 厚板圧延ラインの概略を説明する図である。It is a figure explaining the outline of a thick plate rolling line. 従来例による冷却水の流れを説明する図である。It is a figure explaining the flow of the cooling water by a prior art example. 本発明例による冷却水の流れを説明する図である。It is a figure explaining the flow of the cooling water by the example of the present invention. 本発明例の隔壁上の冷却排水との非干渉を説明する図である。It is a figure explaining non-interference with the cooling drainage on the partition of the example of the present invention. ノズル先端が隔壁よりも上方にある場合の隔壁上の冷却排水との干渉を説明する図である。It is a figure explaining interference with the cooling drainage on a partition when a nozzle tip is above a partition.

以下、本発明の実施の形態の一例を図面を参照して説明する。なお、ここでは、本発明を厚板圧延プロセスでの鋼板の冷却に用いた場合を例にして述べる。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. Here, the case where the present invention is used for cooling a steel plate in a thick plate rolling process will be described as an example.

図8は、本発明の実施に供する厚板圧延ラインの一例を示す概略図である。
加熱炉から抽出されたスラブは圧延機によって粗圧延と仕上圧延が施され、所定の仕上温度、仕上板厚とされた後、オンラインにて加速冷却設備に搬送される。冷却前にプリレベラを通して鋼板の形状を整えてから加速冷却を行うのが冷却後の鋼板形状には好適である。加速冷却設備では、上面冷却設備と下面冷却設備とから噴射される冷却水によって鋼板は所定温度まで冷却される。その後、必要に応じてホットレベラで鋼板の形状が矯正される。
FIG. 8 is a schematic view showing an example of a thick plate rolling line used for carrying out the present invention.
The slab extracted from the heating furnace is subjected to rough rolling and finish rolling by a rolling mill to a predetermined finishing temperature and finishing plate thickness, and then conveyed to an accelerated cooling facility online. It is suitable for the steel plate shape after cooling to perform accelerated cooling after adjusting the shape of the steel plate through a pre-leveler before cooling. In the accelerated cooling facility, the steel sheet is cooled to a predetermined temperature by the cooling water sprayed from the upper surface cooling facility and the lower surface cooling facility. Thereafter, the shape of the steel sheet is corrected with a hot leveler as necessary.

そして、図1は本発明の一実施の形態における上下面冷却設備を示した図で、冷却ノズルの配置を示した側面図である。   FIG. 1 is a side view showing an arrangement of cooling nozzles, showing an upper and lower surface cooling facility according to an embodiment of the present invention.

上面冷却設備は、熱鋼板12の上面に冷却水を供給するヘッダ1と、該ヘッダ1から懸垂した冷却水噴射ノズル3と、ヘッダ1と熱鋼板12との間に鋼板幅方向に渡り水平に設置され多数の貫通孔(給水口6と排水口7)を有する隔壁5とを備えている。そして、冷却水噴射ノズル3は棒状の冷却水を噴射する円管ノズル3からなり、その先端が前記隔壁5に設けられた貫通孔(給水口6)に内挿されて隔壁5の下端部より上方になるように設置されている。なお、冷却水噴射ノズル3は、ヘッダ1内の底部の異物を吸い込んで詰まるのを防止するため、その上端がヘッダ1の内部に突出するように、ヘッダ1内に貫入させることが好ましい。   The top surface cooling facility is horizontally disposed across the steel plate width direction between the header 1 for supplying cooling water to the top surface of the hot steel plate 12, the cooling water injection nozzle 3 suspended from the header 1, and the header 1 and the hot steel plate 12. A partition wall 5 having a large number of through holes (water supply port 6 and drain port 7) is provided. The cooling water injection nozzle 3 is composed of a circular pipe nozzle 3 for injecting rod-shaped cooling water, and the tip thereof is inserted into a through hole (water supply port 6) provided in the partition wall 5 so that the lower end portion of the partition wall 5 It is installed to be on the top. The cooling water injection nozzle 3 is preferably inserted into the header 1 so that the upper end of the cooling water injection nozzle 3 protrudes into the header 1 in order to prevent the foreign matter at the bottom in the header 1 from being sucked and clogged.

ここで、本発明における棒状冷却水とは、円形状(楕円や多角の形状も含む)のノズル噴出口からある程度加圧された状態で噴射される冷却水であって、ノズル噴出口からの冷却水の噴射速度が6m/s以上、好ましくは8m/s以上であり、ノズル噴出口から噴射された水流の断面がほぼ円形に保たれた連続性と直進性のある水流の冷却水のことをいう。すなわち、円管ラミナーノズルからの自由落下流や、スプレーのような液滴状態で噴射されるものとは異なる。   Here, the rod-shaped cooling water in the present invention is cooling water injected in a state of being pressurized to some extent from a circular (including elliptical or polygonal) nozzle outlet, and is cooled from the nozzle outlet. The water injection speed is 6 m / s or more, preferably 8 m / s or more, and the water flow jetted from the nozzle outlet has a substantially circular cross-section and is a continuous and straight water flow cooling water. Say. That is, it is different from a free fall flow from a circular tube laminar nozzle or a liquid ejected in a droplet state such as a spray.

円管ノズル3の先端が貫通孔に内挿されて隔壁5の下端部より上方になるように設置されているのは、仮に先端が上方に反った鋼板が進入してきた場合でも隔壁5によって円管ノズル3が損傷するのを防止するためである。それによって、円管ノズル3が良好な状態で長期間に亘って冷却を行うことができるので、設備補修等を行うことなく、鋼板の温度むらの発生を防止することができる。   The circular tube nozzle 3 is installed so that the tip of the circular tube nozzle 3 is inserted into the through-hole and above the lower end of the partition wall 5 even if a steel plate whose tip is warped upward enters. This is to prevent the tube nozzle 3 from being damaged. Thereby, since the circular tube nozzle 3 can be cooled over a long period of time in a good state, it is possible to prevent the occurrence of temperature unevenness in the steel sheet without performing equipment repair or the like.

また、円管ノズル3の先端が貫通孔に内挿されているので、図11に示すように、隔壁5の上面を流れる点線矢印の排出水の幅方向流れと干渉することがない。したがって、円管ノズル3から噴射された冷却水は、幅方向位置によらず等しく鋼板上面へ達することができ、幅方向に均一な冷却を行うことができる。   Further, since the tip of the circular tube nozzle 3 is inserted into the through-hole, as shown in FIG. 11, it does not interfere with the flow in the width direction of the drained water indicated by the dotted arrow flowing through the upper surface of the partition wall 5. Therefore, the cooling water sprayed from the circular tube nozzle 3 can reach the upper surface of the steel plate equally regardless of the position in the width direction, and uniform cooling in the width direction can be performed.

一例を示すと、図3に示すように隔壁5には直径10mmの貫通孔が鋼板幅方向に80mm、搬送方向に80mmのピッチで碁盤の目状に多数開けられている。そして、給水口6には外径8mm、内径3mm、長さ140mmの円管ノズル3が装入されている。円管ノズル3は千鳥格子状に配列され、円管ノズル3が通っていない貫通孔は冷却水の排水口7となっている。このように、本発明の冷却設備の隔壁5に設けられた多数の貫通孔は、ほぼ同数の給水口6と排水口7とから成り立っており、それぞれに役割、機能を分担している。   As an example, as shown in FIG. 3, a large number of through-holes having a diameter of 10 mm are formed in the partition wall 5 in a grid pattern at a pitch of 80 mm in the steel plate width direction and 80 mm in the transport direction. A circular tube nozzle 3 having an outer diameter of 8 mm, an inner diameter of 3 mm, and a length of 140 mm is inserted into the water supply port 6. The circular tube nozzles 3 are arranged in a staggered pattern, and the through holes through which the circular tube nozzles 3 do not pass serve as cooling water drains 7. As described above, the large number of through holes provided in the partition wall 5 of the cooling facility of the present invention are composed of substantially the same number of water supply ports 6 and drain ports 7, and share their roles and functions.

このとき、排水口7の総断面積は、円管ノズル3の内径の総断面積よりも十分広く、円管ノズル3の内径の総断面積の11倍程度が確保されており、図1に示すように鋼板上面に供給された冷却水は、鋼板表面と隔壁5との間に充満し、排水口7を通して、隔壁5の上方に導かれ、速やかに排出される。図4は隔壁上の鋼板幅方向端部付近の冷却排水の流れを説明する正面図であるが、排水口7の排水方向が冷却水噴射方向と逆の上向きになっており、隔壁5の上方へ抜けた冷却排水は、鋼板幅方向外側へ向きを変え、ヘッダ1と隔壁5との間の排水流路を流れて排水される。   At this time, the total cross-sectional area of the drain port 7 is sufficiently larger than the total cross-sectional area of the inner diameter of the circular tube nozzle 3, and about 11 times the total cross-sectional area of the inner diameter of the circular tube nozzle 3 is secured. As shown, the cooling water supplied to the upper surface of the steel plate is filled between the steel plate surface and the partition wall 5, led to the upper side of the partition wall 5 through the drain port 7, and quickly discharged. FIG. 4 is a front view for explaining the flow of cooling drainage in the vicinity of the end in the width direction of the steel plate on the partition wall. The drainage direction of the drainage port 7 is upward opposite to the cooling water injection direction, and The cooling drainage that has passed through is turned to the outside in the width direction of the steel sheet and flows through the drainage flow path between the header 1 and the partition wall 5 and is drained.

一方、図5に示す例は、排水口7を鋼板幅方向に傾斜させて排水方向が鋼板幅方向外側に向くように幅方向外側へ向けた斜め方向としたものである。このようにすることで、隔壁5上の排出水の鋼板幅方向流れが円滑になり、排水が促進されるので好ましい。   On the other hand, in the example shown in FIG. 5, the drain port 7 is inclined in the steel plate width direction so as to be inclined in the width direction outward so that the drain direction is directed outward in the steel plate width direction. By doing in this way, the flow of the discharged water on the partition wall 5 in the width direction of the steel plate becomes smooth and drainage is promoted, which is preferable.

ここで、図9に示すように排水口と給水口が同一の貫通孔に設置されていると、冷却水は、鋼板に衝突した後、隔壁5の上方に抜けにくくなって、鋼板12と隔壁5の間を鋼板幅方向端部へ向かって流れるようになる。そうすると鋼板12と隔壁5の間の冷却排水の流量は、板幅方向の端部に近づく程多くなるので、噴射冷却水が滞留水膜を貫通して鋼板に到達する力が板幅方向端部ほど阻害されることとなる。   Here, as shown in FIG. 9, when the drainage port and the water supply port are installed in the same through hole, the cooling water does not easily escape above the partition wall 5 after colliding with the steel plate, and the steel plate 12 and the partition wall. 5 flows toward the end in the steel sheet width direction. Then, since the flow rate of the cooling drainage between the steel plate 12 and the partition wall 5 increases as it approaches the end in the plate width direction, the force that the injected cooling water reaches the steel plate through the staying water film is the end in the plate width direction. It will be hindered.

薄板の場合には板幅が高々2m程度であるのでその影響は限定的であるが、特に板幅が3m以上の厚板の場合には、その影響は無視できない。従って、鋼板幅方向端部の冷却が弱くなり、この場合の鋼板幅方向の温度分布は、図6に示すように凹型をした不均一な温度分布となる。   In the case of a thin plate, since the plate width is about 2 m at most, the influence is limited. However, in the case of a thick plate having a plate width of 3 m or more, the influence cannot be ignored. Accordingly, the cooling at the end in the width direction of the steel plate is weakened, and the temperature distribution in the width direction of the steel plate in this case becomes a non-uniform temperature distribution having a concave shape as shown in FIG.

これに対して、本発明の冷却設備は、図10に示すように給水口6と排水口7は別個に設けられており、給水と排水を役割分担しているので、冷却排水は隔壁5の排水口7を通過して隔壁5の上方に円滑に流れて行くようになる。従って、冷却後の排水が速やかに鋼板上面から排除されるので、後続で供給される冷却水は、容易に滞留水膜を貫通することができ、十分な冷却能力を得ることができる。この場合の鋼板幅方向の温度分布は、図7に示すように幅方向に均一な温度分布を得ることができる。   On the other hand, in the cooling facility of the present invention, as shown in FIG. 10, the water supply port 6 and the drainage port 7 are provided separately and share the roles of water supply and drainage. The water flows smoothly through the drain port 7 and above the partition wall 5. Accordingly, since the drainage after cooling is quickly removed from the upper surface of the steel sheet, the cooling water supplied subsequently can easily penetrate the staying water film, and a sufficient cooling capacity can be obtained. In this case, the temperature distribution in the width direction of the steel sheet can obtain a uniform temperature distribution in the width direction as shown in FIG.

ちなみに、排水口7の総断面積は、円管ノズル3の内径の総断面積の1.5倍以上であれば、冷却水の排出が速やかに行われる。このことは、例えば、隔壁5には円管ノズル3の外径よりも大きい穴を開け、排水口の数を給水口の数と同じか、それ以上にすれば実現できる。   Incidentally, if the total cross-sectional area of the drain port 7 is 1.5 times or more the total cross-sectional area of the inner diameter of the circular tube nozzle 3, the cooling water is quickly discharged. This can be realized, for example, by making a hole larger than the outer diameter of the circular tube nozzle 3 in the partition wall 5 and making the number of drain ports equal to or more than the number of water supply ports.

排水口7の総断面積が円管ノズル3の内径の総断面積の1.5倍より小さいと、排水口の流動抵抗が大きくなり、滞留水が排水されにくくなる結果、滞留水膜を貫通して鋼板表面に到達できる冷却水量が大幅に減り、冷却能が低下するので好ましくない。より好ましくは4倍以上である。一方排水口が多過ぎたり、排水口の断面径が大きくなりすぎると、隔壁5の剛性が小さくなって、鋼板が衝突したときに損傷し易くなる。従って、排水口の総断面積と円管ノズル3の内径の総断面積の比は1.5から20の範囲が好適である。   If the total cross-sectional area of the drain port 7 is less than 1.5 times the total cross-sectional area of the inner diameter of the circular tube nozzle 3, the flow resistance of the drain port increases and the accumulated water becomes difficult to be drained. Then, the amount of cooling water that can reach the surface of the steel sheet is greatly reduced, and the cooling ability is lowered. More preferably, it is 4 times or more. On the other hand, if there are too many drain ports or the cross-sectional diameter of the drain ports becomes too large, the rigidity of the partition walls 5 will be small, and will be easily damaged when the steel plates collide. Therefore, the ratio of the total cross-sectional area of the drain outlet and the total cross-sectional area of the inner diameter of the circular tube nozzle 3 is preferably in the range of 1.5 to 20.

また、隔壁5の給水口6に内挿した円管ノズル3の外周面と給水口6の内面との隙間は3mm以下とすることが望ましい。この隙間が大きいと、円管ノズル3から噴射される冷却水の随伴流の影響により、隔壁5の上面へ排出された冷却排水が給水口6の円管ノズルの外周面との隙間に引き込まれ、再び鋼板上に供給されることとなるので、冷却効率が悪くなる。これを防止するには、円管ノズル3の外径を給水口6の大きさとほぼ同じにすることがより好ましいが、工作精度や取り付け誤差を考慮し、実質的に影響が少ない3mmまでの隙間は許容する。より望ましくは2mm以下とする。   The gap between the outer peripheral surface of the circular tube nozzle 3 inserted into the water supply port 6 of the partition wall 5 and the inner surface of the water supply port 6 is preferably 3 mm or less. If this gap is large, the cooling drainage discharged to the upper surface of the partition wall 5 is drawn into the gap between the outer peripheral surface of the circular pipe nozzle of the water supply port 6 due to the influence of the accompanying flow of the cooling water jetted from the circular pipe nozzle 3. Since it is supplied again onto the steel plate, the cooling efficiency is deteriorated. In order to prevent this, it is more preferable that the outer diameter of the circular tube nozzle 3 is substantially the same as the size of the water supply port 6, but in consideration of work accuracy and mounting error, a gap of up to 3 mm that is substantially less affected. Is acceptable. More preferably, it is 2 mm or less.

さらに、冷却水が滞留水膜を貫通して鋼板に到達できるようにするためには、円管ノズル3の内径、長さ、冷却水の噴射速度やノズル距離も最適にする必要がある。   Furthermore, in order to allow the cooling water to penetrate the staying water film and reach the steel plate, it is necessary to optimize the inner diameter and length of the circular tube nozzle 3, the cooling water injection speed and the nozzle distance.

即ち、ノズル内径は3〜8mmが好適である。3mmより小さいとノズルから噴射する水の束が細くなり勢いが弱くなる。一方ノズル径が8mmを超えると流速が遅くなり、滞留水膜を貫通する力が弱くなるからである。   That is, the nozzle inner diameter is preferably 3 to 8 mm. If it is smaller than 3 mm, the bundle of water sprayed from the nozzle becomes thin and the momentum becomes weak. On the other hand, if the nozzle diameter exceeds 8 mm, the flow rate becomes slow and the force penetrating the staying water film becomes weak.

円管ノズルの長さは120〜240mmが好適である。ここでいう円管ノズルの長さとは、ヘッダ内部へある程度貫入したノズル上端の流入口から、隔壁の給水口に内挿したノズルの下端までの長さを意味する。円管ノズルが120mmより短いと、ヘッダ下面と隔壁上面との距離が短くなりすぎる(例えば、ヘッダ厚み20mm、ヘッダ内へのノズル上端の突出量20mm、隔壁へのノズル下端の挿入量10mmとすると、70mm未満となる)ため、隔壁より上側の排水スペースが小さくなり、冷却排水が円滑に排出できなくなる。一方、240mmより長いと円管ノズルの圧力損失が大きくなり、滞留水膜を貫通する力が弱くなるからである。   The length of the circular tube nozzle is preferably 120 to 240 mm. The length of the circular tube nozzle here means the length from the inlet at the upper end of the nozzle that penetrates into the header to some extent to the lower end of the nozzle inserted into the water supply port of the partition wall. If the circular tube nozzle is shorter than 120 mm, the distance between the lower surface of the header and the upper surface of the partition wall becomes too short (for example, if the header thickness is 20 mm, the protrusion amount of the nozzle upper end into the header is 20 mm, and the insertion amount of the nozzle lower end into the partition wall is 10 mm). Therefore, the drainage space above the partition wall becomes small, and the cooling drainage cannot be discharged smoothly. On the other hand, if the length is longer than 240 mm, the pressure loss of the circular tube nozzle increases, and the force penetrating the staying water film becomes weak.

ノズルからの冷却水の噴射速度は、6m/s以上、好ましくは8m/s以上が必要である。6m/s未満では、滞留水膜を冷却水が貫通する力が極端に弱くなるからである。8m/s以上であれば、より大きな冷却能力を確保できるので好ましい。また、上面冷却の冷却水噴射ノズル3の下端から鋼板12の表面までの距離は、30〜120mmとするのが良い。30mm未満では、鋼板12が隔壁5に衝突する頻度が極端に多くなり設備保全が難しくなる。120mm超えでは、冷却水が滞留水膜を貫通する力が極端に弱くなるからである。   The jetting speed of the cooling water from the nozzle needs to be 6 m / s or more, preferably 8 m / s or more. This is because if it is less than 6 m / s, the force of the cooling water penetrating through the staying water film becomes extremely weak. If it is 8 m / s or more, a larger cooling capacity can be secured, which is preferable. The distance from the lower end of the cooling water jet nozzle 3 for cooling the upper surface to the surface of the steel plate 12 is preferably 30 to 120 mm. If it is less than 30 mm, the frequency with which the steel plate 12 collides with the partition wall 5 becomes extremely high, and equipment maintenance becomes difficult. This is because if the thickness exceeds 120 mm, the force through which the cooling water penetrates the staying water film becomes extremely weak.

鋼板上面の冷却では、冷却水が鋼板長手方向に拡がらないように、ヘッダ1の前後に水切ロール10を設置するのが良い。これにより、冷却ゾーン長が一定となり、温度制御が容易になる。ここで水切ロール10により鋼板搬送方向の冷却水の流れは堰き止められるので冷却排水は鋼板幅方向外側に流れるようになるが、水切ロール10の近傍は冷却水が滞留し易い。   In cooling the upper surface of the steel plate, it is preferable to install draining rolls 10 before and after the header 1 so that the cooling water does not spread in the longitudinal direction of the steel plate. Thereby, the cooling zone length becomes constant and the temperature control becomes easy. Here, since the flow of the cooling water in the steel plate conveyance direction is blocked by the draining roll 10, the cooling drainage flows to the outside in the width direction of the steel plate, but the cooling water tends to stay in the vicinity of the draining roll 10.

そこで図2に示すように、鋼板幅方向に並んだ円管ノズル3の列のうち、鋼板搬送方向の最上流側列の冷却水噴射ノズルは、鋼板搬送方向の上流方向へ15〜60度傾け、鋼板搬送方向の最下流側列の冷却水噴射ノズルは、鋼板搬送方向の下流方向へ15〜60度傾けることが好ましい。こうすることにより、水切ロール10に近い位置にも冷却水を供給することができ、水切りロール10近傍に冷却水が滞留することがなく、冷却効率が上がるので好適である。   Therefore, as shown in FIG. 2, among the rows of circular tube nozzles 3 aligned in the steel plate width direction, the cooling water jet nozzle in the uppermost stream side row in the steel plate conveyance direction is inclined 15 to 60 degrees upstream in the steel plate conveyance direction. The cooling water injection nozzles in the most downstream row in the steel plate conveyance direction are preferably inclined 15 to 60 degrees in the downstream direction in the steel plate conveyance direction. By carrying out like this, a cooling water can be supplied also to the position near the draining roll 10, and since a cooling water does not stay in the draining roll 10 vicinity, a cooling efficiency improves, and is suitable.

ヘッダ1下面と隔壁5上面の距離は、ヘッダ下面と隔壁上面に囲まれた空間内での鋼板幅方向流路断面積が冷却水噴射ノズル内径の総断面積の1.5倍以上となるように設けられ、例えば100mm程度以上である。この鋼板幅方向流路断面積が冷却水噴射ノズル内径の総断面積の1.5倍以上ないと、隔壁に設けられた排水口7から隔壁5上面へ排出された冷却排水が円滑に鋼板幅方向に排出できないからである。   The distance between the lower surface of the header 1 and the upper surface of the partition wall 5 is such that the cross-sectional area in the width direction of the steel plate in the space surrounded by the lower surface of the header and the upper surface of the partition wall is 1.5 times or more of the total cross-sectional area of the cooling water jet nozzle inner diameter. For example, about 100 mm or more. If the cross-sectional area of the flow path in the steel plate width direction is not 1.5 times or more than the total cross-sectional area of the cooling water jet nozzle inner diameter, the cooling drainage discharged from the drain port 7 provided on the partition wall to the top surface of the partition wall 5 is smooth. It is because it cannot discharge in the direction.

本発明で最も効果を発揮する水量密度の範囲は、1.5m/m ・min以上である。水量密度がこれよりも低い場合には滞留水膜がそれほど厚くならず、棒状冷却水を自由落下させて鋼板を冷却する公知の技術を適用しても、幅方向の温度むらはそれほど大きくならない場合もある。一方、水量密度が4.0m/m・minよりも高い場合でも、本発明の技術を用いることは有効であるが、設備コストが高くなるなど実用化の上での問題があるので、1.5〜4.0m/m・minが最も実用的な水量密度である。 The range of the water density that is most effective in the present invention is 1.5 m 3 / m 2 · min or more. When the water density is lower than this, the staying water film does not become so thick, and even if the known technology of cooling the steel plate by free-falling the rod-shaped cooling water is applied, the temperature unevenness in the width direction does not become so large There is also. On the other hand, even when the water density is higher than 4.0 m 3 / m 2 · min, it is effective to use the technique of the present invention, but there are problems in practical use such as an increase in equipment cost. The most practical water density is 1.5 to 4.0 m 3 / m 2 · min.

本発明の冷却技術を適用するのは、冷却ヘッダの前後に水切りロールを配する場合が特に効果的であるが、水切りロールがない場合にも適用することは可能である。例えば、ヘッダが長手方向に比較的長く(2〜4m程度ある場合)、そのヘッダの前後でパージ用の水スプレーを噴射して、非水冷ゾーンへの水漏れを防止する冷却設備に適用することも可能である。   The cooling technique of the present invention is particularly effective when draining rolls are arranged before and after the cooling header, but can also be applied when there is no draining roll. For example, the header is relatively long in the longitudinal direction (when it is about 2 to 4 m), and is applied to a cooling facility that sprays a water spray for purging before and after the header to prevent water leakage to the non-water cooling zone. Is also possible.

なお、本発明において、鋼板下面側の冷却装置については、特に限定されるものではない。図1、2に示す実施形態では、上面側の冷却装置と同様の円管ノズル4を備えた冷却ヘッダ2の例を示したが、鋼板下面側の冷却では、噴射された冷却水は鋼板に衝突した後に自然落下するので、上面側冷却のような冷却排水を鋼板幅方向に排出する隔壁5はなくてよい。また、膜状冷却水や噴霧状のスプレー冷却水などを供給する公知の技術をもちいてもよい。   In the present invention, the cooling device on the lower surface side of the steel plate is not particularly limited. In the embodiment shown in FIGS. 1 and 2, an example of the cooling header 2 including the circular tube nozzle 4 similar to the cooling device on the upper surface side is shown, but in cooling on the lower surface side of the steel plate, the injected cooling water is applied to the steel plate. Since it falls spontaneously after the collision, there is no need for the partition wall 5 for discharging cooling drainage such as cooling on the upper surface side in the steel plate width direction. Moreover, you may use the well-known technique which supplies film-like cooling water, spray-like spray cooling water, etc.

以下、本発明の一実施例として、厚板圧延のプロセスにおいて、引張強度590MPaクラスの鋼板の冷却を行う場合について、図面に基づいて説明する。   Hereinafter, as an embodiment of the present invention, a case of cooling a steel plate having a tensile strength of 590 MPa class in a thick plate rolling process will be described with reference to the drawings.

図8に概略を示す厚板圧延設備において、加熱炉から抽出されたスラブを圧延機によって、成形、幅出し圧延を行った後、粗圧延を行い、さらに仕上圧延を行って板厚を25mm、板幅を4.5mとした。仕上圧延直後に測定した鋼板表面温度、すなわち仕上温度は820℃であった。この後に、ホットレベラを通して、加速冷却設備において加速冷却を行った。冷却開始温度780℃から冷却終了温度(加速冷却設備出側で復熱後の温度を測定した値)560℃まで冷却を行った。   In the thick plate rolling equipment schematically shown in FIG. 8, the slab extracted from the heating furnace is formed by a rolling mill, subjected to tenter rolling, then rough rolled, and further subjected to finish rolling to obtain a plate thickness of 25 mm, The plate width was 4.5 m. The steel sheet surface temperature measured immediately after finish rolling, that is, the finish temperature was 820 ° C. Thereafter, accelerated cooling was performed in an accelerated cooling facility through a hot leveler. Cooling was performed from a cooling start temperature of 780 ° C. to a cooling end temperature of 560 ° C. (a value obtained by measuring the temperature after reheating on the accelerated cooling equipment exit side).

本発明例1として、前記実施形態に示した上面冷却設備を用いた。本冷却設備は、図1に示すように鋼板上面に供給した冷却水を隔壁の上方に流して、さらに図4に示すように鋼板幅方向側方から排水できるような流路を設けた設備である。   As Example 1 of the present invention, the top surface cooling facility shown in the above embodiment was used. This cooling facility is a facility provided with a flow path for allowing cooling water supplied to the upper surface of the steel plate to flow above the partition as shown in FIG. 1 and draining from the side in the width direction of the steel plate as shown in FIG. is there.

隔壁には、直径12mmの孔を碁盤の目のようにあけ、図3に示すように、千鳥格子状に配列した給水口に円管ノズルを内挿し、残りの孔を排水口として用いた。また、図2に示すように、鋼板搬送方向の最上流側列の冷却水噴射ノズルは、鋼板搬送方向の上流方向へ30度傾け、鋼板搬送方向の最下流側列の冷却水噴射ノズルは、鋼板搬送方向の下流方向へ30度傾けて、水切りロールに近い位置にも冷却水を供給した。なお、ヘッダ下面と隔壁上面の距離は100mmとした。   In the partition wall, holes with a diameter of 12 mm were formed like a grid, and as shown in FIG. 3, circular pipe nozzles were inserted into water supply ports arranged in a staggered pattern, and the remaining holes were used as drainage ports. . Further, as shown in FIG. 2, the cooling water injection nozzle in the uppermost stream side row in the steel plate conveyance direction is inclined 30 degrees in the upstream direction in the steel plate conveyance direction, and the cooling water injection nozzle in the lowermost row in the steel plate conveyance direction is The cooling water was also supplied to a position close to the draining roll by being inclined 30 degrees in the downstream direction of the steel plate conveyance direction. The distance between the header lower surface and the partition upper surface was 100 mm.

ノズルは、内径5mm、外径9mm、長さ170mmとし、その上端をヘッダ内へ突出させた。また、棒状冷却水の噴射速度を8.9m/sとした。鋼板幅方向のノズルピッチは50mmとして、テーブルローラ間距離1mのゾーン内でノズルを長手方向に10列並べた。上面の水量密度は、2.1m/m ・minであった。上面冷却のノズル下端は、板厚25mmの隔壁の上下表面の中間位置となるように設置し、鋼板表面までの距離は80mmとした。 The nozzle had an inner diameter of 5 mm, an outer diameter of 9 mm, and a length of 170 mm, and its upper end protruded into the header. Moreover, the injection speed of the rod-shaped cooling water was 8.9 m / s. The nozzle pitch in the steel plate width direction was 50 mm, and 10 rows of nozzles were arranged in the longitudinal direction in a zone with a distance between table rollers of 1 m. The water density on the upper surface was 2.1 m 3 / m 2 · min. The lower end of the nozzle for cooling the upper surface was installed so as to be at an intermediate position between the upper and lower surfaces of the partition wall having a thickness of 25 mm, and the distance to the steel plate surface was 80 mm.

なお、下面冷却設備については、図1に示すような、隔壁を備えないこと以外は上面冷却設備と同様の冷却設備を用い、棒状冷却水の噴射速度および水量密度を上面の1.5倍とした。   As for the bottom surface cooling equipment, the cooling equipment similar to the top surface cooling equipment is used except that no partition wall is provided as shown in FIG. did.

本発明例1の上面冷却設備は、排水口の総断面積がノズル内径の総断面積の約6倍と十分に広いので、鋼板に当たった噴射冷却水は上方に流れ、速やかに排出された。さらに、ヘッダ下面と隔壁上面の間の空間での鋼板幅方向両外側への流路断面積はノズル内径の総断面積の約5倍と十分に広かったので、板端部からの排水性も非常に良好であった。冷却後の冷却排水が速やかに排除されるので、後続で供給される冷却水が容易に滞留水膜を貫通することができ、従来よりも高い冷却能力を得ることができた。   In the top surface cooling facility of Example 1 of the present invention, the total cross-sectional area of the drain outlet is sufficiently wide, about 6 times the total cross-sectional area of the nozzle inner diameter, so that the injected cooling water hitting the steel plate flows upward and is quickly discharged. . Furthermore, since the cross-sectional area of the flow path to the outer sides in the steel plate width direction in the space between the header lower surface and the partition upper surface was sufficiently wide, about 5 times the total cross-sectional area of the nozzle inner diameter, drainage from the plate edge is also possible It was very good. Since the cooling drainage after cooling is quickly eliminated, the cooling water supplied subsequently can easily penetrate the staying water film, and a higher cooling capacity than before can be obtained.

板幅中央での冷却停止温度を560℃とするための冷却時間は2.5秒となった。冷却速度が高くなったため、高強度を得るために必要な鋼の合金成分(例えばMnなど)の削減が可能となり、製造コストを削減することができる。   The cooling time for setting the cooling stop temperature at the center of the plate width to 560 ° C. was 2.5 seconds. Since the cooling rate is increased, it is possible to reduce the steel alloy components (for example, Mn) necessary for obtaining high strength, and to reduce the manufacturing cost.

鋼板幅方向の温度分布は、550〜560℃で図7に示すようなほぼ均一な分布になり、鋼板幅方向の温度むらは小さく、10℃になった。このため、材料試験の合格率は99.5%と高く、歩留りも十分に高かった。   The temperature distribution in the width direction of the steel sheet was 550 to 560 ° C., which was a substantially uniform distribution as shown in FIG. 7, and the temperature unevenness in the width direction of the steel sheet was small and became 10 ° C. For this reason, the pass rate of the material test was as high as 99.5%, and the yield was also sufficiently high.

ノズルの下端を隔壁の上下端の中間位置としたので、プリレベラで発生した上反りを修正しきれなかった鋼板や、冷却中に上反りが発生した鋼板が隔壁にぶつかっても、隔壁が保護板の役目を果たし、ノズルが壊れることはなかった
これに対し、比較例として、特許文献2に記載された隔壁にスリット状の孔を設ける従来技術の冷却設備を用いた。なお、隔壁に設ける孔形状以外の条件は、上述の本発明例1にそろえた。この比較例の冷却設備は、図9に示すように、鋼板に衝突した後の冷却水は上方に抜けにくいので、板幅中央での冷却停止温度を560℃とするために、3秒の水冷時間が必要であった。
Since the lower end of the nozzle is in the middle position between the upper and lower ends of the partition wall, even if the steel plate that could not correct the upper warp generated by the pre-leveler or the steel plate that has warped during cooling hits the partition wall, the partition wall is a protective plate On the other hand, as a comparative example, a conventional cooling facility provided with slit-like holes in the partition walls described in Patent Document 2 was used. In addition, conditions other than the hole shape provided in a partition were aligned with the above-mentioned Example 1 of this invention. In the cooling equipment of this comparative example, as shown in FIG. 9, the cooling water after colliding with the steel plate is difficult to escape upward, so that the cooling stop temperature at the center of the plate width is 560 ° C. I needed time.

冷却停止温度の板幅方向分布は、図6に示すような凹型になった。板端部付近での最も高い温度は600℃であり、幅方向の温度むら(最高温度-最低温度)は40℃になった。製品の一部を取り出して材料試験を行った結果、合格率は70%と低く、歩留りも悪かった。   The distribution of the cooling stop temperature in the plate width direction has a concave shape as shown in FIG. The highest temperature near the edge of the plate was 600 ° C., and the temperature unevenness in the width direction (maximum temperature-minimum temperature) was 40 ° C. As a result of taking out a part of the product and conducting a material test, the acceptance rate was as low as 70% and the yield was also poor.

また、隔壁には孔がスリット状に空いているが、この部分の剛性は弱く、上反りした鋼板がぶつかった時に、隔壁とノズルが変形して破損した。   Moreover, although the hole was vacant in the slit shape in the partition, the rigidity of this part was weak, and when the warped steel plate collided, the partition and the nozzle were deformed and damaged.

本発明の実施例2として、実施例1と同様の厚板圧延のプロセスにおいて、以下に示す冷却条件を変更した場合について説明する。   As Example 2 of the present invention, a case where the following cooling conditions are changed in the same plate rolling process as Example 1 will be described.

本発明例2で用いた冷却設備は、図1に示す本発明例1と同様の上面冷却設備において、隔壁に直径11mmの孔と直径14mmの孔を交互に碁盤の目のようにあけ、図3に示すように、千鳥格子状に配列した直径14mmの孔を給水口として円管ノズルを内挿し、残りの直径11mmの孔を排水口として用いた。なお、ヘッダ下面と隔壁上面の距離は100mmとした。   The cooling facility used in Invention Example 2 is the same top surface cooling facility as that of Invention Example 1 shown in FIG. 1, in which holes with a diameter of 11 mm and holes with a diameter of 14 mm are alternately formed like a grid on the partition wall. As shown in FIG. 3, circular nozzles were inserted using holes with a diameter of 14 mm arranged in a staggered pattern as a water supply port, and the remaining holes with a diameter of 11 mm were used as a drain port. The distance between the header lower surface and the partition upper surface was 100 mm.

ノズルは、内径8mm、外径11mm、長さ170mmとし、その上端をヘッダ内へ突出させた。また、棒状冷却水の噴射速度を6.3m/sとした。上面の水量密度は、3.8m/m ・minであった。上面冷却のノズル下端は、板厚30mmの隔壁の上下表面の中間位置となるように設置し、鋼板表面までの距離は50mmとした。上記以外の条件については、本発明例1と同様とした。 The nozzle had an inner diameter of 8 mm, an outer diameter of 11 mm, and a length of 170 mm, and its upper end protruded into the header. Moreover, the jet speed of the rod-shaped cooling water was set to 6.3 m / s. The water density on the upper surface was 3.8 m 3 / m 2 · min. The lower end of the nozzle for cooling the upper surface was installed so as to be at an intermediate position between the upper and lower surfaces of the partition wall having a thickness of 30 mm, and the distance to the steel plate surface was set to 50 mm. The conditions other than the above were the same as Example 1 of the present invention.

なお、下面冷却設備については、図1に示すような、隔壁を備えないこと以外は上面冷却設備と同様の冷却設備を用い、ノズル先端から鋼板表面までの距離は80mmとした。また、棒状冷却水の噴射速度および水量密度を上面の1.5倍とした。   In addition, about the lower surface cooling equipment, the cooling equipment similar to an upper surface cooling equipment except having no partition as shown in FIG. 1 was used, and the distance from the nozzle tip to the steel plate surface was 80 mm. Further, the jet speed and the water density of the rod-shaped cooling water were set to 1.5 times the upper surface.

本発明例2の上面冷却設備は、排水口の総断面積がノズル内径の総断面積の約2倍と十分に広いので、鋼板に当たった噴射冷却水は上方に流れ、速やかに排出された。さらに、ヘッダ下面と隔壁上面の間の空間での鋼板幅方向両外側への流路断面積はノズル内径の総断面積の約2倍と十分に広かったので、板端部からの排水性も非常に良好であった。   In the upper surface cooling facility of Example 2 of the present invention, the total cross-sectional area of the drain outlet is sufficiently wide, about twice the total cross-sectional area of the nozzle inner diameter, so that the jet cooling water hitting the steel plate flows upward and is quickly discharged. . In addition, the cross-sectional area of the flow path to the outside in the width direction of the steel plate in the space between the header lower surface and the partition upper surface was sufficiently wide, approximately twice the total cross-sectional area of the nozzle inner diameter, so that the drainage from the plate edge is also possible It was very good.

板幅中央での冷却停止温度を560℃とするための冷却時間は2.0秒、鋼板幅方向の温度分布は550〜560℃で図7に示すようなほぼ均一な分布になり、本発明例1と同様に、高冷却速度で均一な冷却を行うことができた。   The cooling time for setting the cooling stop temperature at the center of the plate width to 560 ° C. is 2.0 seconds, and the temperature distribution in the width direction of the steel plate is 550 to 560 ° C., which is a substantially uniform distribution as shown in FIG. As in Example 1, uniform cooling could be performed at a high cooling rate.

1 上ヘッダ
2 下ヘッダ
3 上冷却水噴射ノズル(円管ノズル)
4 下冷却水噴射ノズル(円管ノズル)
5 隔壁
6 給水口
7 排水口
8 噴射冷却水
9 排出水
10 水切ロール
11 テーブルローラ
12 鋼板
1 Upper header 2 Lower header 3 Upper cooling water injection nozzle (circular tube nozzle)
4 Lower cooling water injection nozzle (circular tube nozzle)
5 Bulkhead 6 Water supply port 7 Drainage port 8 Injection cooling water 9 Drained water 10 Draining roll 11 Table roller 12 Steel plate

Claims (6)

鋼板の熱間圧延ラインに設置される熱鋼板の冷却設備であって、熱鋼板の上面に冷却水を供給するヘッダと、該ヘッダから懸垂した棒状冷却水を噴射する冷却水噴射ノズルと、前記熱鋼板と前記ヘッダとの間に設置される隔壁とを備えるとともに、前記隔壁には、前記冷却水噴射ノズルの下端部を内挿する給水口と、前記熱鋼板の上面に供給された冷却水を前記隔壁上へ排水する排水口とが、多数設けられ隔壁に設けられた排水口の総断面積およびヘッダ下面と隔壁上面とに囲まれた空間内での鋼板幅方向流路断面積が、いずれも冷却水噴射ノズル内径の総断面積の1.5倍以上であることを特徴とする熱鋼板の冷却設備。 A cooling facility for a hot steel plate installed in a hot rolling line for a steel plate, a header for supplying cooling water to the upper surface of the hot steel plate, a cooling water injection nozzle for injecting rod-like cooling water suspended from the header, A partition wall provided between the hot steel plate and the header, and a water supply port for inserting a lower end portion of the cooling water injection nozzle in the partition wall, and cooling water supplied to the upper surface of the hot steel plate A plurality of drain outlets for draining the partition wall onto the partition wall, and the total cross-sectional area of the drain ports provided in the partition wall and the cross-sectional area in the width direction of the steel sheet in the space surrounded by the header lower surface and the partition upper surface , Both of which are at least 1.5 times the total cross-sectional area of the cooling water jet nozzle inner diameter, and a cooling facility for hot steel sheets. ヘッダの前後に水切用ロールを配したことを特徴とする請求項1に記載の熱鋼板の冷却設備。 The cooling equipment for hot steel sheets according to claim 1, wherein a draining roll is arranged before and after the header. 冷却水噴射ノズルの内径3〜8mm、長さ120〜240mm、前記冷却水噴射ノズル下端から熱鋼板表面までの距離を30〜120mm、前記冷却水噴射ノズルから噴射される冷却水の流速を6m/s以上、水量密度を1.5〜4.0m/m ・minとすることを特徴とする請求項1または2に記載の熱鋼板の冷却設備。 The inner diameter of the cooling water injection nozzle is 3 to 8 mm, the length is 120 to 240 mm, the distance from the lower end of the cooling water injection nozzle to the surface of the hot steel sheet is 30 to 120 mm, and the flow rate of the cooling water injected from the cooling water injection nozzle is 6 m / The cooling facility for hot-steel sheets according to claim 1 or 2 , wherein the water density is 1.5 to 4.0 m 3 / m 2 · min. 隔壁に設けられた給水口に内挿した冷却水噴射ノズルの外周面と前記給水口の内面との隙間を3mm以下とすることを特徴とする請求項1乃至のいずれかに記載の熱鋼板の冷却設備。 Heat steel sheet according to any one of claims 1 to 3, characterized in that the gap between the outer peripheral surface and the inner surface of the water inlet of the cooling water jetting nozzles interpolated to the water supply port provided in the partition wall and 3mm or less Cooling equipment. 鋼板幅方向に並んだ冷却水噴射ノズルのうち、鋼板搬送方向の最上流側列の冷却水噴射ノズルは、鋼板搬送方向の上流方向へ15〜60度傾けられ、鋼板搬送方向の最下流側列の冷却水噴射ノズルは、鋼板搬送方向の下流方向へ15〜60度傾けられてなることを特徴とする請求項1乃至のいずれかに記載の熱鋼板の冷却設備。 Among the cooling water injection nozzles arranged in the steel plate width direction, the cooling water injection nozzle in the uppermost stream side row in the steel plate conveyance direction is inclined 15 to 60 degrees in the upstream direction in the steel plate conveyance direction, and the most downstream row in the steel plate conveyance direction. The cooling water jet nozzle according to any one of claims 1 to 4 , wherein the cooling water spray nozzle is inclined 15 to 60 degrees in a downstream direction of the steel plate conveyance direction. 熱間圧延後の熱鋼板を冷却するに際し、請求項1乃至のいずれかに記載の熱鋼板の冷却設備から噴射する棒状冷却水により、鋼板上面側を冷却することを特徴とする熱鋼板の冷却方法。 When cooling a hot steel sheet after hot rolling, the upper surface side of the steel sheet is cooled by rod-shaped cooling water sprayed from the hot steel sheet cooling facility according to any one of claims 1 to 5 . Cooling method.
JP2009161704A 2008-07-16 2009-07-08 Thermal steel sheet cooling equipment and cooling method Active JP5347781B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2009161704A JP5347781B2 (en) 2008-07-16 2009-07-08 Thermal steel sheet cooling equipment and cooling method
KR1020117000800A KR101291832B1 (en) 2008-07-16 2009-07-15 Cooling facility and cooling method for hot steel plate
CN200980127773.3A CN102099130B (en) 2008-07-16 2009-07-15 Cooling facility and cooling method for hot steel plate
US13/003,970 US8881568B2 (en) 2008-07-16 2009-07-15 Cooling equipment and cooling method for hot rolled steel plate
EP15159053.6A EP2910317B1 (en) 2008-07-16 2009-07-15 Cooling equipment for hot steel plate
PCT/JP2009/063142 WO2010008090A1 (en) 2008-07-16 2009-07-15 Cooling facility and cooling method for hot steel plate
EP09798014.8A EP2329894B1 (en) 2008-07-16 2009-07-15 Cooling facility and cooling method for hot steel plate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008184585 2008-07-16
JP2008184585 2008-07-16
JP2009161704A JP5347781B2 (en) 2008-07-16 2009-07-08 Thermal steel sheet cooling equipment and cooling method

Publications (2)

Publication Number Publication Date
JP2010042444A JP2010042444A (en) 2010-02-25
JP5347781B2 true JP5347781B2 (en) 2013-11-20

Family

ID=42014248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009161704A Active JP5347781B2 (en) 2008-07-16 2009-07-08 Thermal steel sheet cooling equipment and cooling method

Country Status (1)

Country Link
JP (1) JP5347781B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3770216B2 (en) * 2002-08-08 2006-04-26 Jfeスチール株式会社 Hot-rolled steel strip cooling device, hot-rolled steel strip manufacturing method, and hot-rolled steel strip manufacturing line
JP4029871B2 (en) * 2004-07-22 2008-01-09 住友金属工業株式会社 Steel plate cooling device, hot-rolled steel plate manufacturing apparatus and manufacturing method

Also Published As

Publication number Publication date
JP2010042444A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
JP4449991B2 (en) Apparatus and method for cooling hot-rolled steel strip
US8881568B2 (en) Cooling equipment and cooling method for hot rolled steel plate
EP1935522B1 (en) Reversing rolling mill with cooling facility and corresponding method of cooling a steel plate or sheet
JP4779749B2 (en) Steel plate cooling method and cooling equipment
JP5515483B2 (en) Thick steel plate cooling equipment and cooling method
KR101691020B1 (en) Method and facility for manufacturing steel plate
JP5962849B2 (en) Manufacturing equipment and manufacturing method for thick steel plate
JP5685861B2 (en) Draining device, draining method and cooling equipment for hot steel plate
JP4876781B2 (en) Steel sheet cooling equipment and cooling method
JP5387093B2 (en) Thermal steel sheet cooling equipment
JP6264464B2 (en) Manufacturing equipment and manufacturing method for thick steel plate
JP5347781B2 (en) Thermal steel sheet cooling equipment and cooling method
JP5597916B2 (en) Steel cooling equipment
JP5246075B2 (en) Thermal steel sheet cooling equipment and cooling method
JP5228720B2 (en) Thick steel plate cooling equipment
WO2016031169A1 (en) Thick steel plate manufacturing method
JP2009279651A (en) Method of and device for cooling back surface of hot-rolled steel strip
JP2009202184A (en) Method and system for cooling undersurface of hot-rolled steel strip

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20121225

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5347781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250