JP5228720B2 - Thick steel plate cooling equipment - Google Patents
Thick steel plate cooling equipment Download PDFInfo
- Publication number
- JP5228720B2 JP5228720B2 JP2008231822A JP2008231822A JP5228720B2 JP 5228720 B2 JP5228720 B2 JP 5228720B2 JP 2008231822 A JP2008231822 A JP 2008231822A JP 2008231822 A JP2008231822 A JP 2008231822A JP 5228720 B2 JP5228720 B2 JP 5228720B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- steel plate
- water
- thick steel
- roll
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001816 cooling Methods 0.000 title claims description 116
- 229910000831 Steel Inorganic materials 0.000 title claims description 107
- 239000010959 steel Substances 0.000 title claims description 107
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 97
- 239000000498 cooling water Substances 0.000 claims description 77
- 238000002347 injection Methods 0.000 claims description 21
- 239000007924 injection Substances 0.000 claims description 21
- 238000011144 upstream manufacturing Methods 0.000 claims description 8
- 238000005098 hot rolling Methods 0.000 claims description 3
- 230000000903 blocking effect Effects 0.000 claims 2
- 238000005096 rolling process Methods 0.000 description 13
- 239000007921 spray Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 238000005192 partition Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Landscapes
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
Description
本発明は、厚鋼板の冷却設備に関するものである。 The present invention relates to a cooling facility for thick steel plates.
熱間圧延によって厚鋼板を製造するプロセスでは、例えば図13に示すような設備において、熱間粗圧延、仕上圧延を行った後、水冷または空冷を行って組織を制御している。水冷によって比較的低い温度、例えば450〜650℃程度に冷却すると、微細なフェライトやベイナイト組織が得られ、鋼板の強度を確保できるので、スプレー冷却水やラミナー冷却水などによって鋼板を冷却する技術が一般的である。また近年では、高い冷却速度を得て組織をより微細化し、鋼板の強度を上げる技術の開発が盛んである。 In the process of manufacturing a thick steel plate by hot rolling, for example, in the equipment as shown in FIG. 13, after hot rough rolling and finish rolling, the structure is controlled by water cooling or air cooling. When cooling to a relatively low temperature, for example, about 450 to 650 ° C. by water cooling, fine ferrite and bainite structure can be obtained and the strength of the steel sheet can be secured. Therefore, there is a technology for cooling the steel sheet with spray cooling water, laminar cooling water, etc. It is common. In recent years, the development of techniques for increasing the strength of steel sheets by obtaining a high cooling rate and making the structure finer is increasing.
例えば、大量の冷却水を供給して熱鋼板を急速冷却する技術として特許文献1の技術がある。これは、熱延鋼帯の上下面に多数の冷却バンクを設置し、各冷却バンクを水切りロールで区切るとともに、鋼帯の搬送速度や仕上温度に応じて冷却水吐出バンク数を増減するものであり、非常に高い冷却速度であっても、鋼帯長手方向に均質な材料特性に優れた製品を製造出来るとされている。
For example, there is a technique of
また、冷却水を供給して熱鋼板を冷却する別の技術として、特許文献2の技術がある。これは、水切りロール間で大流量のスプレー冷却水を供給可能にするものであり、広範囲の冷却速度を確保でき、広い温度域で冷却均一性を向上できるとされている。
しかしながら、厚鋼板を急速冷却するためには、従来の技術は、冷却能力や冷却均一性の確保に問題があった。
特許文献1の技術は、高い冷却速度を得ようとするために、冷却水を大量に供給するものであり、冷却水量を増やすほど鋼板上面に滞留する冷却水膜が厚くなる。大流量の冷却水を供給すると、滞留水が水切りロールを乗り越えて、隣りの冷却ゾーンに溢れてしまう場合が発生する。滞留水が非冷却ゾーン、すなわち空冷ゾーンに溢れれば、鋼板の過冷却を起こすとともに、温度むらを発生させてしまい、品質が均一な鋼板を製造することができなくなる。特に、厚鋼板の場合は板幅が広く、板幅中央付近に供給された冷却水は板幅端部から排水され難いため、水膜の水位は高くなりやすい。したがって、冷却水量は、滞留水が水切りロールから溢れない程度に抑えておく必要があった。
However, in order to rapidly cool a thick steel plate, the conventional technique has a problem in securing cooling capacity and cooling uniformity.
The technique of
特許文献2の技術は、スプレーノズルを使用するため、冷却水を高圧で噴射しなければならない。スプレー冷却では、冷却水がノズルから噴霧状に噴射されるため、上述したように滞留水膜が厚いと、冷却水の勢いは滞留水膜で大きく減衰し、鋼板に到達できなくなる。したがって、水量密度が2.0m3/m2・min程度までの範囲でしか適用できず、それ以上の冷却水を供給しても冷却能力が上がるということはなかった。
Since the technique of
さらに、スプレーノズルで冷却水を供給する場合は、スプレーノズルでの圧力損失がラミナーノズルに比べて大きい。したがって、冷却水供給ヘッダの圧力は、スプレー冷却ではラミナー冷却よりもずっと高い圧力をかけなければならず、ポンプや配管の設備コストが膨大になるという問題点もあった。 Furthermore, when cooling water is supplied by a spray nozzle, the pressure loss at the spray nozzle is larger than that of a laminar nozzle. Therefore, the pressure of the cooling water supply header must be much higher in spray cooling than in laminar cooling, and there is a problem that the cost of equipment for pumps and piping becomes enormous.
本発明は、上記に鑑み、厚鋼板の上面に冷却水を供給する場合において、大流量の冷却水を鋼板上面に供給し、高冷却速度で均一に冷却する技術を提供することを目的とする。 In view of the above, an object of the present invention is to provide a technique for supplying a large amount of cooling water to the upper surface of the steel sheet and uniformly cooling it at a high cooling rate when supplying the cooling water to the upper surface of the thick steel sheet. .
上記の課題を解決するために、本発明は以下の特徴を有する。 In order to solve the above problems, the present invention has the following features.
第一の発明は、厚鋼板の熱間圧延ラインに設置される冷却設備であって、厚鋼板の上面に冷却水を供給するヘッダと、該ヘッダから懸垂した棒状冷却水を噴射する冷却水噴射ノズルと、前記ヘッダの厚鋼板搬送方向上流側及び下流側に配置され、厚鋼板を挟んでテーブルロールと対向する水切りロールとを備え、該水切りロールによる滞留水膜の堰き止め高さを300mm以上とすることを特徴とする厚鋼板の冷却設備である。 1st invention is the cooling equipment installed in the hot rolling line of a thick steel plate, Comprising: The header which supplies a cooling water to the upper surface of a thick steel plate, The cooling water injection which injects the rod-shaped cooling water suspended from this header A nozzle and a draining roll disposed on the upstream side and the downstream side of the header in the conveying direction of the thick steel plate and facing the table roll with the thick steel plate sandwiched therebetween, and the wetting height of the staying water film by the draining roll is 300 mm or more It is the cooling equipment of the thick steel plate characterized by these.
第二の発明は、前記ヘッダと、前記ヘッダの厚鋼板搬送方向上流側及び下流側に配置された前記水切りロールとを複数備え、少なくとも厚鋼板搬送方向最上流側と最下流側の水切りロールによる滞留水膜の堰き止め高さを300mm以上とすることを特徴とする第一の発明に記載の厚鋼板の冷却設備である。 The second invention comprises a plurality of the header and the draining rolls arranged upstream and downstream of the header in the steel plate conveying direction, and at least by the draining rolls on the most upstream side and the most downstream side in the steel plate conveying direction. The thick steel plate cooling facility according to the first aspect of the present invention is characterized in that the dam height of the staying water film is 300 mm or more.
第三の発明は、冷却水噴射ノズルから噴射される冷却水の水量密度を2.0m3/m2・min以上、前記冷却水噴射ノズルのノズル長さを100mm以上、前記冷却水噴射ノズルの下端から厚鋼板表面までの距離を30〜120mmとすることを特徴とする第一または第二の発明に記載の厚鋼板の冷却設備である。 According to a third aspect of the present invention, there is provided a cooling water jet nozzle having a water volume density of 2.0 m 3 / m 2 · min or more, a nozzle length of the cooling water jet nozzle of 100 mm or more, The distance from the lower end to the surface of the thick steel plate is 30 to 120 mm. The cooling facility for the thick steel plate according to the first or second invention.
第四の発明は、滞留水膜の堰き止め高さを300mm以上とする水切りロールとして、直径を300mm以上450mm以下とする大径水切りロールを用いることを特徴とする第一乃至第三の発明のいずれかに記載の厚鋼板の冷却設備である。 According to a fourth aspect of the present invention, a large-diameter draining roll having a diameter of 300 mm or more and 450 mm or less is used as a draining roll having a retaining water film damming height of 300 mm or more. It is the cooling equipment of the thick steel plate in any one.
第五の発明は、滞留水膜の堰き止め高さを300mm以上とする水切りロールとして、バックアップロールを有する水切りロールを用いて、バックアップロールと水切りロールの直径の和を300mm以上とすることを特徴とする第一乃至第三の発明のいずれかに記載の厚鋼板の冷却設備である。 The fifth invention is characterized in that the sum of the diameters of the backup roll and draining roll is set to 300 mm or more by using a draining roll having a backup roll as the draining roll having a retaining water film damming height of 300 mm or more. The thick steel plate cooling equipment according to any one of the first to third aspects of the invention.
本発明の厚鋼板の冷却設備を用いることにより、大流量の冷却水を鋼板上面に供給し、高い冷却速度を得て、強度の高い鋼板を製造することができる。また鋼板上面の冷却は、全面にわたって均一に行うことができるので、品質の高い鋼板を製造することができる。 By using the thick steel plate cooling equipment of the present invention, a large flow rate of cooling water can be supplied to the upper surface of the steel plate, a high cooling rate can be obtained, and a high strength steel plate can be produced. Moreover, since cooling of the upper surface of a steel plate can be performed uniformly over the entire surface, a high-quality steel plate can be produced.
以下、本発明の実施の形態の一例を図面を参照して説明する。 Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.
図13は、本発明の実施に供する厚板圧延ラインの一例を示す概略図である。
加熱炉から抽出されたスラブは圧延機によって粗圧延と仕上圧延が施され、所定の仕上温度、仕上板厚とされた後、オンラインにて加速冷却設備に搬送される。冷却前にプリレベラを通して鋼板の形状を整えてから加速冷却を行うのが均一な材質を得るには好適である。加速冷却設備では、上面冷却設備と下面冷却設備とから噴射される冷却水によって鋼板は所定温度まで冷却される。
FIG. 13 is a schematic view showing an example of a thick plate rolling line used for carrying out the present invention.
The slab extracted from the heating furnace is subjected to rough rolling and finish rolling by a rolling mill to a predetermined finishing temperature and finishing plate thickness, and then conveyed to an accelerated cooling facility online. It is suitable to obtain a uniform material by performing accelerated cooling after adjusting the shape of the steel sheet through a pre-leveler before cooling. In the accelerated cooling facility, the steel sheet is cooled to a predetermined temperature by the cooling water sprayed from the upper surface cooling facility and the lower surface cooling facility.
図1は本発明の一実施の形態に係る上面冷却設備の配置を示す側面図である。
本発明の上面冷却設備は、厚鋼板12の上面に冷却水を供給する上ヘッダ1と、該上ヘッダ1から懸垂した上冷却水噴射ノズル3と、上ヘッダ1の前後に水切りロール10が設置されている。上冷却水噴射ノズル3は棒状の冷却水を噴射する円管ノズル3からなり、厚鋼板幅方向、長手方向に一定ピッチで設置されている。なお、ガイド14は水切りロール10とテーブルロール11の間に厚鋼板12の先端がスムーズに入っていくようにするものであるが、本発明において必須の構成ではない。
FIG. 1 is a side view showing an arrangement of a top surface cooling facility according to an embodiment of the present invention.
The upper surface cooling equipment of the present invention includes an
ここで、本発明における棒状冷却水とは、円形状(楕円や多角の形状も含む)のノズル噴出口からある程度加圧された状態で噴射される冷却水であって、ノズル噴出口からの冷却水の噴射速度が8m/s以上であり、ノズル噴出口から噴射された水流の断面がほぼ円形に保たれた連続性と直進性のある水流の冷却水のことをいう。すなわち、円管ラミナーノズルからの自由落下流や、スプレーのような液滴状態で噴射されるものとは異なる。 Here, the rod-shaped cooling water in the present invention is cooling water injected in a state of being pressurized to some extent from a circular (including elliptical or polygonal) nozzle outlet, and is cooled from the nozzle outlet. The water jet velocity is 8 m / s or more, and the water flow jetted from the nozzle jet outlet is a continuous and straight water flow cooling water in which the cross section of the water flow is maintained in a substantially circular shape. That is, it is different from a free fall flow from a circular tube laminar nozzle or a liquid ejected in a droplet state such as a spray.
図1に示す上面冷却設備では、冷却水が厚鋼板の長手方向に拡がらないように、上ヘッダ1の前後に大径水切りロール10aがテーブルロール11の上方に設置されており、これにより上ヘッダ1による冷却ゾーン長さが一定となり、冷却温度制御が容易になる。また水切りロール10aにより厚鋼板の搬送方向への冷却水の流れは堰き止められ、上ヘッダ1から供給された冷却水の滞留水31は厚鋼板の幅方向外側に流れるようになる。
In the upper surface cooling facility shown in FIG. 1, large-
図2は、他の実施の形態に係る上面冷却設備の配置を示す側面図であり、図1に示した大径水切りロール10aと比較して小径の水切りロール10bをバックアップロール13で支えることにより、冷却ゾーンの滞留水31が他の冷却ゾーンに流出するのを、大径水切りロール10aを設置した場合と同様に防止することができる。
FIG. 2 is a side view showing the arrangement of the upper surface cooling equipment according to another embodiment, and by supporting the draining
本発明においては、冷却水が滞留水膜を貫通して厚鋼板に到達できるようにするとともに、滞留水を厚鋼板の幅方向外側に円滑に排水するために、以下の条件を満たすことが好適である。 In the present invention, in order to allow the cooling water to penetrate the staying water film and reach the thick steel plate, and to smoothly drain the staying water to the outside in the width direction of the thick steel plate, the following conditions are preferably satisfied It is.
図9に示すように、上ヘッダ1の鋼板上面からの高さが高い場合には、滞留水の鋼板幅方向への流れは比較的円滑であるが、冷却水の噴射距離が長いため、冷却水が滞留水膜を貫通する力が弱くなる。一方、図10に示すように、上ヘッダ1の鋼板上面からの高さが低い場合には、ヘッダ1が障害となり鋼板幅方向への排水流路面積が狭くなるため、滞留水の鋼板幅方向への排出が困難となり、滞留水の水位も高くなる。
As shown in FIG. 9, when the height of the
したがって、本発明では、図11に示すように、上ヘッダ1の鋼板上面からの高さ位置を高くし、且つ、冷却水噴射ノズルの脚長を長くすることにより、鋼板幅方向の排水流路面積を大きくするとともに冷却水が滞留水膜を貫通して厚鋼板に到達できるようにする。
Accordingly, in the present invention, as shown in FIG. 11, the height position of the
なお、図11では、厚鋼板12が上冷却水噴射ノズル3に衝突しないように、隔壁5を設けた例を示しており、設備保全の点で好ましいが、本発明は隔壁5を備えたものに限定されない。ただし、隔壁5を設ける場合には、隔壁5に多数の貫通孔を設け、その一部を冷却水噴射ノズル3の先端を内挿する給水口6とし、残りを冷却水の排水口7とすると、高い冷却能と排水性が両立できるので、好ましい。
In addition, in FIG. 11, the example which provided the
冷却水噴射ノズル3の長さは100〜200mmが好適である。ノズル長さが100mmより短いと、図10に示すように上ヘッダ1と鋼板12との間の排水スペースが狭くなり、冷却排水が厚鋼板の幅方向に円滑に排出できなくなる。一方、200mmより長いと円管ノズルの圧力損失が大きくなり、冷却水が滞留水膜を貫通する力が弱くなるからである。
The length of the cooling
上冷却水噴射ノズル3の下端から鋼板12の表面までの距離は、30〜120mmとするのが良い。30mm未満では、厚鋼板12が上冷却水噴射ノズル3に衝突する頻度が極端に多くなり設備保全が難しくなる。120mm超えでは、図9に示すように冷却水の噴射距離が長くなり、冷却水が滞留水膜を貫通する力が極端に弱くなるからである。
The distance from the lower end of the upper cooling
本発明で最も効果を発揮する水量密度の範囲は、2.0m3/m2 ・min以上である。水量密度がこれよりも低い場合には滞留水膜がそれほど厚くならず、従来の水切りロールを用いた場合でも、滞留水が水切りロールを乗り越え、隣りの冷却ゾーンに漏れる恐れはない。 The range of the water density that is most effective in the present invention is 2.0 m 3 / m 2 · min or more. When the water density is lower than this, the staying water film is not so thick, and even when a conventional draining roll is used, there is no possibility that the staying water gets over the draining roll and leaks to the adjacent cooling zone.
一方、水量密度が5.0m3/m2 ・minよりも高い場合でも、本発明の技術を用いることは有効であるが、滞留水膜が厚くなりすぎて水切りロールを乗り越え、隣りの冷却ゾーンに漏れてしまう危険性が高まり、また設備コストも高くなるなど実用化の上での問題がある。水量密度3.0m3/m2 ・min程度以下が冷却装置としての実用的な範囲である。 On the other hand, even when the water density is higher than 5.0 m 3 / m 2 · min, it is effective to use the technology of the present invention, but the accumulated water film becomes too thick to get over the draining roll, and the adjacent cooling zone There is a problem in practical use, such as an increase in the risk of leakage to the plant and an increase in equipment costs. A water density of about 3.0 m 3 / m 2 · min or less is a practical range as a cooling device.
更には、円管ノズル3の内径は3〜8mmが好適である。ノズル内径が3mmより小さいと、ノズルから噴射する水の束が細くなり勢いが弱くなる。一方ノズル径が8mmより大きいと、流速が遅くなり、ともに冷却水の貫通力を確保できなくなるからである。
Furthermore, the inner diameter of the
円管ノズルからの冷却水の噴射速度は、8m/s以上が好適である。8m/s未満では、滞留水膜を冷却水が貫通する力が極端に弱くなるからである。 The injection speed of the cooling water from the circular tube nozzle is preferably 8 m / s or more. This is because if it is less than 8 m / s, the force that the cooling water penetrates through the staying water film becomes extremely weak.
ところで、図11に示すように、上ヘッダ1の鋼板上面からの高さ位置を高くし、上冷却水噴射ノズル3の脚長を長くすれば、鋼板幅方向の排水流路面積を大きくできる。しかしながら、脚長の長いノズルが排水流路に多数存在し、且つ、これらのノズルから高速で噴射される棒状冷却水の束が高密度に存在するため、それらが滞留水の鋼板幅方向流れの流動抵抗になり、冷却排水の流れが抑制される。それ故、この場合の滞留水の水位は、図10の場合よりも低くはなるが、図9の場合よりは高くなる。
By the way, as shown in FIG. 11, if the height position of the
従って、本発明の上ヘッダ1および上冷却水噴射ノズル3を用い、特に板幅が3m以上の幅広の厚鋼板に対して、高い水量密度で冷却を行う場合は、滞留水膜が厚くなりすぎて、冷却排水が水切りロール10を乗り越えて、鋼板搬送方向に隣接する冷却ゾーンに漏れてしまう危険性が高まる。
Therefore, when the
図7は、大流量の冷却水を鋼板上面に供給した時の滞留水の鋼板幅方向水位分布を模式的に示したものである。鋼板12の上面に一様な水量密度で供給された冷却水は、滞留水31となって水膜を形成する。その水位は、板幅中央部で最も高く、左右の板幅端部で最も低い分布となる。
FIG. 7 schematically shows a steel plate width direction water level distribution of stagnant water when a large amount of cooling water is supplied to the upper surface of the steel plate. The cooling water supplied to the upper surface of the
そして、図7に示す最高水位が水切りロール10の上端より高くなる場合は、滞留水が鋼板搬送方向に隣接する冷却ゾーンに溢れ出ることとなる。その冷却ゾーンが空冷ゾーンである場合は、溢れ出た冷却排水により鋼板は過冷却を起こし、大きな温度むらを生じることとなる。
And when the highest water level shown in FIG. 7 becomes higher than the upper end of the draining
図8に水量密度と滞留水の最高水位との関係について示す。なお、この最高水位は、水切りロールの上端が十分に高い(滞留水が溢れない)と仮定して、板幅4.5mの厚鋼板についてシミュレーションした値である。 FIG. 8 shows the relationship between the water density and the maximum water level of the accumulated water. This maximum water level is a value simulated for a thick steel plate having a plate width of 4.5 m on the assumption that the upper end of the draining roll is sufficiently high (the stay water does not overflow).
滞留水の最高水位は、テーブルロール径やテーブルロール間距離、鋼板下面の冷却ヘッダの構造などから決まる排水性によって変動するが、水量密度が高くなるほど、また、板幅が広くなるほど高くなる傾向にある。 The maximum water level varies depending on the drainage determined by the table roll diameter, the distance between the table rolls, the structure of the cooling header on the lower surface of the steel plate, etc., but it tends to increase as the water density increases and the plate width increases. is there.
例えば、板幅が4.5mある広幅の厚鋼板を水量密度3.0m3/m2 ・minで冷却する場合は、滞留水の最高水位は300mmであり、水切りロールの直径が300mm未満であれば、滞留水が溢れることとなる。 For example, when a wide steel plate having a width of 4.5 m is cooled at a water density of 3.0 m 3 / m 2 · min, the maximum water level is 300 mm and the diameter of the draining roll is less than 300 mm. In this case, the accumulated water overflows.
よって、上述したように、大流量の冷却水を鋼板上面に供給しても、滞留水が鋼板搬送方向に隣接する空冷ゾーンに溢れることなく、均一で高い冷却速度を与えて高強度の鋼板を製造するためには、水切りロールの直径をある程度大きくするなどして、水切りロールによる滞留水膜の堰き止め高さを滞留水の最高水位より高く維持する必要がある。従って、本発明では、水切りロールによる滞留水膜の堰き止め高さを300mm以上とした。 Therefore, as described above, even if a large amount of cooling water is supplied to the upper surface of the steel sheet, the high-strength steel sheet can be obtained by giving a uniform and high cooling rate without overflowing the remaining water in the air cooling zone adjacent to the steel sheet conveying direction. In order to produce, it is necessary to maintain the damming height of the accumulated water film by the draining roll higher than the maximum water level of the accumulated water by increasing the diameter of the draining roll to some extent. Therefore, in the present invention, the retaining height of the staying water film by the draining roll is set to 300 mm or more.
なお、図1により説明した大径水切りロール10aを用いる場合、水切りロール径をあまり大きくしすぎると、上ヘッダ1を設置するスペースが狭くなり、厚鋼板に供給できる冷却水量が少なくなるので、大径水切りロール10aのロール径は300〜450mmとすることが好ましい。
When the large-
さらに、上ヘッダ1を複数備え、冷却ゾーンが複数有る場合は、全ての水切りロール径を大きくすると各冷却ゾーンの上面冷却ヘッダ1を設置するスペースが狭くなり、厚鋼板に供給できる水量が少なくなるので、少なくとも最上流側と最下流側の水切りロール10を大径化すれば良く、その場合の水切りロール径も300mm以上450mm以下とするのが好適である。
Furthermore, when there are a plurality of
例えば、図4に示すようにNo.1冷却ゾーン手前の水切りロールと、No.3〜4ゾーン間の水切りロールに大径水切りロール10aを設置し、No.1〜2間の水切りロールとNo.2〜3間の水切りロールを通常の水切りロール10とすれば良い。
For example, as shown in FIG. 1 draining roll before the cooling zone; The large-
また、図2により説明した、水切りロール10bをバックアップロール13で支える場合は、バックアップロール13と水切りロール10bの直径の和を300mm以上とすればよい。
When the draining
さらに、上ヘッダ1を複数備え、冷却ゾーンが複数有る場合は、図5に示すように全ての水切りロール10bにバックアップロール13を併設してもよいが、少なくとも冷却ゾーンの最上流側と最下流側の水切りロール10bにバックアップロール13を併設すれば良く、その場合も、バックアップロール13と水切りロール10bの直径の和を300mm以上とするのが好適である。
Further, when a plurality of
なお、本発明において、鋼板下面側の冷却装置については、特に限定されるものではない。図1に示す実施形態等では、上面側の冷却装置と同様の円管ノズル4を備えた冷却ヘッダ2の例を示したが、本発明の設備に用いる下面冷却設備は、鋼板の上下面で同程度の冷却能力を持たせて鋼板冷却中の反りが発生しにくいようにしてあれば、公知の技術をもちいてもよい。
In the present invention, the cooling device on the lower surface side of the steel plate is not particularly limited. In the embodiment shown in FIG. 1 and the like, the example of the
以下、本発明の一実施例として、厚板圧延のプロセスにおいて、引張強度590MPaクラスの鋼板の冷却を行う場合について、図面に基づいて説明する。 Hereinafter, as an embodiment of the present invention, a case of cooling a steel plate having a tensile strength of 590 MPa class in a thick plate rolling process will be described with reference to the drawings.
図13に概略を示す厚板圧延設備において、加熱炉から抽出されたスラブを圧延機によって、成形、幅出し圧延を行った後、粗圧延を行い、さらに仕上圧延を行って板厚を25mm、板幅を4.5mとした。仕上圧延直後に測定した鋼板表面温度、すなわち仕上温度は820℃であった。この後に、ホットレベラを通して、加速冷却設備において加速冷却を行った。冷却開始温度780℃から冷却終了温度(加速冷却設備出側で復熱後の温度を測定した値)560℃まで冷却を行った。 In the thick plate rolling facility schematically shown in FIG. 13, the slab extracted from the heating furnace is formed by a rolling mill, subjected to tenter rolling, then rough rolled, and further subjected to finish rolling to obtain a plate thickness of 25 mm, The plate width was 4.5 m. The steel sheet surface temperature measured immediately after finish rolling, that is, the finish temperature was 820 ° C. Thereafter, accelerated cooling was performed in an accelerated cooling facility through a hot leveler. Cooling was performed from a cooling start temperature of 780 ° C. to a cooling end temperature of 560 ° C. (a value obtained by measuring the temperature after reheating on the accelerated cooling equipment exit side).
本実施例に用いた上面冷却設備は、図4〜6に示すように3つの上ヘッダ1を備え、それぞれ水切りロール10によって仕切られた3つの冷却ゾーン(1つのロール間が1ゾーンにあたる)を有している。図4は、本発明例1の冷却設備で、No.1冷却ゾーン手前の水切りロールと、No.3〜4ゾーン間の水切りロールにφ320mmの大径水切りロール10aを設置し、No.1〜2間の水切りロールとNo.2〜3間の水切りロールをφ270mmの通常の径の水切りロール10を使用した。
The upper surface cooling equipment used in this example includes three
図5は本発明例2の冷却設備で、各冷却ゾーンの入出側の水切りロール径はφ220mmであるが、水切りロール10bをφ150mmのバックアップロール13で支えることによって、各ゾーンの滞留水の水位が370mmになるまで溢れ出ることがないようにした例である。
FIG. 5 shows the cooling equipment of Example 2 of the present invention. The diameter of the draining roll on the entry / exit side of each cooling zone is 220 mm. However, by supporting the draining
図6は、比較例の冷却設備で、各冷却ゾーンの入出側の水切りロール径をφ270mm一定とした場合である。 FIG. 6 shows a case where the diameter of the draining roll on the entry / exit side of each cooling zone is constant at 270 mm in the cooling equipment of the comparative example.
また、高強度鋼板を得るには、25℃/s以上の冷却速度が必要であるので、水量密度は3.0m3/m2・ min(比較例2を除く)とし、鋼板搬送速度は、1m/sとした。上冷却水噴射ノズル3としては内径5mmの円管ノズルを図12に示すように配置した。
Moreover, since a cooling rate of 25 ° C./s or more is necessary to obtain a high-strength steel plate, the water density is 3.0 m 3 / m 2 · min (excluding Comparative Example 2), and the steel plate conveyance speed is 1 m / s. As the upper cooling
円管ノズル長さは160mm、噴射距離(円管ノズルの下端から厚鋼板表面までの距離)は80mmとした。なお、本実施例では、図12に示すような隔壁5を使用し、隔壁5に多数の貫通孔を設け、その一部を上冷却水噴射ノズル3の先端を内挿する給水口6とし、残りを冷却水の排水口7とした。
The length of the circular tube nozzle was 160 mm, and the injection distance (distance from the lower end of the circular tube nozzle to the surface of the thick steel plate) was 80 mm. In the present embodiment, the
表1に実施条件および結果を示す。 Table 1 shows the implementation conditions and results.
比較例1は高い水量密度を設定したので、鋼板上面の滞留水膜が厚くなりすぎて、図6に示すように、滞留水がφ270mmの水切りロール10を越えて、No.1ゾーン手前や、No.3〜4ゾーン間から溢れた。溢れた水は、鋼板の局所に滞留したため、部分的に過冷却を起こし、かつ±40℃の温度むらが生じた。製品の一部を取り出して、材料試験を行なった結果、合格率は60%と低く、歩留りも悪かった。
In Comparative Example 1, since a high water density was set, the staying water film on the upper surface of the steel sheet became too thick, and the staying water exceeded the draining
比較例2は滞留水が水切りロール10を越えないように比較例1よりも水量密度を抑えたので、No.1ゾーン手前や、No.3〜4ゾーン間から冷却水が溢れ出ることはなかった。しかし、水量密度が低い分、冷却速度が低下し、目標の25℃/s以上が得られず、目標とした強度も得られなかった。温度むらは±20℃であり、比較例1よりは小さかったが、冷却速度が低かったので、強度が足りない場合が多く、材料試験の合格率は40%と低く、歩留りも悪かった。
In Comparative Example 2, the water density was suppressed more than that in Comparative Example 1 so that the accumulated water did not exceed the draining
これに対し、本発明例1は、No.1冷却ゾーン手前の水切りロールとNo.3〜4冷却ゾーン間の水切りロールにφ320mmの大径水切りロール10aを設置したため、水量密度3.0m3/m2 minの冷却水を供給しても、図4に示すように、滞留水がこのロールを越えてNo.1ゾーン手前やNo.3〜4ゾーン間から溢れることはなかった。
On the other hand, this invention example 1 is No.1. No. 1 draining roll before the cooling zone and No. 1 Since the large-
本発明例2では、φ220mmの水切りロール10bをφ150mmのバックアップロール13で支えることによって、各冷却ゾーンで水位が370mmになるまでは滞留水が溢れ出ないようにしたため、図5に示すように、滞留水がバックアップロールを越えて溢れ出ることはなかった。いずれの発明例でも、温度むらは±10℃と小さく、高い冷却速度が得られ、目標とする強度が余裕で得られた。このため、材料試験の合格率は99%と高く、歩留りも十分に高かった。
In Example 2 of the present invention, the retained water is prevented from overflowing until the water level reaches 370 mm in each cooling zone by supporting the draining
本発明の冷却設備を熱延板に用いることにより、大流量の冷却水を鋼板上面に供給し、高い冷却速度を得て、強度の高い鋼板を製造することができる。また鋼板上面の冷却は、全面にわたって均一に行うことができるので、品質の高い鋼板を製造することができる。 By using the cooling equipment of the present invention for a hot-rolled sheet, a high flow rate of cooling water can be supplied to the upper surface of the steel sheet, a high cooling rate can be obtained, and a high-strength steel sheet can be manufactured. Moreover, since cooling of the upper surface of a steel plate can be performed uniformly over the entire surface, a high-quality steel plate can be produced.
1 上ヘッダ
2 下ヘッダ
3 上冷却水噴射ノズル(円管ノズル)
4 下冷却水噴射ノズル(円管ノズル)
5 隔壁
6 給水口
7 排水口
8 噴射冷却水
9 排出水
10 水切りロール
10a 大径水切りロール
10b 水切りロール(バックアップロールを有する)
11 テーブルロール
12 厚鋼板
13 バックアップロール
14 ガイド
31 滞留水
32 漏れ水
1
4 Lower cooling water injection nozzle (circular tube nozzle)
5
11
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008231822A JP5228720B2 (en) | 2008-09-10 | 2008-09-10 | Thick steel plate cooling equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008231822A JP5228720B2 (en) | 2008-09-10 | 2008-09-10 | Thick steel plate cooling equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010064098A JP2010064098A (en) | 2010-03-25 |
JP5228720B2 true JP5228720B2 (en) | 2013-07-03 |
Family
ID=42190147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008231822A Active JP5228720B2 (en) | 2008-09-10 | 2008-09-10 | Thick steel plate cooling equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5228720B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101376573B1 (en) * | 2011-12-27 | 2014-04-01 | (주)포스코 | Double cold rolling method and nozzle apparatus of double cold rolling |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2706361B2 (en) * | 1990-08-28 | 1998-01-28 | 三菱重工業株式会社 | Steel plate cooling system |
JPH0569029A (en) * | 1991-09-10 | 1993-03-23 | Nippon Steel Corp | Method and device for cooling high temperature metal |
JP3277985B2 (en) * | 1997-03-26 | 2002-04-22 | 日本鋼管株式会社 | High temperature steel plate cooling system |
JP3900844B2 (en) * | 2000-03-01 | 2007-04-04 | Jfeスチール株式会社 | Hot-rolled steel strip cooling device, its cooling method, and hot-rolled steel strip manufacturing method |
JP4876782B2 (en) * | 2005-08-30 | 2012-02-15 | Jfeスチール株式会社 | Steel sheet hot rolling equipment and hot rolling method |
-
2008
- 2008-09-10 JP JP2008231822A patent/JP5228720B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010064098A (en) | 2010-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100976758B1 (en) | Device and method for cooling hot-rolled steel strip | |
JP4779749B2 (en) | Steel plate cooling method and cooling equipment | |
JP5515483B2 (en) | Thick steel plate cooling equipment and cooling method | |
AU2016381035B2 (en) | Process and device for cooling a metal substrate | |
KR101691020B1 (en) | Method and facility for manufacturing steel plate | |
WO2013183694A1 (en) | Dewatering device and dewatering method for cooling water for hot rolled steel sheet | |
JP5685861B2 (en) | Draining device, draining method and cooling equipment for hot steel plate | |
JP5962849B2 (en) | Manufacturing equipment and manufacturing method for thick steel plate | |
JP5228720B2 (en) | Thick steel plate cooling equipment | |
JP2012040575A (en) | Method of determining refrigerant flow rate and cooling device for steel plate | |
JP5910597B2 (en) | Hot rolled steel sheet cooling device | |
JP5387093B2 (en) | Thermal steel sheet cooling equipment | |
JP6264464B2 (en) | Manufacturing equipment and manufacturing method for thick steel plate | |
JP5597916B2 (en) | Steel cooling equipment | |
JP5515440B2 (en) | Thick steel plate cooling equipment and cooling method thereof | |
JP3277985B2 (en) | High temperature steel plate cooling system | |
JP2007203370A (en) | Cooling facility and cooling method of steel plate | |
JP5246075B2 (en) | Thermal steel sheet cooling equipment and cooling method | |
JP5347781B2 (en) | Thermal steel sheet cooling equipment and cooling method | |
WO2016031169A1 (en) | Thick steel plate manufacturing method | |
JP4858139B2 (en) | Steel sheet cooling equipment and cooling method | |
JP4779759B2 (en) | Shaped steel web top surface cooling device and method of use thereof | |
JP4962349B2 (en) | Lower surface cooling method and lower surface cooling device for hot-rolled steel strip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110824 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130304 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160329 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5228720 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |